

Autodesk PowerMill

Macro Programming Guide

Autodesk PowerMill Contents • i

Contents

Macros 1

Creating macros ... 1

Recording macros in PowerMill .. 2

Running macros ... 3

Editing macros .. 3
Running macros from within macros .. 4

Writing your own macros .. 5
PowerMill commands for macros ... 6
Adding comments to macros .. 7

Macro User Guide .. 8
Variables in macros .. 26

Using expressions in macros .. 45
Operator precedence ... 47

Executing a macro string variable as a command using DOCOMMAND . 49

Macro functions .. 50

IF statement ... 53
IF - ELSE statement ... 54

IF - ELSEIF - ELSE statement .. 55
SWITCH statement .. 56
Running macros without displaying GUI items ... 59

BREAK statement in a SWITCH statement .. 59
Repeating commands in macros .. 60

Creating sequences ... 64
RETURN statement .. 65
Printing the value of an expression .. 66

Constants ... 67
Built-in functions ... 67

Entity based functions .. 101
Model hierarchy .. 105

Model Component Functions .. 105
Model Hierarchies .. 106
Nodes ... 106
Walking the hierarchy ... 107
Getting a Node by its Path.. 107

Getting the Hierarchy as a List ... 108
Model metadata .. 108

Feature Parameters .. 109

Working with files and directories ... 110
File reading and writing in macros .. 111
Frequently asked questions .. 114

Organising your macros .. 116

ii • Contents Macro Programming Guide

Recording the pmuser macro .. 117
Turning off error and warning messages and locking graphic updates 118
Recording a macro to set up NC preferences ... 119

Tips for programming macros ... 120

Autodesk Legal Notice 122

Index 139

Autodesk PowerMill Macros • 1

A macro is a file which contains a sequence of commands to
automate recurrent operations. You can create macros by recording

operations as they occur in PowerMill, or by entering the commands

directly into a text editor. Recorded macros have a .mac extension,
and can be run from the Macro node in the Explorer.

You can record single or multiple macros to suit your needs. You
can call a macro from within another macro.

There are two types of macros:

▪ The initialisation macro, pmuser.mac, is run when PowerMill
starts. By default, a blank copy of this macro exists in the

C:\Program Files\Autodesk\PowerMillxxxxx\lib\macro folder. By

overwriting or adding PowerMill commands to it, you can set up

your own default parameters and settings. You can also place the

pmuser macro in the pmill folder, directly below your Home area.
Doing this enables personalised macro settings for individual

login accounts.

▪ User-defined macros are macros you define to automate various

operations.

 In addition to tailoring PowerMill by the creation of an

initialisation macro, you can create macros for undrawing,
drawing and resetting leads and links, setting NC preferences,

defining regularly used machining sequences, and so on.

Creating macros
You can create macros by:

▪ Recording (see page 2) a sequence of commands within

PowerMill.

▪ Writing your own macro (see page 5) using a text editor.

Macros

2 • Macros Macro Programming Guide

Recording macros in PowerMill
An easy way to create a macro is to record PowerMill commands as

you work. Only the values that you change in the dialogs are
recorded in the macro. Therefore, to record a value that is already

set, you must re-enter it in a field, or re-select an option. For
example, if the finishing tolerance is currently set to 0.1 mm, and

you want the macro to store the same value, you must re-enter 0.1

in the Tolerance field during recording.

To record a macro:

1 From the Macros context menu, select Record.

This displays the Select Record Macro File dialog which is a

standard Windows Save dialog.

2 Move to the appropriate directory, enter an appropriate File name

and click Save.

The macro icon changes to red to show recording is in
progress.

All dialog options that you want to include in your macro must be
selected during its recording. If an option already has the desired

value, re-enter it.

3 Work through the set of commands you want to record.

4 From the Macros context menu, select Stop to finish recording.

For more information, see Recording the pmuser macro (see page
117) and Recording the NC preference macro (see page 119).

Autodesk PowerMill Macros • 3

Running macros

When you run a macro, the commands recorded in the macro file

are executed.

1 Expand Macros, and select the macro you want to run.

2 From the individual macro menu, select Run.

You can also run a macro by double-clicking its name in the
Explorer.

Running the macro you have just recorded

The location of the macro you have just recorded becomes the local
folder. So, the macro you have just recorded is available in the local

macro search path . However, the list of macros is not updated
dynamically. To force an update:

1 Click next to Macros to collapse the contents.

2 Click next to Macros to expand and regenerate the contents.

3 Click next to to see the macros in this directory, which

includes the one you have just created.

Editing macros

You can edit recorded macros to troubleshoot and correct any

errors.

1 Expand Macros and select the macro you want to edit.

4 • Macros Macro Programming Guide

2 From the individual macro menu, select Edit.

A Windows WordPad document opens.

The text editor opened by default is the application associated

with macro (.mac) files. Use the Choose default program option
available in Windows Explorer to make changes to default file

type associations.

3 Edit the macro commands, and then save the file.

Running macros from within macros

You can create small macros that perform a single operation, and
then call them from within a larger macro. This example shows how

to add the h400_prefs macro and the iniblock macro to the pmuser

macro.

1 From the pmuser macro context menu, select Edit.

2 Scroll to the bottom of the file, and add the following lines:

macro h400_prefs

Autodesk PowerMill Macros • 5

macro iniblock

If you precede a line with two forward slash characters (//), it is
treated as a comment, and is not executed.

3 Save and close pmuser.mac.

4 Exit and restart PowerMill to check that the settings from the
pmuser macro are activated.

Writing your own macros
A more powerful way of creating macros is to write your own. The
principles are described in the Macro User Guide (see page 8).

Macros enable you to:

▪ Construct expressions (see page 45).

▪ Use expressions to control macro flow (see page 21).

▪ Use a range of relational (see page 40) operators and logical
(see page 42) operators.

▪ Evaluate both expressions (see page 45).

6 • Macros Macro Programming Guide

▪ Assign values to variables and parameters by using assignments
(see page 27).

Click Help > Documentation > Parameters >Reference >
Functions to list all the standard functions you can use in macros.

 For information about using parameter functions in setup
sheets, see Using parameters in Setup Sheets.

PowerMill commands for macros

When you use PowerMill interactively, every menu click and entry in
a dialog sends a command to the program. These are the

commands that you must enter in your macro file if you want to

drive PowerMill from a macro.

This example shows you how to:

▪ Find the PowerMill commands to include in your macros.

▪ Place them in a text editor such as WordPad.

▪ Display the macro in the Explorer.

To create a macro:

1 Click View tab > Window panel > User Interface > Command
Window to open the command window.

2 Click Home tab > Macro panel > Echo Commands to echo the
issued commands in the command window.

3 To see the commands needed to calculate a block:

a Click Home tab > Setup panel > Block > Block.

b When the Block dialog opens, click Calculate, and then click

Accept.

The command window shows the commands issued:

Autodesk PowerMill Macros • 7

The commands are shown in square brackets; \r should be

ignored. The commands you need are: FORM BLOCK, EDIT

BLOCK RESET, and BLOCK ACCEPT.

4 Open WordPad, and enter the commands into it.

 The commands aren't case-sensitive so FORM BLOCK is

the same as Form Block which is the same as foRm bLock.

5 Save the file. The macro is added to the macro tree.

 For more information see Running macros (see page 3).

Adding comments to macros

It is good practise to put comments into a macro file to explain what
it does. A comment is a line of text which has no effect on the

running of the macro file but may help anyone examining the file to

understand it. Comment lines start with //. For example:

// This macro imports my standard model, creates a block,
// and a ball nosed tool.

It is also good practise to have comments explaining what each
section of the macro file does. This may be obvious when you write

the macro but later it may be difficult to understand. It is good
practise to put the comments which describe commands before the

actual commands:

// Clean all the Roughing boundaries
MACRO Clean 'boundary\Roughing'

8 • Macros Macro Programming Guide

Another use of comments is to temporarily remove a command
from a macro. When debugging or writing a macro, it is a good idea

to write one step at a time and re-run the macro after each change.
If your macro contains a lengthy calculation, or the recreation of

toolpaths, you may want to temporarily comment out the earlier
parts of the macro whilst checking the later parts. For example:

// Import the model
// IMPORT TEMPLATE ENTITY TOOLPATH "Finishing/Raster-

Flat-Finishing.ptf"

Macro User Guide

This example shows you how to use the PowerMill macro
programming language to create a macro which prints the words of

the counting song "Ten Green Bottles".

The main steps are:

1 Creating the basic macro (see page 8).

2 Adding macro variables (see page 9).

3 Adding macro loops (see page 10).

4 Running macros with arguments (see page 11).

5 Decision making in macros (see page 13).

6 Using functions in macros (see page 15).

7 Using a SWITCH statement (see page 17).

8 Returning values from macros (see page 18).

9 Using a FOREACH loop in a macro (see page 21).

10 Using arrays in a FOREACH loop (see page 24).

Basic macro

This shows you how to create and run a basic macro using

PowerMill's programming language.

1 In a text editor such as WordPad enter:

PRINT "10 green bottles sitting on the wall"

PRINT "10 green bottles sitting on the wall"

PRINT "And if 1 green bottle should accidentally fall"

PRINT "There will be 9 green bottles sitting on the

wall"

2 Save the file as example.mac.

3 In PowerMill, click View tab > Window panel > User Interface >
Command Window.

Autodesk PowerMill Macros • 9

4 From the Macro context menu, select Run. This displays the
Select Macro to Run dialog.

5 Move to the appropriate directory, select example.mac, and click

Open. The macro runs and the command windows displays the
text enclosed in quotations marks (") in the macro.

Adding macro variables

The first two lines of example.mac are the same. To minimise

repetition (and for ease of maintenance) it is good practise to write
the line once and recall it whenever it is needed. To do this you

must create a local variable to hold the line of text.

You can create different types of variables (see page 26) in

PowerMill. To store a line of text you must use a STRING variable.

1 Open example.mac in your text editor and change it to:

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the wall"

PRINT $bottles

PRINT $bottles

PRINT "And if 1 green bottle should accidentally fall"

PRINT "There will be 9 green bottles sitting on the

wall"

 The first line is a comment which explains the second line.

2 Save the file as example.mac.

3 In PowerMill, Run the Macro. The command windows displays the
same as before:

You should be aware of several issues with variables:

▪ You must define all local variables before they are used, in this

case STRING bottles = "10 green bottles sitting on the

wall" defines the local variable bottles.

10 • Macros Macro Programming Guide

▪ The variable bottles is a local variable, so is only valid within the

macro where it is defined. It is not a PowerMill variable. Typing it

into the command window gives an error.

▪ When you have defined a local variable you can use it as many

times as you want in a macro.

▪ You can define as many local variables as you want in a macro.

Adding macro loops

There are two lines of the macro which are the same: PRINT

$bottles. This is acceptable in this case because the line only

appears twice, but if you wanted to repeat it 5 or 20 times it would
be better to use a loop. PowerMill has three looping statements:

▪ WHILE (see page 62)

▪ DO - WHILE (see page 63)

▪ FOREACH (see page 61)

This example uses the WHILE statement to repeat the command 5

times.

1 Open example.mac in your text editor and change it to:

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the wall"

// Create a variable to hold the number of times

// you want to print the first line.

// In this case, 5

INT Count = 5

// Repeat while the condition Count is greater than 0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

// Print the last two lines

PRINT "And if 1 green bottle should accidentally fall"

PRINT "There will be 9 green bottles sitting on the

wall"

Autodesk PowerMill Macros • 11

 $Count = Count - 1 is an assignment statement which is

why the variable ($Count) to the left of = must be prefixed

with $.

 The empty lines are not necessary, but they make it easier

to read the macro.

2 Save the file as example.mac.

3 In PowerMill, Run the Macro. The command windows displays:

 Changing INT Count = 5 to INT Count = 10 prints 10 green

bottles sitting on the wall ten times, rather than five.

Running macros with arguments

The loop you added to example.mac works well if you always want to
print 10 green bottles sitting on the wall the same number of times.

However, if you want to change the number of repetitions at run
time, rather than editing the macro each time, it is much better to

write the macro so it is given the number of repetitions. To do this

you need to create a Main FUNCTION (see page 50).

1 Open example.mac in your text editor and change it to:

// Create a Main FUNCTION to hold the number of times

// you want to print the first line.

FUNCTION Main (INT Count) {

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the

wall"

// Repeat while the condition Count is greater than

0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

// Print the last two lines

PRINT "If 1 green bottle should accidentally fall"

12 • Macros Macro Programming Guide

PRINT "There will be 9 green bottles sitting on the

wall"

}

2 Save the file as example.mac.

3 To run the macro you cannot select Run from the Macro context

menu, as you need to give a value for Count. Therefore, in the

command window type:

MACRO example.mac 5

Where 5 is the value for Count. The command windows displays:

 If you get a warning that the macro cannot be found, check

you have created the necessary macro path (see page
116).

Adding your own functions

As well as a Main function you can create your own functions. This is

useful as a way of separating out a block of code. You can use
functions:

▪ to build up a library of useful operations

▪ to make a macro more understandable.

 You can call a function any number of times within a macro.

This example separates out the printing of the first line into its own

function so that the Main function is more understandable.

1 Open example.mac in your text editor and change it to:

FUNCTION PrintBottles(INT Count) {

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the

wall"

// Repeat while the condition Count is greater than

0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

Autodesk PowerMill Macros • 13

}

FUNCTION Main (INT Count) {

// Print the first line Count number of times

CALL PrintBottles(Count)

// Print the last two lines

PRINT "If 1 green bottle should accidentally fall"

PRINT "There will be 9 green bottles sitting on the

wall"

}

2 Save the macro.

3 Run the macro by typing MACRO example.mac 5 in the command

window.

This produces the same result as before.

 The order of functions in a macro is irrelevant. For example, it

does not matter whether the Main function is before or after

the PrintBottles function.

 It is important that each function name is unique and that the

macro has a function called Main.

 You can have any number of functions in a macro.

Decision making in macros

The macro example.mac runs provided that you enter a positive

argument. However, if you always want the 10 green bottles sitting

on the wall line printed at least once use:

▪ A DO - WHILE (see page 63) loop as it executes all the commands
before testing the conditional expression.

▪ An IF (see page 53) statement.

DO - WHILE loop

1 Edit the PrintBottles function in example.mac to:

FUNCTION PrintBottles(INT Count) {

// Create a variable to hold the first line

14 • Macros Macro Programming Guide

STRING bottles = "10 green bottles sitting on the

wall"

// Repeat while the condition Count is greater than

0

DO {

 // Print the line

 PRINT $bottles

 // Reduce the count by 1

 $Count = Count - 1

} WHILE Count > 0

}

The main function remains unchanged:

FUNCTION Main (INT Count) {

// Print the first line Count number of times

CALL PrintBottles(Count)

// Print the last two lines

PRINT "And if 1 green bottle should accidentally

fall"

PRINT "There will be 9 green bottles sitting on the

wall"

}

2 Type MACRO example.mac 0 in the command window.

The 10 green bottles sitting on the wall line is printed once.

IF statement

You can use an IF statement to ensure the 10 green bottles sitting on

the wall line is printed at least twice.

1 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

// Print the first line Count number of times

CALL PrintBottles(Count)

// Print the last two lines

PRINT "And if 1 green bottle should accidentally

fall"

Autodesk PowerMill Macros • 15

PRINT "There will be 9 green bottles sitting on the

wall"

}

The PrintBottles function remains unchanged:

FUNCTION PrintBottles(INT Count) {

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the

wall"

// Repeat while the condition Count is greater than

0

WHILE Count > 0 {

 // Print the line

 PRINT $bottles

 // Reduce the count by 1

 $Count = Count - 1

}

}

2 Type MACRO example.mac 0 in the command window.

The 10 green bottles sitting on the wall line is printed twice.

More on functions in macros

So far you have only printed the first verse of the counting song
"Ten Green Bottles". To make your macro print out all the verses

you must change the PrintBottles function so it takes two
arguments:

▪ Count for the number of times "X green bottles" is printed.

▪ Number for the number of bottles.

1 Edit the PrintBottles function in example.mac to:

FUNCTION PrintBottles(INT Count, INT Number) {

// Create a variable to hold the first line

STRING bottles = String(Number) + " green bottles

sitting on the wall"

// Repeat while the condition Count is greater than

0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

16 • Macros Macro Programming Guide

 $Count = Count - 1

}

}

This adds a second argument to the PrintBottles function. It then
uses a parameter function to convert the Number to a string

value, STRING (Number). It is then concatenated (+)with green

bottles sitting on the wall to make up the bottles string.

2 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

// Start with ten bottles

INT Bottles = 10

WHILE Bottles > 0 {

// Print the first line 'Count' number of times

CALL PrintBottles(Count, Bottles)

// Count down Bottles

$Bottles = $Bottles - 1

// Build the number of 'bottles_left' string

STRING bottles_left = "There will be " +

string(Bottles) + " green bottles sitting on the

wall"

// Print the last two lines

PRINT "If 1 green bottle should accidentally fall"

PRINT $bottles_left

}

}

3 Type MACRO example.mac 2 in the command window.

 In Main when you CALL PrintBottles you give it two arguments

Count and Bottles whilst within the PrintBottles function the

Bottles argument is referred to as Number. The parameters
passed to a function do not have to have the same names as

they are called within the function.

Autodesk PowerMill Macros • 17

 The order you call the arguments is important.

 Any changes made to the value of a parameter within a

function does not alter the value of parameter in the calling

function unless the parameter is defined as an OUTPUT (see
page 18) value.

Using the SWITCH statement

So far you have used numerals to print the quantity of bottles but it
would be better to use words. So, instead of printing 10 green bottles

… print Ten green bottles ….

One way of doing this is to use a large IF - ELSEIF (see page 54)
chain to select the text representation of the number. Another way

is to use the SWITCH (see page 56) statement.

SWITCH Number {

CASE 10

$Text = "Ten"

BREAK

CASE 9

$Text = "Nine"

BREAK

CASE 8

$Text = "Eight"

BREAK

CASE 7

$Text = "Seven"

BREAK

CASE 6

$Text = "Six"

BREAK

CASE 5

$Text = "Five"

BREAK

CASE 4

$Text = "Four"

BREAK

CASE 3

$Text = "Three"

BREAK

CASE 2

$Text = "Two"

BREAK

CASE 1

$Text = "One"

BREAK

DEFAULT

$Text = "No"

18 • Macros Macro Programming Guide

BREAK

}

The switch statement matches the value of its argument (in this

case Number) with a corresponding case value and executes all the

subsequent lines until it encounters a BREAK statement. If no
matching value is found the DEFAULT is selected (in this case No).

 DEFAULT is an optional step.

Returning values from macros

This shows you how to create an OUTPUT variable from a SWITCH
statement.

1 Create a new function called NumberStr containing the SWITCH

statement in Using the SWITCH statement (see page 17) and a
first line of:

FUNCTION NumberStr(INT Number, OUTPUT STRING Text) {

and a last line of:

}

2 Edit the PrintBottles function in example.mac to:

FUNCTION PrintBottles(INT Count INT Number) {

// Convert Number into a string

STRING TextNumber = ''

CALL NumberStr(Number,TextNumber)

// Create a variable to hold the first line

STRING bottles = TextNumber + " green bottles

sitting on the wall"

// Repeat while the condition Count is greater than

0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

}

This adds the OUTPUT variable to the PrintBottles function.

3 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

Autodesk PowerMill Macros • 19

$Count = 2

}

// Start with ten bottles

INT Bottles = 10

WHILE Bottles > 0 {

// Print the first line Count number of times

CALL PrintBottles(Count, Bottles)

// Countdown Bottles

$Bottles = $Bottles - 1

// Convert Bottles to string

STRING BottlesNumber = ''

CALL NumberStr(Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles_left = "There will be " +

lcase(BottlesNumber) + " green bottles sitting on

the wall"

// Print the last two lines

PRINT "If one green bottle should accidentally

fall"

PRINT $bottles_left

}

}

The BottlesNumber variable is declared in the WHILE loop of the

MAIN function.

 Each code block or function can define its own set of local

variables; the scope of the variable is from its declaration
to the end of the enclosing block or function.

4 Add the NumberStr function into example.mac.

FUNCTION PrintBottles(INT Count, INT Number) {

// Convert Number into a string

STRING TextNumber = ''

CALL NumberStr(Number,TextNumber)

// Create a variable to hold the first line

STRING bottles = TextNumber + " green bottles sitting

on the wall"

// Repeat while the condition Count is greater than 0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

20 • Macros Macro Programming Guide

}

}

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

// Start with ten bottles

INT Bottles = 10

WHILE Bottles > 0 {

// Print the first line Count number of times

CALL PrintBottles(Count, Bottles)

// Countdown Bottles

$Bottles = $Bottles - 1

// Convert Bottles to string

STRING BottlesNumber = ''

CALL NumberStr(Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles_left = "There will be " +

lcase(BottlesNumber) + " green bottles sitting on the

wall"

// Print the last two lines

PRINT "If one green bottle should accidentally fall"

PRINT $bottles_left

}

}

FUNCTION NumberStr(INT Number, OUTPUT STRING Text) {

SWITCH Number {

CASE 10

$Text = "Ten"

BREAK

CASE 9

$Text = "Nine"

BREAK

CASE 8

$Text = "Eight"

BREAK

CASE 7

$Text = "Seven"

BREAK

CASE 6

$Text = "Six"

BREAK

CASE 5

Autodesk PowerMill Macros • 21

$Text = "Five"

BREAK

CASE 4

$Text = "Four"

BREAK

CASE 3

$Text = "Three"

BREAK

CASE 2

$Text = "Two"

BREAK

CASE 1

$Text = "One"

BREAK

DEFAULT

$Text = "No"

BREAK

}

}

To run the macro, type MACRO example.mac 2 in the command

window.

Using a FOREACH loop in a macro

This example shows you how to use a FOREACH (see page 61) loop

to control the number of bottles rather than a WHILE loop.

1 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

FOREACH Bottles IN {10,9,8,7,6,5,4,3,2,1} {

// Print the first line Count number of times

CALL PrintBottles(Count, Bottles)

// Countdown Bottles

22 • Macros Macro Programming Guide

$Bottles = $Bottles - 1

// Convert Bottles to string

STRING BottlesNumber = ''

CALL NumberStr(Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles_left = "There will be " +

lcase(BottlesNumber) + " green bottles sitting on

the wall"

// Print the last two lines

PRINT "If one green bottle should accidentally

fall"

PRINT $bottles_left

}

}

The rest of example.mac remains unaltered.

