

Autodesk PowerShape

Using Macros with
PowerShape

Autodesk PowerShape Contents • i

Contents

Customizing PowerShape 4

Macros .. 5

Creating macros ... 6

Running macros ... 9

Creating user-input information into a macro .. 10
Outputting information from a macro .. 15
Using variables in macros .. 20
Assigning values to variables ... 23
Using expressions in macros .. 28

Making decisions in macros ... 33
Repeating commands in macros .. 39

Jumping from one point in the macro to another 42
Defining a path to a directory in a macro .. 46

Running a macro in another macro .. 47

Exporting variables from a macro ... 48

Stepping from within a macro ... 49
Pausing a macro .. 50

Ending a macro .. 50
Useful curve commands ... 50
Skipping command lines... 51

Helix macro tutorial ... 52
Recording and viewing the helix macro .. 52

Running the macro ... 54
Editing the macro ... 54
Adding variables ... 55

Adding a loop ... 56
Adding comments ... 58

Interacting with the user ... 60
Changing the origin of the helix .. 61

Creating a helix around a cylinder .. 63
Testing input data ... 73

Examples of macros ... 82
Blanking.. 82
Calculate the volume of each solid in the selection 82

Close all models ... 83
Create a curve from a selection of points ... 83
Create a tapered helix .. 85

Create geometry ... 88
Create normal workplane for each point on a curve 89
Create text in a macro .. 90

Deactivate all solids in a model .. 91

ii • Contents Using Macros with PowerShape

Deleting pcurves ... 91
DO - WHILE loop macro ... 92
Dynamic sectioning .. 92

Exporting multiple images .. 92
Export using variables .. 93
Importing components from an .xt file .. 94
Move points on a curve .. 95
Select and add object ... 96

Offset surface curves by different distances ... 97
Open psmodels from a directory list ... 98
Open x_t from a directory list .. 99
Using LOOP to print the length of lines to a file 100

Using SWITCH ... 101
Using WHILE loop to create point at centre of arc 102

HTML application tutorial .. 104

Opening a new text file ... 104
Adding controls to the application ... 105
Displaying the HTML file in PowerShape ... 106
Connecting to PowerShape using VBscripts .. 106

Interacting with PowerShape .. 107
Adding a Quit button to exit the HTML application 112

Entering helix origin positions ... 113
Testing your application again .. 116

Selecting objects .. 116
Testing the new code ... 123

Example using Javascript ... 124
Creating OLE applications .. 130

Connecting to PowerShape using HTML.. 131

Sending commands to PowerShape .. 131
Getting information from PowerShape ... 132

Getting information about a model ... 133
Showing and hiding the PowerShape window .. 134
Controlling the PowerShape window .. 134

How do I find the version number of PowerShape? 135

How do I know if PowerShape is busy? ... 135

Add-in example using Visual Basic .. 135
Show and hide dialogs, or suspend graphics during commands 136
How do I exit PowerShape using my application? 137

Entering positions using OLE application ... 137
Selecting objects .. 138

Tips and tricks .. 139
Running a HTML-based application ... 140
Running an add-in application .. 140

Object information ... 143
Arc commands ... 145

Application paths command ... 147

Assembly commands ... 148
Clipboard command ... 156
Cloud commands ... 156
Composite curve commands .. 157

Autodesk PowerShape Contents • iii

Created commands .. 161
Curve commands ... 162
Dimension commands .. 166

Drawing commands .. 170
Drawing view commands.. 171
Electrode commands .. 172
File commands ... 176
Hatch commands ... 177

Language command ... 177
Level commands .. 178
Line commands .. 178
Mesh commands .. 180

Mesh Doctor commands... 181
Model commands ... 182
Nesting ... 185

Parameter command .. 186
Pcurve command ... 186
Point commands ... 188
Printer commands .. 189

Renderer commands .. 189
Selection commands .. 190

Shareddb command ... 197
Sketcher command .. 197

Solid commands ... 197
Surface commands .. 207

Symbol commands ... 221
Text commands .. 223
Tolerance commands ... 225

Units commands ... 225
Updated object commands ... 225

User commands ... 227
Product version commands .. 227
View commands ... 228

Window commands .. 228

Workplane commands .. 229

Autodesk Legal Notice 233

4 • Customizing PowerShape Using Macros with PowerShape

You can customize the behaviour of PowerShape by creating:

▪ Macros (see page 5)

▪ OLE applications (see page 130), which can be either:

▪ HTML-based

▪ Add-in applications

Both macros and add-in applications use special object information

(see page 143) macros.

These features enable you to tailor PowerShape to your needs.

Customizing PowerShape

Autodesk PowerShape Customizing PowerShape • 5

Macros
A macro file contains commands and comments. The main use of a

macro file is to store frequently-used or complex sequences of
commands for repeated use.

When you have mastered writing macro files, you can tailor
PowerShape for your own use, and greatly enhance its power and

flexibility. For example, you may need to create a number of
standard mold parts, such as nuts and bolts in your model. You can

write a macro to create nuts and bolts of any size and at any
position. So, any time you wish to add a nut, you just run the

macro and define the size of the nut and its position.

 In the example macros, it is important to remember the
following:

▪ Commands are not case-sensitive, so if and IF are

interchangeable.

▪ Any blank lines start with // or $$ to indicate a comment line.
Any blank lines in the following examples are there to improve

readability.

6 • Customizing PowerShape Using Macros with PowerShape

Creating macros

Recording macros

An easy way to create a macro file is to record the commands as

you are working. When you record macros, you create a set of
commands that are carried out in the order you record them.

To record a macro:

1 Select Home tab > Macro panel > Record to display the Record

Macro dialog:

2 Select the location you want to save the macro to using the Save

in drop-down list.

3 In the File name box, enter the name of the file you want to
record to. If you enter the name of an existing file, it is

overwritten with the new commands.

4 Click Save to begin recording the macro.

5 Perform the actions you want to record.

6 Select Home tab > Macro panel > Record to stop recording. You

can use any text editor to view and edit a macro.

If you record a macro of a Paint Triangles or Mesh command, an
extra macro file is created. This file is named with the following

convention:

<psmacroname>_cc_<nnnn>.mac

Autodesk PowerShape Customizing PowerShape • 7

where

▪ <psmacroname> is the name of macro being recorded.

▪ <nnnn> is a four digit number. This number is incremented by

one each time an embedded mode is used.

For further information see the Macro tutorial (see page 52).

Writing macros

Written macros can be longer, and more elaborate than those you
record. For example, you can add comments or add testing

conditions.

Use any text editor to create or edit your own macro files:

1 Type your own macro commands into the text editor.

2 Save the file in .mac format.

You can then run the macro (see page 9).

When you interact with the PowerShape interface, commands are

sent to the program. These are the commands that you must write

into your macro file if you want to drive PowerShape using a macro.

To find macro commands used by PowerShape:

1 Record a macro (see page 6) of the operations you want to find
the commands for. This records the operations as command

lines.

2 Open the macro file using a text editor.

3 Copy the commands into your macro.

The following table lists examples of commands you can add to

macros:

$$

//
add comments to remind you what each part of

the macro does

input allow users to input information whilst the

macro is running

print output information from the macro

let

int

string

real

store information in variables

let$e=5+(6*) build up expressions (for example, 5+(6*2))

and assign their values to variables

8 • Customizing PowerShape Using Macros with PowerShape

if

switch
decide which commands are carried out next

depending on the value of a variable

while repeat a set of commands a number of times

goto

label
jump from one command line to another

macro run run one macro from within another and pass

information to a macro

export export variables from a macro

execute step

execute run
step a block of commands in a macro while it is

running

execute

command $var
run the command indicated by the variable (see

page 93)

skip skip a block of commands

input free

execute pause
pause a running macro

return end a macro

Adding comments in macros

It is good practice to put comments into a macro file to explain what

it does. A comment is a line of text which has no effect on the
running of the macro file, but which helps other users of the macro

to understand what it does. Comment lines start with // or $$. For

example:

// This macro file deletes any coincident

// Pcurves from a surface.

It is also good practice to have comments explaining what each

section of the macro file does.

A $$ comment can be added only at the beginning of a line. You

cannot put a $$ comment on the same line as a command (except

after a label). For example, the following string is NOT allowed:

LET $a = ($b*9/360) $$ This calculates the angle

However you can use this syntax when using the // comment. For

example, this is allowed:

LET $a = ($b*9/360) // This calculates the angle

We suggest that you put the comments to describe commands and
then the commands. For example:

// Calculating the angle

Autodesk PowerShape Customizing PowerShape • 9

LET $a = ($b*9/360)

Another use of comments is to temporarily remove a command

from a macro. To do this, insert $$ or // at the beginning of the line

which contains the command you want to remove. For example:

// LET $a = ($b*9/360)

// PRINT $a

This is known as commenting out a command.

Running macros

To run a previously recorded macro:

1 Select Home tab > Macro panel > Macro > Run to display the
Run Macro dialog.

2 Select the macro you want to run.

3 Click Open to run the macro.

If you want to stop the macro while it is running, press the Esc key.

The macro finishes the command it is currently processing and

stops.

In addition to the Run option, the Step option runs one command in

the macro at a time. This enables you to watch the macro in detail
and check that each section is working correctly.

To step through a macro:

1 Select Home tab > Macro panel > Macro > Step. The Step

Through Macro dialog is displayed.

2 Select the macro you want to run.

3 Click Open to start the macro.

The Command window is displayed, showing the first command
in the macro, for example:

Macro 1: Line 1: command in first line >

4 Select the Command window, and press the Enter key to run the

command.

The next command is displayed:

Macro 1: Line 2: command in second line >

5 Continue pressing the Enter key to run each command in the

macro.

To stop a macro at any point, select Home tab > Macro panel >

Macro > Abandon.

10 • Customizing PowerShape Using Macros with PowerShape

Creating user-input information into a macro

Most macros require some user interaction. For example, asking the

user to enter the position or the dimensions of the object. The
information supplied by the user interaction is stored in a variable

within the macro.

There are two ways to enter values into a macro variable:

▪ Set all the variables in a macro file before running it.

This requires you to edit the macro every time you want to

change the variables. This can make it difficult for anyone other
than the originator to use it.

▪ Prompt the user for values when the macro is running.

This is a neater method and you may also input values as part of

the macro’s initiation command.

To prompt a user for information, use the INPUT command. For

each command, you can ask for:

▪ a point (see page 10)

▪ a selection of items (see page 11)

▪ a number (see page 12)

▪ a string (see page 13)

▪ a yes or no response to a query (see page 13)

Point information

If you want the user to enter a point, use the command:

INPUT POINT 'string' $variable_name

This command displays a dialog.

The characters in the string are displayed on the dialog and the X,

Y, Z coordinates of the point entered are assigned to three

variables:

▪ variable_name_x,

▪ variable_name_y

▪ variable_name_z.

For example:

INPUT POINT 'Enter a point' $centre_pos

This displays the following dialog when the macro is run.

Autodesk PowerShape Customizing PowerShape • 11

The user enters a point by:

▪ clicking on the screen

▪ entering values into the status bar

▪ using the Position dialog.

The values of X, Y and Z are then assigned to variables:

▪ centre_pos_x

▪ centre_pos_y

▪ centre_pos_z

Print out the X, Y, Z values of the point you entered using the

following:

▪ print $variable_name_x

▪ print $variable_name_y

▪ print $variable_name_z

To print out the X value of the point entered above, use print

$centre_pos_x

The value of X will be printed in the Command window. To find the
values for Y and Z, substitute y or z for x.

Selection information

If you want the user to select one or more objects for use in the
macro, use the command:
INPUT SELECTION 'string'

This command displays a dialog, which shows the number of objects

selected. The characters in the string are used for the title on the
dialog. When objects are selected, the number of objects selected is

shown in the dialog.

 No objects must be selected before using the input selection

command.

For example:
INPUT SELECTION 'Select items'

When a macro containing this command is run, the following dialog

is displayed:

When items are selected, the dialog shows the number of objects

that are selected.

12 • Customizing PowerShape Using Macros with PowerShape

When you click OK, the macro can use selection object

information to display the number of selected objects. For example:

print selection.number

prints the number of objects selected.

print selection.object[0]

prints the type and name of the first object in the selection.

You can use the selection object information (see page 143) to
check that the correct number or types of objects are selected.

Example - Select a line and check selection:

This example asks the user to select a line. The macro then checks
that a single line is selected. If a single line is not selected, an error

message is displayed.
LET $no_line = 1

WHILE $no_line {

select clearlist

INPUT SELECTION 'select a line'

IF (selection.number == 1) {

LET $no_line = !(selection.type[0] == 'Line')

}

IF $no_line {

PRINT ERROR 'You must select a single line'

}

}

For further information see:

▪ IF (see page 34)

▪ WHILE loop (see page 39)

Number information

Use this command to ask the user to enter a number.

INPUT NUMBER 'string' $variable_name

This command displays a dialog where:

▪ 'string' is used as the dialog title.

▪ variable_name is the label of the text box.

For example:

INPUT NUMBER 'Input radius of arc 1' $Radius1

Autodesk PowerShape Customizing PowerShape • 13

When the macro is run, the following dialog is displayed:

Enter a value and click OK. The value is assigned to variable

Radius1.

String information

Use the following command to request a text string:

INPUT TEXT 'string' $variable_name

Like INPUT NUMBER, this command displays a dialog where:

▪ the 'string' characters are used for the dialog title.

▪ variable_name is the label of the text box.

For example:

INPUT TEXT 'Reverse the surface? Y/N' $Answer

When the macro is run, the following dialog is displayed:

Enter a value and click OK. The value is assigned to variable

Answer.

Query information

If you want to ask a question that requires a yes or no answer, use:

INPUT QUERY 'string' $variable_name

This command displays a dialog with Yes and No buttons. The

question you want to ask is contained in the string. If the user
selects Yes, then $variable_name becomes 1, otherwise it

becomes 0.

For example:

INPUT QUERY 'Do you want to exit the macro?' $prompt

14 • Customizing PowerShape Using Macros with PowerShape

When the macro is run, the following dialog is displayed:

▪ If you click Yes, the variable $prompt becomes 1.

▪ If you click No, the variable becomes 0.

Entering values during macro initiation

A user may initiate a macro so that the information required within

the macro is also given. For example:

macro run name_of_file.mac var1 var2 ... varN

where var1, var2, … ,varN are values of variables used in the

macro.

If the name of a macro file contains spaces, the name must be
included in double quotes. For example:

macro run "name of file.mac" 1 2.4

To import variables, you must declare them at the start of the
macro using the following syntax.

ARGS{

TYPE variable1

TYPE variable2

.

.

.

TYPE variableN

}

Rest of macro

where TYPE is one of INT, REAL, or STRING.

 To display the Command window, double-click the Command

box in the status bar.

For example:

To run macro test.mac with values 1, variable $two and string
'three', type the following in the Command window:

Autodesk PowerShape Customizing PowerShape • 15

macro run test.mac 1 $two 'three'

In the macro, these values are defined as variables with their types
at the start as:

ARGS{

Int variable1

Real variable2

String variable3

}

Rest of macro

So, in the following macro you must enter values that match the
variable types.

ARGS{

Int i

Real j

String k

}

print $i

print $j

print $k

Start the macro using the following command:

macro run macro1.mac 34 78.7 'mouse'

It will print out

34

78.7

mouse

 ARG{ and ARG { are both valid formats. Comments can

appear at the start of a macro with arguments.

Outputting information from a macro

Displaying information

To display a message that does not require any information from

the user, use PRINT command.

PRINT 'Type your message here'

For example:

If a user provides an incorrect response, a macro displays an error

message and prompts for another response:

PRINT '***Invalid response. Please try again.***'

You can also display error message dialogs when an invalid answer
has been given, using:

16 • Customizing PowerShape Using Macros with PowerShape

PRINT ERROR '***Invalid response. Please try again.***'

This displays the following error on the screen.

To close the message, click OK.

 Messages can be displayed in the Command window or in

dialogs. To open the Command window, double-click the
Command box in the status bar.

Output from the PRINT commands can also be sent to an OUTFILE.

To produce an outfile:

1 Open an OUTFILE. This can have a predefined name, or you can
use a name that is entered at run time.

Use one the of the following methods:

▪ Open an OUTFILE with a given name

let filename = 'e:/homes/fred/report.txt'

FILE OUTFILE OPEN REPLACE $filename

You must give an absolute pathname to the file.

