The Journey from Design Automation to Generative Design in AEC

Dieter Vermeulen

Technical Sales Specialist AEC Generative Design & Engineering @BIM4Struc

© 2020 Autodesk, Inc.

TRADITIONAL DESIGN PROCESS

GENERATIVE DESIGN:

A form of artificial intelligence, dedicated to the creation of better outcomes for products, buildings, infrastructure and systems.

GENERATIVE DESIGN PROCESS

SPACE PLANNING

SITE DRAINAGE

Generative design is a

methodology and a process

more than a singular product

Benefits of Generative Design

Designers can generate options using the power of computation Explore the full range of options while focusing on the higher performing solutions

Gain more insight into your designs by studying the relationships between inputs and results at scale Make more informed decisions in less time by leveraging what is learned in each study

BIM4Struc

What level of design progression ?

Traditional Design

Sketching

Computer Aided Drafting

Parametric Design

PARAMETRIC DESIGN

Designer/engineer uses computer as passive machine

Parametric Modeling

a = 2 b = 1a - b = c

Parametric Modeling

a = 2 b = 1

 $a \ominus b = c$ f(x)

Parametric Modeling

Conceptual Tower Mass – Design Model

R AUTODESK[®] REVIT[®] R AUTODESK[®] REVIT[®] R AUTODESK[®] 00000-0-0-0 =-/ 0A 0-0E B-1= 80.0.0.0 #.ZPA 8.0 8 8.0 22. 日本的限222 212 =-総刑 ロ ノー 町 48 0 ase Offset nee. Up to level: Gra Up to level: Level 1 nøge priest sese Created **Assign Parametric Modify Parameters Create Geometry** Constraints

Document the Idea

Design Automation

Dynamo

Ecosystem to increase capabilities

Dynamo to simplify things

PROGRAMMING

VISUAL SCRIPTING

>

>

>	>
-	-

var[]..[]

AUTO

Conceptual Tower Mass - Automated Placement

Design Automation with Revit and Dynamo Player

Cut Openings in Structural Walls

ABCLAUSEN

Thanks for contributing: Jesper Wallaert, AB Clausen, Denmark

Design Automation with Revit and Dynamo

Computational Modeling

Computational Modeling Process

Conceptual Tower Mass with Computational Modeling

DYNAMO FOR REVIT[®]

Get Boundaries

DYNAMO FOR REVIT[®]

R AUTODESK[®]

Light Distribution Analysis

R AUTODESK[®] REVIT[®]

Light Distribution Analysis

Computational Modeling with Revit and Dynamo

Special thanks for contributing: Jared Linden, Hoare Lea, UK Radu Gidei, UK

Dynamo			- 🗆 ×	m.rvt - 3D View: (3D)	4 🕅 👤 dieter.vermeul* 😿 🕐 *	_ 🗆 ×
File Edit View	Packages Settings Help Refinery 🕕		0 =	uter scope Sheet View Title Revision Guide Q View Reference Box	Switch Close Tab Tile User Vindows Inactive Views Views	
	DESCRI DYNAMO FILE NAME Light Distribution Optimization.dyn ASSOCIATED REVIT FILE(5) Light Distribution.rvt	PTION UVNAMO VERSION 22 WORKING REVIT VERSION(S) 2020	6-0 	Sheet Composition	Windows	
VARIABLE OMETRY:	AUTHOR(S) Dieter Vermeulen (Autodesk) DESCRIPTION	REQUIRED DYNAMO PACKAGES BIMAStrucLightDistribution Project Refinery (install from https://beta.autodesk.com/key/ RefineryLanding)	×			
EDITING MAIN tion d data ies get	This Light Layout Optimiser prototype is built for use with Refinery and creates and analyzes lighting positions on a floor layout. Choose the floor and ceiling face from your Revit model. The script will place "lights" below the ceiling and an array of points on the floor. It will then ray cast every light to every floor point (taking into account obstace) geometry) and add up the number of unlit floor points.	Special thanks and credits to Jared Linden, Digital Applications Developer at Hoare Lea and Radu Gidei from Matterlab for contributing to this example.				
DN Manual +	Run		_			* * ::

02-01_Primer_sample_BuildingGenerator 001

Generative Design

GENERATIVE DESIGN

Computer and designer/engineer unite as cocreators

100s to 1000s of design options

one computational computing human digorithms power

Generative Design Process

Conceptual Tower Mass Optimization

BIM4Struc

Conceptual Tower Mass Optimization

Optimization with GD in Revit

Light Distribution Optimization

R AUTODESK[®] REVIT[®]

Light Distribution Optimization

Special thanks for contributing: Jared Linden, Hoare Lea, UK Radu Gidei, Matterlab, UK

Design Optimization with Revit, Dynamo and GD

Shop Layout Planning

Optimize the ratio of shop and storage area of a liquor store

@BIM4Struc

Building Massing Conceptual Analysis

Optimization with Generative Design in Revit

Office Workspace Layout

Optimization with Generative Design in Revit

Design Technology Progression

What level of design progression ?

You know what to do !

Where to get started with Dynamo ?

https://primer.dynamobim.org/

Learning Content

Revit Help and more in-depth primer content

Access from within Revit > Help

Generative Design Primer: https://www.generativedesign.org/

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.

© 2020 Autodesk. All rights reserved.