FUNCTION PrintBottles(INT Count, INT Number) {

// Convert Number into a string

STRING TextNumber = ''

CALL NumberStr(Number,TextNumber)

// Create a variable to hold the first line

STRING bottles = TextNumber + " green bottles sitting

on the wall"

// Repeat while the condition Count is greater than 0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

}

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

FOREACH Bottles IN {10,9,8,7,6,5,4,3,2,1} {

// Print the first line Count number of times

CALL PrintBottles(Count, Bottles)

// Countdown Bottles

$Bottles = $Bottles - 1

// Convert Bottles to string

Autodesk PowerMill Macros • 23

STRING BottlesNumber = ''

CALL NumberStr(Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles_left = "There will be " +

lcase(BottlesNumber) + " green bottles sitting on the

wall"

// Print the last two lines

PRINT "If one green bottle should accidentally fall"

PRINT $bottles_left

}

}

FUNCTION NumberStr(INT Number, OUTPUT STRING Text) {

SWITCH Number {

CASE 10

$Text = "Ten"

BREAK

CASE 9

$Text = "Nine"

BREAK

CASE 8

$Text = "Eight"

BREAK

CASE 7

$Text = "Seven"

BREAK

CASE 6

$Text = "Six"

BREAK

CASE 5

$Text = "Five"

BREAK

CASE 4

$Text = "Four"

BREAK

CASE 3

$Text = "Three"

BREAK

CASE 2

$Text = "Two"

BREAK

CASE 1

$Text = "One"

BREAK

DEFAULT

$Text = "No"

BREAK

}

}

24 • Macros Macro Programming Guide

 You do not need to declare the type or initial value of the
Bottles variable as the FOREACH loop handles this.

To run the macro, type MACRO example.mac 2 in the command

window.

This gives exactly the same output as the Returning values from

macros (see page 18) example. It shows you an alternative way of
creating the same output.

Using arrays in a FOREACH loop

This example shows you how to use an array (see page 32) in a
FOREACH loop, rather than using a list, to control the number of

bottles.

1 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

// Define an array of bottle numbers

INT ARRAY BottleArray[10] = {10,9,8,7,6,5,4,3,2,1}

FOREACH Bottles IN BottleArray {

// Print the first line Count number of times

CALL PrintBottles(Count, Bottles)

// Count down Bottles

$Bottles = $Bottles - 1

// Convert Bottles to string

STRING BottlesNumber = ''

CALL NumberStr(Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles_left = "There will be " +

lcase(BottlesNumber) + " green bottles sitting on

the wall"

Autodesk PowerMill Macros • 25

// Print the last two lines

PRINT "If one green bottle should accidentally

fall"

PRINT $bottles_left

}

}

The rest of example.mac remains unaltered.

2 Type MACRO example.mac 2 in the command window.

This gives exactly the same output as the Returning values from
macros (see page 18) example. It shows you an alternative way

of creating the same output.

Pausing a macro for user interaction

You can pause a running macro to allow user input, such as the

selection of surfaces or curves. The command to do this is:

MACRO PAUSE "User help instructions"

This displays a dialog containing the supplied text and a button to

allow the user to RESUME the macro.

When the macro is paused, users can perform any actions within

PowerMill, with the exception of running another macro. The current

macro remains paused until the user clicks the RESUME button. If the

user closes the dialog, by clicking the dialog close icon , this

ends any currently running macros, including the paused macro.

For example:

GET EXAMPLES 'cowling.dgk'

ROTATE TRANSFORM TOP

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 10

EDIT BLOCK RESET

CREATE BOUNDARY ; SELECTED

STRING Msg = "Select surfaces for boundary, and

press"+crlf+"RESUME when ready to continue"

EDIT BLOCK RESET

MACRO PAUSE $Msg

EDIT BOUNDARY ; CALCULATE

26 • Macros Macro Programming Guide

If you do not enter a string after MACRO PAUSE the macro pauses

but does not display a RESUME dialog. To resume the macro either

type MACRO RUN or provide another mechanism to continue the

macro.

Variables in macros

You can create variables in macros just as you can in a PowerMill
project. When you create a variable in a macro, it has the same

properties as a PowerMill parameter, and can store either a value or
an expression.

 There are some restrictions on the use of macro variables.

▪ Variable names must start with an alphabetic character (a-z, A-
Z) and may contain any number of subsequent alphanumeric

characters (a-z, A-Z, 1-9, _). For example, you can name a

variable Count1 but not 1Count.

▪ Variable names are case insensitive. For example, Count, count,

and CoUnT all refer to the same variable.

▪ All variables must have a type, which can be:

INT — Integer numbers. For example, 1, 21, 5008.

REAL — Real numbers. For example, 201, -70.5, 66.0.

STRING — A sequence of characters. For example, hello.

BOOL — Truth values, either 0 (false) or 1 (true).

ENTITY — A unique value that references an existing PowerMill
entity.

Object — A collection of parameters that PowerMill groups

together, such as Block, or Connections.

▪ You must declare the variable type, for example:

INT Count = 5

REAL Diameter = 2.5

STRING Tapefile = "MyFile.tap"

▪ You can access any of the PowerMill parameters in variable

declarations, expressions, or assignments.

▪ Any variables you create in a macro are only accessible from
within the macro. When the macro has finished the variable is no

longer accessible and cannot be used in expressions or other
macros.

▪ If you need to create a variable that can be used at any time in a
PowerMill project then you should create a User Parameter.

Autodesk PowerMill Macros • 27

Assigning parameters

When you assign a value to a variable the expression is evaluated
and the result is assigned, the actual expression is not retained.

This is the same as using the EVAL modifier in the PowerMill

parameter EDIT PAR command. These two statements are
equivalent:

EDIT PAR "Stepover" EVAL "Tool.Diameter * 0.6"

$Stepover = Tool.Diameter * 0.6

 Variable and parameter names may optionally be prefixed
with a $ character. In most cases, you can omit the $ prefix,

but it MUST be used when you assign a value to either a
variable or parameter within a macro.

Inputting values into macros

An input dialog enables you to enter specific values into a macro.

The basic structure is:

$<variable> = INPUT <string-prompt>

This displays an input dialog with a specified prompt as its title

which enables you to enter a value.

 If you add an input dialog you should consider adding an error

function to check the value entered is reasonable.

For example:
string prompt = "Enter a number"

$i = input $prompt

$err = ERROR i

}

produces this dialog:

You can also use INPUT in the variable definition.

For example:

REAL X = INPUT "Enter a number"

For more information see User selection of entities in macros (see

page 29).

Asking a Yes/No question

A Yes/No query dialog is a very simple dialog.

Selecting Yes assigns 1 to the variable.

28 • Macros Macro Programming Guide

Selecting No assigns 0 to the variable.

The basic structure is:

$<variable> = QUERY <string-prompt>

For example:

string yesnoprompt = "You entered 5. Would you like to

have another go?"

bool carryon = 0

$carryon = query $yesnoprompt

produces this dialog:

Creating a message dialog

There are three types of message dialogs:

▪ Information dialogs

▪ Warning dialogs

▪ Error dialogs

The basic structure is:

MESSAGE INFO|WARN|ERROR <expression>

For example, an input dialog to enter a number into a macro:

real i = 3

string prompt = "Enter a number"

do {

bool err = 0

do {

$i = input $prompt

$err = ERROR i

if err {

$prompt = "Please 'Enter a number'"

}

} while err

string yesnoprompt = "You entered " + string(i) + ".

Would you like to have another go?"

bool carryon = 0

$carryon = query $yesnoprompt

} while $carryon

message info "Thank you!"

An example to find out if a named toolpath exists:

Autodesk PowerMill Macros • 29

string name = ""

$name = input "Enter the name of a toolpath"

if pathname('toolpath',name) == "" {

message error "Sorry. Couldn't find toolpath " + name

} else {

message info "Yes! Toolpath " + name + " exists!"

}

Carriage return in dialogs

You can specify a carriage return to control the formatting of the
text in a message dialog using crlf.

For example, looking at the input dialog to enter a number into a
macro:

real i = 3

string prompt = "Enter a number"

do {

bool err = 0

do {

$i = input $prompt

$err = ERROR i

if err {

$prompt = "Please 'Enter a number'"

}

} while err

string yesnoprompt = "You entered " + string(i) + "." +

crlf + " Would you like to have another go?"

bool carryon = 0

$carryon = query $yesnoprompt

} while $carryon

message info "Thank you!"

produces this query dialog:

User selection of entities in macros

Use the INPUT command to prompt the user to select a specific

entity in PowerMill, such as a toolpath or a tool. You can use this to:

▪ Display a list of available entities

▪ Prompt the user to select one of them.

30 • Macros Macro Programming Guide

For example, to list all the available tools and then ask the user to
select one:
STRING ToolName = INPUT ENTITY TOOL "Please select a

Tool."

 This command returns the name of the tool the user selected.

This example creates two folders, creates two tool in each folder,
then asks the user to select one of the tools:

// Create some tools in folders

CREATE FOLDER 'Tool' 'Endmills'

CREATE IN 'Tool\Endmills' TOOL 'End 20' ENDMILL

EDIT TOOL ; DIAMETER 20

CREATE IN 'Tool\Endmills' TOOL 'End 10' ENDMILL

EDIT TOOL ; DIAMETER 10

CREATE FOLDER 'Tool' 'Balls'

CREATE IN 'Tool\Balls' TOOL 'Ball 12' BALLNOSED

EDIT TOOL ; DIAMETER 12

CREATE IN 'Tool\Balls' TOOL 'Ball 10' BALLNOSED

EDIT TOOL ; DIAMETER 10

// Prompt user to pick one

STRING ToolName = ''

$ToolName = INPUT ENTITY TOOL "Please select a Tool."

You can also ask for the selection of a number of entities. The result
is the list of entities selected, which can be assigned to either a list

of strings, or list of entities.

ENTITY LIST $Selected_Toolpaths = INPUT ENTITY MULTIPLE

toolpath "which toolpaths do you want to check?"

STRING LIST ToolpathNames = INPUT ENTITY MULTIPLE

TOOLPATH "Select toolpaths to check"

You can then iterate over the user selection with a FOREACH loop:

FOREACH $tp in ToolpathNames {

ACTIVATE TOOLPATH $tp.Name

EDIT COLLISION APPLY

}

User selection from a list of options

You can use the INPUT command to prompt the user to select from

a list of options that your macro supplies. The syntax for this is:

INT value = INPUT CHOICE <string-array> <prompt>

For example, suppose you have a machining macro where
everything is setup except that you want to give the user the choice

of cut direction to use. You can do this by using a CHOICE input as
follows:

// Create an array of strings from the CutDirection

parameter

Autodesk PowerMill Macros • 31

STRING ARRAY Opts[] = values(CutDirection)

INT C = INPUT CHOICE $Opts "Choose the Cut Direction

you want"

$CutDirection = $C

}

Or for another example, you can increase or decrease the number
of options the user can select. You can limit the options available to

only one, such as Gouge Check or Collision Check a toolpath, or you

can increase the options available so the user can choose between
the two options. To create this list, enter the following:

STRING ARRAY Opts[] = {"Gouge check only", "Collision

check only", "Gouge and Collision check"} INT C = INPUT

CHOICE $Opts "Pick an option"

SWITCH $C {

CASE 0:

MACRO "Gouge_Check.mac"

BREAK

CASE 2:

MACRO "Gouge_Check.mac"

// Intended fall through to next command

CASE 1:

MACRO "Collision_Check.mac"

BREAK

}

 The above example uses the 'fall through' behavior of cases
within a switch block (see page 56). If you are not used to

using the switch statement you can use an IFELSE statement

instead:

IF $C==0 {

 MACRO "Gouge_Check.mac"

} ELSEIF $C==1 {

 MACRO "Collision_Check.mac"

} ELSEIF $C==2 {

 MACRO "Gouge_Check.mac"

 MACRO "Collision_Check.mac"

}

User selection of a file name

You can prompt your user for a filename with Use the FILESELECT

command to prompt the user for a file name. This command

displays an Open dialog which enables user to browse for a file.

For example:

STRING Filename = ''

32 • Macros Macro Programming Guide

$Filename = FILESELECT "Please select a pattern file"

Arrays and lists

Arrays

In addition to simple variables of type INT, REAL, or STRING you
can also have arrays of these types. When you declare an array you

must initialise all of its members using an initialisation list. When
you have specified an array you cannot change its size. The syntax

for an array is:

BASIC-TYPE ARRAY name[n] = {…}

For example, to declare an array of three strings:

STRING ARRAY MyArray[3] = {'First','Second','Third'}

All the items in the initialisation list must be the same BASIC-TYPE
as the array.

You can access the items of the array by subscripting. The first item
in the array is subscript 0. For example:

INT Index = 0

WHILE Index < size(MyArray) {

PRINT MyArray[Index]

$Index = Index + 1

}

Prints:

First

Second

Third

If you leave the size of the array empty, then PowerMill determines
its size from the number of elements in the initialisation list. For

example:

STRING ARRAY MyArray[] =

{'First','Second','Third','Fourth'}

PRINT = size(MyArray)

Prints:

4

Lists

PowerMill also has a LIST type. The main difference between a list
and an array is that the list does not have a fixed size, so you can

add and remove items to it. You can create lists:

▪ that are empty to start with

▪ from an initialisation list

Autodesk PowerMill Macros • 33

▪ from an array.

// Create an empty list

STRING LIST MyStrings = {}

// Create a list from an array

STRING LIST MyList = MyArray

// Create a list using an initialisation list

STRING LIST MyListTwo = {'First','Second'}

You can use two inbuilt functions add_first() and add_last() to

add items to a list.

For example using the inbuilt function add_last():

CREATE PATTERN Daffy

CREATE PATTERN Duck

// Create an empty list of strings

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to the list

int s = add_last(Patterns, pat.Name)

}

FOREACH name IN Patterns {

 PRINT = $name

}

Prints:

Daffy

Duck

You can also add items to the front of a list by using the inbuilt

function add_first():

CREATE PATTERN Daffy

CREATE PATTERN Duck

// Create an empty list of strings

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to the list

int s = add_first(Patterns, pat.Name)

}

FOREACH name IN Patterns {

PRINT = $name

}

Prints:

Duck

Daffy

Using lists

A list, like an array, contains multiple values. You can create a list

with initial values:

34 • Macros Macro Programming Guide

INT LIST MyList = {1,2,3,4}

 Unlike an ARRAY, you do not use the [] syntax.

You can specify an empty list:

INT LIST MyEmptyList = {}

You can use lists anywhere you might use an array. For instance,

you can use a list in a FOREACH loop:

FOREACH i IN MyList {

PRINT = i

}

or to initialise an array:

INT ARRAY MyArray[] = MyList

You can also use an array to initialise a list:

INT LIST MyList2 = MyArray

You can pass a list to macro functions that expect an array:

FUNCTION PrintArray(INT ARRAY MyArray) {

FOREACH i IN Myarray {

PRINT = i

}

}

FUNCTION Main() {

INT LIST MyList = {10,20,30,40}

CALL PrintArray(MyList)

}

You can access the elements of a list with a FOREACH loop, or you

can use the array subscripting notation:

INT Val = MyList[2]

Adding items to a list summary

The main differences between a list and an array is that a list can

have items added to it and removed from it.

To add an item to a list you can use either of the inbuilt functions

add_first() or add_last().

For example, to collect the names of all the toolpaths in a folder:

// Create an empty list

STRING LIST TpNames = {}

FOREACH tp IN folder('Toolpath\MyFolder') {

INT Size = add_last(TpNames, tp.name)

}

Autodesk PowerMill Macros • 35

For more information see Adding comments to macros (see page
86).

Removing items from a list summary

The main differences between a list and an array is that a list can

have items added to it and removed from it.

To remove an item from a list you can use either of the inbuilt

functions remove_first() or remove_last().

For example, if you have a list of toolpath names some of which are
batched and you want to ask the user whether they want them

calculated now. You can use a function which removes calculated
toolpaths from the list and creates a query message for the rest.

FUNCTION CalculateNow(STRING LIST TpNames) {

// Cycle through the list

FOREACH Name IN TpNames {

IF entity('toolpath',Name).Calculated {

// Toolpath already calculated so

// remove name from list

BOOL success = remove(TpNames,Name)

}

}

// Do we have any names left

IF size(TpNames) > 0 {

// Build the prompt string

STRING Msg = "These toolpaths are uncalculated"

FOREACH name IN TpNames {

$Msg = Msg + CRLF + name

}

$Msg = Msg + CRLF + "Do you want to calculate them

now?"

// Ask the user if they want to proceed

bool yes = 0

$yes = QUERY $msg

IF yes {

// Loop through the toolpaths and calculate them

WHILE size(TpNames) > 0 {

 STRING Name = remove_first(TpNames)

 ACTIVATE TOOLPATH $Name

 EDIT TOOLPATH ; CALCULATE

}

}

}

}

You could use a FOREACH loop rather than a WHILE loop:

FOREACH Name IN TpNames {

ACTIVATE TOOLPATH $Name

EDIT TOOLPATH ; CALCULATE

36 • Macros Macro Programming Guide

}

PowerMill has an inbuilt function which enables you to remove
duplicate items from a list: remove_duplicates. For example, to

determine how many different tool diameters there are in your
toolpaths you could add the tool diameters from each toolpath and

then remove the duplicates:

REAL LIST Diameters = {}

FOREACH tp IN folder('toolpath') {

INT s = add_first(Diameters, tp.Tool.Diameter)

}

INT removed = remove_duplicates(Diameters)

For more information, see Removing items from a list (see page 86)
or Removing duplicate items in a list (see page 85).

Building a list

You can use the inbuilt member() function in a macro function to

build a list of tool names used by toolpaths or boundaries without

any duplicates:

FUNCTION ToolNames(STRING FolderName, OUTPUT STRING LIST

ToolNames) {

// loop over all the items in FolderName

FOREACH item IN folder(FolderName) {

// Define local working variables

STRING Name = ''

INT size = 0

// check that the item's tool exists

// it might not have been set yet

IF entity_exists(item.Tool) {

// get the name and add it to our list

$Name = item.Tool.Name

IF NOT member(FolderName, Name) {

 $dummy = add_last(FolderName, Name)

}

}

// Check whether this item has a reference tool

// and that it has been set

IF active(item.ReferenceTool) AND

entity_exists(item.ReferenceTool) {

// get the name and add it to our list

$Name = item.ReferenceTool.Name

IF NOT member(FolderName, Name) {

 $dummy = add_last(FolderName, Name)

}

}

Autodesk PowerMill Macros • 37

}

}

As this function can work on any toolpath or boundary folder, you

can collect all the tools used by the toolpaths in one list and all of
the tools used by boundaries in another list. You can do this by

calling the macro function twice:

STRING LIST ToolpathTools = {}

STRING LIST BoundaryTools = {}

CALL ToolNames('Toolpath',ToolpathTools)

CALL ToolNames('Boundary',BoundaryTools)

To return a list containing the items from both sets with any

duplicates removed:

STRING LIST UsedToolNames = set_union(ToolpathTools,

BoundaryTools)

Subtract function

You can use the subtract() function to determine what happened

after carrying out a PowerMill command. For example, suppose you
to find out if any new toolpaths are created during a toolpath

verification. If you get the list of toolpath names before the
operation, and the list of names after the operation, and then

subtract the ‘before’ names from the ‘after’ names you are left with
the names of any new toolpaths.

FUNCTION GetNames(STRING FolderName, OUTPUT STRING LIST

Names) {

FOREACH item IN folder(FolderName) {

INT n = add_last(Names, item.Name)

}

}

FUNCTION Main() {

STRING LIST Before = {}

CALL GetNames('toolpath',Before)

EDIT COLLISION APPLY

STRING LIST After = {}

CALL GetNames('toolpath',After)

STRING LIST NewNames = subtract(After, Before)

IF is_empty(NewNames) {

PRINT "No new toolpaths were created."

} ELSE {

PRINT "The new toolpaths created are:"

FOREACH item IN NewNames {

PRINT = item

38 • Macros Macro Programming Guide

}

}

}

Entity variables

PowerMill has a special variable type ENTITY. You can use ENTITY

variables to refer to existing PowerMill entities such as toolpaths,

tools, boundaries, patterns, workplanes, and so on. You cannot use
this command to create new entities.

For example:

// create an entity variable that references boundary

entity 'Duck'

ENTITY Daffy = entity('boundary','Duck')

The inbuilt functions, such as folder() return lists of entities so

you can store the result of the call in your own list and array
variables:

For example:

ENTITY List Toolpaths = folder('toolpath')

When looping over folder items in a FOREACH the loop variable that
is automatically created has the type ENTITY. Therefore the

following code is syntactically correct:

FOREACH tp IN folder('toolpath') {

ENTITY CurrentTP = tp

PRINT = CurrentTP.Name

}

You can also pass ENTITY variables to functions (and passed back
from function) by using an OUTPUT argument:

For example:

FUNCTION Test(OUTPUT ENTITY Ent) {

$Ent = entity('toolpath','2')

}

FUNCTION Main() {

ENTITY TP = entity('toolpath','1')

CALL Test(TP)

PRINT = TP.Name

}

Additionally, you can use an ENTITY variable anywhere in PowerMill

that is expecting an entity name.

For example:

ENTITY tp = entity('toolpath','1')

ACTIVATE TOOLPATH $tp

Autodesk PowerMill Macros • 39

Object variables

PowerMill has a variable type called OBJECT which can hold any
collection of variables that PowerMill pre-defines, such as Block or

Connections.

For example:
// Get the current set of block parameters

OBJECT myObject = Block

// Activate a toolpath (this may change the block)

ACTIVATE TOOLPATH "Daffy"

// Reset the block to its old state

$Block = myObject

Whilst you cannot create an ARRAY of OBJECT you can create a
LIST of OBJECTs:

For example:
OBJECT LIST myObjects = {Block,Connections}

FOREACH ob IN myObjects {

PRINT PAR "ob"

}

As you can see from the above example, each object in a list may

be different. It is the responsibility of the macro writer to keep track
of the different types of OBJECT. PowerMill has an inbuilt function

get_typename() to help with this.

For example:
OBJECT LIST myObjects = {Block,Connections}

FOREACH ob IN myObjects {

PRINT = get_typename(ob)

}

Which prints:
Block

ToolpathConnections

As with all lists, you can also access the elements by index:
PRINT = get_typename(myObjects[0])

PRINT = get_typename(myObjects[1])

Objects can also be passed to and from macro FUNCTIONs.

For example:
FUNCTION myBlkFunction(OBJECT blk) {

IF get_typename(blk) != "Block" {

MESSAGE ERROR "Expecting a Block object"

MACRO ABORT

}

// Code that works on block objects

}

// Find block with maximum zrange

FUNCTION myZrangeBlockFunc(OUTPUT OBJECT Blk) {

// The

40 • Macros Macro Programming Guide

REAL zrange = 0

FOREACH tp IN folder('toolpath') {

// find zlength of this block

REAL z = tp.Block.Limits.ZMax - tp.Block.Limits.ZMin

IF z > zrange {

// Copy if longer than previously

$Blk = Block

$zrange = z

}

}

}

Vectors and points

In PowerMill vectors and points are represented by an array of three
reals.