REPLACE gives permission to overwrite any existing file. If the

file exists and REPLACE is omitted then you will be asked to

confirm that the file can be overwritten.

▪ Open an OUTFILE with a name obtained from the user

FILE OUTFILE OPEN DIALOG

TITLE Create a report file

FILETYPES TXT File (.txt)|*.txt|txf

RAISE

The TITLE and FILETYPES are optional. The FILETYPES

string consists of:

File type name | Regular expression | Default file

extension

Example — to prompt the user to create an HTML file:

FILETYPES HTML File (.html) | *.html | html

2 Generate your report using the PRINT command.

Autodesk PowerShape Customizing PowerShape • 17

PRINT ...

PRINT 'This file is ' outfile.name '.'

PRINT 'Report generated on ' date ' by ' user.name '.'

PRINT ...

3 Close the OUTFILE:

FILE OUTFILE CLOSE

4 Display the file in the browser:

BROWSER SHOW

BROWSER GO $filename

The filename must start with a drive letter.

Displaying values of variables

Use the PRINT command to display the values of variables. For

example:

PRINT 'Lateral ' $lat_no ' does not exist.'

You may need to add spaces in strings to separate items in a print
command.

For example:

PRINT 'Lateral ' $lat_no ' does not exist.'

displays
Lateral 5 does not exist.

PRINT 'Lateral' $lat_no 'does not exist.'

displays
Lateral5does not exist.

The PRINT command works for expressions that evaluate strings,

vectors and lists.

For example:

print concatenate('abc'; 'def')

prints the string
abcdef

print cross([1; 2; 3]

prints the resulting vector
[40; -50.5; 76.23]

print atan2(-30; 40)

prints the arctangent

18 • Customizing PowerShape Using Macros with PowerShape

Example macro to generate and display a report file

args{

string filename

}

// report_example.mac

//

// An example of how a macro can generate and display a

report file.

// ----------------------------------

//

// Open an html outfile to hold the report.

let use_dialog = $filename == 'dialog'

if $use_dialog {

file outfile open Dialog

Title Create a graphics report file

FileTypes HTML File (.html)|*.html|html

Raise

} else {

// This must be an absolute filename.

file outfile open replace $filename

}

//

// -------------------------------------

// Print the report.

print '<html>'

print '<head>'

print '<title> Example of a Report File Generated by a

Macro</title>'

print '</head>'

print '<body bgcolor="#CCCC66">'

//

print '<h1> Example of a Report File Generated by a

Macro</h1>'

//

print 'This HTML file was generated and displayed in the

browser window'

print 'by a macro. It shows how'

print 'information about the graphics system can be

generated and'

print 'displayed.<p>'

//

print '<p>'

//

// The values of some graphics properties:

print 'Display lists are ' graphics.displaylists '.
'

print 'Vertical sync is ' graphics.verticalsync '.
'

print 'OpenGL version is ' graphics.openglversion '.
'

//

let red_bits = graphics.intparam.RED_BITS

Autodesk PowerShape Customizing PowerShape • 19

let green_bits = graphics.intparam.GREEN_BITS

let blue_bits = graphics.intparam.BLUE_BITS

//

let colour_depth = $red_bits + $green_bits + $blue_bits

//

print 'Colour depth is ' $colour_depth '.
'

print 'Z-buffer depth is ' graphics.intparam.DEPTH_BITS

'.
'

//

print 'Window size is ' window[1].size.x ' by '

window[1].size.y ' pixels.<p>'

//

print 'OpenGL extensions supported are:
<pre>'

//

graphics printextensions

//

print '</pre>'

//

// How to use the timer:

print 'Total test time is ' timer ' seconds.
'

//

print 'Test run by ' user.name ' on ' date '.<p>'

//

// print 'Mailto someone@autodesk.com</

a><p>'

//

let filename = outfile.name

print 'This file is ' $filename '.
'

//

print '</body>'

print '</html>'

//

// --------------------------------------

file outfile close

//

browser show

browser go $filename

20 • Customizing PowerShape Using Macros with PowerShape

Using variables in macros

A variable enables you to store information for later use. You can

define a variable using a name, for example centre. When you use
variables in an expression, you must add a $ to their name, for

example:

LET $a = ($centre + 1)

A variable name cannot be a valid macro command, for example,

you cannot use $PRINT, where PRINT is a macro command.

You can also assign values to variables (see page 23). For example,
the following line defines variable bolts with type integer and

assigns it a value of 5:

INT $bolts = 5

You can also assign values to variables by performing complex

calculations.

Variable types

A variable type specifies the kind of information that can be stored

by the variable. A variable can have only one type. The type must
be specified when you define it.

You can specify the following variable types:

▪ INT — integer numbers for example 1, 21, 5008

▪ REAL — real numbers for example 20.1, -70.5, 66.0

▪ STRING — for example ‘hello’

▪ VECTOR

▪ LIST

▪ ERROR

Determining the type of a variable or expression

Use the following command to determine the type of an expression
or variable:

TYPE(...)

The command returns a string that is:
INT

REAL

STRING

VECTOR

LIST

ERROR

For example:

Autodesk PowerShape Customizing PowerShape • 21

LET my_var = 17

PRINT TYPE($my_var)

// this prints INT

LET a = 12.345

PRINT TYPE($a)

// this prints REAL

PRINT TYPE('hello')

// this prints STRING

PRINT TYPE([1; 2; 3])

// this prints VECTOR

PRINT TYPE({'a'; 'b'; 'c'; 'd'})

// this prints LIST

PRINT TYPE(SQRT(-57))

// this prints ERROR, because you are trying to take square root of a

negative number.

Converting variable types

You can use the following macro commands to convert a variable
type to another variable type:

INTTOREAL

INTTOSTRING

REALTOINT

REALTOSTRING

STRINGTOINT

STRINGTOREAL

The following example fills variable s with value 10:

INT frame_number = 10

string s = INTTOSTRING($frame_number)

 These macro commands cannot be used with print
commands.

22 • Customizing PowerShape Using Macros with PowerShape

Renaming objects using variables

When an edit dialog is displayed for an object, the VAR_NAME and

NAME commands enable you to rename the object using a variable.

Use VAR_NAME and NAME to rename the following:

▪ lines

▪ chamfers

▪ arcs

▪ curves

▪ composite curves

▪ points

▪ primitive surfaces

▪ general surfaces

▪ primitive solids

▪ general solids

▪ workplanes

Example - Using VAR_NAME to change the name of an arc

The following uses the variable $n to name an arc 'joe' when the Arc

edit dialog is displayed.

let $n= 'joe'

create arc full

0 0 0

select

modify

VAR_NAME $n

accept

initialises the $n variable

to 'joe'

names the arc 'joe'

Using environment variables

Environment variables are different from other variables. They can

be written at one macro level and read at a lower macro level.

You can use environment variables in the following ways:

▪ Set an environment variable using the setenv variable.

let path = 'e:/tmp'

setenv path

macro run print_path.mac

Autodesk PowerShape Customizing PowerShape • 23

The macro print_path.mac has access to a copy of the variable

path. The macro called print_path.mac contains the following:

print 'path = ' $path

▪ Print the contents of the environment using the printenv variable.

select > printenv

path=e:/tmp

▪ Remove a variable from the environment using the unsetenv

variable.

unsetenv path

▪ Export a variable (see page 48) into the environment of the

calling macro using the exportenv variable

exportenv path

This allows a called macro to set up the environment for a

number of other macros.

Lower level macros can access a copy of the environment variables.

These macros can change the contents of the variables, but those

changes are discarded when the macro returns its value.

Assigning values to variables

Values are assigned to variables using the following syntax:

LET $variable = expression

The $ in front of the variable is optional.

You can:

▪ Assign constant values to variables.

LET $new_variable = 45

▪ Use expressions to assign values to variables.
LET new_variable = 45/36

▪ You may also use existing variables to assign values to variables.

LET new_variable = $existing_variable/36

▪ You can use a variable to define a new value to itself. For
example,

LET $a = $a +1

This means add one to variable a.

▪ You can access individual characters of string variables and
expressions.

LET my_str = 'model'

// Print the first character 'm'

24 • Customizing PowerShape Using Macros with PowerShape

Print (%my_str[1])

▪ You can get a sub-range of a string or list variable using the
command:

RANGE(<arg1>; <arg2>; <arg3>)

Where:

▪ <arg1> is a string or list.

▪ <arg2> is an integer specifying the start index (index starts at

1).

▪ <arg3> is an integer specifying the number of characters or

list elements to return.

▪ You can remove assigned values by using the command:

LET $a = null

If you are carrying out a command that you are certain does not

expect a number, you can use:

TYPE $variable = expression

where type is INT, REAL, or STRING

You can also use:

$variable = expression

For example, you must use LET in the following:

create line

LET start_x = 10

LET start_y = 20

LET start_z = -50

$start_x $start_y $start_z

LET end_x = 20

LET end_y = 30

LET end_z = 50

$end_x $end_y $end_z

For further details, see:

▪ Using expressions in macros (see page 28)

Autodesk PowerShape Customizing PowerShape • 25

Using object information

You can assign object information (see page 143) to a macro
variable, for example, at the start point of a line. Object information

is accessed using syntax containing specific details of an object. The
syntax is typically:

object type [object name] sub-object names

For example, if you have a line with the name 2, then all the

information about line is available by referring to line[2].

The start coordinates of line 2 are accessed as follows:

line[2].start retrieves the start coordinates [x, y, z]

of line 2.

line[2].start.x retrieves the x coordinate of the start of
line 2.

line[2].start.y retrieves the y coordinate of the start of
line 2.

line[2].start.z retrieves the z coordinate of the start of
line 2.

Use this object information to assign values to variables.

Example: Create a full arc with its centre point at the start

coordinates of line 2

LET $a = line[2].start.x

LET $b = line[2].start.y

LET $c = line[2].start.z

CREATE ARC

FULL

$a $b $c

Assigning an object to a variable

Use the following syntax to assign an object to a variable.

LET $t = Line[2]

This variable can be used to access information about the object.

The following is the x coordinate of the start point of Line[2].

$t.start.x

26 • Customizing PowerShape Using Macros with PowerShape

Comparing variables

Comparing variables lets you check information. They also allow you

to decide the course of action to take in if and while commands. For
further details, see:

▪ Making decisions in macros (see page 33)

▪ Repeating commands in macros (see page 39)

A result of a comparison is either true or false. When it is true, a
value of 1 is output and when false, 0 is output.

A simple comparison may consist of two variables with one of the

following operators between them:

== is equal to

!= is not equal to

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

For example:

LET $C = ($A == $B)

C is true if A equals B and is assigned 1. If A doesn't equal B, then C

is false and assigned 0.

 The variables = and == are different. The single equal sign =

means to assign a value, whereas the double equals sign ==
means compare two values for equality.

If you compare the type of an object with a text string, you must
use the correct capitalisation. For example, if you want to check

that selection.type[0] is a composite curve, you must use:

selection.type[0] == 'Composite Curve'

and not:

selection.type[0] == 'Composite curve'

selection.type[0] == 'composite curve'

For example:

LET $e = (($a+$b) >= ($c+$d))

If you are carrying out a command that you are certain does not
expect a number, you can use:

TYPE $variable = expression

where type is INT, REAL, or STRING

Autodesk PowerShape Customizing PowerShape • 27

You can also use:

$variable = expression

For example, you must use LET in the following:

create line

LET start_x = 10

LET start_y = 20

LET start_z = -50

$start_x $start_y $start_z

LET end_x = 20

LET end_y = 30

LET end_z = 50

$end_x $end_y $end_z

 If in doubt, include the LET.

Logical operators let you do more than one comparison at a time.

Logical operators are:

▪ AND

▪ OR

▪ NOT

 Remember that true = 1 and false =0

AND (&)

This outputs 1 if both inputs are 1.

0 & 0 outputs a value 0

0 & 1 outputs a value 0

1 & 0 outputs a value 0

1 & 1 outputs a value 1

Examples of the logical operator AND:

(5 == 2+3) & (10 == 3 * 3) = 0, since (5 == 2+3) is true but

(10 == 3 * 3) is not.

(10 == 2*5) & (CONCAT('abc';'xyz') == 'abcxyz') = 1, since

both are true.

NOT (!)

This outputs the inverse of the input.
!1 outputs a value 0

!0 outputs a value 1

Examples of the logical operator NOT:

!(17 == 10+7) = 0, since (17 == 10+7) is true.

!(19*100 > 2000) = 1, since (19*100 > 2000) is false.

OR (|)

28 • Customizing PowerShape Using Macros with PowerShape

This outputs 1 if either input is 1 or if both are 1.

0 | 0 outputs a value 0

0 | 1 outputs a value 1

1 | 0 outputs a value 1

1 | 1 outputs a value 1

Examples of the logical operator OR:

(5 == 2+3) | (10 <= 3*3) =1, since (5 == 2+3) is true.

(11 == 2*5) | (CONCAT('abc';'xyz') == 'hello') = 0, since

both are false.

Using expressions in macros

An expression is a list of variables and values with operators, which
specify a value. In the following example the operators are +, *,

sine() and -.

(5+6)*10

sine(60)

$size-10

You can use an expression:

▪ to assign a value to a variable

▪ to print out its value

▪ in another command

For example:

To assign a value to a variable:

LET $result = (5+6)*10

Variable $result is assigned the value 110.

To print the value of an expression:

PRINT sin(30)

0.500000 is displayed in the Command window.

To use an expression in another command:

SELECT ADD ARC 'my_arc'

MODIFY

RADIUS $size * 7

 You cannot mix numeric and string variable types within an

expression.

Autodesk PowerShape Customizing PowerShape • 29

For each variable type, the operators perform various tasks.

▪ Operators for integers and real numbers (see page 29)

▪ Operators for strings (see page 31)

▪ Operators for lists (see page 31)

▪ Operators for vectors (see page 31)

▪ Comparison operators (see page 32)

▪ Logical operators (see page 33)

▪ Variable for arc tangent (see page 33)

 Spaces may be included on each side of the operators.

Operators for integers and real numbers

Use the following operators for integers and real numbers:

+ addition

- subtraction

* multiplication

/ division

% modulus; the remainder after

two integers are divided; for

example, 11%3 = 2

^ power of; for example,

2^3=2*2*2=8

sin() sine of an angle

cos() cosine of an angle

tan() tangent of an angle

atan() angle whose tangent is equal to

the given value

acos() angle whose cosine is equal to

the given value

asin() angle whose sine is equal to the

given value

abs() absolute value of a number

(removes any minus signs); for

example,
absolute(-56.98) = 56.98 =

absolute(56.98)

30 • Customizing PowerShape Using Macros with PowerShape

sqrt() square root of a number; for
example,

sqrt (81) = 9

log() output the natural logarithm of

a number; for example, y =

logarithm(7.389056) = 2

exp() outputs the exponential value
of a number with respect to e,

the base of the natural
logarithms; for example, y =

exp(2) = e2 = 7.389056

min(A1; A2; … ; AN) outputs the minimum value of

the list of numbers

max(A1; A2; … ; AN) outputs the maximum value of

the list of numbers

compare (A; B; C) outputs 1 if A and B are equal
within tolerance value C and 0

otherwise

test ? result_true

: result_false
if test is true then result_true is

assigned to the variable
otherwise result_false is

assigned

For example:

LET $x = $a>=$b ? $a+$b : $a-$b

This assigns a+b to x if a>=b and assigns a-b to x if a<b.

Autodesk PowerShape Customizing PowerShape • 31

Operators for strings

Use the following operators on strings:

length() outputs the number of items in

a string

concat(string1; string2;

… ; stringN)
outputs a single string which is

a combination of all the other

strings

For example:

LET $name = 'Fred'

LET $greeting = concatenate ('Hello '; $name)

PRINT $greeting

In the Command window, this outputs the following

Hello Fred

 The operators work with strings, integers and real numbers

Operators for lists

A list is represented as {a; b; c;...}. The operators for lists are:

{a; b; c;...}[n] outputs the nth element of

the list

length({a; b; c;...}) number of items in the list

concat({a1; a2;...;

an}; {...}; ... ;

{...})

outputs all the elements in

the lists as a single list

Operators for vectors

Use the following operators on vectors, where A equals vector

[x;y;z] and B equals [a;b;c].

modulus(A)

This outputs the magnitude of the vector and is calculated as

sqrt((x*x)+(y*y)+(z*z)). For example:

// define tolerance

LET $tol = 0.00001

// find the length of this vector

// (note: could use length($vec))

LET $dist = modulus(line[1].end - line[2].start)

32 • Customizing PowerShape Using Macros with PowerShape

// test if length is less than tolerance

LET $coinc = $dist < $tol

// if true, the two points are coincident

if $coinc {

print "End of line coincident with second line."