PowerMill contains point and vector parameters, for example the
Workplane.Origin, Workplane.ZAxis, ToolAxis.Origin, and

ToolAxis.Direction. You can create your own vector and point

variables:

REAL ARRAY VecX[] = {1,0,0}

REAL ARRAY VecY[] = {0,1,0}

REAL ARRAY VecZ[] = {0,0,1}

REAL ARRAY MVecZ[] = {0,0,-1}

REAL ARRAY Orig[] = {0,0,0}

For more information, see the inbuilt Vectors and points functions
(see page 68)

Comparing variables

Comparing variables enables you to check information and defines

the course of action to take when using IF (see page 53) statements
and WHILE (see page 62) statements.

The result of a comparison is either true or false. When true the
result is 1, when false the result is 0.

A simple comparison may consist of two variables with a relational

operator between them:

Relational operator Description

 Symbol Text

== EQ is equal to

!= NE is not equal to

< LT is less than

Autodesk PowerMill Macros • 41

<= LE is less than or equal

to

> GT is greater than

>= GE is greater than or

equal to

 You can use either the symbol or the text in a comparison.

For example,

BOOL C = (A == B)

is the same as:

BOOL C = (A EQ B)

C is assigned 1 (true) if A equals B and . If A does not equal B,

then C is 0 (false).

 The operators = and == are different.

The single equal operator, =, assigns the value on the right-
hand side to the left-hand side.

The double equals operator, ==, compares two values for
equality.

If you compare the values of two strings, you must use the correct
capitalisation.

For example, if you want to check that the tool is an end mill, then

you must use:

Tool.Type == 'end_mill'

and not:

Tool.Type == 'End_Mill

If you are unsure about the case of a string then you can use one of

the inbuilt functions lcase() or ucase() to test against the lower case

(see page 79) or upper case (see page 78) version of the string:

lcase(Tool.Type) == 'end_mill'

ucase(Tool.Type) == 'END_MILL'

For example, comparing variables:

BOOL bigger = (Tool.Diameter+Thickness

>=ReferenceToolpath.Tool.Diameter+ReferenceToolpath.Thick

ness)

gives a result of 1 (true) when the Tool.Diameter + Thickness is

greater than or equal to the ReferenceToolpath.Tool.Diameter +

ReferenceToolpath.Thickness and a result of 0 (false) otherwise.

42 • Macros Macro Programming Guide

Logical operators

Logical operators let you to do more than one comparison at a time.
There are four logical operators:

▪ AND

▪ OR

▪ XOR

▪ NOT

 Remember the result of a comparison is either true or false.

When true, the result is 1; when false, the result is 0.

Using the logical operator AND

The result is true (1) if all operands are true, otherwise the result is

false (0).

Operand 1 Operand 2 Operand 1 AND
Operand 2

true (1) true (1) true (1)

true (1) false (0) false (0)

false (0) true (1) false (0)

false (0) false (0) false (0)

Using the logical operator OR

The result is true (1) if at least one operand is true. If all the

operands are false (0) the result is false.

Operand 1 Operand 2 Operand 1 OR
Operand 2

true (1) true (1) true (1)

true (1) false (0) true (1)

false (0) true (1) true (1)

false (0) false (0) false (0)

Using the logical operator XOR

The result is true (1) if exactly one operand is true. If all the

operands are false the result is false (0). If more than one operand
is true the result is false (0).

Operand 1 Operand 2 Operand 1 XOR
Operand 2

true (1) true (1) false (0)

true (1) false (0) true (1)

Autodesk PowerMill Macros • 43

false (0) true (1) true (1)

false (0) false (0) false (0)

Using the logical operator NOT

The result is the inverse of the input.

Operand 1 NOT Operand 1

true (1) false (0)

false (0) true (1)

Advance variable options

Scratchpad variables

It is possible to create and manipulate variables in the command

line window. These are called scratchpad variables as you can use
them to test the results of parameter evaluation without having to

write a macro.

For example, to test some code, in the command line window type:

STRING Test = Tool.Name

DEACTIVATE TOOL

ACTIVATE TOOL $Test

To clear the scratchpad, in the command line window type:

RESET LOCALVARS

If you do not issue the RESET LOCALVARS command, the local

variable, Test, remains defined until you exit from PowerMill.

Using variables and parameters in macro commands

You can substitute the value of a variable or parameter in a
command wherever the command expects a number or a string. To

do this, prefix the variable or parameter name with a $.

 The EDIT PAR command only accepts $variable input when

the $variable has a numeric value. You cannot use the

$variable syntax for STRING parameters.

For example, to create a tool with a diameter that is half that of the

active tool.

// Calculate the new diameter and name of tool

44 • Macros Macro Programming Guide

REAL HalfDiam = Tool.Diameter/2

STRING NewName = string(Tool.Type) + " D-" +

string(HalfDiam)

// Create a new tool and make it the active one

COPY TOOL ;

ACTIVATE TOOL #

// Now rename the new tool and edit its diameter

RENAME TOOL ; $NewName

EDIT TOOL $NewName DIAMETER $HalfDiam

This creates a tool with half the diameter.

Scope of variables

A variable exists from the time it is declared until the end of the
block of code within which it is declared. Blocks of code are macros

and control structures (WHILE, DO - WHILE, SWITCH, IF-ELSEIF-

ELSE, and FOREACH).

A variable, with a specific name, can only be defined once within

any block of code.

For example,

// Define a local variable 'Count'

INT Count = 5

// Define a second local variable 'Count'

INT Count = 2

Gives an error since Count is defined twice.

However, within an inner block of code you can define another
variable with the same name as a variable (already defined) in an

outer block:

INT Count = 5

IF Count > 0 {

// Define a new local variable 'Count'

INT Count = 3

// Print 3

PRINT $Count

// The local Count is no longer defined

}

// Print 5

PRINT $Count

A variable defined within an inner block of code hides any variable

declared in an outer block. This is also important if you use a name
for a variable which matches one of PowerMill’s parameters. For

example, if the toolpath stepover is 5 and in your macro you have:

// 'Hide' the global stepover by creating your own

variable

Autodesk PowerMill Macros • 45

REAL Stepover = 2

// Print Stepover

PRINT $Stepover

The value printed is 2 not 5, and the toolpath stepover value is
unchanged. To access the current toolpath's stepover parameter

you must use toolpath.Stepover.

// 'Hide' the global stepover by creating your own

variable

REAL Stepover = 2

// Print 2

PRINT $Stepover

// Print the value of the toolpath's stepover - which is

5

PRINT $toolpath.Stepover

 As macro variables cease to exist at the end of a macro or
block of code, you should not use a variable defined in a

macro within a retained expression. You can use assignments,
as the value is computed immediately. Do not use a macro

variable in an EDIT PAR expression without EVAL as this

causes an expression error when PowerMill tries to evaluate
it.

REAL Factor = 0.6

// The next two commands are OK as the expression is

evaluated immediately.

$Stepover = Tool.Diameter * Factor

EDIT PAR "Stepover" EVAL "Tool.Diameter * Factor"

// The next command is not OK because the expression is

retained.

EDIT PAR "Stepover" "Tool.Diameter * Factor"

The Factor variable ceases to exist at the end of the macro, so

Stepover evaluates as an error.

Using expressions in macros

An arithmetic expression is a list of variables and values with

operators which define a value. Typical usage is in variable
declarations and assignments.

// Variable declarions

REAL factor = 0.6

REAL value = Tolerance * factor

// Assignments

$Stepover = Tool.Diameter * factor

$factor = 0.75

46 • Macros Macro Programming Guide

 When using an assignment you MUST prefix the variable

name with a $. So PowerMill can disambiguate an assignment

from other words in the macro command language.

 In assignments, the expression is always evaluated and the

resulting value assigned to the variable on the left of the =

operand.

In addition to using expressions in calculations, you can use logical

expressions to make decisions in macros. The decision making
statements in PowerMill are IF-ELSE_IF (see page 54), SWITCH (see

page 56), WHILE (see page 62), and DO-WHILE (see page 63).

These execute the commands within their code blocks if the result
of an expression is true (1). For example:

IF active(Tool.TipRadiused) {

// Things to do if a tip radiused tool.

}

IF active(Tool.TipRadiused) AND Tool.Diameter < 5 {

// Things to do if a tip radiused tool and the diameter

// is less than 5.

}

You can use any expression to decide whether or not a block of
code is performed.

Operators for integers and real numbers

The standard arithmetical operators are available for integers and
real numbers.

Operator Description Examples

+ addition 3+5 evaluates to 8

- subtraction 5-3 evaluates to 2

* multiplication 5*3 evaluates to

15

/ division 6/2 evaluates to 3

% modulus. This is the

remainder after two

integers are divided

11%3 evaluates to

2

^ to the power of 2^3 is the same as
2*2*2 and

evaluates to 8

For a complete list of operators, see the HTML page displayed when

you select click Help > Documentation > Parameters > Reference
> Functions.

Autodesk PowerMill Macros • 47

Operators for strings

The concatenation (+) operator is available for string.

For example "abc"+"xyz" evaluates to abcxyz.

You can use this to build strings from various parts, for example:

MESSAGE "The Stepover value is: " + string(Stepover)

Operator precedence

The order in which various parts of an expression are evaluated

affects the result. The operator precedence unambiguously
determines the order in which sub-expressions are evaluated.

▪ Multiplication and division are performed before addition and
subtraction.

For example, 3 * 4 +2 is the same as 2 + 3 * 4 and gives the
answer 14.

▪ Exponents and roots are performed before multiplication and
addition.

For example, 3 + 5 ^ 2 is the same as 3 + 5 and gives the
answer 28.

-3 ^ 2 is the same as -3 and gives the answer -9.

▪ Use brackets (parentheses) to avoid confusion.

For example, 2 + 3 * 4 is the same as 2 + (3 * 4) and gives the
answer 14.

▪ Parentheses change the order of precedence as terms inside in

parentheses are performed first.

For example, (2 + 3) * 4 gives the answer 20.

or, (3 + 5) ^2 is the same as (3 + 5) and gives the answer 64.

▪ You must surround the arguments of a function with

parentheses.

For example, y = sqrt(2), y = tan(x), y = sin(x + z).

▪ Relational operators are performed after addition and
subtraction.

For example, a+b >= c+d is the same as (a+b) >= (c+d).

▪ Logical operators are performed after relational operators,

though parentheses are often added for clarity.

For example:

5 == 2+3 OR 10 <= 3*3

is the same as:

48 • Macros Macro Programming Guide

(5 == (2+3)) OR (10 <= (3*3))

but is normally written as

(5 == 2+3) OR (10 <= 3*3).

Precedence

Order Operation Description

1 () function call, operations

grouped in parentheses

2 [] operations grouped in square

brackets

3 + - ! unary prefix (unary operations
have only one operand, such

as, !x, -y)

4 cm mm um ft

in th

unit conversion

5 ^ exponents and roots

6 * / % multiplication, division, modulo

7 + - addition and subtraction

8 < <= > >=

(LT, LE, GT,

GE)

relational comparisons: less

than, less than or equal,
greater than, greater than or

equal

9 == != (EQ,

NE)

relational comparisons: equals,

not equals

10 AND logical operator AND

11 NOT logical operator NOT

12 XOR logical operator XOR

13 OR logical operator OR

14 , separation of elements in a list

Examples of precedence:

Expression Equivalent

a * - 2 a * (- 2)

!x == 0 (!x) == 0

$a = -b + c * d – e $a = ((-b) + (c * d)) – e

$a = b + c % d – e $a = (b + (c % d)) – e

$x = y == z $x = (y == z)

Autodesk PowerMill Macros • 49

$x = -t + q * r / c $x = ((-t) + ((q * r) / c))

$x = a % b * c + d $x = (((a % b) * c) + d)

$a = b <= c | d != e $a = ((b <= c) | (d != e))

$a = !b | c & d $a = ((!b) | (c & d))

$a = b mm * c in + d $a = (((b mm) * (c in)) + d)

Executing a macro string variable as a command using
DOCOMMAND

The macro command, DOCOMMAND, executes a macro string

variable as a command. This enables you to construct a command

from string variables and then have that command run as a macro
statement. Suppose you have a function to create a copy of a

boundary and then fit arcs to the copy:

FUNCTION CopyAndArcfit(ENTITY Ent) {

STRING $NewName = new_entity_name('boundary')

COPY BOUNDARY $Ent

EDIT BOUNDARY $NewName ARCFIT 0.01

}

If you then want to use the same function to copy a pattern and
then fit arcs to the copy. You can replace all instances of 'boundary'

with 'pattern' when you give the function a pattern entity.
Unfortunately you cannot do this by using variables directly because

the PowerMill command syntax does not allow variable substitution
in network KEYWORDS for example you cannot use $Type like this:

COPY $Type $Ent

However, you can build the command as a string and then use

DOCOMMAND to execute the resulting string as a command:

FUNCTION CopyAndArcFit(Entity Ent) {

STRING $NewName = new_entity_name(Ent.RootType)

STRING Cmd = "COPY "+ Ent.RootType + " " + Ent.name

DOCOMMAND $Cmd

$Cmd = "EDIT " + Ent.RootType + " " + Newname + "

ARCFIT 0.01"

DOCOMMAND $Cmd

}

You can use this technique whenever you find that a variable value
cannot be used in a particular point in a command.

 Use this technique with caution as it can make your macros
harder to understand.

50 • Macros Macro Programming Guide

Macro functions

When you run a macro you can use arguments, such as the name of

a toolpath, tool, or a tolerance. You must structure the macro to
accept arguments by creating a FUNCTION called Main (see page

51) then specify the arguments and their type.

For example, a macro to polygonise a boundary to a specified

tolerance is:

FUNCTION Main(REAL tol) {

EDIT BOUNDARY ; SMASH $tol

}

A macro to set the diameter of a named tool is:
FUNCTION Main(

STRING name

REAL diam

)

{

EDIT TOOL $name DIAMETER $dia

}

To run these macros with arguments add the arguments in the
correct order to the end of the MACRO command:

MACRO MyBoundary.mac 0.5

MACRO MyTool.mac "ToolName" 6

If you use FUNCTION in your macro, then all commands must be

within a function body. This means that you must have a FUNCTION

Main, which is automatically called when the macro is run.

FUNCTION CleanBoundary(string name) {

REAL offset = 1 mm

REAL diam = entity('boundary';name).Tool.Diameter

// Delete segments smaller than tool diameter

EDIT BOUNDARY $name SELECT AREA LT $diam

DELETE BOUNDARY $name SELECTED

//Offset outwards and inwards to smooth boundary

EDIT BOUNDARY $name OFFSET $offset

EDIT BOUNDARY $name OFFSET ${-offset}

}

FUNCTION Main(string bound) {

FOREACH bou IN folder(bound) {

CALL CleanBoundary(bou.Name)

}

}

Within a function, you can create and use variables that are local to

the function, just as you can within a WHILE loop. However, a
function cannot access any variable that is defined elsewhere in the

macro, unless that variable has been passed to the function as an
argument.

Autodesk PowerMill Macros • 51

 In the CleanBoundary function, ${-offset} offset the

boundary by a negative offset. When you want to substitute

the value of an expression into a PowerMill command rather
than the value of a parameter, use the syntax

${expression}. The expression can contain any valid

PowerMill parameter expression including: inbuilt function

calls; mathematical, logical, and comparison operators.

 As this macro requires an argument (the boundary name) you
must run this from the command window. To run

Clean_Boundary.mac macro on the Cavity boundary you must
type macro Clean_Boundary "Cavity" in the command line.

Main function

If a macro has any functions:

▪ It must have one, and only one, FUNCTION called Main.

▪ The Main function must be the first function called.

Function names are not case sensitive: MAIN, main, and MaIn all

refer to the same function.

Running a macro where the Main function is called with either the

wrong number of arguments or with types of arguments that do not
match, causes an error. For example:

MACRO MyTool.mac 6 "ToolName"

generates an error since the macro expects a string and then a

number, but is given a number and then a string.

If you want to repeat a sequence of commands at different points

within a macro, you can use a FUNCTION.

For example, if you want to remove any small islands that are
smaller than the tool diameter and smooth out any minor kinks

after a boundary calculation. One solution is to repeat the same
commands after each boundary calculation:

EDIT BOUNDARY ; SELECT AREA LT Boundary.Tool.Diameter

DELETE BOUNDARY ; SELECTED

EDIT BOUNDARY ; OFFSET "1 mm"

EDIT BOUNDARY ; OFFSET "-1 mm"

This is fine if you have a macro that creates one boundary, but if it
creates a number of boundaries you end up with a macro with

excessive repetition. However by using a FUNCTION you can define

the sequence once:

FUNCTION CleanBoundary(string name) {

REAL offset = 1 mm

REAL diam = entity('boundary';name).Tool.Diameter

52 • Macros Macro Programming Guide

// Delete segments smaller than tool diameter

EDIT BOUNDARY $name SELECT AREA LT $diam

DELETE BOUNDARY $name SELECTED

//Offset outwards and inwards to smooth boundary

EDIT BOUNDARY $name OFFSET $offset

EDIT BOUNDARY $name OFFSET ${-offset}

}

Then call it whenever it is needed:

FOREACH bou IN folder('boundary') {

CALL CleanBoundary(bou.Name)

}

CREATE BOUNDARY Shallow30 SHALLOW

EDIT BOUNDARY Shallow30 CALCULATE

CALL CleanBoundary('Shallow30')

Returning values from functions

There are two types of arguments to FUNCTIONS:

▪ Input variables ($ Input arguments). If a parameter is an input

then any changes to the parameter inside the function are lost
when the function returns. This is the default.

▪ Output variables ($ Output arguments) retain their value after

the function returns.

When you call a function, PowerMill creates temporary copies of all

the arguments to the function, these copies are removed when the
function returns. However, if the macro contains an OUTPUT to an

argument, then instead of creating a temporary copy of the
variable, it creates an alias for the existing variable. Any changes

that you make to the alias directly, change the actual variable.

In the example, the Test function has two arguments: aInput and
aOutput. Within the Test function:

▪ The argument aInput is a new temporary variable that only exists

within the function, any changes to its value only affect the
temporary, and are lost once the function ends.

▪ The aOutput variable is an alias for the variable that was passed

in the CALL command, any changes to its value are actually
changing the value of the variable that was given in the CALL

command.

FUNCTION Test(REAL aInput, OUTPUT REAL aOutput) {

PRINT $aInput

$aInput = 5

PRINT $aOutput

$aOutput = 0

PRINT $aOutput

}

Autodesk PowerMill Macros • 53

FUNCTION Main() {

REAL Par1 = 2

REAL Par2 = 1

CALL Test(Par1, Par2)

// Prints 2 - value is unchanged

PRINT $Par1

// Prints 0 - value has been changed

PRINT $Par2

}

When the CALL command is executed in the MAIN function:

1 PowerMill creates a new REAL variable called aInput. It is

assigned the value of Par1, and passed into Test.

2 PowerMill passes Par2 directly into Test where it is known as
aOutput.

Sharing functions between macros

You can share functions between macros by using the INCLUDE

statement. You can put all your common functions in a file which
you then INCLUDE within other macros. For example, if you put the

CleanBoundary function into a file called common.inc you could

rewrite the macro as:

INCLUDE common.inc

FUNCTION Main(input string bound) {

FOREACH bou IN folder(bound) {

CALL CleanBoundary(bou.Name)

}

}

To call this macro from PowerMill:

// Clean all the boundaries

MACRO Clean 'boundary'

// Clean all the Roughing boundaries

MACRO Clean 'boundary\Roughing'

IF statement

The IF statement executes a series of commands when a certain
condition is met.

The basic control structure is:

IF <expression> {

Commands A

}

Commands B

54 • Macros Macro Programming Guide

If expression is true then Commands A are executed, followed by

Commands B.

If expression is false, then only Commands B are executed.

For example, if you want to calculate a toolpath, but do not want to

waste time re-calculating a toolpath that has already been
calculated:

// If the active toolpath has not been calculated, do so

now

IF NOT Computed {

EDIT TOOLPATH $TpName CALCULATE

}

You must enclose Commands A in braces, {}, and the braces must be

positioned correctly. For example, the following command is NOT
valid:

IF (radius == 3) PRINT "Invalid radius"

To make this command valid, add the braces:

IF (radius == 3) {

PRINT "Invalid radius"

}

 The first brace must be the last item on the line and on the
same line as the IF.

The closing brace must be on a line by itself.

IF - ELSE statement

The IF - ELSE statement executes a series of commands when a
certain condition is met and a different series of commands

otherwise.

The basic control structure is:

IF <expression> {

Commands A

Autodesk PowerMill Macros • 55

} ELSE {

Commands B

}

Commands C

If expression is true, then Commands A are executed followed by

Commands C.

If expression is false, then Commands B are executed followed by

Commands C.

// Set tool axis lead/lean if tip radiused tool

// Otherwise use the vertical tool axis.

IF active(Tool.TipRadius) OR Tool.Type == "ball_nosed" {

EDIT TOOLAXIS TYPE LEADLEAN

EDIT TOOLAXIS LEAD "5"

EDIT TOOLAXIS LEAN "5"

} ELSE {

EDIT TOOLAXIS TYPE VERTICAL

}

IF - ELSEIF - ELSE statement

The IF - ELSEIF - ELSE statement executes a series of commands
when a certain condition is met, a different series of commands

when the first condition is not met and the second condition is met
and a different series of commands when none of the conditions are

met.

The basic control structure is:

IF <expression_1> {

Commands A

} ELSEIF <expression_2> {

Commands B

} ELSE {

Commands C

}

Commands D

56 • Macros Macro Programming Guide

If expression_1 is true, then Commands A are executed followed by

Commands D.

If expression_1 is false and expression_2 is true, then Commands B are

executed followed by Commands D.

If expression_1 is false and expression_2 is false, then Commands C

are executed followed by Commands D.

 ELSE is an optional statement. There may be any number of

ELSEIF statements in a block but no more than one ELSE.

IF Tool.Type == "end_mill" OR Tool.Type == "ball_nosed" {

$radius = Tool.Diameter/2

} ELSEIF active(Tool.TipRadius) {

$radius = Tool.TipRadius

} ELSE {

$radius = 0

PRINT "Invalid tool type"

}

This sets the variable radius to:

▪ Half the tool diameter if the tool is an end mill or ball nosed tool.

▪ The tip radius if the tool is a tip radiused tool.

▪ Displays Invalid tool type if the tool is anything else.

SWITCH statement

When you compare a variable with a number of possible values and

each value determines a different outcome, it is advisable to use the

SWITCH statement.

Autodesk PowerMill Macros • 57

The SWITCH statement enables you to compare a variable against a
list of possible values. This comparison determines which

commands are executed.

The basic control structure is:

SWITCH variable {

CASE (constant_A)

Commands A

CASE (constant_B)

Commands B

DEFAULT

Commands C

}

Commands D

If condition_A is true then Commands A, B, C, and D are executed.

If condition_B is true then Commands B, C, and D are executed.

If condition_A and condition_B are false then Commands C, and D are

executed.

 When a match is found all the commands in the remaining

CASE statements are executed. You can prevent this from
happening by using a BREAK (see page 59) statement.

 You can have any number of CASE statements, but at most

one DEFAULT statement.

This example makes changes to the point distribution based on the

tool axis type. There are three options:

1 3+2-axis toolpaths to have an output point distribution type of

Tolerance and keep arcs and a lead in and lead out distance of

200.

58 • Macros Macro Programming Guide

2 3-axis toolpaths to have an output point distribution type of
Tolerance and keep arcs.

3 5-axis toolpaths to have an output point distribution type of

Redistribute.

 Because the CASE 'direction' block of code does not have a

BREAK statement the macro also executes the code in the

'vertical' block.

SWITCH ToolAxis.Type {

CASE 'direction'

EDIT TOOLPATH LEADS RETRACTDIST "200.0"

EDIT TOOLPATH LEADS APPROACHDIST "200"

// fall though to execute

CASE 'vertical'

// Redistribute points to tolerance and keep arcs

EDIT FILTER TYPE STRIP

BREAK

DEFAULT

// Redistribute points

EDIT FILTER TYPE REDISTRIBUTE

BREAK

}

Autodesk PowerMill Macros • 59

Running macros without displaying GUI items

The NOGUI statement enables you to use PowerMill modes without

displaying GUI items, for example, toolbars, mode-toolbars, dialogs
or graphics.

To use Workplane macros without displaying GUI items, enter NOGUI

after MODE, for example:

MODE NOGUI WORKPLANE_EDIT START "1"

To use Curve editor macros without displaying GUI items, enter

NOGUI after CURVEEDITOR, for example:

EDIT PATTERN ; CURVEEDITOR NOGUI START

 As the NOGUI command runs the equivalent of GRAPHICS
LOCK when the mode starts, certain operations involving the

selection of pattern segments may not work correctly.

BREAK statement in a SWITCH statement

The BREAK statement exits the SWITCH statement.

The basic control structure is:

SWITCH variable {

CASE (constant_A)

Commands A

BREAK

CASE (constant_B)

Commands B

BREAK

DEFAULT

Commands C

}

Commands D

If condition_A is true then Commands A are executed followed by

Commands D.

 Remember, if there is no break statements then commands A,

B, C, and D are carried out.

If condition_B is true then Commands B are executed followed by

Commands D.

60 • Macros Macro Programming Guide

If condition_A and condition_B are false then Commands C are

executed followed by Commands D.

Repeating commands in macros

If you want to repeat a set of commands a number of times, for
example, creating a circle at the start of every line in the model,

you can use loops.

For example, if you have two feature sets, Top and Bottom, which
contain holes you want to drill from the top and bottom of the

model respectively, use the macro:

STRING Fset = 'Top'

INT Count = 0

WHILE Count < 2 {

ACTIVATE FEATURESET $Fset

ACTIVATE WORKPLANE FROMENTITY FEATURESET $Fset

IMPORT TEMPLATE ENTITY TOOLPATH "Drilling\Drilling.ptf"

EDIT TOOLPATH $TpName CALCULATE

$Fset = 'Bottom'

$Count = Count + 1

}

There are three loop structures:

▪ FOREACH (see page 61) loops repeatedly execute a block of
commands for each item in a list.

▪ WHILE (see page 62) loops repeatedly execute a block of

commands until its conditional test is false.

▪ DO - WHILE (see page 63) loops executes a block of commands

and then checks its conditional test.

Autodesk PowerMill Macros • 61

FOREACH loop

A FOREACH loop repeatedly executes a block of commands for each

item in a list or array.

The basic control structure is:

FOREACH item IN sequence{

Commands A

}

Commands B

where:

item is an automatically created variable that PowerMill initialises

for each iteration of the loop;

sequence is either a list or an array.

Commands A are executed on the first item in the list.

Commands A are executed on the next item in the list. This step is

repeated until there are no more items in the list.

At the end of the list, Commands B are executed.

For example,

FOREACH item IN folder("path") {

Commands A

}

Commands B

Where <path> is a folder in the Explorer such as, Toolpath, Tool,

Toolpath\Finishing.

Within FOREACH loops, you can:

▪ Cancel the loop using the BREAK (see page 64) statement.

▪ Jump directly to the next iteration using the CONTINUE (see page

64) statement.

62 • Macros Macro Programming Guide

You cannot create your own list variables, there are some built in
functions in PowerMill that return lists (see the parameter

documentation for component, and folder).

You can use one of the inbuilt functions to get a list of entities, or

you can use arrays to create a sequence of strings or numbers to
iterate over. For example, use the inbuilt folder function to get a list

of entities.

An example of using a FOREACH loop is to batch process tool holder

profiles:

FOREACH ent IN folder('Tool') {

ACTIVATE TOOL $ent.Name

EDIT TOOL ; UPDATE_TOOLPATHS_PROFILE

}

 The loop variable ent is created by the loop and destroyed

when the loop ends.

Another example is to renumber all the tools in a project:

INT nmb = 20

FOREACH t IN folder('Tool') {

$t.number.value = nmb

$t.number.userdefined = 1

$nmb = nmb + 2

}

To get the most out of these macro features, you should familiarise

yourself with the inbuilt parameter functions detailed in Help >

Parameters > Reference.

WHILE loop

A WHILE loop repeatedly executes a block of commands until its

conditional test is false.

The basic control structure is:

WHILE condition {

Commands A

}

Commands B

If condition is true, then Commands A are executed.

While condition remains true, then Commands A are executed.

Autodesk PowerMill Macros • 63

When condition is false, Commands B are executed.

Within WHILE loops, you can:

▪ Cancel the loop using the BREAK (see page 64) statement.

▪ Jump directly to the next iteration using the CONTINUE (see page
64) statement.

DO - WHILE loop

The DO - WHILE loop executes a block of commands and then

performs its conditional test, whereas the WHILE loop checks its
conditional test first to decide whether to execute its commands or

not.

The basic control structure is:

DO {

Commands A

} WHILE condition

Commands B

Commands A are executed.

While condition remains true, then Commands A are executed.

When condition is false, Commands B are executed.

Within DO - WHILE loops, you can:

▪ Cancel the loop using the BREAK (see page 64) statement.

▪ Jump directly to the next iteration using the CONTINUE (see page

64) statement.

64 • Macros Macro Programming Guide

CONTINUE statement

The CONTINUE statement causes a jump to the conditional test of

any one of the loop constructs WHILE, DO - WHILE, and FOR EACH in
which it is encountered, and starts the next iteration, if any.

This example, calculates and offsets, all unlocked boundaries,
outwards and inwards.

FOREACH bou IN folder('Boundary') {

IF locked(bou) {

// This boundary is locked go get the next one

CONTINUE

}

REAL offset = 1 mm

EDIT BOUNDARY $bou.Name CALCULATE

EDIT BOUNDARY $bou.Name OFFSET $offset

EDIT BOUNDARY $bou.Name OFFSET ${-offset} }

The CONTINUE statement enables the selection of the next
boundary.

BREAK statement in a WHILE loop

The BREAK statement exits the WHILE loop.

 Nested constructs can require multiple breaks.

Creating sequences

Use the make_sequence and next_in_sequence functions to create

sequences. Sequences contain:

Autodesk PowerMill Macros • 65

▪ a starting value. This defines the first element in the sequence.

▪ an incremental value. This returns the next element in the

sequence.

▪ an optional padding value. This adds extra zeros before the

returned elements .

To create a new sequence, use the make_sequence function. The

basic structure is:

OBJECT make_sequence(int start_value, [, int increment,

int padding])

For example:

OBJECT seq = make_sequence(10, 5, 4)

//Returns a sequence which starts at 10, increments by 5

and is padded by 4 characters:

To increment a value in a specified sequence, use the

next_in_sequence function. The basic structure is:

string next_in_sequence(object sequence)

For example:

OBJECT seq = make_sequence(10, 5, 4)

// Makes a new sequence starting from 10, incremented by

5 and padded to 4 characters

STRING n = next_in_sequence(seq)

// n = "0010"

STRING nn = next_in_sequence(seq)

// nn = "0015"

STRING nnn = next_in_sequence(seq)

// nnn = "0020"

RETURN statement

If a macro contains functions, the RETURN statement immediately
exits the function. If the macro does not contain functions, the

RETURN statement immediately terminates the current macro. This

is useful if an error is detected and you do not want to continue with
the remaining commands in the macro.

The basic control structure is:

EDIT TOOLPATH $tp.Name CALCULATE

IF NOT Computed {

// terminate if toolpath did not calculate

RETURN

}

To immediately exit from a function:

66 • Macros Macro Programming Guide

FUNCTION Calculate(STRING TpName) {

IF NOT active(entity('toolpath',TpName).Tool.TipRadius)

{

// Error if toolpath does not use a tipradius tool

PRINT "Toolpath does not have TipRadius tool"

RETURN

}

EDIT TOOLPATH ; CALCULATE

}

FUNCTION Main() {

FOREACH tp IN folder('Toolpath') {

ACTIVATE TOOLPATH $tp.Name)

}

}

Terminating macros

The command MACRO ABORT immediately terminates the current

macro.

The command MACRO ABORT ALL terminates the all the macros that

are currently running. If you call MACRO ABORT ALL from within a

macro that has been called by another macro, then both macros are
terminated.

Printing the value of an expression

To print the value of a scalar expression or parameter use the
syntax:

PRINT = expression

For example, to print the answer to a simple arithmetic expression:

PRINT = 2*5

When you run the macro, the command window displays the result,

10.

You can also apply an arithmetic expression to the value of a

parameter. For example:

EDIT TOOL ; DIAMETER 10

PRINT = Tool.Diameter * 0.6

When you run the macro, the command window displays the result,
6.

Autodesk PowerMill Macros • 67

Constants

PowerMill has a small number of useful constant values that you can

use in expressions and macros these include:

REAL PI = 3.141593

REAL E = 2.718282

BOOL TRUE = 1

BOOL FALSE = 0

STRING CRLF = newline

Use these values to make your macros more readable. For example,
use CRLF constant to build up multi-line messages and prompts:

STRING msg = "This is line one."+CRLF+"This is line two."

MESSAGE INFO $msg

Displays the message:

This is line one.

This is line two.

Built-in functions

This section details all the built-in functions that you can use in your

macros.

▪ General mathematical functions (see page 67).

▪ Trigonometrical functions (see page 68).

▪ Vector and point functions (see page 68).

▪ Workplane functions (see page 71).

▪ String functions (see page 71).

▪ List creation functions (see page 81).

▪ Path functions (see page 91) (Folder (see page 92), Directory

(see page 92), Base (see page 93), and Project (see page 93)
names).

▪ Conditional functions (see page 95).

▪ Evaluation functions (see page 95).

▪ Type conversion functions (see page 97).

▪ Parameter functions (see page 97).

▪ Statistical functions (see page 100).

General mathematical functions

The basic structure of the general mathematical functions are:

68 • Macros Macro Programming Guide

Description of return value Function

Exponential real exp(real a)

Natural logarithm real ln(real a)

Common (base 10) logarithm real log(real a)

Square root real sqrt(numeric a)

Absolute (positive value) real abs(numeric a)

Returns either -1, 0 or 1
depending on the sign of the

value

real sign(numeric a)

Returns either 1 or 0

depending on whether the

difference between a and b is

less than or equal to tol

real compare(numeric a,

numeric b, numeric tol)

Trigonometrical functions

The basic structure of the trigonometrical functions are:

Description of return value Function

Trigonometric sine real sin(angle)

Trigonometric cosine real cos(angle)

Trigonometric tangent real tan(angle)

Trigonometric arcsine real asin(real a)

Trigonometric arccosine real acos(real a)

Trigonometric arctangent real atan(real a)

Trigonometric arctangent of
a/b, quadrant is determined

by the sign of the two

arguments

real atan2(real a, real

b)

Vector and point functions

In PowerMill vectors and points are represented by an array of three

reals.

PowerMill contains point and vector parameters, for example the

Workplane.Origin, Workplane.ZAxis, ToolAxis.Origin, and

ToolAxis.Direction. You can create your own vector and point
variables:

Autodesk PowerMill Macros • 69

REAL ARRAY VecX[] = {1,0,0}

REAL ARRAY VecY[] = {0,1,0}

REAL ARRAY VecZ[] = {0,0,1}

REAL ARRAY MVecZ[] = {0,0,-1}

REAL ARRAY Orig[] = {0,0,0}

Length

The length() function returns the length of a vector.

For example:

REAL ARRAY V[] = {3,4,0}

// Prints 5.0

PRINT = length(V)

The inbuilt function unit() returns a vector that points in the same

direction as the input vector, but has a length of 1:

PRINT PAR "unit(V)"

// [0] (REAL) 0.6

// [1] (REAL) 0.8

// [2] (REAL) 0.0

// prints 1.0

PRINT = length(unit(V))

Parallel

The parallel() function returns TRUE if two vectors are either

parallel (pointing in the same direction) or anti-parallel (pointing in
the opposite direction) to each other.

For example:

// prints 0

PRINT = parallel(VecX,Vecy)

// prints 1

PRINT = parallel(VecX,VecX)

Print = parallel(MVecZ,VecZ)

Normal

The normal() function returns a vector that is normal to the plane

containing its two input vectors. If either vector is zero it returns an

error. If the input vectors are either parallel or anti-parallel a vector
of zero length is returned.

For example:

REAL ARRAY norm = normal(VecX,VecY)

70 • Macros Macro Programming Guide

Angle

The angle() function returns the signed angle in degrees between

two vectors, providing that neither vectors have a zero length.

For example:

// Prints 90

PRINT = angle(VecX,VecY)

// Prints 90

PRINT = angle(VecY,VecX)

The apparent_angle() function returns the apparent angle

between two vectors when looking along a reference vector. If a
vector is parallel or anti-parallel to the reference vector, or if any of

the vectors have a zero length it returns an error:

// prints 270

print = apparent_angle(VecX,VecY,MVecZ)

// prints 90

print = apparent_angle(VecY,VecX,MVecZ)

Setting

The set_vector() and set_point() functions return the value 1 if

the vector or point is set.

For example:

REAL ARRAY Vec1[3] = {0,0,1}

REAL ARRAY Vec2[3] = {0,1,0}

// set vec1 to be the same as vec2

BOOL ok = set_vector(vec1,vec2)

// make a X-axis vector

$ok = set_vector(vec2,1,0,0)

REAL X = Block.Limits.XMax

REAL Y = Block.Limits.YMin

REAL Z = Block.Limits.ZMax

ok = set_point(ToolAxis.Origin, X,Y,Z)

Unit vector

The unit() function returns the unit vector equivalent of the given

vector.

For example:

REAL ARRAY V[3] = {3,4,5}

PRINT PAR "unit(V)"

BOOL ok = set_vector(V,0,0,6)

PRINT PAR "unit(V)"

Autodesk PowerMill Macros • 71

Workplane functions

You can use the inbuilt function set_workplane() to define the

origin and axis of a workplane entity. You can call the function:

▪ with two workplanes, where the values from the second
workplane are copied into the first:

bool ok =

set_workplane(Workplane,entity('workplane','3'))

which sets the active workplane to have the same values as
workplane 3.

▪ with a workplane, two vectors, and an origin:

REAL ARRAY YAxis[] = {0,1,0}

REAL ARRAY ZAxis[] = {0,0,1}

REAL ARRAY Origin = {10,20,30}

bool ok =

set_workplane(entity('workplane','reference'), YAxis,

Zaxis,Origin)

String functions

PowerMill parameters and variables can contain strings of

characters. There are a number of inbuilt functions that you can use
to test and manipulate strings.

The basic structure of string functions are:

Description of return value Function

Returns the number of

characters in the string.

For more information see

Length function in a string

(see page 76).

int length(string str)

Returns the position of the

string target from the start of
the string str, or -1 if the

target string is not found.

If you use the optional
argument start then scanning

begins from that position in

the string.

For more information see

Position function in a string

(see page 76).

int position(string str,

string target[, numeric

start])

72 • Macros Macro Programming Guide

Replaces all occurrences of
the target string with a

replacement string. The

original string is unchanged.

For more information see

Replacing one string with

another string (see page 77).

string replace(string

str, string target,

string replacement)

Returns part of the string. You
can define where the

substring starts and its
length. The original string is

unchanged.

For more information see

Substrings (see page 78).

string substring(string

str, int start, int

length)

Returns an upper case string.

The original string is

unchanged.

For more information see

Upper case function in a string

(see page 78).

string ucase(string str)

Returns a lower case string.
The original string is

unchanged.

For more information see

Lower case function in a string

(see page 79).

string lcase(string str)

Returns the string without any

leading whitespace.

string ltrim(string str)

Returns the string without any

trailing whitespace.

string rtrim(string str)

Returns the string without any

leading or trailing whitespace.

string trim(string str)

Splits a string into a list of the

strings, separated by

whitespace

list tokens(string str)

The first character of a string is always at index 0. You can append

(add) strings together use the + operator. For example:

STRING One = "One"

STRING Two = "Two"

STRING Three = "Three"

PRINT = One + ", " + Two + ", " + Three

Autodesk PowerMill Macros • 73

When you run the macro, the command window displays the result,
One, Two, Three.

Another way of achieving the same result is:

STRING CountToThree = One + ", " + Two + ", " + Three

PRINT = CountToThree

When you run the macro, the command window displays the result,

One, Two, Three.

Date and time functions

The following functions can be used to manipulate the date and

time:

Function Description

time() The current

system time.

This is useful for

coarse timing in
macros and

getting the actual

time and date.

local_time(int

time)
A DateTime object
representing the

local time given a
number of

seconds.

utc_time(int

time)
A DateTime object

representing the
time in

Coordinated

Universal Time.

The DateTime object contains a number of string values, as follows:

String String value

String

year
The year (1900-9999)

String

month
The month of the year (01-12)

String

day
The day of the month (01-31)

74 • Macros Macro Programming Guide

String

hour
The hour of the day (00-23)

String

minute
The minute of the hour (00-59)

String

second
The second of the minute (00-59)

String

timestam

p

The date and time — the two values in the

sting are separated by a hyphen (YYYY-mm-

dd-HH-MM-SS).

 In previous versions of PowerMill you could not create
variable of type objects, so you may need to call the

local_time() or utc_time() functions multiple times, like

this: string year = local_time(tm).Year etc..

Example

The following example shows how to use the time() function to

measure how long an activity takes:
INT old_time = time()

EDIT TOOLPATH ; CALCULATE

INT cumulative_time = time() - old_time

STRING msg = "Toolpath calculation took " +

(cumulative_time) + "secs"

MESSAGE INFO $msg

Example

Getting and formatting the current time:
INT tm=time()

STRING ARRAY $timestamp[] =

tokens(utc_time($tm).timestamp, "-") STRING clock =

$timestamp[3] + ":" + $timestamp[4] $clock = $clock + ":"

+ $timestamp[5] PRINT $clock

Returning the home directory

Use the home() function to return the pathname of the home

directory, including its subdirectories. This can save you time when

entering pathnames in macros and user menus.

To use the home() function:

PRINT PAR $HOME()

STRING H = HOME()

PRINT $H

Autodesk PowerMill Macros • 75

Returning the user ID string

Use the user_id() function to return the user ID string. This can

save you time when entering pathnames in macros and user menus.

To use the user_id() function:

PRINT PAR $USER_ID()
STRING user = USER_ID()
PRINT $user

Returning the path of the running macro

Use macro_path and include_filename to return the path of the

running macro.

If the argument include_filename is true, PowerMill prints the

macro file name.

If the argument include_filename is false, PowerMill does not print

the macro file name.

For example, if you run C:\Macros\macro.mac:

macro_path(0)

// Returns "C:\Macros"

macro_path(1)

// Returns "C:\Macros\macro.mac"

Converting a numeric value into a string

The string function converts a numeric value into a string value.

The basic structure is:

STRING string(numeric str)

This is useful when you want to append a number to a string. For
example, to name tools so they contain the type of tool and the

diameter, use:

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 5

STRING TName = string(Tool.Type) + " Diam: " +

string(Tool.Diameter)

RENAME TOOL ; $TName

PRINT = Tool.Name

76 • Macros Macro Programming Guide

When you run the macro, PowerMill creates a ball nosed tool with a
diameter of 5 and gives the tool the name, ball_nosed Diam: 5.0.

The command window displays the result,ball_nosed Diam: 5.0.

Length function in a string

The length function returns the number of characters in the string.

The basic structure is:

int length(string str)

For example:

STRING One = "One"

PRINT = length(One)

The command window displays the result, 3.

Another example:

STRING One = "One"

STRING Two = "Two"

STRING CountToTwo = One + ", " + Two

PRINT = length(CountToTwo)

The command window displays the result, 8.

Another way of producing the same result:

PRINT = length(One + ", " + Two)

The command window displays the result, 8.

Position function in a string

The position string returns the position of the string target from

the start of the string str, or -1 if the target string is not found.

If you use the optional argument start then scanning begins from
that position in the string.

The basic structure is:

int position(string str, string target [, numeric start]

)

Autodesk PowerMill Macros • 77

For example:

PRINT = position("Scooby doo", "oo")

The command window displays the result, 2. PowerMill finds the first
instance of oo and works out what its position is (S is position 0, c

position 1 and o position 2).

position("Scooby doo", "oo", 4)

The command window displays the result, 8. PowerMill finds the first

instance of oo after position 4 and works out what its position is (b
is position 4, y position 5, " "is position 7 and o position 8).

position("Scooby doo", "aa")

The command window displays the result, -1 as PowerMill cannot

find any instances of aa.

You can use this function to check whether a substring exists within
another string. For example, if you have a part that contains a

cavity and you machined it using various strategies with a coarse

tolerance and each of these toolpaths has CAVITY in its name. You
have toolpaths with names such as, CAVITY AreaClear, CAVITY flats.