}

normal (A)

This outputs the unit vector of vector A. The unit vector has the

same direction as vector A, but its modulus is 1.

// angle between line 1 and the x-axis,

LET $cosine=normal(line[1].end-line[1].start).[1;0;0]

LET $angle = acos($cosine)

print "Angle between line 1 and the x axis is,"

print $angle

length(A)

This is the same as modulus.

(A) . (B)

This outputs the dot product of two vectors. The dot product is
calculated as ((x*a)+(y*b)+(z*c)).

cross()

This outputs the cross product of two vectors. This is the vector that

is perpendicular to the two vectors. For example, the cross product
of the X and Y axes is the Z axis.

print cross([1;0;0]; [0;1;0])

returns [0;0;1]

Comparison operators

Use these operators to compare two given values A and B.

A == B outputs 1 if A equals B and 0 otherwise

A != B outputs 1 if A does not equal B and 0

otherwise

A < B outputs 1 if A is less than B and 0

otherwise

A <= B outputs 1 if A is less or equal to B and 0

otherwise

A > B outputs 1 if A is greater than B and 0

otherwise

A >= B outputs 1 if A is greater or equal to B and

0 otherwise

Autodesk PowerShape Customizing PowerShape • 33

Logical operators

Use the logical operators to compare expressions and variables:

A & B outputs 1 if A and B are true and 0 otherwise.

This is known as the AND operator

A | B outputs 1 if either A or B is true and 0

otherwise. This is known as the OR operator

! A outputs 1 if A is false and 0 if true. This is

known as the NOT operator

Arc tangent

Use the following variable to calculate the arc tangent:

atan2(arg1;arg2)

This is useful for finding the azimuth and elevation for a unit vector
[i; j; k]

let azimuth = atan2(j; i)
let elevation = asin(k)

Making decisions in macros

The IF (see page 34) command enables you to choose which

commands are carried out next depending on the value of a

variable.

If you ask the user to enter a number for the lateral they want to

move, you do not know what value the user will enter. You can use
a comparison to verify that the value that is entered is valid:

▪ if the value is valid, continue with the operation on the lateral.

▪ if the value in invalid, tell the user that their input is invalid and

ask them to enter another value.

34 • Customizing PowerShape Using Macros with PowerShape

IF

When a condition is met, the IF command can be used to execute a

series of commands.

$variable = (condition)

IF $variable {

Commands A

}

Commands B

If the conditional test after IF is true then Commands A are

executed followed by Commands B. If the test is false, then only
Commands B are executed.

You must enclose Commands A in brackets {} and the brackets must

be positioned correctly. The following command is not valid:

LET $invalid = ($radius == 3)

IF $invalid PRINT "Invalid radius"

To make this command valid, add the brackets as follows:

LET $invalid = ($radius == 3)

IF $invalid {

PRINT "Invalid radius"

}

 The first bracket must be the last item on the line and on the
same line as the IF. The closing bracket must be on a line by

itself.

You can also specify commands that are performed only when the

condition is false. These commands are specified using the IF-ELSE

(see page 35) and IF-ELSEIF-ELSE (see page 35) commands.

Autodesk PowerShape Customizing PowerShape • 35

IF-ELSE

IF $condition {

Commands A

} ELSE {

Commands B

}

Commands C

If the conditional test after IF is true, then Commands A are

executed followed by Commands C. If the conditional test fails, then
Commands B are executed followed by Commands C.

IF - ELSEIF - ELSE

IF $condition_1 {

Commands A

} ELSEIF $condition_2 {

Commands B

} ELSE {

Commands C

}

Commands D

The above construct works as follows:

▪ If condition_1 is true, then Commands A are executed followed

by Commands D.

▪ If condition_1 is false and condition_2 is true, then

Commands B are executed followed by Commands D.

36 • Customizing PowerShape Using Macros with PowerShape

▪ If condition_1 is false and condition_2 is false, then

Commands C are executed followed by Commands D.

 ELSE is an optional command. There can be any number of

ELSEIF statements in a block, but not more than one ELSE.

ELSEIF can be written as one word or as ELSE IF .

You can perform tests directly in if and elseif commands. So,

let e1 = $error == 1

let e2 = $error == 2

if e1 {

print e1

} elseif e2 {

print e2

}

can also be written as:

if ($error == 1) {

print e1

} elseif ($error == 2) {

print e2

}

Autodesk PowerShape Customizing PowerShape • 37

Switch

When you compare a variable with a number of possible values and
each value determines a different outcome, it is recommended that

you use the SWITCH command (see page 101).

The SWITCH statement allows you to define a variable which is

compared against a list of possible values. This comparison

determines which commands are executed.

switch $variable {

case (constant_A)

Commands A

case (constant_B)

Commands B

default

Commands C

}

Commands D

This construct works as follows:

▪ if variable = constant_A, then Commands A, B, C and D are

executed.

▪ if variable = constant_B, then Commands B, C and D are

executed.

38 • Customizing PowerShape Using Macros with PowerShape

▪ if no match is made, then Commands C and D are executed.

The commands are executed through the switch command. When a
match is found, all the commands in the remaining case statements

are executed. You may prevent this from happening by using a

break statement:

switch $variable {

case (constant_A)

Commands A

break

case (constant_B)

Commands B

break

default

Commands C

}

Commands D

This construct works as follows:

▪ if variable = constant_A, then Commands A and D are executed.

▪ if variable = constant_B, then Commands B and D are executed.

Autodesk PowerShape Customizing PowerShape • 39

▪ if no match is made, then Commands C and D are executed.

 There may be any number of case statements, but only one

default statement.

Repeating commands in macros

It is useful to repeat a command a number of times, for example,

creating a circle at the start of every line in the model.

Commands that allow you to repeat commands are known as loops.

There are two loop structures; the WHILE loop and the DO - WHILE
loop.

A WHILE loop repeatedly executes a block of commands until its

conditional test is false.

WHILE $condition {

Commands A

}

Commands B

The construct works as follows:

1 If the conditional test after WHILE is true, then Commands A are

executed and the conditional test repeated.

40 • Customizing PowerShape Using Macros with PowerShape

2 When the conditional test is false, Commands A are no longer
executed and the program executes Commands B.

Within WHILE loops, you can jump to the end of the block of

commands to:

▪ cancel the loop using the BREAK command

▪ continue with the next iteration using the CONTINUE command.

The WHILE loop checks its conditional test first to decide whether to

perform its commands, by contrast, the DO-WHILE loop performs its

commands and then checks whether to repeat.

DO {

Commands A

} WHILE $condition

Commands B

This construct works as follows:

1 Commands A are executed, and if the conditional test after

WHILE is true Commands A are repeated.

Autodesk PowerShape Customizing PowerShape • 41

2 When the conditional test is false, Commands A are no longer
executed and the program executes Commands B.

Within DO loops, you can jump to the end of the block of commands

to:

▪ cancel the loop using the BREAK command

▪ continue with the next iteration using the CONTINUE command.

CONTINUE

CONTINUE causes a jump to the conditional test of any one of the

loop constructs WHILE and DO-WHILE in which it is encountered, and

starts the next iteration, if any.

An example is given below.

LET $a = 1

WHILE $a {

INPUT NUMBER 'Input number of holes' $Holes

LET $zerotest = ($Holes <= 0)

IF $zerotest {

Print "***Invalid input***"

Print "Input must be greater than zero"

CONTINUE

}

LET $a = 0

LET $angle = (360/$Holes)

}

42 • Customizing PowerShape Using Macros with PowerShape

Example

The user is asked to enter the number of holes. Before the
calculation, you need to make sure that the number is valid. Using

the CONTINUE command allows the user to enter the value again.

BREAK

BREAK causes a jump to the statement beyond the end of any one of

the constructs WHILE, DO-WHILE, SWITCH in which it is encountered.

Nested constructs can require multiple breaks.

Jumping from one point in the macro to another

The GOTO command (see page 43) is used in conjunction with a
label (see page 44). This construct:

▪ lets you jump from one point in a macro to another.

▪ is used mainly used with error checking; if an invalid condition is

met, the macro file can be made to jump to an error message.

Autodesk PowerShape Customizing PowerShape • 43

GOTO

The GOTO string causes a jump to the commands following a label

(see page 44):

The following rules specify the use of GOTO:

▪ The destination label must be in the same macro as the GOTO.

▪ Jumps may be made forwards or backwards within the macro.

▪ Jumps may occur out of constructs (for example, out of an IF-

ELSE, or WHILE block).

▪ Jumps may not be into constructs.

▪ If a jump is made out of a construct, the construct is cancelled

appropriately.

GOTO makes a macro more difficult to follow and should be avoided

where possible. However, GOTO can be used to make your macro

clearer if used only as a forward jump, for example:

▪ to the end of a macro

▪ to lines near the end for printing error messages.

For example:

The following example shows how GOTO can be used. However it is

better practice to use a loop instead of the GOTO command.

GOTO :input

// This jumps to the line in macro which looks like:

// :input

// :input is the label command that defines where the

goto jumps to.

:input

INPUT NUMBER "Lateral point number" $num

LET $test=(1>$num)|($num>surface[1].lateral[1].number)

IF $test {

GOTO Error1

}

.

.

.

return

//Error messages

:Error1

PRINT '**A lateral must have more than 1 point.**'

GOTO input

44 • Customizing PowerShape Using Macros with PowerShape

The previous example could be written more clearly by using a
WHILE loop to check the condition $test.

INPUT NUMBER "Lateral point number" $num

LET $test=(1>$num)|($num>surface[1].lateral[1].number)

WHILE $test {

PRINT '**A lateral must have more than 1 point.**'

INPUT NUMBER "Lateral point number" $num

LET $test=(1>$num)|($num>surface[1].lateral[1].number)

}

.

.

return

Labels

Labels are used in conjunction with the GOTO command to control

progression through the macro.

Use a label as follows:

▪ At the beginning of any line in a macro file. They are

alphanumeric prefixed with a colon :. For example:
:draw

The first non-space character defines the label, all other text is
ignored. If text is added after the label it is treated as a

comment. For example:
:draw This text is a comment

▪ To jump forwards or backwards in the file to a position marked

with a label.

▪ In macro files; it cannot be used as a typed command in the

Command window.

Autodesk PowerShape Customizing PowerShape • 45

▪ After a GOTO command:

▪ Before a GOTO command

46 • Customizing PowerShape Using Macros with PowerShape

NOTE: Ensure that a path exists to all the commands in the macro;
otherwise you will have commands which are not used:

Ensure that you do not create an infinite loop (that is a loop in the
macro which never exits):

Defining a path to a directory in a macro

Use path commands to define directories where a macro looks for
information when it is run. These commands can be used to set the

directory path inside a macro when:

▪ importing files

▪ opening models

▪ running macros

The following commands are available:

Autodesk PowerShape Customizing PowerShape • 47

PATH DELETE deletes a single path

PATH DELETEALL deletes all pre-defined paths to directories

PATH ADD BACK creates a new path to a directory

PATH LIST lists the paths (in the Command window)

PATH QUIT quits the path commands

The following example shows how to run several macros from within

another macro. The macros are stored in C:\Documents and

Settings\xxx\My Documents.

PATH DELETEALL

PATH ADD BACK 'C:\Documents and Settings\xxx\My

Documents'

PATH LIST

MACRO RUN 'test1.mac'

MACRO RUN 'test2.mac'

MACRO RUN 'test3.mac'

Running a macro in another macro

You can embed an existing, tested, macro inside a new macro. This

saves time on testing and repeating commands.

The command to run a macro from within a macro is:

MACRO RUN pathname_of_macro

 If the name of a macro file contains spaces, the name must

be included in double quotes. For example,
macro run "name of file.mac"

When you initiate a macro from a running macro, you can also pass
values into the macro. The command to do this is described in

Entering values during macro initiation (see page 14).

You can also pass expressions as arguments in the command line to

run a macro from another macro. The result of the expression must

be real.

macro run create_block.mac $length ($Length/2)

(2*$Length)

If one of the arguments in the command is a variable or an
expression, or you have a negative number, you must take care

with the use of brackets.

If you run the macro with the arguments

10 ($bob) -1

48 • Customizing PowerShape Using Macros with PowerShape

10 will be allocated to $length

($bob) -1 will be evaluated and assigned to the second argument.

This leaves nothing to be assigned to the third variable. So, only

two sides of the block will have lengths assigned to them.

To allocate all three arguments, the correct use of brackets should

be:

10 ($bob) (-1)

 To make certain of the correct use of brackets, you can use
brackets around the individual arguments at run time.

Exporting variables from a macro

You can export variables from a running macro. The command is:

EXPORT $variable_name

If the macro is running from within another macro, a variable of
that name is either modified or created.

The following example shows how to pass values into a macro and
export from one macro to another.

Macro1 has the following code in it:

LET $a = 50

LET $b = 100

LET $c = 200

MACRO RUN Macro2.mac $a $b $c

PRINT $a

PRINT $b

PRINT $c

PRINT $d

PRINT $e

PRINT $f

Macro2 has the following code:

ARGS{

INT a

INT b

INT c

}

LET $d = $a / 2

LET $e = $b / 2

LET $f = $c / 2

EXPORT $d

Autodesk PowerShape Customizing PowerShape • 49

EXPORT $e

EXPORT $f

The result as shown in the Command window would be:

50

100

200

25

50

100

You also see the following warning:

Warning variable created

This means that the three variables that were exported from Macro2
have been created in Macro1 so that they can be printed.

Exporting file names

You can use the following macro command to pad out file export

names in macros.

PADLEADING

The example below fills the variable padded with 00010. This
creates a string of width 5 containing the given string value $s

where the variable s = 10 padded with leading 0s.

string padded = PADLEADING($s; 5; '0')

 This macro command cannot be used with print commands.

Stepping from within a macro

You can step commands in a macro while the macro is running.

To enable stepping mode from within a macro, use the command:

EXECUTE STEP

To disable stepping mode, use:

EXECUTE RUN

When the command EXECUTE STEP is processed, the commands

that follow it are stepped until the macro finishes or the command

EXECUTE RUN is reached.

50 • Customizing PowerShape Using Macros with PowerShape

Pausing a macro

A pause temporarily stops a running macro. There are two types of

pauses you can add to a macro:

▪ a pause that lasts a predefined number of seconds

▪ a pause that waits for the user to press a button to continue the
macro.

If you pause a macro for a set number of seconds, after this period
of time, the macro continues automatically. This command is useful

when macros run too quickly for you to see what is happening to
your model. By pausing the macro for a few seconds, you can see

how the macro is operating on your model.

The command is:

EXECUTE PAUSE integer

where integer is the number of seconds you wish to pause the

macro.

Use the INPUT FREE command to pause a macro indefinitely and

display a dialog:

Click Continue to continue running the macro.

Click Abort to terminate the macro.

 While the macro is paused, you can make changes to your
model and then continue running the macro.

Ending a macro

A macro ends in the following cases:

▪ when it reaches its last command.

▪ when it executes a RETURN command.

Useful curve commands

To add a curve at a keypoint:

ADD CURVE fred AT KEYPOINT 2

If the keypoint does not exist, nothing happens

Autodesk PowerShape Customizing PowerShape • 51

To add a composite curve:

ADD COMPCURVE fred AT COMPOSITE 3 KEYPOINT 5

If the keypoint does not exist, nothing happens

To make a span of a curve invisible,

SPAN_INVISIBLE span_number/point_index curve_id

DISPLAY REBUILD

To make a span of a curve visible,

SPAN_VISIBLE span_number/point_index curve_id

DISPLAY REBUILD

Use the following commands to control the display of the bad
trimming dialog when exporting:

EXPORTOPTS IGNOREBADTRIMON supresses the dialog.

EXPORTOPTS IGNOREBADTRIMOFF displays the message dialog

Skipping command lines

In addition to stepping commands, you can also skip blocks of

commands. This is done using the SKIP command. The following

command causes 17 lines to be skipped:

SKIP 17

52 • Customizing PowerShape Using Macros with PowerShape

Helix macro tutorial
This example describes how to generate a macro to create a helix.