To recalculate those toolpath with a finer tolerance use the macro
commands:

// loop over all the toolpaths

FOREACH tp IN folder('Toolpath') {

// if toolpath has 'CAVITY' in its name

IF position(tp.Name, "CAVITY") >= 0 {

// Invalidate the toolpath

INVALIDATE TOOLPATH $tp.Name

$tp.Tolerance = tp.Tolerance/10

}

}

BATCH PROCESS

Replacing one string with another string

The replace function replaces all occurrences of the target string

with a replacement string. The original string is unchanged.

The basic structure is:

string replace(string str, string target, string

replacement)

For example:

STRING NewName = replace("Scooby doo", "by", "ter")

PRINT = NewName

The command window displays the result, Scooter doo.

78 • Macros Macro Programming Guide

For example, whilst trying different values in the strategy dialogs
you add DRAFT to the name each toolpath.

When you are satisfied with a particular toolpath you want to

change DRAFT to FINAL. To save yourself from manually editing the
toolpath name, you could use a macro to rename the active

toolpath:

FOREACH tp IN folder('Toolpath') {

ACTIVATE TOOLPATH $tp.Name

STRING NewName = replace(Name, 'DRAFT', 'FINAL')

RENAME TOOLPATH ; $NewName

}

This macro renames the toolpaths to:

 Any instance of DRAFT in the toolpath name is changed to

FINAL. However, the macro is case sensitive, so instances of

Draft are not changed.

Alternatively, you could write a macro to rename a toolpath name

without activating the toolpath:

FOREACH tp IN folder('Toolpath') {

STRING NewName = replace(tp.Name, 'DRAFT', 'FINAL')

RENAME TOOLPATH $tp.Name $NewName

}

Substrings

The substring function returns part of the string. You can define

where the substring starts and its length. The original string is
unchanged.

The basic structure is:

string substring(string str, int start, int length)

For example:

PRINT = substring("Scooby doo", 2, 4)

The command window displays the result, ooby.

Upper case function in a string

The upper case function converts the string to upper case. The

original string is unchanged.

Autodesk PowerMill Macros • 79

The basic structure is:

string ucase(string str)

For example:

PRINT = ucase("Scooby doo")

The command window displays the result, SCOOBY DOO.

In the Replace one string with another (see page 77) example

instances of DRAFT are replaced with FINAL, but instances of Draft
are not.

The ucase statement replaces instances of Draft, draft, dRAft with

DRAFT. The rest of the macro replaces DRAFT with FINAL.

FOREACH tp IN folder('Toolpath') {

// Get the upper case version of the name

STRING UName = ucase(tp.Name)

// check if the name contains 'DRAFT'

if position(UName, 'DRAFT') >= 0 {

// replace DRAFT with FINAL

STRING NewName = replace(UName, 'DRAFT', 'FINAL')

RENAME TOOLPATH $tp.Name $NewName

}

}

This macro renames the toolpaths to:

Previously Draft_ConstZ was not renamed, but it is this time. All the

toolpath names are now upper case.

Lower case function in a string

The lower case function converts the string to lower case. The

original string is unchanged.

The basic structure is:

string lcase(string str)

For example:

PRINT = lcase("SCOOBY DOO")

The command window displays the result, scooby doo.

In the Replace one string with another (see page 77) example
instances of DRAFT are replaced with FINAL, but instances of Draft

are not.

80 • Macros Macro Programming Guide

In the Upper case function in a string (see page 78) example
instances of Draft, draft, dRAft are replaced with DRAFT.

The lcase statement changes the upper case toolpath names to

lower case. It replaces instances of Draft, draft, dRAft are replaced
with draft.

FOREACH tp IN folder('Toolpath') {

// Get the upper case version of the name

STRING UName = ucase(tp.Name)

// check if the name contains 'DRAFT'

if position(UName, 'DRAFT') >= 0 {

// replace DRAFT with FINAL

STRING NewName = replace(UName, 'DRAFT', 'FINAL')

RENAME TOOLPATH $tp.Name $NewName

// Get the lower case version of the name

STRING LName = lcase(tp.Name)

RENAME TOOLPATH $tp.Name $LName

}

}

This macro renames the toolpaths to:

All the toolpath names are now lower case

Whitespace in a string

Use the following functions to remove whitespace from a string:

▪ ltrim()— Removes leading whitespace.

▪ rtrim() — Removes trailing whitespace.

▪ trim() — Removes leading and trailing whitespace.

 The original string is unchanged.

For example:

STRING Original = " What's up Doc!"

STRING Trimmed = ltrim(Original)

print = Original

print = Trimmed

Where:

print = Original displays " What's up Doc!" in the command

window.

print = Trimmed displays "What's up Doc!" in the command

window.

Autodesk PowerMill Macros • 81

Splitting a string

The tokens() function splits a string into a list of strings that were
separated by the separator characters. By default the separator

characters are spaces and tabs.

For example:

STRING InputStr = "One Two Three"

STRING LIST Tokens = tokens(InputStr)

FOREACH Tok IN Tokens {

PRINT = Tok

}

You can also give the tokens() function an optional extra argument
that changes the separator character.

For example:

STRING InputStr = "10:20:30:40"

STRING LIST Tokens = tokens(InputStr,':')

FOREACH Tok IN Tokens {

PRINT = Tok

}

List functions

List functions control the content of a list or array.

The basic structure of list functions are:

Description Function

Returns the components (see

page 82) of another object.

list components(entity

entity)

Returns a list of specified size

containing elements with

specified value.

list fill (int size, object

value)

Returns a list of all the
entities in the folder (see page

83).

list folder(string folder

)

Determines if the list has any

content (see page 84).

is_empty()

Determines if the list contains

a specific value (see page 84).

member()

Adding (see page 85) a list or

array to another list or array

+

Removes duplicate (see page

85) items from a list.

remove_duplicates()

82 • Macros Macro Programming Guide

Creates a list by compiling the
contents of two lists (can

contain duplicate naming)

set_union()

Creates a list containing items

that are present in two lists

(see page 86).

intersection()

Creates a list by subtracting
(see page 86) from the first

list those items that are

present in the second list.

subtract()

Returns a sorted list of
numerics or stings (see page

90).

list sort(list list)

Returns a sorted list of objects

or entities (see page 90)

sorted on a field name.

list sort(list list, string

field)

Returns a list where the items

have been reversed (see page

90).

list reverse(list list)

List components

The inbuilt components function returns the components of another
object.

 Currently NC Program and Group entity parameters are

supported.

 The components function returns a list of all items regardless
of type. You must check the type of the variable of each item,

in the list.

The basic structure is:

list components(entity entity)

For example if you want to batch process tool holder profiles for the
tools in a group that contains toolpaths, boundaries, and tools:

FOREACH ent IN components(entity('Group', '1')) {

IF lcase(ent.RootType) == 'tool' {

EDIT TOOL $ent.Name UPDATE_TOOLPATHS_PROFILE

}

}

Autodesk PowerMill Macros • 83

An example, to ensure that all the area clearance toolpaths in an NC
program have flood coolant turned on and that mist is set for all the

others:

FOREACH item IN components(entity('ncprogram','')) {

// only check nctoolpath items

IF lcase(item.RootType) == 'nctoolpath' {

// If the area clearance parameter is active then use

flood

IF active(entity('toolpath',item.Name).AreaClearance)

{

$item.Coolant.Value = "flood"

} else {

$item.Coolant.Value = "mist"

}

}

}

List fill

The fill() function returns a list of a specified size, which contains

elements of a specified value.

The basic structure is:

list fill(int size, object value)

For example, if you wanted to create a list in which abc was

repeated three times:

STRING ARRAY str_arr[] = fill(3, "abc")

// str_arr = {"abc", "abc", "abc"}

If you wanted to create a list in which 5 was repeated five times:

INT LIST int_ls = fill(5, 5)

// int_ls = {5, 5, 5, 5, 5}

List folder

The folder() function returns a list of all entities within a folder,

including those in subfolders.

The basic structure is:

list folder(string folder)

The names of the root folders are:

▪ MachineTool

▪ NCProgram

▪ Toolpath

▪ Tool

84 • Macros Macro Programming Guide

▪ Boundary

▪ Pattern

▪ Featureset

▪ Workplane

▪ Level

▪ Model

▪ StockModel

▪ Group

 The name of the folder is case sensitive, so you must use Tool

and not tool.

You can use a FOREACH loop to process all of the entities within a
folder. For example, to batch process tool holder profiles:

FOREACH tool IN folder ('Tool'){

EDIT TOOL $tool.Name UPDATE_TOOLPATHS_PROFILE

}

An example, to batch process all the boundaries in your project:

FOREACH bou IN folder('Boundary') {

EDIT BOUNDARY $bou.Name CALCULATE

}

Empty list

The is_empty() function queries a list to determine whether it is

empty or not.

REAL LIST MyList = {}

IF is_empty(MyList) {

PRINT "Empty List"

}

List member

The member() function returns TRUE if the given value is one of the

items in the list. For example, to check that a toolpath does not

occur in more than one NC program, you can loop over all
NCProgram and check that each toolpath is only seen once. Do this

by building a list of toolpath names and checking that each time you
add a name you have not already seen it.

// Create an empty list

STRING List names = {}

// Cycle through the NC programs

FOREACH ncp IN folder('NCProgram') {

// loop over the components in the nc program

FOREACH item IN components(ncp) {

Autodesk PowerMill Macros • 85

// Check that it is a toolpath

IF item.RootType == 'nctoolpath' {

// Use MEMBER to check that we have not seen this

name before

IF NOT member(names, item.Name) {

 bool ok = add_last(names, item.Name)

} else {

 // We have already added this name

 STRING msg = "Toolpath: "+item.Name+crlf+" in

more than one NCProgram"

 MESSAGE ERROR $msg

 MACRO ABORT

}

}

}

}

The is_empty() function queries a list to determine whether it is

empty or not.

REAL LIST MyList = {}

IF is_empty(MyList) {

PRINT "Empty List"

}

Adding lists

The + function adds a list or array to another list or array. For

example, you can add two lists together to get a list of all the tools

used by the toolpaths and boundaries:

STRING LIST UsedToolNames = ToolpathTools + BoundaryTools

Removing duplicate items in a list

The remove_duplicates() function removes duplicate values. For

example, a tool may be used in both a toolpath and a boundary, so
the UsedToolNames list may contain duplicate values.

To remove the duplicate values:

INT n = remove_duplicates(UsedToolNames)

The set_union() function returns a list containing the items from

both sets, removing any duplicates. So you can create the

UsedToolNames list using:

STRING LIST UsedToolNames = set_union(ToolpathTools,

BoundaryTools)

86 • Macros Macro Programming Guide

Intersecting items in lists

The inbuilt function intersection() returns a list containing the

items present in both lists or arrays. To obtain the names of the

tools that are used in both toolpaths and boundaries use:

STRING LIST TP_Bound_Names = intersection(ToolpathTools,

BoundaryTools)

Items present in one list, but not the other

The inbuilt function subtract() returns the items that are in the

first list, but not in the second list.

STRING UnusedToolNames = subtract(AllToolNames,

UsedToolNames)

Adding items to a list

You can add items to the start or end of a list.

Adding items to the start of a list

The inbuilt function add_first(list, item) adds an item to the

start of a list. It returns the number of items in the list after the

addition.

For example, to add the name of a pattern to the start of a list:

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to the start of the list

int s = add_first(Patterns, pat.Name)

}

Adding items to the end of a list

The inbuilt function add_last(list, item) adds an item to the end

of a list. It returns the number of items in the list after the addition.

For example, to add the name of a pattern to the end of a list:

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to the end of the list

int s = add_last(Patterns, pat.Name)

}

Removing items from a list

You can remove items from the start or end of a list.

Removing items from the start of a list

The inbuilt function remove_first(list) removes an item from the

start of a list. It returns the removed item.

Autodesk PowerMill Macros • 87

For example, to print the names of patterns in a list:

// Print the names of the Patterns in reverse order

// Create a list of the pattern names

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to start of the list

int s = add_first(Patterns, pat.Name)

}

// Keep taking the first item from the list until

// there are no more

WHILE size(Patterns) > 0 {

STRING name = remove_first(Patterns)

PRINT $Name

}

If you have three patterns in the Explorer:

The FOREACH loop adds each item to the start of the list. As the

add_first command adds the next pattern to the start of the list.

So you end up with a list

{"Pattern_3","Pattern_2,"Pattern_1"}.

The WHILE loop takes the first item in the list, removes it from the

list and pints it. This gives:

Pattern_3

Pattern_2

Pattern_1

Removing items from the end of a list

The inbuilt function remove_last(list) removes an item to the end

of a list. It returns the removed item.

For example, to print the names of patterns in a list:

// Print the names of the Patterns in reverse order

// Create a list of the pattern names

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to end of the list

int s = add_first(Patterns, pat.Name)

}

// Keep taking the last item from the list until

// there are no more

WHILE size(Patterns) > 0 {

STRING name = remove_last(Patterns)

PRINT $Name

}

88 • Macros Macro Programming Guide

If you have the same three patterns in the Explorer:

The FOREACH loop adds each item to the end of the list. As the

add_last command adds the next pattern to the end of the list. So

you end up with a list {"Pattern_1","Pattern_2,"Pattern_3"}.

The WHILE loop takes the last item in the list, removes it from the

list and pints it. This gives:

Pattern_3

Pattern_2

Pattern_1

To end up with the patterns in the same order as they are in the
Explorer either:

▪ In the FOREACH loop use the add_last command and in the

WHILE loop use the remove_first command; or

▪ In the FOREACH loop use the add_first command and in the

WHILE loop use the remove_last command.

Finding values in a list

The inbuilt function remove(list, value) returns true if the value

is in the list and false if it is not. If the value is in the list, it also
removes the first instance of the value from the list.

For example, to print a list of tool diameters and the number of
toolpaths using each tool:

// Print a list the tool diameters and the

// number of Toolpaths using each unique diameter.

REAL LIST Diameters = {}

FOREACH tp IN folder('Toolpath') {

INT s = add_last(Diameters, tp.Tool.Diameter)

}

// Create a list with just the unique diameters

REAL LIST UniqueD = Diameters

INT n = remove_duplicates(UniqueD)

// Loop over the unique diameters

FOREACH diam = UniqueD {

// set a counter

INT Count = 0

DO {

$Count = Count + 1

} WHILE remove(Diameters, diam)

Autodesk PowerMill Macros • 89

STRING Msg = "There are "+Count+" toolpaths using

"+diam+" tools"

PRINT $msg

}

Extracting data from lists

The inbuilt function extract(list, par_name) returns a list

containing par_name parameters extracted from the input list.

For example, to get the names of all the toolpaths in a project:
STRING LIST names = extract(folder('toolpath'),'name')

The result could have been achieved with a FOREACH loop that builds

up the list of names item by item, however, the function allows for a
more succinct expression, and it also lets .NET programs to interact

with lists without having to use the PowerMill-control-flow

statements.

 In the above case, the list of toolpaths returned from the

inbuilt function folder() is directly used as the list argument

to extract.

Another example is finding the maximum block zheight of the
toolpaths:
REAL maxz =

max(extract(folder('toolpath'),'Block.Limits.ZMax'))

Filtering data from lists

The inbuilt function filer(list, expression) returns a sub-list of the

original list. The returned list only contains the items in the original
list that match the expression you have specified. For example,

suppose you want to obtain a list of raster toolpaths:

ENTITY LIST rasters = filter(folder('toolpath'),

"strategy=='raster'")

Suppose that your toolpaths may contain the UserParameter 'laser'

and you want to change something on just the toolpaths that

contain the parameter. You can determine whether a toolpath has

the 'laser' parameter with the expression

'member(UserParameters._keys,'laser')'. This works because

each OBJECT has a special parameter '_keys', which is a list of the

immediate sub-parts of the object. So to just get the toolpaths that

have the 'laser' parameter, we can use the following code:
// create a string for the

// expression to help readability

STRING expr = "member(UserParameters._keys,'laser')"

ENTITY LIST laser_tps = filter(folder('toolpath'),$expr)

90 • Macros Macro Programming Guide

The filter() function can also be combined with the extract()

function to build complex expressions within your macros. For

example, to obtain the list of tools used by raster toolpaths:
ENTITY LIST tools =

extract(filter(folder('toolpath'),"strategy=='raster'"),'

tool')

A special variable called 'this' has been added to help with the

filter() function. The 'this' variable can be used to refer to the

element that the filter() function is examining. For example

suppose you have a list of numbers and only want the numbers that
are greater than 10:
REAL LIST numbers = {1.0, 10.2, 3.5, 20.4, 11.0, 2.8}

REAL LIST numbs = filter(numbers, "this > 10.0")

The above returns the list {10.2, 20.4, 11.0}.

Sorted list

The sort function sorts lists and arrays of scalars (numerics or
strings) or objects and entities. By default, the functions sort a list

in ascending order. If you want to sort the list in descending order,
you can apply the reverse function to the list.

If you are sorting a list of objects and entities, you must provide a
field name for the sort.

The following examples sort lists of scalar values (numerics and
strings):

STRING LIST l1 = {"The","Twelth","Night"}

$l1 = sort(l1)

// returns the list {"Night", "The", "Twelth"}

REAL ARRAY a1 = {23, 12, 4, 52, 32}

$a1 = sort(a1)

// Returns the list {4, 12, 23, 32, 52}

When sorting non-scalar values, such as entities or objects, you
must provide a sort field that is a scalar value:
CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 2.0

CREATE TOOLPATH 'bbb' RASTER

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 1.0

CREATE TOOLPATH 'ccc' RASTER

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 1.5

CREATE TOOLPATH 'aaa' RASTER

For example:
ENTITY LIST ents = sort(folder('toolpath'),'name')

// Returns the list of toolpath {'aaa','bbb','ccc'}

Autodesk PowerMill Macros • 91

ENTITY LIST ents_diam =

sort(folder('toolpath'),'Tool.Diameter')

// Returns the list of toolpath {'ccc','aaa','bbb'}

You can reverse the order of a list by using the inbuilt function

reverse(). The example above sorts the toolpaths based on tool
diameter and returns the entries in ascending order, with the

smallest diameter listed first. To sort the list in descending order,

you can reverse the results.
ENTITY LIST ents_diam =

reverse(sort(folder('toolpath'),'Tool.Diameter'))

// Returns the list of toolpaths {'bbb','aaa','ccc'}

Path functions

The path functions returns part of the pathname of the entity,

The basic structure of the path functions are:

Description of return value Function

The Folder name (see page

92) function returns the full
folder name of the entity, or

an empty string if the entity

does not exist.

string pathname(entity

ref)

The Folder name (see page

92) function can also be used
to return the full folder name

of the entity.

string pathname(string

type, string name)

The Directory name (see page

92) function returns the

directory prefix from the path.

string dirname(string

path)

The Base name (see page 93)
function returns the non-

directory suffix from the path.

string basename(string

path)

The Project name (see page

93) functions returns the
pathname of the current

project on disk.

project_pathname(bool

basename)

The Active folder (see page
94) functions returns folder

names of active entities.

String active_folder()

The Folder list (see page 94)

functions returns the names
of folders in the PowerMill

project.

String

folder_list(folder_name)

92 • Macros Macro Programming Guide

Folder name

The pathname function returns the full folder name of the entity, or,
if the entity does not exist, an empty string.

The basic structure is:

string pathname(entity ref)

Also,

string pathname(string type, string name)

Returns the full folder name of the entity.

For example, if you have a BN 16.0 diam tool in a Ballnosed tool

folder, then:

pathname('tool', 'BN 16.0 diam')

returns the string Tool\Ballnosed tools\BN 16.0 diam.

 If the entity does not exist it returns an empty string.

You can use this function in conjunction with the dirname() (see

page 92) function to process all the toolpaths in the same folder as
the active toolpath.

STRING path = pathname('toolpath',Name)

// check that there is an active toolpath

IF path != '' {

FOREACH tp IN folder(dirname(path)) {

ACTIVATE TOOLPATH tp.Name

EDIT TOOLPATH ; CALCULATE

}

} ELSE {

MESSAGE "There is no active toolpath"

RETURN

}

Directory name

The directory name function returns the directory prefix from the
path.

The basic structure is:

string dirname(string path)

For example you can use this to obtain the argument for the inbuilt

folder() function.

STRING folder = dirname(pathname('toolpath',Name))

Autodesk PowerMill Macros • 93

Base name

The base name function returns the non-directory suffix from the
path.

The basic structure is:

string basename(string path)

Usually basename(pathname('tool',tp.Name)) is the same as

tp.Name, but you can use this in conjunction with dirname (see page

92) to split apart the folder names.

For example, suppose your toolpaths are split in folders:

▪ Toolpath\Feature1\AreaClear

▪ Toolpath\Feature1\Rest

▪ Toolpath\Feature1\Finishing

▪ Toolpath\Feature2\AreaClear

▪ Toolpath\Feature2\Rest

▪ Toolpath\Feature2\Finishing

You can rename all your toolpaths so that they contain the feature

name and the area clearance, rest, or finishing indicator.

FOREACH tp in folder('Toolpath') {

// Get the pathname

STRING path = pathname(tp)

// Get the lowest folder name from the path

STRING type = basename(dirname(path))

// get the next lowest folder name

STRING feat = basename(dirname(dirname(path)))

// Get the toolpath name

STRING base = basename(path)

// Build the new toolpath name

STRING NewNamePrefix = feat + "-" + type

// Check that the toolpath has not already been renamed

IF position(base,NewNamePrefix) < 0 {

RENAME TOOLPATH $base ${NewNamePrefix+" " + base}

}

}

Project name

The project pathname function returns the pathname of the current

project on disk.

The basic structure is:

project_pathname(bool basename)

The argument dirname_only gives a different result if it is true to if

it is false.

94 • Macros Macro Programming Guide

▪ If true, returns the name of the project.

▪ If false returns the full path of the project.

For example if you have opened a project

called:C:\PmillProjects\MyProject

project_pathname(0) returns"C:\PmillProjects\MyProject.

project_pathname(1) returns MyProject.

A PowerMill macro example is:

EDIT BLOCKTYPE TRIANGLES

STRING $ARBLOCK = project_pathname(0) + '\' + 'block_test.dmt'

GET BLOCK $ARBLOCK

Active folder name

Use this to determine the folder names of currently active entities,

for example the name of the active toolpath or workplane folder.

To display all of the folders in the toolpath branch:
STRING LIST MyToolpaths = GET_FOLDERS('toolpath')

To display a list of all of the subfolders below a given path:
STRING LIST MyFolderToolpaths =

GET_FOLDERS('toolpath\Rough')

To display the name of the active folder:
STRING MyFolder = ACTIVE_FOLDER()

An empty list is returned if there are no folders, or if there are no
active folders.

To find out if the given folder path exists or not, use:
document folder_exist()

This returns true or false depending on whether the path exists or
not. For example, BOOL ok =
folder_exists('toolpath\areaclearance')

 Use document folder_exist() to interrogate PowerMill

Explorer folders. To interrogate folders on disk, use the
dir_exists()functions.