We suggest you complete this example before attempting to create
your own macros.

While creating the helix macro, you edit a macro file to make
changes to it. You can edit your own file or run a stored file. The

stored files are in the following folder:

C:\Program Files\Autodesk\PowerShapexxxxx\file\examples\Macro_Writing

where xxxxx is the version number of PowerShape and C is the disk

on which PowerShape is installed.

Recording and viewing the helix macro

We will record a macro to create the first turn of the helix. By

recording the macro, you can find the commands to use in your
macro. When you have the basic commands, you can enhance your

macro.

1 Open the model in which you want to create the helix

2 Select Home tab > Macro panel > Record. The Record Macro
dialog is displayed.

3 Browse to the folder, where you want to save the macro file.

4 In the File name box, type

helix_turn

5 Click Save to close the dialog and start creating the macro.

6 Select Wireframe tab > Create panel > Curve > Bezier. This
ensures that the Curve option is selected when you run the

macro.

Autodesk PowerShape Customizing PowerShape • 53

7 Type in the coordinates of the points of the curve in the graphics
window:

10 0 0

-10 10 1

-10 -10 1

10 -10 1

10 10 1

This creates a spiral shape.

8 On the Quick Access toolbar, click to exit curve creation.

9 Select Home tab > Macro panel > Record to stop recording.

10 Open the macro in a text editor, such as Notepad. The macro
should look as follows:

The first command tells the software to enter curve creation
mode:

CREATE CURVE

The second command selects the Curve option from Wireframe

tab > Create panel > Curve:

THROUGH

The third command inputs the co-ordinates of the points on the

curve:

10 0 0

-10 10 1

-10 -10 1

10 -10 1

10 10 1

The final command exits curve creation mode and goes back to

selection mode:

Select

If you want to use the helix macro to create threads in your models,
a more appropriate macro to use is helix.mac, available in:

54 • Customizing PowerShape Using Macros with PowerShape

C:\Program Files\Autodesk\PowerShapexxxxx\file\examples\Macro_Writing

where xxxxx is the version number of PowerShape and C is the disk

on which PowerShape is installed.

For further details, see Running the macro (see page 54).

Running the macro

You can run a macro many times to perform the same task. This
saves you time, because you do not have to enter each command

individually in the task.

To run your macro file:

1 Delete the curve in your model.

2 Select Home tab > Macro panel > Macro > Run. The Run Macro
dialog is displayed.

3 Select your macro file.

4 Click Open.

Editing the macro

This example shows how to edit the macro to create a helix with

radius 50 and the distance between each turn (pitch) 20.

1 Open your macro file in a text editor.

2 Edit the coordinates in your macro to:

50 0 0

-50 50 5

-50 -50 5

50 -50 5

50 50 5

3 Save the file.

4 Select Home tab > Macro panel > Macro > Run to display the

Run Macro dialog.

5 Select your macro file.

6 Click Open to create the helix.

Autodesk PowerShape Customizing PowerShape • 55

Adding variables

You may want to create a helix using different values. This topic

shows you how change the values in the macro to use variables.

The macro then creates a helix using the following variables:

▪ radius, which is set to 10

▪ pitch (the length between each turn) which is set to 4

You can:

▪ Edit your macro file

▪ Open and examine the file helix_variable.mac in the folder:

C:\Program

Files\Autodesk\PowerShapexxxxx\file\examples\Macro_Writing

where xxxxx is the version number of PowerShape and C is the

disk on which PowerShape is installed.

The changes are given in black text.

LET $radius = 10

LET $pitch = 4

LET $neg_radius = -$radius

LET $zheight = $pitch / 4

create curve

THROUGH

$radius 0 0

$neg_radius $radius $zheight

$neg_radius $neg_radius $zheight

$radius $neg_radius $zheight

$radius $radius $zheight

Select

The LET commands assign values. For example, the following
command assigns 10 to variable $radius.

LET $radius = 10

For each coordinate, the value is replaced by a single variable. For

example:

-50 50 5

becomes:

56 • Customizing PowerShape Using Macros with PowerShape

$neg_radius $radius $zheight

This makes it easier to change the values. Instead of changing all

the coordinates each time you want to create a different size helix,
you can now assign new values to the variables.

There are different variables for the negative and positive radius.
The coordinate of each point in the curve is of the form:

x_value y_value z_value

where the values are either numbers or single variables. If you want

to use expressions for positions in your macro, you must use the
following:

POSITION

X expression_for_x

Y expression_for_y

Z expression_for_z

ACCEPT

where each expression is a valid expression in PowerShape's macro
language.

To run the macro that includes variables:

1 Select Home tab > Macro panel > Macro > Run. The Run Macro
dialog is displayed.

2 Select your macro file or helix_variable.mac. For further details
see, Running the macro (see page 54).

3 Click Open to create the helix.

To change the values of the radius and pitch, open the macro file

and edit the values in the macro. This saves time changing all the

coordinate values.

For further details, see Using expressions in macros (see page 28).

Adding a loop

We want the helix to turn 10 times. To do this, we add a while loop.

You can:

▪ Edit your macro file

▪ Open and examine the file helix_variable.mac in the folder:

C:\Program

Files\Autodesk\PowerShapexxxxx\file\examples\Macro_Writing

where xxxxx is the version number of PowerShape and C is the

disk on which PowerShape is installed.

Autodesk PowerShape Customizing PowerShape • 57

The changes are given in black text.

LET $radius = 10

LET $pitch = 4

LET $numturn = 10

LET $neg_radius = -$radius

LET $zheight = $pitch / 4

create curve

THROUGH

$radius 0 0

WHILE $numturn {

LET numturn = $numturn - 1

$neg_radius $radius $zheight

$neg_radius $neg_radius $zheight

$radius $neg_radius $zheight

$radius $radius $zheight

}

Select

The variable numturn indicates how many times the helix turns. The

following command assigns a value to this variable:

▪ LET $numturn = 10

The value of numturn is also the condition of the while loop. You can

read the while loop commands as:

▪ While numturn does not equal zero, perform the commands in

the brackets, { }.

When the last bracket is reached, PowerShape checks numturn:

▪ If numturn does not equal zero, then the commands in the
brackets {} are performed again.

▪ If numturn equal zero then the commands below the last bracket
are carried out.

To run the macro that includes a loop:

1 Select Home tab > Macro panel > Macro > Run. The Run Macro
dialog is displayed.

2 Select your macro file or helix_loop.mac. For further details see,
Running the macro (see page 54).

3 Click Open.

58 • Customizing PowerShape Using Macros with PowerShape

The helix turns 10 times:

You can change the value of numturn in the command:

LET $numturn = 10

to make the helix turn a different number of times.

Adding comments

You can add comments to your macro to remind you what each
command does. Two slashes // are added at the start of a line to

show it is a comment. You can also use blank lines to separate
blocks of commands.

For example, when you add:

// Calculating values for the co-ordinates

The two slashes // indicate the line contains a comment. When you

run a macro, PowerShape ignores any comment lines, so it behaves
in the same way with or without comments added. The comments

can remind you of what a block of commands does.

You can either:

▪ Edit your macro file

▪ Open and examine the file helix_variable.mac in the folder:

C:\Program

Files\Autodesk\PowerShapexxxxx\file\examples\Macro_Writing

where xxxxx is the version number of PowerShape and C is the

disk on which PowerShape is installed.

The changes are given in black text.

// This macro creates a helix

// Written by: John Doe

// Values to change the size of the helix

Autodesk PowerShape Customizing PowerShape • 59

LET $radius = 10

LET $pitch = 4

LET $numturn = 10

// Calculating values for the co-ordinates

LET $neg_radius = -$radius

LET $zheight = $pitch / 4

// Creating the helix's curve

create curve

THROUGH

 // The first co-ordinate

 $radius 0 0

 // Using a loop to input the

 // co-ordinates for each turn

 WHILE $numturn {

 LET numturn = $numturn - 1

 $neg_radius $radius $zheight

 $neg_radius $neg_radius $zheight

 $radius $neg_radius $zheight

 $radius $radius $zheight

 }

// Exiting curve creation mode

Select

To run the macro that includes comments:

1 Select Home tab > Macro panel > Macro > Run. The Run Macro

dialog is displayed.

2 Select your macro file or helix_comments.mac. For further

details see, Running the macro (see page 54).

3 Click Open.

The same helix is created as described in Adding a loop (see
page 56).

60 • Customizing PowerShape Using Macros with PowerShape

Interacting with the user

If you don't want to edit the macro each time you need to create a
helix with a different size, you can display dialogs to request the

values.

You can either:

▪ Edit your macro file

▪ Open and examine the file helix_variable.mac in the folder:

C:\Program

Files\Autodesk\PowerShapexxxxx\file\examples\Macro_Writing

where xxxxx is the version number of PowerShape and C is the

disk on which PowerShape is installed.

To edit your macro file:

1 Comment out the following commands in your macro.

// LET $radius = 10

// LET $pitch = 4

// LET $numturn = 10

These commands will be replaced. However, you can leave the

commands in your macros as comments, in case you want to use
them again.

2 Add the following commands before the commands which are

given in Step 1.

// Displays dialogs to input values

INPUT NUMBER 'Radius of helix' $radius

INPUT NUMBER 'Pitch (per turn)' $pitch

INPUT NUMBER 'Number of turns' $numturn

The INPUT NUMBER command tells the user to input a number.

When the macro is run, the command:

Input NUMBER 'Radius of helix' $radius

displays the dialog shown below:

Autodesk PowerShape Customizing PowerShape • 61

The string 'Radius of helix' is the title of the dialog. When the user
enters a value, it is assigned to the variable $radius. The name of

the variable is on the left of the data box on the dialog.

To run the interactive macro:

1 Select Home tab > Macro panel > Macro > Run. The Run Macro

dialog is displayed.

2 Select your macro file or helix_interact.mac.

3 Click Open. The Radius of helix dialog is displayed.

4 Enter a value and click OK. The Pitch dialog is displayed.

5 Enter a value and click OK. The Number of turns dialog is

displayed.

6 Enter a value and click OK. The values are inserted in the macro
and the helix is drawn using the values.

Changing the origin of the helix

In this example, the origin of the helix is the origin of the current
workspace. We want to use any position as the origin.

We will add code so that the user can click a point on the screen to
define the origin.

You can either:

▪ Edit your macro file

▪ Open and examine the file helix_variable.mac in the folder:

C:\Program

Files\Autodesk\PowerShapexxxxx\file\examples\Macro_Writing

where xxxxx is the version number of PowerShape and C is the

disk on which PowerShape is installed.

The changes are given in black text.

// This macro creates a helix

// Written by: John Doe

// Displays dialogs to input values

INPUT POINT 'Position of centre' $cenpos

INPUT NUMBER 'Radius of helix' $radius

INPUT NUMBER 'Pitch (per turn)' $pitch

INPUT NUMBER 'Number of turns' $numturn

62 • Customizing PowerShape Using Macros with PowerShape

// Values to change the size of the helix

// LET $radius = 10

// LET $pitch = 4

// LET $numturn = 10

// Calculating values for the co-ordinates

LET $neg_radius = -$radius

LET $zheight = $pitch / 4

// Creating the helix's curve

create curve

THROUGH

 // The first co-ordinate

 // $radius 0 0

 LET start_x = $radius + $cenpos_x

 LET start_y = $cenpos_y

 LET start_z = $cenpos_z

 $start_x $start_y $start_z

 // Using a loop to input the

 // co-ordinates for each turn

 WHILE $numturn {

 LET numturn = $numturn - 1

 $neg_radius $radius $zheight

 $neg_radius $neg_radius $zheight

 $radius $neg_radius $zheight

 $radius $radius $zheight

 }

// Exiting curve creation mode

Select

Autodesk PowerShape Customizing PowerShape • 63

Further information on changing the origin of the helix

The command:

INPUT POINT 'Position of centre' $cenpos

displays the following dialog:

The dialog remains displayed on the screen until the user enters a

point.

The point data is entered into the variable $cenpos. You can obtain

the x co-ordinate of the point using the variable $cenpos_x.
Similarly, the y and z co-ordinates can be obtained.

The following commands enter the first point of the helix relative to
the input position.

 LET start_x = $radius + $cenpos_x

 LET start_y = $cenpos_y

 LET start_z = $cenpos_z

 $start_x $start_y $start_z

To run the macro that changes the origin of the helix:

1 Select Home tab > Macro panel > Macro > Run. The Run Macro
dialog is displayed.

2 Select your macro file or helix_origin.mac.

3 Click Open. The Point entry dialog appears asking for you to input
a position.

4 Click a point on the screen. The three dialogs are displayed as
described in interacting with the user (see page 60).

5 Enter values in each dialog and click OK. The helix is drawn on

the screen.

Creating a helix around a cylinder

The helix is now constructed relative to a user-defined point. This

topic describes how to extend the macro so the helix is constructed
around an existing primitive cylinder (surface).

When the macro is running, the user selects the cylinder. The user
is then asked:

▪ The number of turns to the helix

▪ The length of the pitch

64 • Customizing PowerShape Using Macros with PowerShape

The helix is drawn around the cylinder.

The macro also:

▪ Lets the user select the cylinder.

▪ Creates a temporary workplane at the workplane of the cylinder.

The temporary workplane gives the centre of the helix and the
orientation of the workplane.

You can either:

▪ Edit your macro file

▪ Open and examine the file helix_variable.mac in the folder:

C:\Program

Files\Autodesk\PowerShapexxxxx\file\examples\Macro_Writing

where xxxxx is the version number of PowerShape and C is the

disk on which PowerShape is installed.

The changes are given in black text.

// This macro creates a helix

// Written by: John Doe

// Clear the selection list

SELECT CLEARLIST

// Selecting a cylinder

INPUT SELECTION 'Select a cylinder'

LET cyl = selection.object[0]

// Displays dialogs to input values

// INPUT POINT 'Position of centre' $cenpos

// INPUT NUMBER 'Radius of helix' $radius

INPUT NUMBER 'Pitch (per turn)' $pitch

INPUT NUMBER 'Number of turns' $numturn

// Values to change the size of the helix

// LET $radius = 10

// LET $pitch = 4

// LET $numturn = 10

Autodesk PowerShape Customizing PowerShape • 65

//Creating a temporary workplane

CREATE WORKPLANE

$cyl.origin.x $cyl.origin.y $cyl.origin.z

// Modifying the workplane

MODIFY

NAME tmpwkhelix

XAXIS DIRECTION

X $cyl.xaxis.x

Y $cyl.xaxis.y

Z $cyl.xaxis.z

ACCEPT

YAXIS DIRECTION

X $cyl.yaxis.x

Y $cyl.yaxis.y

Z $cyl.yaxis.z

ACCEPT

ZAXIS DIRECTION

X $cyl.zaxis.x

Y $cyl.zaxis.y

Z $cyl.zaxis.z

ACCEPT

ACCEPT

// Calculating values for the co-ordinates

LET $radius = abs($cyl.lat[1].point[1].x)

LET $neg_radius = -$radius

LET $zheight = $pitch / 4

// Creating the helix's curve

create curve

THROUGH

66 • Customizing PowerShape Using Macros with PowerShape

 // The first co-ordinate

 $radius 0 0

 // LET start_x = $radius + $cenpos_x

 // LET start_y = $cenpos_y

 // LET start_z = $cenpos_z

 // $start_x $start_y $start_z

 // Using a loop to input the

 // co-ordinates for each turn

 WHILE $numturn {

 LET numturn = $numturn - 1

 $neg_radius $radius $zheight

 $neg_radius $neg_radius $zheight

 $radius $neg_radius $zheight

 $radius $radius $zheight

 }

// Exiting curve creation mode

// and deleting the temporary

// workplane

Select

SELECT CLEARLIST

SELECT ADD WORKPLANE 'tmpwkhelix'

DELETE

Before the cylinder is selected, we clear the selection list using the

following command.

SELECT CLEARLIST

The command

INPUT SELECTION 'Select a cylinder'

Autodesk PowerShape Customizing PowerShape • 67

displays the following dialog:

This dialog tells the user to select objects.

When the user clicks OK, your macro can get the details of what is
selected by accessing the 'selection' object.

The following command assigns the first object in the selection to
the variable cyl.

LET cyl = selection.object[0]

selection.object[0] is the first object in the selection. This object is
assigned to variable cyl.