Stock model states

Use the PRINT PAR function to print the parameters of each stock

model state. You can use this to display the:

▪ toolpaths that are applied to the block

▪ block size

▪ active state

Autodesk PowerMill Macros • 95

The basic structure is:

PRINT PAR "entity('stockmodel','stockmodel name').States"

This can be extended to print specific parameters, for example:

PRINT PAR "entity('stockmodel','stockmodel

name').States[0].Locked"

PRINT PAR "entity('stockmodel','stockmodel

name').States[1].References[1]"

Conditional functions

The basic structure of conditional functions are:

Description of return value Function

Returns the value of

expression 1 if the conditional
expression is true, otherwise

it returns the value of

expression 2.

variant select(

conditional-expression;

expression1;expression2)

 Both expressions must be of the same type.

This example obtains either the tool radius or its tip radius, if it has

one.

You can use an IF block of code:

REAL Radius = Tool.Diameter/2

IF active(Tool.TipRadius) {

$Radius = Tool.TipRadius

}

Or you can use the inbuilt select function:

REAL Radius = select(active(Tool.TipRadius),

Tool.TipRadius, Tool.Diameter/2)

 To assign an expression to a parameter, you must use the

select() function.

Evaluation functions

The evaluation function evaluate a string argument as an

expression.

For example:

print = evaluate("5*5")

prints 25.

96 • Macros Macro Programming Guide

You can use evaluate to provide a different test at runtime.

This example provides a bubble sort for numeric values. By

changing the comparison expression you can get it to sort in
ascending or descending order.

FUNCTION SortReals(STRING ComparisonExpr, OUTPUT REAL

LIST List) {

// Get number of items.

INT Todo = size(List)

// Set swapped flag before we start

Bool swapped = 1

// Repeat for number of items

WHILE Todo > 1 AND Swapped {

// start at the beginning

INT Idx = 0

// Signal that nothing has been done yes

$Swapped = 0

// loop over number of items still to do

WHILE Idx < ToDo-1 {

// swap if they are out of sequence

// Uses user supplied comparison function to

perform test

IF evaluate(ComparisonExpr) {

 REAL swap = List[Idx]

 $List[Idx] = List[Idx+1]

 ${List[idx+1]} = swap

 // signal that we've done something

 $Swapped = 1

}

// look at next pair

$Idx = Idx + 1

}

// reduce number of items

$ToDo = ToDo - 1

}

}

FUNCTION Main() {

/Set up some data

REAL ARRAY Data[] = {9,10,3,4,1,7,2,8,5,6}

// Sort in increasing value

CALL SortReals("List[Idx] > List[Idx+1]", Data)

PRINT PAR "Data"

REAL ARRAY Data1[] = {9,10,3,4,1,7,2,8,5,6}

// Sort in decreasing order

CALL SortReals("List[Idx] < List[Idx+1]", Data1)

PRINT PAR "Data1"

}

Autodesk PowerMill Macros • 97

Type conversion functions

The type conversion functions enable you to temporarily convert a
variable from one type to another within an expression.

The basic structure of the type conversion functions are:

Description of return value Function

Convert to integer value. int int(scalar a)

Convert to real value. real real(scalar a)

Convert to boolean value. bool bool(scalar a)

Convert to string value string string(scalar a)

Normally you would use inbuilt string() conversion function to
convert a number to a string when building up a message:

STRING $Bottles = string(Number) + " green bottles ..."

In other cases, you may want convert a real number to an integer,

or an integer to a real number:

INT a = 2

INT b = 3

REAL z = 0

$z = a/b

PRINT $z

This prints 0.0.

If you want the ratio then you have to convert either a or b to real

within the assignment expression.

INT a = 2

INT b = 3

REAL z = 0

$z = real(a)/b

PRINT $z

This prints 0.666667.

Parameter functions introduction

All of the PowerMill parameters have an active state which
determines whether the parameter is relevant for a particular type

of object or operation.

The basic structure of the parameter functions are:

Description of return value Function

Evaluates the active

expression of par.

bool active(par)

98 • Macros Macro Programming Guide

Returns whether the
parameter can be changed or

not.

bool locked(par)

Returns the number of sub-

parameters that par contains.

int size(par)

Returns a list of string

descriptions for a enumerator

type.

string list

values(par)

Returns the parameter one

level above in the parameter

tree.

par parent(par)

Evaluate the active expression

For example, the Boundary.Tool parameter is not active for a block
or sketch type boundaries. You can test whether a parameter is

active or not with the inbuilt active() function. This can be useful in

calculations and decision making.

The basic control structure is:

IF active(….) {

…

}

Check if you change a parameter

You can test whether a particular parameter is locked or not with

the inbuilt locked() function. You cannot normally edit a locked

parameter because its entity is being used as a reference by
another entity. If you try to edit a locked parameter with the EDIT

PAR command, PowerMill displays a query dialog asking for

permission to make the change. You can suppress this message
using the EDIT PAR NOQUERY command. The locked() function

enables you to provide your own user messages and queries that

are tailored to your application.

For example:

IF locked(Tool.Diameter) {

BOOL copy = 0

$copy = QUERY "The current tool has been used do you

want to make a copy of it?"

IF NOT copy {

// cannot proceed further so get out

RETURN

}

COPY TOOL ;

}

$Tool.Diameter = 5

Autodesk PowerMill Macros • 99

Check the number of sub-parameters

The inbuilt size() function returns the number of immediate items in
the parameter. You can use this to determine the number of

toolpaths in a folder:

PRINT = size(folder('Toolpath\Cavity'))

Enumerator parameter

The values() function returns a list of display names for an
enumerator parameter, such as Tool.Type, CutDirection, or

Strategy. The names are translated into the current language that a
user is working in. This list can be used to gather input from the

user with the CHOICE dialog. For example, to ask the user which
cut direction they would like to use, you can use the following code:
// Get names for the choices the user can make for this

parameter

STRING ARRAY Opts[] = values(CutDirection)

// Get the user input

INT C = INPUT CHOICE $Opts "Choose the Cut Direction you

want"

// Use the returned value to set the direction

$CutDirection = $C

Parent parameter

The parent() function enables you to access and specify machine tool

parameters in a more user friendly way. For example:

//To change the opacity of a machine tool/Robot table

with AXIS ADDRESS T, the following syntax can be used

EDIT PAR "parent(machine_axis('T')).ModelList.Opacity"

"25"

//Check the way the 'parent' function works...

CREATE TOOL ; BALLNOSED

EDIT TOOL "1" DIAMETER "20"

real error = 0

$error = ERROR parent(Tool)

print $error

//returns 1.0 as it fails finding the parent of a root -

'TOOL' is the root

$error = ERROR parent(Tool.Diameter)
print $error

//returns 0 as it finds the parent Tool of Tool.Diameter

100 • Macros Macro Programming Guide

Automate a sequence of edits or actions

Use the following functions to automate a sequence of edits or
actions to a number of files and directories:

// return list of file and/or directory names

list file_list(<type>, directory, filespec)

// <type> == "all" returns both the files and directories

// <type> == "files" just returns the files

// <type> == "dirs" just returns the directories

// a '+' suffix to the type (eg "files+") will recurse

down the directories

// get the current directory

string pwd()

// check whether a file exists

bool file_exists(path)

// check whether a directory exists

bool dir_exists(path)

Statistical functions

The statistical functions enable you to return the minimum and
maximum values of any number of numeric arguments.

The basic structure of the statistical functions are:

Description of return value Function

Returns the largest value in a

list of numbers.

real max(list numeric a

)

Returns the smallest value in

a list of numbers.

real min(list numeric a

)

This example finds the maximum and minimum block height of the
toolpaths in the active NC program.

REAL maxz = -100000

REAM minz = abs(maxz)

FOREACH item IN components(entity('ncprogram','')) {

IF item.RootType == 'nctoolpath' {

$maxz = max(maxz,entity('toolpath',item.Name))

$minz - min(minz,entity('toolpath',item.Name))

}

}

MESSAGE "Min = " + string(minz) + ", max = " +

string(maxz)

Autodesk PowerMill Macros • 101

Entity based functions

These functions work on specific entities.

Command Description

entity_exists() Returns true if the named entity

exists (see page 103).

geometry_equal() Compares two tools, or two

workplanes for geometric

equivalence.

new_entity_name() Returns the name (see page 103)

assigned to the next entity.

set_workplane() Sets the vectors and origin of a

workplane (see page 71).

segments() Returns the number of segments in

a toolpath, boundary or pattern.

stockmodel_visible

_volume()
Returns the stock model volume,

based on the stock model drawing

option used to show the material.

limits() Returns the XYZ limits of an entity.

toolpath_cut_limit

s()
Returns the XYZ limits of the

toolpath's cutting moves.

Equivalence

You can use the inbuilt function geometry_equal() to test whether

two tools, or two workplanes are geometrically equivalent. For a
tool the test is based on the cutting geometry of the tool.

Number of segments

The inbuilt function segments() returns the number of segments in

a pattern or boundary:

IF segments(Pattern) == 0 {

PRINT "The pattern is empty"

}

To return the number of segments in a toolpath, use:
function toolpath_component_count(toolpath,type)

For example:
print par ${toolpath_component_count('toolpath', '1',

'links')}

print par ${toolpath_component_count('toolpath', '1',

'leads')}

print par ${toolpath_component_count('toolpath', '1',

'segments')}

102 • Macros Macro Programming Guide

// Returns the number of toolpath segments, links and leads moves
in toolpath named '1'

Stock model volume

The inbuilt function stockmodel_visible_volume() returns the

stock model volume, based on the stock model drawing option used

to show the material. The drawing options are:

▪ Show all material

▪ Show rest material

▪ Show removed material

For example:

real volume =

stockmodel_visible_volume(entity('stockmodel',"SM"))

// Assigns the volume of the stock model named "SM" to

variable "volume".

Limits

The inbuilt function limits() returns an array of six elements

containing the XYZ limits of the given entity. The supported entities

are: pattern, boundary, toolpath, feature set, or model.

REAL ARRAY Lims[] = limits('model','MyModel')

The values in the array are:

REAL MinX = Lims[0]

REAL MaxX = Lims[1]

REAL MinY = Lims[2]

REAL MaxY = Lims[3]

REAL MinZ = Lims[4]

REAL MaxZ = Lims[5]

Toolpath cut limits

The inbuilt function toolpath_cut_limits() returns an array of 6

real values that hold the XYZ limits of the toolpath's cutting moves.

The entity parameter must be a calculated toolpath. The returned
array can be used to initialize, or assign to, another array or list.

 The string parameter must be the name of a calculated
toolpath, otherwise an error will be returned.

REAL ARRAY lims[] = toolpath_cut_limits(Toolpath)

$lims = toolpath_cut_limits('my toolpath')

The values in the array are:

array[0] = Minimum X value.

array[1] = Maximum X value.

array[2] = Minimum Y value.

Autodesk PowerMill Macros • 103

array[3] = Maximum Y value.

array[4] = Minimum Z value.

array[5] = Maximum Z value

Does an entity exist?

The inbuilt function entity_exists() returns true if the entity

exists. You can call this function with:

▪ an entity parameter such as entity_exists(Boundary),

entity_exists(ReferenceTool), or

entity_exists(entity('toolpath','')).

▪ two parameters that specify the entity type and name such as

entity_exists('tool','MyTool').

For example:

IF entity_exists(Workplane) {

PRINT "An active workplane exists"

} ELSE {

PRINT "No active workplane using world coordinate

system."

}

IF NOT entity_exists(entity('toolpath','')) {

PRINT "Please activate a toolpath and try again."

MACRO ABORT ALL

}

New entity name

The inbuilt function new_entity_name() returns the next name that

PowerMill gives to a new entity of the given type. You can supply an
optional basename argument to obtain the name that PowerMill

uses when creating a copy or clone of an entity.

This example shows you how to determine the name of a new

entity.

CREATE WORKPLANE 1

CREATE WORKPLANE 2

CREATE WORKPLANE 3

// Prints 4

PRINT = new_entity_name('workplane')

DELETE WORKPLANE 2

// Prints 2

PRINT = new_entity_name('workplane')

104 • Macros Macro Programming Guide

CREATE WORKPLANE ;

// Prints 2_1

PRINT = new_entity_name('workplane', '2')

Improving entity-specific macros

You can use parameters to write macros that instruct PowerMill to
execute specific lines of code before and after it processes the first

and last entity in a loop. The parameters enable PowerMill to:

▪ identify the last selected entity; and

▪ display the total number of selected entities and the entity

PowerMill is currently processing.

The parameters are:

▪ powermill.Status.MultipleSelection.Last

This enables PowerMill to identify the last selected entity.

▪ powermill.Status.MultipleSelection.Count

This enables PowerMill to display the entity it is processing, for
example, 'Checking toolpath 6 for collisions'.

▪ powermill.Status.MultipleSelection.Total == 0

This enables PowerMill to display the total number of selected
entities.

▪ powermill.Status.MultipleSelection.First

This enables PowerMill to identify the first entity in a loop.

Creating an entity-specific macro

The example shows how to create a macro that uses a user-defined

clearance value to collision check the select toolpaths. The macro:

▪ asks the user to enter the holder clearance PowerMill uses to

collision check the toolpaths.

▪ displays the name of the toolpath it is processing.

▪ displays a message when collision checking is complete.

Function Main(

STRING $Selected_Toolpath

)

{

// Create new project parameter to store the holder

clearance

BOOL $chk = 0

$chk = ERROR $project.clearance

Autodesk PowerMill Macros • 105

if $chk {

// Project variable does not exist. Create it and set

it to 5 degrees

EDIT PAR CREATE REAL "clearance"

}

// Before checking the first toolpath, PowerMILL should

ask the user to enter the holder clearance

 IF ($powermill.Status.MultipleSelection.First) OR

$powermill.Status.MultipleSelection.Total == 0 {

 $project.clearance = INPUT ${"Enter the holder

clearance PowerMILL uses when checking the " +

$powermill.Status.MultipleSelection.Total + "

selected toolpaths for collisions "}

}

// Now collision check toolpath with entered clearance

// Set the clearance:

EDIT COLLISION HOLDER_CLEARANCE $project.clearance

// Now check the toolpath for collisions

EDIT COLLISION TYPE COLLISION

PRINT = "Processing toolpath " +

$powermill.Status.MultipleSelection.Count

EDIT COLLISION APPLY

// Tell user all selected toolpaths have been checked

IF ($powermill.Status.MultipleSelection.Last) {

MESSAGE INFO "All toolpaths have been checked "

}

}

Enter line and line without line breaks. The lines appear to

include line breaks here only because of the limited page width.

Model hierarchy

Model Component Functions
INT select_components(DATA components)

INT deselect_components(DATA components)

These functions select or deselect all of the components in the

passed-in data parameter. The data parameter must store a

ModelCompList or ModelCompSet. The return value is numeric, but
carries no information.

INT number_selected(DATA components)

106 • Macros Macro Programming Guide

This function returns the number of the components in the passed-
in data parameter that are currently selected. The data parameter

must store a ModelCompList or ModelCompSet.

Model Hierarchies

Some CAD systems store models in a hierarchical structure. When

PowerMILL reads these CAD files it creates a parameterised
representation of this structure. This structure can be navigated as

a tree, and there are two helper functions, one to retrieve a node
from the hierarchy by its path, and the other to retrieve the

hierarchy (or a subsection of the hierarchy) as a list that can be
filtered or iterated over.

Nodes

The hierarchy of a model is made up of nodes. These are maps with

typename "ModelHierarchyElement". They have the following
properties:

Property Type Description

Name STRING The name associated with the node

in the hierarchy. The root node’s
name will be the same as the

model’s name.

Path STRING The path to the node. It consists of
the names of the node’s ancestors,

starting with the root node,
separated by backslashes. It

includes the node’s name.

Parent MAP

(typename:

ModelHierarchyElemen

t)

The parent of this node in the
hierarchy. The root node’s Parent is

always an error. For all other

nodes, it will be a map of this type.

Children ARRAY of MAPs

(typename:
ModelHierarchyElemen

t)

A list of the children of the node in

the hierarchy. Each child node is a

map of this type.

Compone
nts

DATA

{ModelCompList}

A list of the model components

associated with the node.

Parameter
s

MAP

(typename:

ModelMetadata)

Key-Value pairs associated with the

node.

SelectedIn BOOL This parameter is not currently

Autodesk PowerMill Macros • 107

GUI used, and will always return false.

The root node of a model’s hierarchy is accessible through the

"Hierarchy" property on the model entity parameter.

Walking the hierarchy

If you want to select all components associated with nodes
containing "Hole" in their name, for instance, you could use a macro

like this:

FUNCTION Main() {

ENTITY mod = entity("model", "1")

CALL SelectHoles(mod.Hierarchy)

}

FUNCTION SelectHoles(OBJECT node) {

// Select the components associated with this node if

// its name contains "Hole"

IF (position(node.Name, "Hole") > -1) {

INT i = select_components(node.Components)

}

// Recursively call this function with each child node

FOREACH child IN node.Children {

CALL SelectHoles(child)

}

}

This is a basic template for working with a hierarchy: a function that

takes a node as an argument, does something with it, and then
recursively calls the function with each of its child nodes.

This template can be built on to give more complex functionality.
For example, the operation on the node could depend on extra

passed-in arguments, several operations could be performed on the
node, or a conditional check on each child node could be placed

within the FOREACH loop to skip certain branches of the tree.

Getting a Node by its Path
OBJECT model_tree_node(ENTITY model[, STRING path)

OBJECT model_tree_node(STRING model_name[, STRING path])

The first argument should be a model entity or the name of a model

entity. The second argument is an optional path into that model's
hierarchy. The function returns the node with the given path or the

root node if the path is omitted.

108 • Macros Macro Programming Guide

The following example gets the node "group1", which is a child of
the "part" node, which is a child of the root node "1". It then stores

how many of the components associated with the node are
currently selected:
OBJECT node = model_tree_node("1", "1\part\group1") {

INT count = number_selected (node.Components)

Getting the Hierarchy as a List
OBJECT LIST model_tree_nodes(ENTITY model[, STRING path)

OBJECT LIST model_tree_nodes(STRING model_name[, STRING

path])

This function takes the same arguments as model_tree_node(). It

returns a list containing the node that would be returned by
model_tree_node() if it were sent the same arguments, and all of

its descendants.

The example below performs the same operation as the macro in

the "Walking the Hierarchy" section above, selecting all geometry
associated with nodes that contain "Hole" in their name.
FOREACH node IN model_tree_nodes(entity("model", "1")) {

IF position(node.Name, "Hole") > -1 {

BOOL b = select_components(node.Components)

}

}

As well as being a more concise method, for operations that are to

be performed on every node in the hierarchy, this will generally
execute quicker than walking the hierarchy using the recursive

method.

Model metadata

Exchange can extract the metadata from 3rd party CAD files and

communicate them to PowerMill during the translation process.
Metadata is accessible through parameters which are associated

with groups, workplanes and geometries. These are used to store
information relevant to the machining of an item.

Metadata on geometry

The components() parameter function is extended to include a data

parameter which stores a list of model components, including

surfaces, and returns a list of the components in a parameterised
form.

The parameterized components are objects with the following
properties:

Autodesk PowerMill Macros • 109

Name – A string that contains the name of the component.

Model – A string that contains the name of the model containing the

component.

Parameters – An object which stores the key-value pairs associated

with the component.

Metadata on workplanes

There are parameters to represent workplanes in the hierarchy.

These are maps with the following properties:

Name — The name of the workplane.

Origin — The origin of the workplane. This is an array of 3 REALs.

XAxis — The X axis of the workplane. This is an array of 3 REALs.

YAxis — The Y axis of the workplane. This is an array of 3 REALs.

ZAxis — The Z axis of the workplane. This is an array of 3 REALs.

Parameters — A map of the metadata associated with the

workplane.

If a workplane in an imported model has the same name as an

existing workplane in PowerMill but a different origin or orientation,
the parameter will store the original name.

 If models are exported, all of their metadata is lost. However,

if you have a model in a project, it retains its metadata.

Feature Parameters
You can use the inbuilt components() function to loop over the

features within a feature set. Each feature has the following
parameters:

Name — Name of Feature.

ID — Id of Feature.

RootType — 'feature' as a string.

num_items — Number of sub-holes.

Type — Type of feature (pocket, slot, hole, boss).

Top — Top of feature, z-value relative to Origin.

Bottom — Bottom of feature, z-value relative to Origin.

Depth — Depth of feature, from top to bottom.

Diameter — Diameter of feature.

Draft — Draft angle.

110 • Macros Macro Programming Guide

Axis — Z axis of Feature.

For example:

// Print out the diameter of each hole

FOREACH f in components(entity('featureset','1')) {

IF f.Type == "hole" {

PRINT = f.name + " has a diameter of " + f.Diameter

}

}

You can also use the components() function to iterate over the

elements of compound holes, as follows:

ENTITY fset = entity('FeatureSet','')

PRINT ="Feature Set '" + fset.Name + "' has " +

fset.num_items + "

Features"

FOREACH feat IN components(fset) {

IF feat.num_items > 0 {

PRINT ="Feature '" + feat.Name + "' is a compound

hole'"

FOREACH sub IN components(feat) {

PRINT ="Sub-hole '" + sub.Name + "' has diameter "

+ sub.Diameter

}

} ELSE {

PRINT ="Feature '" feat.Name + "' is a " + feat.Type

}

}

 You cannot edit feature parameters in the macro language.

You must use the normal PowerMill commands to edit
features. However, the parameters will give you all the values

you need to make the appropriate edits.

Working with files and directories
PowerMill contains a number of commands and functions for

creating and manipulating files on disc. The following commands

can be used to delete and copy files and directories:

DELETE FILE <filename>

DELETE DIRECTORY <directory>

COPY FILE <source-file> <destination file>

COPY DIRECTORY <source directory> <destination-directory>

The command CD changes the working directory:

// change working directory to "C:\temp"

CD "C:\temp"

Autodesk PowerMill Macros • 111

// change working directory back to where PowerMill

started from

CD

The command MKDIR will create a directory path:

MKDIR "C:\temp\output\pm_project"

The command will create all directories in the path if they do not
exist already.

File and directory functions

PowerMill contains a number of parameter functions that can be
used to examine the file structure of the disc:

▪ string pwd() — Returns the current working directory path.

▪ bool file_exists(filepath) — Returns true if filepath is an

existing file.

▪ bool dir_exists(dirpath) — Returns true if dirpath is an

existing directory.

▪ list list_files(string flags,string directory[, string

filetype]) — Returns a list of files that match the flags and

optional filetype. The flags parameter can be either 'all',

'files', or 'dirs' with an additional '+' suffix. If the '+' suffix is

given then all subdirectories are listed.