To find out more information about the selected object, you can use
either:

▪ selection.object[number].syntax

▪ cyl.syntax

where syntax is the syntax associated with the selected object. For
further details on the list of syntax for each object, see PowerShape

object information (see page 143).

When you write macros, we advise you to assign the selected

objects you want to use later in your macro to other variables. If
the selection changes, you will obviously lose your selection.

For further details, see: Creating a workplane at the origin of the

cylinder (see page 67)

Creating a workplane at the origin of the cylinder

The following command creates a workplane at the origin of the
cylinder.

CREATE WORKPLANE

$cyl.origin.x $cyl.origin.y $cyl.origin.z

The variable $cyl is the primitive cylinder. We have used the syntax

of the primitive cylinder to find out its origin.

The commands below edit:

▪ the name of the workplane

▪ the direction of each axis of the workplane to match the axis on

the instrumentation of the primitive.

MODIFY

68 • Customizing PowerShape Using Macros with PowerShape

NAME tmpwkhelix

XAXIS DIRECTION

X $cyl.xaxis.x

Y $cyl.xaxis.y

Z $cyl.xaxis.z

ACCEPT

YAXIS DIRECTION

X $cyl.yaxis.x

Y $cyl.yaxis.y

Z $cyl.yaxis.z

ACCEPT

ZAXIS DIRECTION

X $cyl.zaxis.x

Y $cyl.zaxis.y

Z $cyl.zaxis.z

ACCEPT

ACCEPT

The commands to use in your macro may not be obvious. You may
need to:

1 Record a macro

2 Open the macro in a text editor

3 Copy the commands in your macro.

For example, to create and edit a workplane, record a macro to
create a workplane, and then edit the properties you want to use in

your macro.

The following command:

LET $radius = abs($cyl.lat[1].point[1].x)

uses the x co-ordinate of point 1 of lateral 1 of the cylinder to define

the radius.

The command below uses the origin of the workplane to define the

start point of the helix.

$radius 0 0

The following three lines clear the selection, then select and delete
the workplane.

Autodesk PowerShape Customizing PowerShape • 69

SELECT CLEARLIST

SELECT ADD WORKPLANE 'tmpwkhelix'

DELETE

Adding user selection of the cylinder to the macro

You can either:

▪ Edit your macro file.

▪ Open and examine the file helix_variable.mac in the folder:

C:\Program

Files\Autodesk\PowerShapexxxxx\file\examples\Macro_Writing

where xxxxx is the version number of PowerShape and C is the

disk on which PowerShape is installed.

The changes are given in black text.

// This macro creates a helix

// Written by: John Doe

// Clear the selection list

SELECT CLEARLIST

// Selecting a cylinder

INPUT SELECTION 'Select a cylinder'

LET cyl = selection.object[0]

// Displays dialogs to input values

// INPUT POINT 'Position of centre' $cenpos

// INPUT NUMBER 'Radius of helix' $radius

INPUT NUMBER 'Pitch (per turn)' $pitch

INPUT NUMBER 'Number of turns' $numturn

// Values to change the size of the helix

// LET $radius = 10

// LET $pitch = 4

// LET $numturn = 10

70 • Customizing PowerShape Using Macros with PowerShape

//Creating a temporary workplane

CREATE WORKPLANE

$cyl.origin.x $cyl.origin.y $cyl.origin.z

// Modifying the workplane

MODIFY

NAME tmpwkhelix

XAXIS DIRECTION

X $cyl.xaxis.x

Y $cyl.xaxis.y

Z $cyl.xaxis.z

ACCEPT

YAXIS DIRECTION

X $cyl.yaxis.x

Y $cyl.yaxis.y

Z $cyl.yaxis.z

ACCEPT

ZAXIS DIRECTION

X $cyl.zaxis.x

Y $cyl.zaxis.y

Z $cyl.zaxis.z

ACCEPT

ACCEPT

// Calculating values for the co-ordinates

LET $radius = abs($cyl.lat[1].point[1].x)

LET $neg_radius = -$radius

LET $zheight = $pitch / 4

// Creating the helix's curve

create curve

THROUGH

Autodesk PowerShape Customizing PowerShape • 71

 // The first co-ordinate

 $radius 0 0

 // LET start_x = $radius + $cenpos_x

 // LET start_y = $cenpos_y

 // LET start_z = $cenpos_z

 // $start_x $start_y $start_z

 // Using a loop to input the

 // co-ordinates for each turn

 WHILE $numturn {

 LET numturn = $numturn - 1

 $neg_radius $radius $zheight

 $neg_radius $neg_radius $zheight

 $radius $neg_radius $zheight

 $radius $radius $zheight

 }

// Exiting curve creation mode

// and deleting the temporary

// workplane

Select

SELECT CLEARLIST

SELECT ADD WORKPLANE 'tmpwkhelix'

DELETE

Before the cylinder is selected, clear the selection list using the

following command.

SELECT CLEARLIST

The command

INPUT SELECTION 'Select a cylinder'

72 • Customizing PowerShape Using Macros with PowerShape

displays the following dialog:

This dialog tells the user to select objects.

When the user clicks OK, your macro can get the details of what is
selected by accessing the 'selection' object.

The following command assigns the first object in the selection to
the variable cyl.

LET cyl = selection.object[0]

selection.object[0] is the first object in the selection. This object is
assigned to variable cyl.

To find out more information about the selected object, you can use
either:

▪ selection.object[number].syntax

▪ cyl.syntax

where syntax is the syntax associated with the selected object. For
further details on the list of syntax for each object, see PowerShape

object information (see page 143).

When you write macros, we advise you to assign the selected

objects you want to use later in your macro to other variables. If
the selection changes, you will lose your selection.

For further details, see: Creating a workplane at the origin of the

cylinder (see page 67)

Autodesk PowerShape Customizing PowerShape • 73

Run your macro that creates a helix around a cylinder

To create a helix around a cylinder:

1 Create a primitive cylinder (surface).

2 Select Home tab > Macro panel > Macro > Run. The Run Macro

dialog is displayed.

3 Select your macro file or helix_cyl.mac.

4 Click Open. The Select a cylinder dialog is displayed.

5 Select the primitive cylinder.

6 Click Accept.

Two dialogs are displayed, asking for the pitch and the number
of turns.

7 Enter values in each dialog and click Accept.

The helix is drawn around the cylinder.

Testing input data

Many macros fail because the input data is wrong. To make sure

that the correct data is input, you can test the data. If the wrong
data is entered, prompt the user to input the data again.

The macro checks:

▪ if a single object is selected

▪ if the single object is a surface

▪ if the surface is a cylinder

If none of the above are true, the user is prompted that a single
cylinder must be selected and then given an option to exit the

macro. If the user decides to continue, they are asked to select a
cylinder again. The macro also checks if the helix is smaller or

larger than the cylinder.

Run the macro to check if the tests work:

1 Create different objects in your model to test your macro. Make

sure you have a primitive cylinder.

2 Select Home tab > Macro panel > Macro > Run. The Run Macro

dialog is displayed.

3 Select your macro file or helix_test.mac.

4 Click Open. The Select a cylinder dialog is displayed asking for you

to select a cylinder.

5 Select a couple of objects.

74 • Customizing PowerShape Using Macros with PowerShape

6 Click OK. The following message is displayed:

7 Click OK. The Query dialog is displayed:

If you click Yes, the macro exits. If you click No, the Select a

cylinder dialog appears.

8 Click Yes to exit the macro.

9 Run the macro again.

10 Select a couple of objects.

11 This time, when the Query dialog asks you whether to exit the

macro, click No.

12 The Select a cylinder dialog appears. Select a cylinder.

13 Click OK.

14 The two dialogs appear as described earlier asking for the pitch

and the number of turns. Enter values in each dialog and click
OK. The helix is created around the cylinder.

▪ If the helix is larger than the cylinder the following message
appears.

Autodesk PowerShape Customizing PowerShape • 75

▪ If the helix is smaller, the following message appears.

▪ If the helix fits the cylinder, no message is displayed.

15 Run the macro again and input different values for the helix to
test all the options.

Adding tests to your macro

You can either edit your macro file or open and examine the file
helix_test.mac in the folder:

C:\Program Files\Autodesk\PowerShapexxxxx\file\examples\Macro_Writing

where xxxxx is the version number of PowerShape and C is the disk

on which PowerShape is installed.

The changes are given in black text.

// This macro creates a helix

// Written by: John Doe

// Asking the user to select a cylinder

// and then checking that the selection

// contains only a cylinder

LET $no_cyl = 1

WHILE $no_cyl {

 // Clear the selection list

 SELECT CLEARLIST

 // Selecting a cylinder

 INPUT SELECTION 'Select a cylinder'

 // Testing if a single object is selected

 LET $single = selection.number == 1

76 • Customizing PowerShape Using Macros with PowerShape

 IF $single {

 // Testing if the single object is

 // a surface

 The strings Surface and Cylinder must use the correct

capitalisation.

 LET $surf = selection.type[0] == 'Surface'

 IF $surf {

 // Testing if the surface is a cylinder

 LET $no_cyl=!(selection.object[0].type == 'Cylinder')

 }

 }

 IF $no_cyl {

 PRINT ERROR 'You must select a single cylinder'

 INPUT QUERY 'Do you want to exit the macro?' $prompt

 IF $prompt {

 RETURN

 }

 }

}

LET cyl = selection.object[0]

// Displays dialogs to input values

// INPUT POINT 'Position of centre' $cenpos

// INPUT NUMBER 'Radius of helix' $radius

INPUT NUMBER 'Pitch (per turn)' $pitch

INPUT NUMBER 'Number of turns' $numturn

// Values to change the size of the helix

// LET $radius = 10

Autodesk PowerShape Customizing PowerShape • 77

// LET $pitch = 4

// LET $numturn = 10

//Creating a temporary workplane

CREATE WORKPLANE

$cyl.origin.x $cyl.origin.y $cyl.origin.z

// Modifying the workplane

MODIFY

NAME tmpwkhelix

XAXIS DIRECTION

X $cyl.xaxis.x

Y $cyl.xaxis.y

Z $cyl.xaxis.z

ACCEPT

YAXIS DIRECTION

X $cyl.yaxis.x

Y $cyl.yaxis.y

Z $cyl.yaxis.z

ACCEPT

ZAXIS DIRECTION

X $cyl.zaxis.x

Y $cyl.zaxis.y

Z $cyl.zaxis.z

ACCEPT

ACCEPT

// Checking the size of the helix and warning

// the user if too small or too big

LET $helix_height = $pitch * $numturn

LET $length = abs($cyl.long[1].point[2].z)

78 • Customizing PowerShape Using Macros with PowerShape

Let $big = ($helix_height > $length)

IF $big {

PRINT ERROR 'WARNING: helix is longer than cylinder'

}

Let $small = ($helix_height < $length)

IF $small {

PRINT ERROR 'WARNING: helix is smaller than cylinder'

}

// Calculating values for the co-ordinates

LET $radius = abs($cyl.lat[1].point[1].x)

LET $neg_radius = -$radius

LET $zheight = $pitch / 4

// Creating the helix's curve

create curve

THROUGH

 // The first co-ordinate

 $radius 0 0

 // LET start_x = $radius + $cenpos_x

 // LET start_y = $cenpos_y

 // LET start_z = $cenpos_z

 // $start_x $start_y $start_z

 // Using a loop to input the

 // co-ordinates for each turn

 WHILE $numturn {

 LET numturn = $numturn - 1

 $neg_radius $radius $zheight

 $neg_radius $neg_radius $zheight

 $radius $neg_radius $zheight

Autodesk PowerShape Customizing PowerShape • 79

 $radius $radius $zheight

 }

// Exiting curve creation mode

// and deleting the temporary

// workplane

Select

SELECT CLEARLIST

SELECT ADD WORKPLANE 'tmpwkhelix'

DELETE

More information on adding tests to your macro

Two tests are added to:

▪ check if a single object is selected and that it is a cylinder

▪ check if the helix is smaller or larger than the cylinder

The tests used the IF command to check if the data is valid. With

any test, you must decide what to do if the data is not valid.

The macro will fail if a cylinder is not selected as the first object.

When selecting objects, we cannot always guarantee which is the
first object. We have restricted users to selecting a single cylinder.

▪ The following command assigns a value of 1 to the variable
no_cyl. This is the condition of the loop and shows that no single

cylinder is selected.

LET $no_cyl = 1

▪ The While loop continues to perform its commands while no

cylinder is selected.

WHILE $no_cyl {

 Carry out commands within the brackets

}

▪ In the loop, the following clear the selection list and ask the user

to select a cylinder.

SELECT CLEARLIST

INPUT SELECTION 'Select a cylinder'

▪ Test to see if the selection only contains a single object. In the

following command, selection.number is the number of items

selected.

80 • Customizing PowerShape Using Macros with PowerShape

LET $single = selection.number == 1

The following statement:

selection.number == 1

checks if the left and right sides are equal. In our case, we want

to know if 1 object is selected. If this is true, then $single

becomes 1. Otherwise $single becomes zero.

▪ The following checks the value of $single. If the value is 1, then

the commands within the brackets are carried out.

 IF $single {

 Carry out commands within the brackets

 }

If the value is 0, then the commands after the closing bracket
are carried out.

▪ These are the commands in brackets:

LET $surf = selection.type[0] == 'Surface'

IF $surf {

 LET $no_cyl=!(selection.object[0].type == 'Cylinder')

}

They check if the single object is a surface and whether that
surface is a primitive cylinder. If the object is a primitive

cylinder, then the variable $no_cyl becomes 0.

▪ When we have tested the selection and still do not have a single

cylinder selected, we want to tell the user that a single cylinder
must be selected and ask whether to exit the macro.

This command checks if $no_cyl is 1 and then displays two

dialogs.

IF $no_cyl {

▪ The following command displays one of the dialogs.

PRINT ERROR 'You must select a single cylinder'

This tells you what is wrong. As soon as the user clicks OK, the
following command is carried out.

Autodesk PowerShape Customizing PowerShape • 81

INPUT QUERY 'Do you want to exit the macro?' $prompt

This displays the following dialog.

If the user clicks Yes, the variable $prompt becomes 1. If the

user clicks No, the variable becomes 0.

If $prompt is 1, then the command RETURN is carried out. This

command exits the macro.

 IF $prompt {

 RETURN

 }

▪ The second test warns the user if the helix is longer or smaller
than the cylinder. The commands below test the size of the helix

against the length of the cylinder and display warnings where
necessary.

LET $helix_height = $pitch * $numturn

LET $length = abs($cyl.long[1].point[2].z)

Let $big = ($helix_height > $length)

IF $big {

PRINT ERROR 'WARNING: helix is longer than cylinder'

}

LET $small = ($helix_height < $length)

IF $small {

PRINT ERROR 'WARNING: helix is smaller than cylinder'

}

82 • Customizing PowerShape Using Macros with PowerShape

Examples of macros

Blanking

Using these macros to blank items.

// Blanking all curves

QUICK QUICKSELECTWIRE

DISPLAY BLANKSELECTED

//

// Blanking all surfaces

QUICK QUICKSELECTSURF

DISPLAY BLANKSELECTED

Calculate the volume of each solid in the selection

Use this macro to calculate the volume of each solid in the selection

and print the total volume of all the solids.

// This selects all the solids in the model

//

FILTERBUTTON FilterItems

SelectType solid

All

ACCEPT

//

REAL s_total = 0

PRINT 'Start total = '$s_total

//

LET numturn = selection.number

//

WHILE $numturn {

LET $numturn = $numturn - 1

REAL s_vol = selection.object[$numturn].volume

LET s_name = selection.object[$numturn].name

PRINT 'Volume of solid '$s_name ' = '$s_vol

REAL s_total = ($s_total + $s_vol)

}

//

SELECT EVERYTHING PARTIALBOX

SELECT clearlist

//

PRINT 'Total volume of selected solids = '$s_total

Autodesk PowerShape Customizing PowerShape • 83

Close all models

Use this macro to close all open models.

LET n = window.number

LET w = $n > 0

WHILE $w {

FILE CLOSE SELECTED YES

LET w = window.number

}

Create a curve from a selection of points

Use this macro to create a curve from a selection of points.