Example

// get a list of all the files in the working directory

STRING LIST files = list_files("files",pwd())

// get all the stl files in the C:\temp directory

$files = list_files("files","c:\temp",".stl")

// get all the directories and subdirectories in the

working directory

$files = list_files("dirs+", pwd())

File reading and writing in macros
PowerMill has a number of commands that can be used to read
information from a file, or to write information to a file.

Use the following commands:

▪ FILE OPEN — Open a file for reading or writing and associate it

with a file handle.

112 • Macros Macro Programming Guide

▪ FILE CLOSE — Close a file and free-up its file handle so you can

re-use it later.

▪ FILE WRITE — Write the contents of an existing variable to an

open file.

▪ FILE READ — Read values from one or more lines from an open

file into an existing variable.

 A file handle is the name used internally to refer to the file.

FILE OPEN command

Before you can use a file, it must be opened for either reading or

writing, and given an internal name (file handle) by which you will

later refer to it.

The syntax for opening a file is:

FILE OPEN <pathname-of-file> FOR <access-type> AS

<handle>

 The <access-type> can be READ, WRITE, or APPEND, and

<handle> is a short string used to refer to the file.

For example, to open the file fred.txt for writing, use the command:

FILE OPEN "d:\my-files\fred.txt" FOR WRITE AS output

To open a file for reading you might use the command:

FILE OPEN "d:\my-files\fred.txt" FOR READ AS input

To open a file and append more information to the end of it, use the

command:

FILE OPEN "d:\my-files\fred.txt" FOR APPEND AS input

You cannot use the same <handle> for more than one file at a time.

FILE CLOSE command

When you have finished with a file it is good practise to close it so

that you can reuse the handle and release system resources.

For example:

FILE CLOSE output

FILE CLOSE input

 To reuse a closed file you need to reopen it.

FILE WRITE command

Use the FILE WRITE command to write data from a variable to a file

that has been opened for writing or appending.

Autodesk PowerMill Macros • 113

Variables are written line by line. If the variable to be written is a
scalar (INT, BOOL, REAL, or STRING) then a single line is written

(unless a string containing new lines is written).

If the variable to be written is an array or list then every element

from the source variable is written one line at a time to the file.
Individual elements can be written using sub-scripts.

The syntax for the command is:

FILE WRITE $<variable> TO <handle>

For example:

FILE OPEN "test.txt" FOR WRITE AS "out"

STRING LIST greeting = {"Hello, ", "World!"}

INT ARRAY errors[5] = {1,2,3,4,5}

FILE WRITE $greeting TO "out"

FILE WRITE $errors TO "out"

FILE WRITE $PI TO "out"

FILE WRITE $greeting[1] TO "out"

FILE CLOSE "out"

// Append an error message to a log file

FILE OPEN "errorlog.txt" FOR APPEND AS log_file

INT error = 2

STRING time = "14:57"

STRING date = "July 1st, 2012"

STRING log_entry = "Error (" + error_code + ") occurred

at " + time + " on " + date

FILE WRITE $log_entry TO log_file

FILE CLOSE log_file

FILE READ command

The FILE READ command is used to read data from a file opened for

reading into an existing variable.

If the variable is a scalar then a single line is read and the string is
converted to the required variable type using standard conversion

rules.

If the variable is an array then one line is read for each element in

the array, with values being stored in the array (starting from index
0). If the end of the file is reached before the array is reached, the

data in the remaining elements remain unchanged.

If the variable to be read is a list then all remaining lines in the file

are read with existing list elements being over-written and the list

being extended as necessary. Again, if the number of lines
remaining to be read in the file are fewer than the number of

elements currently in the list, then data in the remaining elements
is unchanged.

114 • Macros Macro Programming Guide

For example:

FILE OPEN "values.txt" FOR READ AS input

STRING product_name = ""

INT ARRAY vers[2] = {0, 0}

REAL tol = 0.0

STRING LIST rest_of_file = {}

FILE READ $prod FROM input

FILE READ $version FROM input

FILE READ $tol FROM input

FILE READ $rest_of_file FROM input

PRINT ="Tolerance from " + prod + " v" + vers[0] + "." +

vers[1] + ": " + tol

PRINT ="Comments:"

FOREACH line IN rest_of_file {

PRINT $line

}

Frequently asked questions

How do I loop through all the toolpath entities?

The folder() function returns all the items that are in the Explorer

folders, for example Machine Tools, Toolpaths, Tools, Boundaries,
Patterns etc.. The easiest way to loop through all the items is to use

the FOREACH statement:

FOREACH tp IN folder(‘Toolpath’) {

PRINT = tp.name

}

The folder function returns all the items in the specified folder and

in any subfolders. You can limit the number of items returned by
specifying a specific subfolder to loop through:
FOREACH tp IN folder(‘Toolpath\semi-finishing’) {

PRINT = tp.name

}

How do I only loop over the items in a parent folder (and exclude any
subfolders)?

As described above, the folder() function returns items from a
parent folder and any subfolders. If you only want to loop over the

items in the parent folder, you need to filter the results. For
example, if you have the folder 'Semi-finishing' and the subfolder

'Not used', which contains temporary or alternative toolpaths, then
to access the toolpaths only in the 'Semi-finishing' folder, you need

to use the pathname and dirname functions:
STRING fld = ‘Toolpath\semi-finishing’

Autodesk PowerMill Macros • 115

FOREACH tp IN folder($fld) {

IF dirname(pathname(tp)) == $fld {

PRINT = tp.name

}

}

You can also achieve the same result as above by using a complex
expression for the FOREACH loop. In some cases this may make

your code easier to understand and in other cases much harder. In

the following example, the results of the folder() function are
filtered so the IF statement can be removed.
STRING fld = ‘Toolpath\semi-finishing’

STRING filt = ‘dirname(pathname(this)) == fld’

FOREACH tp IN filter(folder($fld), $filt) {

PRINT = tp,name

}

 Note the use of ‘this’ in the $filt expression: when used in the

filter function, ‘this’ is an alias for the current list item that is
being filtered. In cases where you need to explicitly use the

list item, such as the one above, you should refer to it as
‘this’ in the expression.

How do I loop over the items in the active folder?

The inbuilt function active_folder() returns the name of the folder
that is currently active in the Explorer.

 Check the correct folder in the Explorer is active.
STRING fld = active_folder()

IF fld == "" {

// No active folder use the root instead

$fld = ‘Boundary’

} ELSEIF position(fld,’Boundary\’) != 0 {

MESSAGE "Active folder isn’t a boundary folder"

RETURN

}

How can I tell if a toolpath has been calculated?

The Toolpath’s parameter 'Computed' is be true if it has been
calculated. Sometimes a toolpath may have been calculated but

contain no cutting segments. If this is an issue then you should

check the number of segments as well:
IF tp.Calculated AND segments(tp) > 0 {

PRINT "Toolpath is calculated and has segments"

}

116 • Macros Macro Programming Guide

Organising your macros
Recorded macros are listed in the Explorer under the Macros branch.

This example shows you how to manage the macro paths.

1 From the Macros menu select Macro Paths.

Alternatively, click File tab > Options > Customise Paths.

The PowerMill Paths dialog is displayed showing you all the
default macro paths. PowerMill automatically searches for macros

located within these folders, and displays them in the Explorer.

The period (.) indicates the path to the local folder (currently, the
folder to which the project is saved). The tilde () indicates your

Home directory.

2 To create a macro path, click , and use the Select Path dialog

to select the desired location. The path is added to the top of the
list.

3 To change the path order, select the path you want to move, and

use the and buttons to promote or demote the path.

4 Click Close.

Autodesk PowerMill Macros • 117

5 To load the new paths into PowerMill, expand the Macros branch
in the Explorer. Only the paths that contain at least one macro

are shown.

For more information, see Displaying Macros in the Explorer.

Recording the pmuser macro
The pmuser.mac is automatically run whenever you start PowerMill

providing you with your preferred settings.

1 Click File tab > Options > Reset forms. This ensures that

PowerMill uses the default parameters in the dialogs.

2 From the Macros context menu, select Record.

3 Browse to pmill4 folder in your Home area. In the Select Record

Macro File dialog, enter pmuser in the File name box, and click

Save. If you are asked whether you want to overwrite the
existing file, select Yes.

The macro icon changes to red to show recording is in
progress. All dialog options that you want to include in your

macro must be selected during its recording. If an option already
has the desired value, re-enter it.

4 Set up your preferences. For example:

a From the NC Programs menu, select Preferences.

b In the NC Preferences dialog, select a Machine Option File (for

example, heid.pmoptz).

118 • Macros Macro Programming Guide

c Click Close.

d Click Home tab > Setup panel > Toolpath Connections

Toolpath connections dialog.

e Select the Safe area tab.

f Enter a Rapid Height of 10 and Plunge Height of 5.

g Click Accept.

5 From the Macros context menu, select Stop to finish recording.

6 Expand the Macros node. The pmuser.mac macro is added under

pmill4.

7 Close and then restart PowerMill to check that the settings from
the pmuser macro are activated.

Turning off error and warning
messages and locking graphic updates

Error and warning messages

PowerMill displays error and warning messages that you must

respond to. For example, PowerMill displays an error message if you
attempt to activate a toolpath that does not exist.

Normally you should avoid writing a macro that generates error or
warning messages, but sometimes it is not possible. In such cases,

you can suppress the messages using the following:

DIALOGS MESSAGES OFF

DIALOGS ERROR OFF

To turn the error and warning messages back on, type:
DIALOGS MESSAGE ON

DIALOGS ERROR ON

Autodesk PowerMill Macros • 119

Graphics

When you run a macro, PowerMill updates the screen every time a
change is made. If PowerMill updates the screen frequently, this

amount of screen activity can look unpleasant. Use the following to
instruct PowerMill not to update the screen while the commands are

in progress, and instead to update the screen (just the once) after
the commands are complete.
GRAPHICS UNLOCK

GRAPHICS LOCK

 When a macro finishes, PowerMill restores the message and

graphic settings to what they were before the macro started.
This ensures the messages and graphics are not accidentally

turned off permanently.

Recording a macro to set up NC
preferences

This example records a macro that sets up NC preferences for
Heid400 machine controllers.

1 Click File tab > Options > Reset forms. This ensures that
PowerMill uses the default parameters in the dialogs.

2 From the Macros context menu, select Record.

3 Browse to pmill folder in your Home area in the Select Record

Macro File dialog, enter h400_prefs in the File Name field, and click

Save.

120 • Macros Macro Programming Guide

The macro icon changes to red to show recording is in
progress.

All dialog options that you want to include in your macro must be
selected during its recording. If an option already has the desired

value, re-enter it.

4 From the NC Programs context menu, select Preferences.

5 In the NC Preferences dialog, select the Heid400.opt in the

Machine Option File field on the Output tab.

6 Click the Toolpath tab, and select Always in the Tool Change field.

7 Click Accept.

8 From the Macros context menu, select Stop to finish recording.

Tips for programming macros
This section gives tips to help you record macros.

▪ Macros record any values you explicitly change in a dialog, but
do not record the current default values. For example, if the

default tolerance is 0.1 mm and you want a tolerance 0.1 mm,

you must re-enter 0.1 in the tolerance field during recording.
Otherwise PowerMill uses the current tolerance value, which is

not necessarily the value you want.

▪ Click File tab > Options > Reset forms. This ensures that
PowerMill uses the default parameters in the dialogs.

▪ When debugging a macro it is important to have the macrofixer
turned off. Use the command:

UNSET MACROFIX

This ensures all syntax and macro errors are reported by

PowerMill directly. You can use SET MACROFIX to turn it back on.

▪ If you get a syntax error in a loop (DO-WHILE, WHILE, FOREACH)

or a conditional statements (IF-ELSEIF-ELSE, SWITCH) check you

have a space before any opening braces ({). For a DO-WHILE

loop make sure the closing brace (}) has a space after it and

before the WHILE keyword.

▪ To exit a loop, press ESC.

▪ Your code blocks must have matching braces. They must have

the same number of opening braces ({) as closing braces (}).

▪ The ELSEIF keyword does not have a space between the IF and

the ELSE.

▪ If you encounter expression errors check you have balanced
parentheses, and balanced quotes for strings.

Autodesk PowerMill Macros • 121

▪ Decimal points in numbers must use a full stop (.) and not a

comma (,).

▪ The variable on the left of the = sign in assignments must have a

$ prefix. So:

$myvar = 5

is correct, but:

myvar = 5

is wrong as it is missing the $ prefix.

▪ Local variables override PowerMill parameters. If your macro

contains:

REAL Stepover = 10

then during the execution of the macro any use of Stepover uses

the value 10 regardless of what the value specified in the user
interface. Also the command:

EDIT PAR "Stepover" "Tool.Diameter*0.6"

changes the value of this local Stepover variable NOT the

PowerMill Stepover parameter.

122 • Autodesk Legal Notice Macro Programming Guide

© 2023 Autodesk, Inc. All Rights Reserved. Except where otherwise

noted, this work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License that can be

viewed online at http://creativecommons.org/licenses/by-nc-
sa/3.0/. This license content, applicable as of 16 December 2014 to

this software product, is reproduced here for offline users:

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND

DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS
LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP.

CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-

IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS

LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS

OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR
"LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR

OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS

PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU

ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS
LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO

BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF

SUCH TERMS AND CONDITIONS.

Autodesk Legal Notice

Autodesk PowerMill Autodesk Legal Notice • 123

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the
Work and other pre-existing works, such as a translation,

adaptation, derivative work, arrangement of music or other
alterations of a literary or artistic work, or phonogram or

performance and includes cinematographic adaptations or any other
form in which the Work may be recast, transformed, or adapted

including in any form recognizably derived from the original, except
that a work that constitutes a Collection will not be considered an

Adaptation for the purpose of this License. For the avoidance of

doubt, where the Work is a musical work, performance or
phonogram, the synchronization of the Work in timed-relation with

a moving image ("synching") will be considered an Adaptation for
the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such
as encyclopedias and anthologies, or performances, phonograms or

broadcasts, or other works or subject matter other than works listed
in Section 1(g) below, which, by reason of the selection and

arrangement of their contents, constitute intellectual creations, in

which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate

and independent works in themselves, which together are
assembled into a collective whole. A work that constitutes a

Collection will not be considered an Adaptation (as defined above)
for the purposes of this License.

c. "Distribute" means to make available to the public the original
and copies of the Work or Adaptation, as appropriate, through sale

or other transfer of ownership.

d. "License Elements" means the following high-level license
attributes as selected by Licensor and indicated in the title of this

License: Attribution, Noncommercial, ShareAlike.

e. "Licensor" means the individual, individuals, entity or entities

that offer(s) the Work under the terms of this License.

f. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work

or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,

musicians, dancers, and other persons who act, sing, deliver,
declaim, play in, interpret or otherwise perform literary or artistic

works or expressions of folklore; (ii) in the case of a phonogram the
producer being the person or legal entity who first fixes the sounds

of a performance or other sounds; and, (iii) in the case of

broadcasts, the organization that transmits the broadcast.

124 • Autodesk Legal Notice Macro Programming Guide

g. "Work" means the literary and/or artistic work offered under the
terms of this License including without limitation any production in

the literary, scientific and artistic domain, whatever may be the
mode or form of its expression including digital form, such as a

book, pamphlet and other writing; a lecture, address, sermon or
other work of the same nature; a dramatic or dramatico-musical

work; a choreographic work or entertainment in dumb show; a
musical composition with or without words; a cinematographic work

to which are assimilated works expressed by a process analogous to

cinematography; a work of drawing, painting, architecture,
sculpture, engraving or lithography; a photographic work to which

are assimilated works expressed by a process analogous to
photography; a work of applied art; an illustration, map, plan,

sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast; a

phonogram; a compilation of data to the extent it is protected as a
copyrightable work; or a work performed by a variety or circus

performer to the extent it is not otherwise considered a literary or
artistic work.

h. "You" means an individual or entity exercising rights under this

License who has not previously violated the terms of this License
with respect to the Work, or who has received express permission

from the Licensor to exercise rights under this License despite a
previous violation.

i. "Publicly Perform" means to perform public recitations of the Work
and to communicate to the public those public recitations, by any

means or process, including by wire or wireless means or public

digital performances; to make available to the public Works in such
a way that members of the public may access these Works from a

place and at a place individually chosen by them; to perform the
Work to the public by any means or process and the communication

to the public of the performances of the Work, including by public
digital performance; to broadcast and rebroadcast the Work by any

means including signs, sounds or images.

j. "Reproduce" means to make copies of the Work by any means

including without limitation by sound or visual recordings and the

right of fixation and reproducing fixations of the Work, including
storage of a protected performance or phonogram in digital form or

other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,

limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the

copyright protection under copyright law or other applicable laws.

Autodesk PowerMill Autodesk Legal Notice • 125

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-

exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or
more Collections, and to Reproduce the Work as incorporated in

the Collections;

b. to create and Reproduce Adaptations provided that any such

Adaptation, including any translation in any medium, takes

reasonable steps to clearly label, demarcate or otherwise identify
that changes were made to the original Work. For example, a

translation could be marked "The original work was translated
from English to Spanish," or a modification could indicate "The

original work has been modified.";

c. to Distribute and Publicly Perform the Work including as

incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

The above rights may be exercised in all media and formats
whether now known or hereafter devised. The above rights include

the right to make such modifications as are technically necessary to
exercise the rights in other media and formats. Subject to Section

8(f), all rights not expressly granted by Licensor are hereby
reserved, including but not limited to the rights described in Section

4(e).

126 • Autodesk Legal Notice Macro Programming Guide

4. Restrictions. The license granted in Section 3 above is expressly
made subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under
the terms of this License. You must include a copy of, or the

Uniform Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform. You may not

offer or impose any terms on the Work that restrict the terms of
this License or the ability of the recipient of the Work to exercise

the rights granted to that recipient under the terms of the

License. You may not sublicense the Work. You must keep intact
all notices that refer to this License and to the disclaimer of

warranties with every copy of the Work You Distribute or Publicly
Perform. When You Distribute or Publicly Perform the Work, You

may not impose any effective technological measures on the
Work that restrict the ability of a recipient of the Work from You

to exercise the rights granted to that recipient under the terms of
the License. This Section 4(a) applies to the Work as

incorporated in a Collection, but this does not require the
Collection apart from the Work itself to be made subject to the

terms of this License. If You create a Collection, upon notice from
any Licensor You must, to the extent practicable, remove from

the Collection any credit as required by Section 4(d), as
requested. If You create an Adaptation, upon notice from any

Licensor You must, to the extent practicable, remove from the

Adaptation any credit as required by Section 4(d), as requested.

Autodesk PowerMill Autodesk Legal Notice • 127

b. You may Distribute or Publicly Perform an Adaptation only
under: (i) the terms of this License; (ii) a later version of this

License with the same License Elements as this License; (iii) a
Creative Commons jurisdiction license (either this or a later

license version) that contains the same License Elements as this
License (e.g., Attribution-NonCommercial-ShareAlike 3.0 US)

("Applicable License"). You must include a copy of, or the URI,
for Applicable License with every copy of each Adaptation You

Distribute or Publicly Perform. You may not offer or impose any
terms on the Adaptation that restrict the terms of the Applicable

License or the ability of the recipient of the Adaptation to
exercise the rights granted to that recipient under the terms of

the Applicable License. You must keep intact all notices that refer
to the Applicable License and to the disclaimer of warranties with

every copy of the Work as included in the Adaptation You

Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Adaptation, You may not impose any effective

technological measures on the Adaptation that restrict the ability
of a recipient of the Adaptation from You to exercise the rights

granted to that recipient under the terms of the Applicable
License. This Section 4(b) applies to the Adaptation as

incorporated in a Collection, but this does not require the
Collection apart from the Adaptation itself to be made subject to

the terms of the Applicable License.

c. You may not exercise any of the rights granted to You in

Section 3 above in any manner that is primarily intended for or
directed toward commercial advantage or private monetary

compensation. The exchange of the Work for other copyrighted
works by means of digital file-sharing or otherwise shall not be

considered to be intended for or directed toward commercial

advantage or private monetary compensation, provided there is
no payment of any monetary compensation in connection with

the exchange of copyrighted works.

128 • Autodesk Legal Notice Macro Programming Guide

d. If You Distribute, or Publicly Perform the Work or any
Adaptations or Collections, You must, unless a request has been

made pursuant to Section 4(a), keep intact all copyright notices
for the Work and provide, reasonable to the medium or means

You are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or if the Original

Author and/or Licensor designate another party or parties (e.g.,
a sponsor institute, publishing entity, journal) for attribution

("Attribution Parties") in Licensor's copyright notice, terms of
service or by other reasonable means, the name of such party or

parties; (ii) the title of the Work if supplied; (iii) to the extent
reasonably practicable, the URI, if any, that Licensor specifies to

be associated with the Work, unless such URI does not refer to
the copyright notice or licensing information for the Work; and,

(iv) consistent with Section 3(b), in the case of an Adaptation, a

credit identifying the use of the Work in the Adaptation (e.g.,
"French translation of the Work by Original Author," or

"Screenplay based on original Work by Original Author"). The
credit required by this Section 4(d) may be implemented in any

reasonable manner; provided, however, that in the case of a
Adaptation or Collection, at a minimum such credit will appear, if

a credit for all contributing authors of the Adaptation or
Collection appears, then as part of these credits and in a manner

at least as prominent as the credits for the other contributing
authors. For the avoidance of doubt, You may only use the credit

required by this Section for the purpose of attribution in the
manner set out above and, by exercising Your rights under this

License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original

Author, Licensor and/or Attribution Parties, as appropriate, of

You or Your use of the Work, without the separate, express prior
written permission of the Original Author, Licensor and/or

Attribution Parties.

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those
jurisdictions in which the right to collect royalties through any

statutory or compulsory licensing scheme cannot be waived,
the Licensor reserves the exclusive right to collect such

royalties for any exercise by You of the rights granted under
this License;

Autodesk PowerMill Autodesk Legal Notice • 129

ii. Waivable Compulsory License Schemes. In those
jurisdictions in which the right to collect royalties through any

statutory or compulsory licensing scheme can be waived, the
Licensor reserves the exclusive right to collect such royalties

for any exercise by You of the rights granted under this
License if Your exercise of such rights is for a purpose or use

which is otherwise than noncommercial as permitted under
Section 4(c) and otherwise waives the right to collect royalties

through any statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right

to collect royalties, whether individually or, in the event that
the Licensor is a member of a collecting society that

administers voluntary licensing schemes, via that society,
from any exercise by You of the rights granted under this

License that is for a purpose or use which is otherwise than

noncommercial as permitted under Section 4(c).

f. Except as otherwise agreed in writing by the Licensor or as

may be otherwise permitted by applicable law, if You Reproduce,
Distribute or Publicly Perform the Work either by itself or as part

of any Adaptations or Collections, You must not distort, mutilate,
modify or take other derogatory action in relation to the Work

which would be prejudicial to the Original Author's honor or
reputation. Licensor agrees that in those jurisdictions (e.g.