// This example uses lists and vectors

// This only works correctly if there are no

// duplicate points. The curve is also created

// in the order the points are taken from

// the selection list and this is only

// really controlled by the number order they

// are created in. Need a model with points in it

// select all the points in the model

FILTERBUTTON FilterItems

SelectType Point

InvertType

InvertType

All

accept

// Quit if we have no points selected

LET numpts = selection.number

LET e = ($numpts==0)

IF $e {

 PRINT 'No points are selected.'

 return

}

84 • Customizing PowerShape Using Macros with PowerShape

// Create a list of points

LIST all_points = { }

LET i = 0

LET carry_on = ($i < $numpts)

WHILE $carry_on {

 LET point_obj = SELECTION.OBJECT[$i]

 VECTOR pt = $point_obj.POSITION

 LIST_ADD $all_points END $pt

 LET i = $i + 1

 LET carry_on = ($i < $numpts)

}

// Create a curve that goes through all the points

CREATE CURVE THROUGH

LET i = 1

LET carry_on = ($i <= $numpts)

WHILE $carry_on {

 VECTOR pt = $all_points[$i]

 REAL x = $pt[1]

 REAL y = $pt[2]

 REAL z = $pt[3]

 STRING command = concatenate('abs '; $x; ' '; $y; ' ';

$z)

 EXECUTE COMMAND $command

 LET i = $i + 1

 LET carry_on = ($i <= $numpts)

}

SELECT

EVERYTHING PARTIALBOX

Autodesk PowerShape Customizing PowerShape • 85

Create a tapered helix

Use this macro to create a tapered helix.

// This macro creates a tapered helix for either an

external or internal thread.

//

// Ask the user to select a workplane and then check that

the selection contains only a workplane,

// the workplane is then made activate.

// The Helix will be created about this workplane, so Z

must be aligned at the centre of the screw

//

// Use a while loop to make the correct selection

LET $no_wkp = 1

WHILE $no_wkp {

 // Clear the selection list

 select clearlist

 // Selecting a workplane

 INPUT SELECTION 'Select a workplane'

 // Testing if a single object is selected

 LET $single = selection.number == 1

 IF $single {

 // Test if the single object is a workplane

 LET $seltype = selection.type[0] == 'Workplane'

 IF $seltype {

 // If the selection is correct activate the

workplane and carry on creating the curves

 pri 'Selection correct'

 Modify ACTIVATE Accept

 let $no_wkp = $no_wkp - 1

 }

 } ELSE {

 // Else ask to exit the macro or make a new selection

86 • Customizing PowerShape Using Macros with PowerShape

 INPUT QUERY 'Do you want to exit the macro?'

$prompt

 IF $prompt {

 // If YES exit the macro

 Print 'Exiting the macro'

 RETURN

 } ELSE {

 // Try selecting again

 select clearlist

 print 'Trying selecting again'

 INPUT SELECTION 'Select a workplane'

 }

 }

}

// Prompt the user to input the values for the number of

turns, radius and height

// Query whether the thread is internal of external

input number 'Number of turns (whole number)' $hn

input number 'Radius of the helix' $hr

input number 'Height of the helix' $hh

input query 'Is this an external thread?' $yesno

real $hz1 = ($hh / $hn)

real $hz2 = ($hh - ($hh / $hn))

if $yesno {

 // if the thread is external create this curve

 create curve helix

 0

 height ($hh / $hn)

 turns 1

 same off

 radius2 ($hr - 1)

Autodesk PowerShape Customizing PowerShape • 87

 radius1 ($hr)

 accept

 string $c1 = selection.name[0]

 create curve helix

 0 0 $hz1

 height ($hh - (2*($hh / $hn)))

 turns ($hn - 2)

 same on

 radius1 ($hr)

 accept

 create curve helix

 0 0 $hz2

 height ($hh / $hn)

 turns 1

 same off

 radius1 ($hr - 1)

 radius2 ($hr)

 accept

} else {

 // if the thread is internal create this curve

 create curve helix

 0

 height ($hh / $hn)

 turns 1

 same off

 radius2 ($hr + 1)

 radius1 ($hr)

 accept

 string $c1 = selection.name[0]

 create curve helix

 0 0 $hz1

 height ($hh - (2*($hh / $hn)))

 turns ($hn - 2)

88 • Customizing PowerShape Using Macros with PowerShape

 same on

 radius1 ($hr)

 accept

 create curve helix

 0 0 $hz2

 height ($hh / $hn)

 turns 1

 same off

 radius1 ($hr + 1)

 radius2 ($hr)

 accept

}

// Create a composite curve from the three separate

curves

select clearlist

create curve compcurve

add curve $c1

save

checkquit

Create geometry

Use this macro to create geometry to be used in the macro.

// this creates the geometry to be used in the macro

// Two intersecting planes are created and then a curve

is created from the intersection.

PRINCIPALPLANE XY

create surface PLANE

0

PRINCIPALPLANE ZX

create surface Plane

PLANE

0

SelectAll

create curve INTERSECT

ACCEPT

//

// set the name to be used for the curve

Autodesk PowerShape Customizing PowerShape • 89

STRING new_name = 'fred'

//

// find out how many items were created

LET c_obj = created.number

PRINT 'Number of created items ' $c_obj

//

// the WHILE loop checks that a composite curve was

created and renames the composite curve

//

WHILE $c_obj {

//

LET $c_obj = $c_obj - 1

//

LET n = created.object[$c_obj].name

LET t = created.type[$c_obj]

IF $t == 'Composite Curve' {

LET $t = 'Compcurve'

}

//

SELECT clearlist

//

LET com = concatenate('add '; $t;' "'; $n; '"')

EXECUTE COMMAND $com

PRINT $com

//

RENAME

VAR_NAME $new_name

ACCEPT

//

}

Create normal workplane for each point on a curve

The following example creates a normal workplane for each point on

a curve:

// This macro assumes you have already created the curve

in the model

// A dialog is raised to select the curve you want to

use.

// Does not work for composite curves

//

// Selecting a curve

INPUT SELECTION 'Select a curve'

//

// find out the name of the curve

LET name = selection.name[0]

PRINT $name

//

// find out the number of points in the curve

LET numturn = curve[$name].number

90 • Customizing PowerShape Using Macros with PowerShape

PRINT $numturn

select clearlist

//

// create a point at each keypoint of the curve

WHILE $numturn {

select clearlist

create workplane NormalSingle

Position

KEYPOINT

add Curve $name

NUMBEREDPOINT

KEYPTNUMBER $numturn

APPLY

cancel

//

 LET numturn = $numturn - 1

}

//

select

Create text in a macro

Use this macro to create text in the macro.

 When LIVETEXT is on, this macro will not work; you cannot
enter live text using a variable.

// How to create text using a variable in a macro

// Livetext on does not work

//

//

TOOLS PREFERENCES

UNITPREFS

TEXTPREFS

TEXT LIVETEXT OFF

ACCEPT

//

STRING fred = 'wibble'

LET MYTEXT = 'fred'

// INPUT TEXT 'Enter some text' $fred

//

CREATE TEXT TEXT HORIZONTAL YES

0 0 0

ScrolledText $fred

Accept

TEXT FONT Arial

TEXT HEIGHT 0.3

TEXT PITCH 0.1

SELECT

select clearlist

//

Autodesk PowerShape Customizing PowerShape • 91

TOOLS PREFERENCES

UNITPREFS

TEXTPREFS

TEXT LIVETEXT ON

ACCEPT

//

LET com = concatenate('''; ($fred); ''')

p $fred

CREATE TEXT TEXT HORIZONTAL YES

20 0 0

EXECUTE COMMAND $com

SELECT

Deactivate all solids in a model

Use this macro to deactivate all solids in a model.

// Need some solids in the model

// Get the name of the currently active solid (this will

return "There is no active solid" if there isn't an

active solid)

//

STRING active_solid_name = SOLID.ACTIVE

// Deactivate the active solid

LET e = SOLID[$active_solid_name].EXISTS

IF $e {

SELECT CLEARLIST

ADD SOLID $active_solid_name

MODIFY MODIFY DEACTIVATE ACCEPT

SELECT CLEARLIST

}

Deleting pcurves

Use this macro to delete pcurves.

toolbar tools edit

toolbar tools fixing

TRIMREGIONEDIT

//

// The following command was added

//

EDITPCURVE

//

ADD_ALL_CURVES

DELETE

TOOLBAR TREDIT LOWER SELECT

SELECT CLEARLIST

92 • Customizing PowerShape Using Macros with PowerShape

DO - WHILE loop macro

This macro uses a DO-WHILE loop to create a point and ask a

question.

// Need a model open for this to work

//

DO {

PRINT 'looping'

create point

0 0 0

select

// ask a question to get the 1 or 0 for the exit of the

loop

INPUT QUERY 'Do you want to create another hole?' $fred

} WHILE $fred

PRINT 'finishing'

RETURN

Dynamic sectioning

Use this macro to create a dynamic section.

VIEW CLIPPLANES RAISE

VIEW CLIPPLANES EDGES ON

Exporting multiple images

Use this macro to export images to a file.

// Need to have a 3D object in the model and need to

change the macro to select that object for it to be

rotated

//

// Here is the powershape macro that made the frames:

// The incremental rotation per frame.

INT inc = 60

//

// The maximum angle through which to rotate.

INT max_angle = 360

//

INT frame_number = 0

//

LET true = 1

WHILE $true {

//

// Make the filename for this frame.

LET frame_number = $frame_number + 1

//

// Make a STRING containing the frame number.

STRING frame_name = inttostring($frame_number)

Autodesk PowerShape Customizing PowerShape • 93

//

// Pad this name with leading zeros to ensure the names

collate correctly.

STRING padded_name = padleading($frame_name; 5; '0')

//

// Make the complete filename.

STRING filename = concatenate('e:xxxx\PRINT\f';

$padded_name; '.png')

//

// Print to the file.

print tofile replace $filename

//

// Have we finished?

LET angle = $inc * ($frame_number - 1)

LET finish = ($angle > $max_angle)

IF $finish {

RETURN

}

PRINT "Angle = " $angle

//

// Rotate the target object.

select add solid '1'

edit rotate

angle $inc

apply

dismiss

select

select clearlist

}

//

// This macro creates a number of .png files, one per

frame.

// It may be more convenient to create .jpg files.

// You can now turn these frames into a movie.

Export using variables

Use this macro to export to a dgk file using variables.
// need to have a model open with some items in it to

export

// Other conversions

//===================================

// inttoreal

// inttostring

// realtoint

// realtostring

// stringtoint

// stringtoreal

//====================================

94 • Customizing PowerShape Using Macros with PowerShape

//

// set path to export to

//

LET path = 'e:\xxxx\'

//

// Set the value of the INT

INT numturn = 10

//

WHILE $numturn {

// Convert the INT to a STRING

STRING fred = inttostring($numturn)

//

// Do the export using concatenate

selectall

LET com2 = concatenate('file export '; $path; $fred;

'.dgk')

PRINT $com2

EXECUTE COMMAND $com2

//

LET numturn = $numturn - 1

//

}

Importing components from an .xt file

Use this macro to import components from an .xt file.

// The macro will work if you open a New model then

Import the xt file.

// It assumes that there are no previously named levels.

// It also assumes that the objects imported are

components.

//

// Select all the imported components

//==================================

//

selectall

//

// store the number of components

//===================================

//

LET numturn = selection.number

//

// Start the loop

//=====================================

//

WHILE $numturn {

//

// Set some variables

//=================================

LET s_com = $numturn - 1

Autodesk PowerShape Customizing PowerShape • 95

LET $l_name = selection.name[$s_com]

//

// Set the start number of 501 for the levels

//===============================

LET lev_num = 500 + $numturn

//

// renames the level with the name of the component

//==================================

LET com = concatenate('LEVEL RENAME '; $lev_num;' ';

$l_name)

EXECUTE COMMAND $com

//

//clear the selection so one component can be added to

a level

//================================

Select clearlist

add Component $l_name

//

// adds the selection to the renamed level

//==================================

LET com = concatenate('LEVEL POPUP RAISE '; $lev_num)

EXECUTE COMMAND $com

Level Popup AddSelection

//

// select everything again

//=================================

selectall

//

// reset the loop number

//==================================

LET numturn = $numturn - 1

}

Move points on a curve

Use this macro to move points on a curve.

// This relies on the compcurve being created with

// an even number of points in a vertical line.

// The point of the tooth should be the even number.

// The move gradually gets bigger.

//

select clearlist

//

// Selecting the composite

INPUT SELECTION 'Select a composite curve'

LET c_name = selection.object[0].name

select clearlist

INPUT NUMBER 'Enter distance to move point by' $Distance

add compcurve $c_name

//

96 • Customizing PowerShape Using Macros with PowerShape

// number of points in the curve

LET c_num = compcurve[$c_name].point.number

//

// set distance m to move the point

REAL m = 0

WHILE $c_num {

// add the curve

add compcurve $c_name

//

//select point on curve

select_points $c_num

end_select

//

// move the point

$m 0 0

//

// clear the selection

select clearlist

//

// set the new distance value of m

LET m = $m - $Distance

//

// set the new point number

// even numbers and top of tooth is every two points

LET c_num = $c_num - 2

}

Select and add object

Use this macro to add the selected object.

// adds the first item in the selection

//

SELECTALL

//

LET n = selection.name[0]

LET t = selection.type[0]

//

select clearlist

//

LET com = concatenate('add '; $t;' "'; $n; '"')

EXECUTE COMMAND $com

PRINT $com

Autodesk PowerShape Customizing PowerShape • 97

Offset surface curves by different distances

Use this macro to offset surface curves by different distances.

// Need to have a powersurface in an open model

//

LET $no_pow = 1

WHILE $no_pow {

// Clear the selection list

SELECT CLEARLIST

// Selecting a powersurface

INPUT SELECTION 'Select a single Powersurface'

// Testing IF a single object is selected

LET $single = selection.number == 1

IF $single {

// Testing IF the single object is a surface.

// The strings Surface and Powersurface must use the

correct capitalisation.

LET $surf = selection.type[0] == 'Surface'

IF $surf {

// Testing IF the surface is a Powersurface

LET $no_pow =! (selection.object[0].type ==

'Powersurface')

}

}

IF $no_pow {

PRINT ERROR 'You must select a single powersurface'

INPUT QUERY 'Do you want to exit the macro?' $prompt

IF $prompt {

RETURN

}

}

}

//

LET s_name = selection.object[0].name

//

select clearlist

//

INPUT NUMBER 'Enter overall distance to offset furthest

surface curve by' $Distance

//

// number of laterals in the surface

LET s_num = surface[$s_name].nlats

//

select clearlist

//

WHILE $s_num {

// add the surface

add surface $s_name

//

98 • Customizing PowerShape Using Macros with PowerShape

// select a curve on a surface

// have to use the concatenate and EXECUTE COMMAND to

piece together the add lateral command

LET sel_curve = concatenate('select_lats '; $s_num)

EXECUTE COMMAND $sel_curve

//

// move the point

toolbar tools edit

EDIT SUBEDITS ON

edit offset

distance $Distance

select

//

// clear the selection

select clearlist

//

// set the new Distance value to be

LET Distance = $Distance - ($Distance / $s_num)

//

// set the new surface curve number

LET s_num = $s_num - 1

}

Open psmodels from a directory list

Use this macro to open psmodels from a directory list.

// Use directory['pathname'].files['pattern']

// to open all psmodels from a known directory

// Get list of models in a known directory

let model_list =

directory['E:\homes\clb\xxxx'].files['*.psmodel']

// Set the number of psmodels in the directory

let num_models = LENGTH($model_list)

// Create a while loop to open the psmodels

LET i = 1

LET carry_on = ($i <= $num_models)

WHILE $carry_on {

 // Find the name of the psmodel

 let model_name = $model_list[$i]

Autodesk PowerShape Customizing PowerShape • 99

 print $model_name

 // Construct command to open the psmodel

 string command = concatenate('name '; $model_name)

 print $command

 // Open the psmodel

 FILE OPEN

 EXECUTE COMMAND $command

 ACCESS READWRITE

 ACCEPT

 // reset the number to loop to the next psmodel

 LET i = $i + 1

 LET carry_on = ($i <= $num_models)

}

Open x_t from a directory list

Use this macro to open all files of type x_t from a known directory.

// Use directory['pathname'].files['pattern']

// to import all files of type x_t from a known directory

// Each file is imported into its own psmodel

// Get list of models in directory

let model_list =

directory['E:\homes\clb\xxxx'].files['*.x_t']

// Set number of files in the directory

let num_models = LENGTH($model_list)

// Create a while loop to import all the files

LET i = 1

LET carry_on = ($i <= $num_models)

WHILE $carry_on {

100 • Customizing PowerShape Using Macros with PowerShape

 // open a psmodel to import the file into

 // This line can be commented out if all files

 // are required in the same psmodel

 FILE NEW

 // Find the name of the file

 let model_name = $model_list[$i]

 print $model_name

 // Construct command to open the file

 string command = concatenate('file import ';

$model_name)

 print $command

 //Import the file

 EXECUTE COMMAND $command

 // reset the number to loop to the next file

 LET i = $i + 1

 LET carry_on = ($i <= $num_models)

}

Using LOOP to print the length of lines to a file

Use this option to print the lengths of lines to a file. The name and

location of the file is specified at run-time.

args{

STRING filename

}

//

// in the command window enter a line like

// macro run E:\testdata\test_macros\loop-to-PRINT-

length-of-lines-to-a-file.mac 'E:xxxx\fred.txt'

// need to have a model open with some lines in it

//

// ---

// Open txt outfile to hold the report.

Autodesk PowerShape Customizing PowerShape • 101

// ---

LET use_dialog = $filename == 'dialog'

IF $use_dialog {

 file outfile open Dialog

 Title Create a graphics report file

 FileTypes txt File (.txt)|*.txt

 Raise

} ELSE {

 // This must be an absolute filename.

 file outfile open replace $filename

}

//

// Open the file to PRINT to

LET filename = outfile.name

//

// PRINT the name of the file in the file

PRINT 'This file is ' $filename ''

//---------------------------------------

// Find the length of the lines

//---------------------------------------

FILTERBUTTON FilterItems

SelectType Line

All

accept

//

LET numturn = selection.number

WHILE $numturn {

 LET s_line = $numturn - 1

 LET l_name = selection.object[$s_line].name

 LET l_len = line[$l_name].length

 PRINT 'Length of line '$l_name ' is '$l_len

 LET numturn = $numturn - 1

}

EVERYTHING PARTIALBOX

select clearlist

// --

// Close the file you are printing to

file outfile close

Using SWITCH

Use this macro to use SWITCH to define a variable which is
compared against a list of possible values.

// you need some objects in the model and some selected

// IF you have two objects selected it will DO case 2 and

the default

STYLE LOWERFORM

LET e = selection.number

PRINT $e

102 • Customizing PowerShape Using Macros with PowerShape

//

STYLE RAISEFORM

SWITCH $e {

//

case 2

PRINT 'selection is 2'

Style Name Blue

//

case 3

PRINT 'selection is 3'

//

case 4

PRINT 'selection is 4'

Style Width 0.7

create arc full

0 0 0

select

//

default

PRINT 'default case'

Style Pattern Dotted

Select clearlist

STYLE LOWERFORM

//

}

PRINT 'you are at the end of the switch'

Using WHILE loop to create point at centre of arc

Use this macro to create a point at the centre of an arc.

// need a model with some arcs in it

FILTERBUTTON FilterItems

SelectType arc

All

accept

//

LET numturn = selection.number

//

WHILE $numturn {

LET $numturn = $numturn - 1

LET $l_name = selection.name[$numturn]

//

LET s_cenx = selection.object[$numturn].centre.x

LET s_ceny = selection.object[$numturn].centre.y

LET s_cenz = selection.object[$numturn].centre.z

//

select clearlist

//

Create point

$s_cenx $s_ceny $s_cenz

Autodesk PowerShape Customizing PowerShape • 103

select

//

select clearlist

//

FILTERBUTTON FilterItems

SelectType arc

All

accept

}

//

select clearlist

EVERYTHING PARTIALBOX

104 • Customizing PowerShape Using Macros with PowerShape

HTML application tutorial
This tutorial shows you how to write an application using Hypertext

Mark-up Language (HTML) to create the following helix.

It should be possible to work through this tutorial without any prior

knowledge of HTML. Detailed explanations of the HTML codes are
not given; they can be found in any book on HTML.

When creating applications using HTML files, you may need to
record macros to find the commands. It is therefore advisable to

complete the Macro tutorial (see page 52) before working through
the HTML tutorial.

Opening a new text file

To create a new text file to store the HTML codes:

1 Create a new file in a text editor, such as Notepad.

2 Add the following to the text file:

<HTML>

<HEAD>

</HEAD>

<BODY>

</BODY>

</HTML>

3 Save the file as helix.htm.

Autodesk PowerShape Customizing PowerShape • 105

This file now contains the basic layout of the HTML file in two
sections:

HEAD — Contains descriptive information about the HTML file as
well as other information such as style rules or scripts.

BODY — The basic HTML commands to define the controls.

Adding controls to the application

To add controls in the HTML file:

1 Add code to the BODY section so that it looks as follows:

<BODY>

<h1>Helix creation</h1>

<FORM NAME=helix>

Radius <INPUT TYPE=text NAME=radius VALUE="10" > <p>

Pitch <INPUT TYPE=text NAME=pitch VALUE="4" > <p>

Turns <INPUT TYPE=text NAME=turns VALUE="10" > <p>

<INPUT TYPE=button VALUE=" Apply " ><p>

</FORM>

</BODY>

2 Save the file.

The FORM object lets you to add controls that input data. It is
defined as follows:

<FORM NAME=helix>

</FORM>

The INPUT object lets you add controls inside the form. The code

has added two types of control:

▪ Text box

<INPUT TYPE=text NAME=radius VALUE="10" >

106 • Customizing PowerShape Using Macros with PowerShape

This code contains a variable called VALUE. This puts a default
value in the text box.

▪ Button

<INPUT TYPE=button VALUE=" Apply " >

Displaying the HTML file in PowerShape

Open the file in Internet Explorer inside PowerShape to see what

the html page looks like:

1 Start PowerShape.

2 Double-click the Command box in the status bar to open the

Command window.

3 In the Command window, type:

browser explorer {path}helix.htm

where {path} is the location of helix.htm

You should see the following:

You can change the values in the text boxes and click the Apply

button, but, as yet, this application does nothing in PowerShape.

Connecting to PowerShape using VBscripts

You can use VBscripts to write the code that allows you to
communicate with PowerShape. You can also use other script

languages such as Javascript (see page 124).

1 Add code to the HEAD section so that it looks like this:

<HEAD>

<script language="VBscript">

Autodesk PowerShape Customizing PowerShape • 107

// Connect to the PowerShape

set pshape = Window.external

</script>

</HEAD>

2 Save the file.

The line with the two slashes // is a comment. The script is enclosed

in the following lines of code:

▪ <script language="VBscript">

</script>

The language used by the script is given in the first line.

The following command connects PowerShape using the object

called pshape:

▪ set pshape = Window.external

Interacting with PowerShape

To make the dialog work with PowerShape:

▪ Add the commands that communicate with PowerShape to create

a simple helix (see page 52).

▪ Add a procedure (see page 107).

▪ Link the procedure to the Apply button (see page 111).

Adding the Apply_click() procedure

PowerShape understands the commands used in macros. The best
way to work out the commands to use is by recording a macro.

You are strongly recommended to complete the Helix macro tutorial
(see page 52) before creating your own HTML applications.

The following are commands from the macro in the Helix macro
tutorial:

LET $radius = 10

LET $pitch = 4

LET $numturn = 10

LET $neg_radius = -$radius

LET $zheight = $pitch / 4

108 • Customizing PowerShape Using Macros with PowerShape

create curve

THROUGH

$radius 0 0

WHILE $numturn {

LET numturn = $numturn - 1

$neg_radius $radius $zheight

$neg_radius $neg_radius $zheight

$radius $neg_radius $zheight

$radius $radius $zheight

 }

Select

The following steps show you how to convert these commands into

vbscript commands:

1 In the script section, add the procedure called Apply_click() as

shown below.

<script language="VBscript">

// Connect to PowerShape

set pshape = Window.external

Sub Apply_click()

//Calculating values for the coordinates

neg_rad = - document.helix.radius.value

zheight = document.helix.pitch.value /4

//Creating the helix's curve

pshape.Exec "Create curve"

pshape.Exec "through"

//First coordinates of the curve

pshape.Exec "abs " & document.helix.radius.value & " 0 0"

Autodesk PowerShape Customizing PowerShape • 109

//Using a loop to input the coordinates from each turn

Counter = document.helix.turns.value

Do Until Counter = 0

Counter = Counter - 1

pshape.Exec neg_rad & " " & document.helix.radius.value & " " &

zheight

pshape.Exec neg_rad & " " & neg_rad & " " & zheight

pshape.Exec document.helix.radius.value & " " & neg_rad & " " &

zheight

pshape.Exec document.helix.radius.value & " " &

document.helix.radius.value & " " & zheight

Loop

//Exiting curve creation mode

pshape.Exec "Select"

End Sub

</script>

2 Save the file.

More information on the Apply_Click() procedure

The following commands are in the macro:

LET $radius = 10

LET $pitch = 4

LET $numturn = 10

In the HTML file, we have already assigned values to the radius,
pitch and the number of turns when we created their text boxes.

▪ We assigned values to the variables neg_radius and zheight as in
the macro commands.

The following commands are in the macro:

LET $neg_radius = -$radius

LET $zheight = $pitch / 4

In the HTML file, we use the values from the text boxes of the
radius and the pitch. So for neg_radius:

neg_rad = - document.helix.radius.value

110 • Customizing PowerShape Using Macros with PowerShape

This assigns the negative value of the radius to the variable
neg_rad.

▪ The command:

document.helix.radius.value

defines the elements in the HTML file from which the string is
extracted. The code value extracts the numeric value of the

string in the textbox called radius. There are two other elements,
document and helix:

document denotes the current page;

helix is the name of the form which contains the text box.

▪ Similarly, a value is assigned to the variable zheight:

zheight = document.helix.pitch.value /4

▪ For the following macro commands, we use the pshape.Exec

method to replace some of the code:

create curve

THROUGH

$radius 0 0

WHILE $numturn {

LET numturn = $numturn - 1

$neg_radius $radius $zheight

$neg_radius $neg_radius $zheight

$radius $neg_radius $zheight

$radius $radius $zheight

}

Select

So, the create curve command line has become:

pshape.Exec "create curve"

▪ The pshape.Exec method uses strings to communicate with

PowerShape.

$radius 0 0

has now been replaced by:

pshape.Exec document.helix.radius.value & " 0 0"

The & joins the strings on each side of it.

So:

document.helix.radius.value & " 0 0"

Autodesk PowerShape Customizing PowerShape • 111

is a single string containing the contents of the Radius text box
and two zeros. This is equivalent to the macro command:

$radius 0 0

▪ The while loop in the macro has been replaced by Do Until Loop.

Both loops operate in a similar way.

▪ The following have been replaced by the pshape.Exec command

and variables containing strings.

$neg_radius $radius $zheight

$neg_radius $neg_radius $zheight

$radius $neg_radius $zheight

$radius $radius $zheight

The strings are combined using & and " " characters.

So, for example:

$neg_radius $radius $zheight

becomes:

pshape.Exec neg_rad & " " & document.helix.radius.value & " " &

zheight

Linking the procedure to the Apply button

To link the procedure to the Apply button:

1 Add onClick=Apply_click() to the input object for the Apply button

as follows:

<INPUT TYPE=button value=" Apply " onClick=Apply_click() >

2 Save the file.

 In the string below, the onClick command defines the action

when you click the Apply button. In this case, it calls the

procedure Apply_click(), that was added in the script:

<INPUT TYPE=button value=" Apply " onClick=Apply_click() >

Testing your application

To run your application:

1 Right-click in the Browser window in PowerShape to display a

context menu.

2 Select Refresh from the context menu to install the latest
helix.htm file in the browser.

112 • Customizing PowerShape Using Macros with PowerShape

3 Click the Apply button in the Browser window to create a helix
using the default values.

4 Change the values in the three text boxes.

5 Click Apply again to create a helix using the new values.

Adding a Quit button to exit the HTML application

You can add a Quit button to the form that opens a HTML file when

it is selected.

The following command adds a button with label Quit on the HTML
page:

<INPUT TYPE=button VALUE="Quit" onClick="document.location =

'http://www.autodesk.com'" ><p>

When you click the Quit button, the action is defined by the

following:

onClick="document.location = 'http://www.autodesk.com'"

This opens the Autodesk home page, providing you have internet
access from your computer. If you don't have internet access,

change the address to any HTML file you can access.

To add a Quit button on the same line as the Apply button:

1 Remove <p> from the following line in the HTML file:

<INPUT TYPE=button value=" Apply " onClick=Apply_click() ><p>

2 After this line, insert the following:

<INPUT TYPE=button VALUE="Quit" onClick="document.location

= 'http://www.autodesk.com'" ><p>

3 Save the file.

To test the Quit button:

1 Right-click in the Browser window and select Refresh from the

context menu.

2 Click the Quit button in the Browser window to display the

Autodesk home page.

3 To go back to the helix application, right-click in the Browser
window and select Back from the context menu.

Autodesk PowerShape Customizing PowerShape • 113

Entering helix origin positions

You can change the application to allow you to enter an origin

position for the helix by typing a value or clicking a position on the
screen.

There are two stages to this:

1 Changing the interface (see page 113).

2 Adding the code (see page 114).

Changing the interface

To change the interface to enable helix origin positions to be

entered:

1 Add the following code before the code for the Apply button in

the HTML file:

<hr>

Input origin of the helix<p>

<INPUT TYPE=button VALUE=" Click Point " onClick=point_click()

>

<INPUT TYPE=button VALUE=" Read Point " onClick=point_read()

>

<p>

X <INPUT TYPE=text NAME=x_text VALUE="0"> <p>

Y <INPUT TYPE=text NAME=y_text VALUE="0"> <p>

Z <INPUT TYPE=text NAME=z_text VALUE="0"> <p>

<hr>

2 Save the HTML file.

 The INPUT command was used previously to create buttons

and text boxes. Now you have added two more buttons and

three additional text boxes. The <hr> code inserts a horizontal

line on the page.

114 • Customizing PowerShape Using Macros with PowerShape

Adding the code

You can enter the position for the origin in one of the following
ways:

▪ Click the Click point button and enter a position in PowerShape.

Then click the Read point button to read the coordinates and

display them in the X, Y and Z text boxes.

▪ Enter the coordinates directly into the X, Y and Z text boxes.

Adding the following script to the HTML file provides this
functionality.

1 Before the end of the script command </script>, add the following

procedures.

Sub point_click()

//Send command to ask for user point input

pshape.Exec "INPUT POINT 'Click origin' $pos"

End Sub

Sub point_read()

//Extract the position input from the variable $pos

document.helix.x_text.value = pshape.Evaluate("$pos_x")

document.helix.y_text.value = pshape.Evaluate("$pos_y")

document.helix.z_text.value = pshape.Evaluate("$pos_z")

End Sub

2 Save the HTML file.

In the first procedure, the code allows you to click points on the
screen. Remember the following command from the macro tutorial:

▪ INPUT POINT 'Position of centre' $cenpos

This is used in the application as follows:

▪ pshape.Exec "INPUT POINT 'Click origin' $pos"

Autodesk PowerShape Customizing PowerShape • 115

where pshape.Exec sends the command from the vbscript to

PowerShape.

In the second procedure, the next commands are of the form:

▪ document.helix.x_text.value = pshape.Evaluate("$pos_x")

where pshape.Evaluate extracts values from objects in

PowerShape, in this case, the x coordinate of the input position

$pos. The value of the coordinate is then entered into the X text

box using the code: document.helix.x_text.value

Updating the Apply_Click procedure

Update the Apply_Click procedure to use the values from the X, Y

and Z text boxes:

1 Find the following code in the Apply_Click procedure:

//First coordinates of the curve

pshape.Exec "abs " & document.helix.radius.value & " 0 0"

2 Change it to:

//First coordinates of the curve

//pshape.Exec "abs " & document.helix.radius.value & " 0 0"

start_x =(document.helix.radius.value +

0)+(document.helix.x_text.value + 0)

pshape.Exec "abs " & start_x & " " & document.helix.y_text.value & "

" & document.helix.z_text.value

3 Save the HTML file.

You will notice that we added a zero to some of the variables, for

example:

document.helix.rad_text.value

This variable is a string, which represents a number. By adding the
zero to the variable, the string is converted into a number and used

in the expression.

Instead of removing the following command, we have turned it into

a comment by placing // in front of it:

//pshape.Exec "abs " & document.helix.radius.value & " 0 0"

This lets you to use the command again later.