Japan), in which any exercise of the right granted in Section 3(b)
of this License (the right to make Adaptations) would be deemed

to be a distortion, mutilation, modification or other derogatory
action prejudicial to the Original Author's honor and reputation,

the Licensor will waive or not assert, as appropriate, this Section,
to the fullest extent permitted by the applicable national law, to

enable You to reasonably exercise Your right under Section 3(b)

of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN

WRITING AND TO THE FULLEST EXTENT PERMITTED BY APPLICABLE
LAW, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO

REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,

INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE,
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER
DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,

WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THIS

EXCLUSION MAY NOT APPLY TO YOU.

130 • Autodesk Legal Notice Macro Programming Guide

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU

ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING

OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF
LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate

automatically upon any breach by You of the terms of this

License. Individuals or entities who have received Adaptations or
Collections from You under this License, however, will not have

their licenses terminated provided such individuals or entities
remain in full compliance with those licenses. Sections 1, 2, 5, 6,

7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted

here is perpetual (for the duration of the applicable copyright in
the Work). Notwithstanding the above, Licensor reserves the

right to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any

such election will not serve to withdraw this License (or any
other license that has been, or is required to be, granted under

the terms of this License), and this License will continue in full
force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a

Collection, the Licensor offers to the recipient a license to the
Work on the same terms and conditions as the license granted to

You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation,

Licensor offers to the recipient a license to the original Work on
the same terms and conditions as the license granted to You

under this License.

c. If any provision of this License is invalid or unenforceable

under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this License, and

without further action by the parties to this agreement, such
provision shall be reformed to the minimum extent necessary to

make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived

and no breach consented to unless such waiver or consent shall

be in writing and signed by the party to be charged with such
waiver or consent.

Autodesk PowerMill Autodesk Legal Notice • 131

e. This License constitutes the entire agreement between the
parties with respect to the Work licensed here. There are no

understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any

additional provisions that may appear in any communication
from You. This License may not be modified without the mutual

written agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced,

in this License were drafted utilizing the terminology of the Berne
Convention for the Protection of Literary and Artistic Works (as

amended on September 28, 1979), the Rome Convention of
1961, the WIPO Copyright Treaty of 1996, the WIPO

Performances and Phonograms Treaty of 1996 and the Universal
Copyright Convention (as revised on July 24, 1971). These rights

and subject matter take effect in the relevant jurisdiction in

which the License terms are sought to be enforced according to
the corresponding provisions of the implementation of those

treaty provisions in the applicable national law. If the standard
suite of rights granted under applicable copyright law includes

additional rights not granted under this License, such additional
rights are deemed to be included in the License; this License is

not intended to restrict the license of any rights under applicable
law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no
warranty whatsoever in connection with the Work. Creative

Commons will not be liable to You or any party on any legal theory
for any damages whatsoever, including without limitation any

general, special, incidental or consequential damages arising in
connection to this license. Notwithstanding the foregoing two (2)

sentences, if Creative Commons has expressly identified itself as

the Licensor hereunder, it shall have all rights and obligations of
Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not

authorize the use by either party of the trademark "Creative
Commons" or any related trademark or logo of Creative Commons

without the prior written consent of Creative Commons. Any
permitted use will be in compliance with Creative Commons' then-

current trademark usage guidelines, as may be published on its
website or otherwise made available upon request from time to

time. For the avoidance of doubt, this trademark restriction does
not form part of this License.

Creative Commons may be contacted at
http://creativecommons.org/.

132 • Autodesk Legal Notice Macro Programming Guide

Certain materials included in this publication are reprinted with the
permission of the copyright holder.

Creative Commons FAQ

Autodesk's Creative Commons FAQ can be viewed online at
https://knowledge.autodesk.com/customer-service/share-the-

knowledge, and is reproduced here for offline users.

Creative Commons is a simple, open licensing model which allows

individuals to freely modify, remix, and share digital content created
for learning and support.

Borrow from the Autodesk Learning, Support and Video libraries to
build a new learning experience for anyone with any particular need

or interest. It’s out there. You can use it. It’s yours.

In collaboration with Creative Commons, Autodesk invites you to

share your knowledge with the rest of the world, inspiring others to
learn, achieve goals, and ignite creativity.

What is Creative Commons?

Creative Commons (CC) is a nonprofit organization that offers a

simple licensing model that frees digital content to enable anyone to
modify, remix, and share creative works.

How do I know if Autodesk learning content and Autodesk University
content is available under Creative Commons?

All Autodesk learning content and Autodesk University content
released under Creative Commons is explicitly marked with a

Creative Commons icon specifying what you can and cannot do.
Always follow the terms of the stated license.

What Autodesk learning content is currently available under Creative
Commons?

Over time, Autodesk will release more and more learning content
under the Creative Commons licenses.

Currently available learning content:

▪ Autodesk online help-Online help for many Autodesk products,

including its embedded media such as images and help movies.

▪ Autodesk Learning Videos-A range of video-based learning

content, including the video tutorials on the Autodesk YouTube™
Learning Channels and their associated iTunes® podcasts.

▪ Autodesk downloadable materials-Downloadable 3D assets,
digital footage, and other files you can use to follow along on

your own time.

Autodesk PowerMill Autodesk Legal Notice • 133

Is Autodesk learning and support content copyrighted?

Yes. Creative Commons licensing does not replace copyright.
Copyright remains with Autodesk or its suppliers, as applicable. But

it makes the terms of use much more flexible.

What do the Autodesk Creative Commons licenses allow?

Autodesk makes some of its learning and support content available

under two distinct Creative Commons licenses. The learning content
is clearly marked with the applicable Creative Commons license.

You must comply with the following conditions:

▪ Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) This license

lets you copy, distribute, display, remix, tweak, and build upon

our work noncommercially, as long as you credit Autodesk and
license your new creations under the identical terms. Terms of

this license can be viewed online at
https://creativecommons.org/licenses/by-nc-sa/3.0/us/

▪ Attribution-NonCommercial-No Derivative Works (CC BY-NC-ND)

This license lets you copy, distribute, and display only verbatim
copies of our work as long as you credit us, but you cannot alter

the learning content in any way or use it commercially. Terms of
this license can be viewed online at

https://creativecommons.org/licenses/by-nc-
nd/3.0/us/deed.en_US

▪ Special permissions on content marked as No Derivative Works For

video-based learning content marked as No Derivative Works
(ND), Autodesk grants you special permission to make

modifications but only for the purpose of translating the video
content into another language.

These conditions can be modified only by explicit permission of
Autodesk, Inc. Send requests for modifications outside of these

license terms to creativecommons@autodesk.com.

Can I get special permission to do something different with the learning
content?

Unless otherwise stated, our Creative Commons conditions can be

modified only by explicit permission of Autodesk, Inc. If you have
any questions or requests for modifications outside of these license

terms, email us at creativecommons@autodesk.com.

mailto:creativecommons@autodesk.com

134 • Autodesk Legal Notice Macro Programming Guide

How do I attribute Autodesk learning content?

You must explicitly credit Autodesk, Inc., as the original source of
the materials. This is a standard requirement of the Attribution (BY)

term in all Creative Commons licenses. In some cases, such as for
the Autodesk video learning content, we specify exactly how we

would like to be attributed.

This is usually described on the video's end-plate. For the most part

providing the title of the work, the URL where the work is hosted,
and a credit to Autodesk, Inc., is quite acceptable. Also, remember

to keep intact any copyright notice associated with the work. This
may sound like a lot of information, but there is flexibility in the way

you present it.

Here are some examples:

"This document contains content adapted from the Autodesk®
Maya® Help, available under a Creative Commons Attribution-

NonCommercial-Share Alike license. Copyright © Autodesk, Inc."

"This is a Finnish translation of a video created by the Autodesk
Maya Learning Channel @ www.youtube.com/mayahowtos.

Copyright © Autodesk, Inc."

"Special thanks to the Autodesk® 3ds Max® Learning Channel @

www.youtube.com/3dsmaxhowtos. Copyright © Autodesk, Inc."

Do I follow YouTube's standard license or Autodesk's Creative
Commons license?

The videos of the Autodesk Learning Channels on YouTube are

uploaded under YouTube's standard license policy. Nonetheless,
these videos are released by Autodesk as Creative Commons

Attribution-NonCommercial-No Derivative Works (CC BY-NC-ND)
and are marked as such.

You are free to use our video learning content according to the
Creative Commons license under which they are released.

Where can I easily download Autodesk learning videos?

Most of the Autodesk Learning Channels have an associated iTunes
podcast from where you can download the same videos and watch

them offline. When translating Autodesk learning videos, we
recommend downloading the videos from the iTunes podcasts.

Autodesk PowerMill Autodesk Legal Notice • 135

Can I translate Autodesk learning videos?

Yes. Even though our learning videos are licensed as No Derivative
Works (ND), we grant everyone permission to translate the audio

and subtitles into other languages. In fact, if you want to recapture
the video tutorial as-is but show the user interface in another

language, you are free to do so. Be sure to give proper attribution
as indicated on the video's Creative Commons end-plate. This

special permission only applies to translation projects. Requests for
modifications outside of these license terms can be directed to

creativecommons@autodesk.com.

How do I let others know that I have translated Autodesk learning
content into another language?

Autodesk is happy to see its learning content translated into as

many different languages as possible. If you translate our videos or
any of our learning content into other languages, let us know. We

can help promote your contributions to our growing multilingual
community. In fact, we encourage you to find creative ways to

share our learning content with your friends, family, students,

colleagues, and communities around the world. Contact us at
creativecommons@autodesk.com.

I have translated Autodesk learning videos into other languages. Can I
upload them to my own YouTube channel?

Yes, please do and let us know where to find them so that we can
help promote your contributions to our growing multilingual

Autodesk community. Contact us at
creativecommons@autodesk.com.

Can I repost or republish Autodesk learning content on my site or blog?

Yes, you can make Autodesk learning material available on your site
or blog as long as you follow the terms of the Creative Commons

license under which the learning content is released. If you are
simply referencing the learning content as-is, then we recommend

that you link to it or embed it from where it is hosted by Autodesk.
That way the content will always be fresh. If you have translated or

remixed our learning content, then by all means you can host it
yourself. Let us know about it, and we can help promote your

contributions to our global learning community. Contact us at
creativecommons@autodesk.com.

136 • Autodesk Legal Notice Macro Programming Guide

Can I show Autodesk learning content during my conference?

Yes, as long as it's within the scope of a noncommercial event, and
as long as you comply with the terms of the Creative Commons

license outlined above. In particular, the videos must be shown
unedited with the exception of modifications for the purpose of

translation. If you wish to use Autodesk learning content in a
commercial context, contact us with a request for permission at

creativecommons@autodesk.com.

Can I use Autodesk learning content in my classroom?

Yes, as long as you comply with the terms of the Creative Commons

license under which the learning material is released. Many teachers
use Autodesk learning content to stimulate discussions with

students or to complement course materials, and we encourage you
to do so as well.

Can I re-edit and remix Autodesk video learning content?

No, but for one exception. Our Creative Commons BY-NC-ND license
clearly states that "derivative works" of any kind (edits, cuts,

remixes, mashups, and so on) are not allowed without explicit

permission from Autodesk. This is essential for preserving the
integrity of our instructors' ideas. However, we do give you

permission to modify our videos for the purpose of translating them
into other languages.

Can I re-edit and remix Autodesk downloadable 3D assets and footage?

Yes. The Autodesk Learning Channels on YouTube provide
downloadable 3D assets, footage, and other files for you to follow

along with the video tutorials on your own time. This downloadable
material is made available under a Creative Commons Attribution-

NonCommercial-ShareAlike (CC BY-NC-SA) license. You can
download these materials and experiment with them, but your

remixes must give us credit as the original source of the content
and be shared under the identical license terms.

Can I use content from Autodesk online help to create new materials for
a specific audience?

Yes, if you want to help a specific audience learn how to optimize
the use of their Autodesk software, there is no need to start from

scratch. You can use, remix, or enrich the relevant help content and
include it in your book, instructions, examples, or workflows you

create, then Share-Alike with the community. Always be sure to

comply with the terms of the Creative Commons license under
which the learning content is released.

Autodesk PowerMill Autodesk Legal Notice • 137

What are the best practices for marking content with Creative Commons
Licenses?

When reusing a CC-licensed work (by sharing the original or a
derivative based on the original), it is important to keep intact any

copyright notice associated with the work, including the Creative
Commons license being used. Make sure you abide by the license

conditions provided by the licensor, in this case Autodesk, Inc.

Trademarks

The following are registered trademarks or trademarks of Autodesk,

Inc., and/or its subsidiaries and/or affiliates in the USA and other
countries: 3ds Max, ADSK, Alias, ATC, AutoCAD LT, AutoCAD,

Autodesk, Autodesk Construction Cloud, Autodesk Forge, Autodesk
Fusion 360, BIM 360, BuildingConnected, Civil 3D, Dancing Baby,

The (image) Eagle, FBX, FeatureCAM, Flame, FormIt, Forge, Forge
Devcon, Forge Fund, Fusion 360, Glue, Green Building Studio,

ICMLive, InfoWater, InfoWorks, InfraWorks, Innovyze,
Instructables, Inventor, Make Anything, Maya, Moldflow,

MotionBuilder, Mudbox, Navisworks, Netfabb, PartMaker, Plangrid,

PowerInspect, PowerMill, PowerShape, Pype, RasterDWG, Redshift,
RealDWG, ReCap, Revit, Shotgun, SketchBook, Spacemaker,

Tinkercad, TrustedDWG, VRED. All other brand names, product
names or trademarks belong to their respective holders.

Disclaimer

THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS
MADE AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC.

DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
REGARDING THESE MATERIALS.

 Except where otherwise noted, this work is licensed

under a Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported License. Please see the Autodesk Creative Commons

FAQ for more information.

Autodesk PowerMill Index • 139

A
Active folder name • 94
Adding items to a list • 34, 86
Adding lists • 85
Adding macro loops • 10
Adding macro variables • 9
Arguments in macros • 50

Function values • 52
Running macros with arguments • 11
Sharing functions • 53

Arrays • 32
Lists • 32
Points • 40
Using arrays • 24
Vectors • 40

Automate a sequence of edits or actions
• 100

B
Base name • 93
Basic macro • 8

Adding macro loops • 10
Adding macro variables • 9
Decision making in macros • 13
Returning values from macros • 18
Running macros with arguments • 11
Using a FOREACH loop • 21
Using arrays • 24
Using functions in macros • 15

BREAK statement • 59, 64
Building a list • 36
Built-in functions • 67

C
Calling from other macros • 4
Carriage returns in dialogs • 29
Comparing variables • 40, 42
Components

List components • 82
Compound macros • 4
Conditrional functions • 95
Constants • 67

Euler's number • 67
Pi • 67

Converting numerics to strings • 75
Creating macros • 1

Basic macro • 8
Creating variables (macros) • 26

D
Date and time functions • 73
Decision making in macros • 13
Decisions in macros

BREAK statement • 59, 64
IF - ELSE statement • 54
IF - ELSEIF - ELSE statement • 55
IF command • 53
SWITCH statement • 56

Decrease options available to user • 30
Delete files or directories • See Working

with files and directories
Dialogs in macros • 27

Carriage returns in dialogs • 29
Directory name • 92
DO - WHILE loop • 63

Decision making in macros • 13

Index

140 • Index Macro Programming Guide

DOCOMMAND • 49

E
Editing macros • 3

Editing • 3
Empty list • 84
Enter values into macros • 27
Entities in macros • 29
Entity based functions • 101

Entity variables • 38
Equivalence • 101
Limits • 101
New entity name • 103
Number of segments • 101
Workplane origin • 71

Entity variables • 38
Equivalence • 101
Error and warning messages, turn off •

118
Euler's number • 67
Evaluation functions • 95
Example of programming language • 8
Existing file or directory • See Delete

files or directories
Exiting a function • 65
Exponential • 67
Expressions in macros • 45

Order of operations • 47
Precedence • 47

Extracting data from lists • 89

F
Feature parameters • 109
File name in macros • 31
Filtering data from a list • 89
Folder

List folder • 83
Folder name • 92
FOREACH loop • 61

Using a FOREACH loop • 21
Function values • 52
Functions in macros • 67

Arguments in macros • 50
Conditrional functions • 95
Entity based functions • 101
Evaluation functions • 95
Exiting a function • 65

Function values • 52
Introduction • 97
List components • 82
List folder • 83
List functons • 81
Main function • 51
Path functions • 91
Point functions • 68

Setting a point • 68

Returning function values • 52
Sharing functions • 53
Statistical functions • 100
STRING function • 71
Type conversion functions • 97
Using functions in macros • 15
Using the SWITCH statement • 17
Vector functions • 68

Angle between vectors • 68
Length of a vector • 68
Normal vectors • 68
Parallel vectors • 68
Point functions • 68
Setting a vector • 68
Unit vector • 68

I
IF - ELSE statement • 54

Decision making in macros • 13
IF - ELSEIF - ELSE statement • 55
IF command • 53
Increase options available to user • 30
Inputting values into macros • 27

Entities in macros • 29
Options in macros • 30

File name in macros • 31
Intersecting items in lists • 86
Items in one list • 86

L
Length of a string • 76
Limits • 101
List components • 82
List folder • 83
List functons • 81

Adding items to a list • 34, 86
Adding lists • 85
Empty list • 84
Extracting data from lists • 89

Autodesk PowerMill Index • 141

Finding values in a list • 86
Intersecting items in lists • 86
Items in one list • 86
List components • 82
List folder • 83
List member • 84
Removing duplicate items • 85
Removing items from a list • 35, 86

List member • 84
Lists • 32

Adding items to a list • 34, 86
Arrays • 32
Building a list • 36
Removing items from a list • 35, 86
Using lists • 33

Logarithm • 67
Loops

Adding macro loops • 10
Decision making in macros • 13
DO - WHILE loop • 63
FOREACH loop • 61
WHILE loop • 62

M
Macro comments • 7
Macro statement • 6

Adding macro loops • 10
Arguments in macros • 50
BREAK statement • 59, 64
DO - WHILE loop • 63
FOREACH loop • 61
IF - ELSE statement • 54
IF - ELSEIF - ELSE statement • 55
IF command • 53
Macro statement • 6
RETURN statement • 65
SWITCH statement • 56
Using the SWITCH statement • 17
WHILE loop • 62

Macro statements
Adding macro loops • 10
Arguments in macros • 50
BREAK statement • 59, 64
DO - WHILE loop • 63
FOREACH loop • 61
IF - ELSE statement • 54
IF - ELSEIF - ELSE statement • 55
IF command • 53
Macro statement • 6

RETURN statement • 65
SWITCH statement • 56
Using a FOREACH loop • 21
Using the SWITCH statement • 17
WHILE loop • 62

Macros
Calling from other macros • 4
Compound macros • 4
Creating macros • 1
Editing macros • 3
Expressions in macros • 45
Macro comments • 7
Macro statement • 6
NC preference macro • 119
pmuser macro • 4, 117
Recording macros • 2, 117, 119
Repeating commands in macros • 60
Running macros • 3
Setting paths • 116
Variables in macros • 26
Writing macros • 5

Main function • 51
Mathematical functions • 67

Exponential • 67
Logarithm • 67
Mathematical functions • 67
Natural logarithm • 67
Square root • 67

N
Natural logarithm • 67
NC preference macro • 119
New entity name • 103
Normal vectors • 68
Number of segments • 101

O
Object variable • 39
Operators • 46

Logical operators • 42
Relational operator • 40

Order of operations • 47

P
Parameter functions

142 • Index Macro Programming Guide

Automate a sequence of edits or
actions • 100
Introduction • 97

Path functions • 91
Active folder name • 94
Base name • 93
Directory name • 92
Folder name • 92
Path name • 92
Project name • 93

Path name • 92
Pausing macros • 25
Pi • 67
pmuser macro • 4, 117
Point functions • 68

Setting a point • 68
Position of a string • 76
Precedence • 47
Print

Print the values of an expression • 66
Programming language example • 8
Project name • 93

R
Reading a file • 111
Recording macros • 2, 117, 119
Relational operator • 40
Removing duplicate items • 85
Removing items from a list • 35, 86
Repeating commands in macros • 60

BREAK statement • 59, 64
DO - WHILE loop • 63
FOREACH loop • 61
WHILE loop • 62

Replacing strings • 77
RETURN statement • 65
Returning function values • 52
Returning values from macros • 18
Running macros • 3
Running macros with arguments • 11

S
Scratchpad variables • 43
Selecting a file name in macros • 31
Selecting entities in macros • 29
Setting paths • 116
Setting up your working directories • 116

Sharing functions • 53
Splitting a string • 81
Square root • 67
Statistical functions • 100
Stopping macros • 65
STRING function • 71

Converting numerics to strings • 75
Data and time • 73
Length of a string • 76
Position of a string • 76
Replacing strings • 77
Splitting a string • 81
String variables • 49
Substrings • 76, 78
Upper case function • 78
Whitespace in a string • 80

String variables • 49
Substrings • 76, 78
SWITCH statement • 56

Using the SWITCH statement • 17

T
Tips for programming macros • 120
Trouble shooting macros • 120
Turning off error and warning messages

• 118
Type conversion functions • 97

U
Upper case function • 78
Using a FOREACH loop • 21
Using arrays • 24
Using functions in macros • 15
Using lists • 33
Using the SWITCH statement • 17
Using variables (macros) • 27

V
Variable scope (macros) • 44
Variables in macros • 26

Adding macro variables • 9
Comparing variables • 40, 42
Creating variables (macros) • 26
DOCOMMAND • 49
Entity variables • 38
Logical operators • 42

Autodesk PowerMill Index • 143

Object variables • 39
Operators • 46
Order of operations • 47
Precedence • 47
Relational operator • 40
Returning values from macros • 18
Scratchpad variables • 43
String variables • 49
Using variables (macros) • 27
Variable scope (macros) • 44

Vector functions • 68
Angle between vectors • 68
Length of a vector • 68
Normal vectors • 68
Parallel vectors • 68
Point functions • 68
Setting a vector • 68
Unit vector • 68

W
Warning and error messages, turn off •

118
WHILE loop • 62
Whitespace in a string • 80
Working with files and directories • 110
Workplane origin • 71
Writing information to files • 111
Writing macros • 5