116 • Customizing PowerShape Using Macros with PowerShape

Testing your application again

You are now ready to test your application. Complete the following

tests:

▪ Define the origin of the helix by entering values for X, Y and Z:

1 Right-click in the Browser window and select Refresh from the
context menu.

2 Enter some values for X, Y and Z to define the origin of the

helix.

3 Change the Radius, Pitch and Number of turn values if you

want.

4 Click Apply. A helix is created with its origin at the X, Y, Z
position that you entered.

▪ Define the origin of the helix using the mouse:

1 Change the Radius, Pitch and Number of turn values if you
want.

2 Click the Click Point button.

3 Click a position in the graphics window.

4 Click the Read Point button. This enters the position

coordinates into the X, Y and Z text boxes.

5 Press Apply. A helix is created with its origin at the point you
selected.

Selecting objects

To extend the application so that it can create a helix around a

selected cylinder, you need to add another button to the interface:

1 Add the following code before the Apply button in the HTML file:

Create helix around a cylinder<p>

<INPUT TYPE=button VALUE="Select Cylinder"

onClick=cyl_select() >

<hr>

2 Save the HTML file.

Autodesk PowerShape Customizing PowerShape • 117

Boolean variable called cylinder

In some commands, you need to know if a cylinder is selected. You
can use a Boolean variable called cylinder to indicate if a cylinder is

selected. When the program is run, the cylinder variable is set to
false. When you select a cylinder and use it in the HTML application,

the cylinder variable is set to true.

To add the Boolean variable called cylinder:

1 At the start of the script, find the following lines:

// Connect to PowerShape

set pshape = Window.external

2 After these lines, add the following:

//No cylinder selected

cylinder = false

This sets the cylinder variable to false as soon as you display the

HTML file.

3 Save the HTML file.

118 • Customizing PowerShape Using Macros with PowerShape

Adding code for the cyl_select() procedure

The user selects a cylinder and then clicks the Select cylinder

button.

To add the cyl_select procedure called by this button:

1 Before the end of the script command </script>, add the
following lines.

Sub cyl_select()

//Check if a single cylinder is selected

If pshape.Evaluate("selection.number") = "1" Then

If pshape.Evaluate("selection.object[0].type") = "Cylinder" Then

//Cylinder selected

cylinder = True

End If

End If

If cylinder = False Then

//Tell user that 1 cylinder must be selected

//and exit the procedure

MsgBox ("1 cylinder must be selected!")

Exit Sub

End If

pshape.Exec "Let cyl = selection.object[0]"

//Extract the origin of the cylinder and put in X, Y, and Z boxes

document.helix.x_text.value = pshape.Evaluate("$cyl.origin.x")

document.helix.y_text.value = pshape.Evaluate("$cyl.origin.y")

document.helix.z_text.value = pshape.Evaluate("$cyl.origin.z")

//Extract the radius of the cylinder

document.helix.radius.value = pshape.Evaluate("$cyl.radius")

End Sub

2 Save the HTML file.

Autodesk PowerShape Customizing PowerShape • 119

▪ The first part of the procedure uses the pshape.Evaluate

command to check if a single cylinder is selected. This command
extracts information from PowerShape. For example, the

following extracts the number of objects selected:

pshape.Evaluate("selection.number")

If a single cylinder is selected, the cylinder variable is set to true.

This indicates that a cylinder is selected.

If a single cylinder is not selected, a message box appears telling

the user and the procedure is terminated. The following
command terminates the procedure:

Exit Sub

▪ The following command assigns the name and identity of the first

object in the selection to the variable cyl in PowerShape:

pshape.Exec "Let cyl = selection.object[0]"

▪ The next set of commands extract the coordinate values from the

origin of the cylinder and put the values in the X, Y and Z boxes
on the form:

▪ document.helix.x_text.value=pshape.Evaluate("$cyl.origin.x")

▪ document.helix.y_text.value=pshape.Evaluate("$cyl.origin.y")

▪ document.helix.z_text.value=pshape.Evaluate("$cyl.origin.z")

▪ The command below extracts the radius of the cylinder and

enters the value in the Radius box on the form:

document.helix.radius.value = pshape.Evaluate("$cyl.radius")

Temporary workplane

To create the helix in the right direction along the cylinder, you can

use a temporary workplane.

In the Apply_click procedure, the commands can be updated to:

▪ Create a temporary workplane (see page 120)

▪ Input the first point of the helix relative to the temporary

workplane (see page 122)

▪ Delete the temporary workplane (see page 122)

120 • Customizing PowerShape Using Macros with PowerShape

Creating a workplane

To edit the HTML to create a workplane:

1 At the beginning of the Apply_click procedure, add the following:

If cylinder = True Then

//create a workplane and modify it

pshape.Exec "create workplane" & vbCrLf _

& "$cyl.origin.x $cyl.origin.y $cyl.origin.z" & vbCrLf _

& "MODIFY" & vbCrLf _

& "NAME tmpwkhelix" & vbCrLf _

& "XAXIS DIRECTION" & vbCrLf _

& "X $cyl.xaxis.x" & vbCrLf _

& "Y $cyl.xaxis.y" & vbCrLf _

& "Z $cyl.xaxis.z" & vbCrLf _

& "ACCEPT" & vbCrLf _

& "YAXIS DIRECTION" & vbCrLf _

& "X $cyl.yaxis.x" & vbCrLf _

& "Y $cyl.yaxis.y" & vbCrLf _

& "Z $cyl.yaxis.z" & vbCrLf _

& "ACCEPT" & vbCrLf _

& "ZAXIS DIRECTION" & vbCrLf _

& "X $cyl.zaxis.x" & vbCrLf _

& "Y $cyl.zaxis.y" & vbCrLf _

& "Z $cyl.zaxis.z" & vbCrLf _

& "ACCEPT" & vbCrLf _

& "ACCEPT"

End If

2 Save the HTML file.

You can then check if the cylinder variable is true. This variable is
only true if a cylinder is selected and the Select cylinder button is

clicked. If the cylinder variable is true, a workplane is created using
the following PowerShape commands from the macro tutorial:

//Creating a temporary workplane

CREATE WORKPLANE

Autodesk PowerShape Customizing PowerShape • 121

$cyl.origin.x $cyl.origin.y $cyl.origin.z

// Modifying the workplane

MODIFY

NAME tmpwkhelix

XAXIS DIRECTION

X $cyl.xaxis.x

Y $cyl.xaxis.y

Z $cyl.xaxis.z

ACCEPT

YAXIS DIRECTION

X $cyl.yaxis.x

Y $cyl.yaxis.y

Z $cyl.yaxis.z

ACCEPT

ZAXIS DIRECTION

X $cyl.zaxis.x

Y $cyl.zaxis.y

Z $cyl.zaxis.z

ACCEPT

ACCEPT

 When executing PowerShape commands, we use the

pshape.Execute command. If you have many pshape.Execute
commands to send, using a single command saves time

communicating with PowerShape. In this example, there is

only one pshape.Execute. To send extra lines of commands
with the single pshape.Execute, you can use the following

syntax:

pshape.Exec "command line 1" & vbCrLf _

& "command line 2" & vbCrLf _

& "command line 3" & vbCrLf _

& "command line 4"

You cannot include any comments between the lines in the
above syntax.

122 • Customizing PowerShape Using Macros with PowerShape

First point relative to workplane

Edit the HTML such that the first coordinate of the helix depends on
whether a cylinder is selected:

1 In the Apply_click procedure, find the following code for the first
coordinate:

//First coordinates of the curve

//pshape.Exec "abs " & document.helix.radius.value & " 0 0"

start_x =(document.helix.radius.value +

0)+(document.helix.x_text.value + 0)

pshape.Exec "abs " & start_x & " " & document.helix.y_text.value & "

" & document.helix.z_text.value

2 Change the code to the following:

//First coordinates of the curve

If cylinder = True Then

pshape.Exec "abs " & document.helix.radius.value & " 0 0"

Else

start_x =(document.helix.radius.value +

0)+(document.helix.x_text.value + 0)

pshape.Exec "abs " & start_x & " " & document.helix.y_text.value & "

" & document.helix.z_text.value

End If

3 Save the HTML file.

 If you have selected a cylinder, the helix must start at the
coordinates in relation to the temporary workplane.

Otherwise, the coordinates must be relative to the

coordinates in the X, Y and Z boxes.

Deleting the workplane

Add commands to the Apply_Click procedure that will delete the

temporary workplane:

1 Find the following code in the Apply_Click procedure:

//Exiting curve creation mode

pshape.Exec "Select"

2 Add the following lines after the code:

//Delete the temporary workplane

If cylinder = True Then

Autodesk PowerShape Customizing PowerShape • 123

 pshape.Exec "select clearlist"

 pshape.Exec "select add workplane 'tmpwkhelix'"

 pshape.Exec "delete"

 cylinder = False

End If

3 Save the HTML file.

When the helix is created, the temporary workplane is deleted and
the cylinder variable changes to false. This indicates no cylinder is

selected.

 We have used the PowerShape commands from the macro
tutorial.

Testing the new code

You are now ready to test your application:

1 Save your HTML file.

2 Right-click in the Browser window and select Refresh from the

context menu.

3 Create a cylinder surface.

4 In PowerShape, select the cylinder.

5 Click the Select Cylinder button on the Helix creation form.

The Radius and the X, Y and Z boxes now contain values from

the cylinder.

6 Change the Pitch and Number of turn values if you want.

7 Click Apply. A helix is created around the cylinder.

You have successfully created an application using HTML.

You could further enhance the application by adding, for example:

▪ tests to check the input data.

▪ and icons to indicate if a cylinder is selected or not.

124 • Customizing PowerShape Using Macros with PowerShape

Example using Javascript

You can use other script languages instead of vbscript.

The final code of the helix example is given below in Javascript:

<HTML>

<HEAD>

<script language="javascript">

// Connect to PowerShape

var pshape = window.external;

//No cylinder selected

cylinder = false

function Apply_click()

{

if (cylinder == true)

{

//create a workplane and modify it

pshape.Exec ("create workplane");

pshape.Exec ("$cyl.origin.x $cyl.origin.y $cyl.origin.z");

pshape.Exec ("MODIFY");

pshape.Exec ("NAME tmpwkhelix");

pshape.Exec ("XAXIS DIRECTION");

pshape.Exec ("X $cyl.xaxis.x");

pshape.Exec ("Y $cyl.xaxis.y");

pshape.Exec ("Z $cyl.xaxis.z");

pshape.Exec ("ACCEPT");

pshape.Exec ("YAXIS DIRECTION");

pshape.Exec ("X $cyl.yaxis.x");

pshape.Exec ("Y $cyl.yaxis.y");

pshape.Exec ("Z $cyl.yaxis.z");

Autodesk PowerShape Customizing PowerShape • 125

pshape.Exec ("ACCEPT");

pshape.Exec ("ZAXIS DIRECTION");

pshape.Exec ("X $cyl.zaxis.x");

pshape.Exec ("Y $cyl.zaxis.y");

pshape.Exec ("Z $cyl.zaxis.z");

pshape.Exec ("ACCEPT");

pshape.Exec ("ACCEPT")

} //end if

//Calculating values for the coordinates

neg_rad = - document.helix.radius.value;

zheight = document.helix.pitch.value /4;

//Creating the helix's curve

pshape.Exec ("Create curve");

pshape.Exec ("through");

//First coordinates of the curve

if (cylinder == true)

{

pshape.Exec ("abs " + document.helix.radius.value + " 0 0");

} //end if

else

{

start_x = parseFloat(document.helix.radius.value) +

parseFloat(document.helix.x_text.value);

pshape.Exec ("abs " + start_x + " " + document.helix.y_text.value + " " +

document.helix.z_text.value);

} //end else

//Using a loop to input the coordinates from each turn

Counter = document.helix.turns.value;

126 • Customizing PowerShape Using Macros with PowerShape

while (Counter > 0)

{

Counter = Counter - 1;

pshape.Exec (neg_rad + " " + document.helix.radius.value + " " +

zheight);

pshape.Exec (neg_rad + " " + neg_rad + " " + zheight);

pshape.Exec (document.helix.radius.value + " " + neg_rad + " " +

zheight);

pshape.Exec (document.helix.radius.value + " " +

document.helix.radius.value + " " + zheight)

} //end while

//Exiting curve creation mode

pshape.Exec ("Select");

//Delete the temporary workplane

if (cylinder == true) {

pshape.Exec ("select clearlist");

pshape.Exec ("select add workplane 'tmpwkhelix'");

pshape.Exec ("delete");

cylinder = false

} //end if

} //end of function apply_click

function point_click()

{

//Send command to ask for user point input

pshape.Exec ("INPUT POINT 'Click origin' $pos")

} // end of function point_click

Autodesk PowerShape Customizing PowerShape • 127

function point_read()

{

//Extract the position input from the PowerShape

//variable $pos

document.helix.x_text.value = pshape.Evaluate("$pos_x");

document.helix.y_text.value = pshape.Evaluate("$pos_y");

document.helix.z_text.value = pshape.Evaluate("$pos_z")

} // end of function point_read

function cyl_select()

{

//Check if a single cylinder is selected

if (pshape.Evaluate("selection.number") == "1") {

if (pshape.Evaluate("selection.object[0].type") == "Cylinder")

//Cylinder selected

cylinder = true

}

if (cylinder == false)

{

//Tell user that 1 cylinder must be selected

//and exit the procedure

window.alert ("1 cylinder must be selected!");

return

} //end if

pshape.Exec ("Let cyl = selection.object[0]");

//Extract the origin of the cylinder and put in X, Y, and Z boxes

document.helix.x_text.value = pshape.Evaluate("$cyl.origin.x");

document.helix.y_text.value = pshape.Evaluate("$cyl.origin.y");

document.helix.z_text.value = pshape.Evaluate("$cyl.origin.z");

//Extract the radius of the cylinder

128 • Customizing PowerShape Using Macros with PowerShape

document.helix.radius.value = pshape.Evaluate("$cyl.radius")

} // end of function cyl_select

</script>

</HEAD>

<BODY>

<h1>Helix creation</h1>

<FORM NAME=helix >

Radius <INPUT TYPE=text NAME=radius VALUE="10" > <p>

Pitch <INPUT TYPE=text NAME=pitch VALUE="4" > <p>

Turns <INPUT TYPE=text NAME=turns VALUE="10" > <p>

<hr>

Input origin of the helix<p>

<INPUT TYPE=button VALUE=" Click Point " onClick="point_click();"

>

<INPUT TYPE=button VALUE=" Read Point " onClick="point_read();"

>

<p>

X <INPUT TYPE=text NAME=x_text VALUE="0"> <p>

Y <INPUT TYPE=text NAME=y_text VALUE="0"> <p>

Z <INPUT TYPE=text NAME=z_text VALUE="0"> <p>

<hr>

Create helix around a cylinder<p>

<INPUT TYPE=button value="Select Cylinder" onClick="cyl_select();" >

Autodesk PowerShape Customizing PowerShape • 129

<hr>

<INPUT TYPE=button VALUE=" Apply " onClick="Apply_click();" >

<INPUT TYPE=button VALUE="Quit" onClick="document.location =

'http://www.autodesk.com'" ><p>

</FORM>

</BODY>

</HTML>

130 • Customizing PowerShape Using Macros with PowerShape

Creating OLE applications
You can use the PowerShape OLE server to create applications

which communicate with PowerShape.

There are two types of OLE applications:

▪ HTML-based

An HTML-based application consists of HTML pages and runs in

the Browser window in PowerShape. It also communicates
commands with PowerShape.

You can write HTML pages using various HTML or text editors. In
the HTML page, you can add scripts using languages such as

vbscript and javascript. The OLE commands in the scripts allow
you to communicate with PowerShape.

In our examples for HTML-based applications, we use vbscript.
You can download documentation on vbscript from:

http://www.microsoft.com.

The HTML application tutorial introduces you to creating HTML-
based applications using vbscripts.

▪ add-in

An add-in application is a program that enables you to customize

and extend the functionality of PowerShape. The OLE commands
in the programs allow you to communicate with PowerShape.

You can write add-in applications using programming languages,
such as Microsoft Visual Basic and Microsoft Visual C++. The OLE

commands in the programs enable the add-ins to communicate
with PowerShape.

These applications allow you to:

▪ perform commonly used operations

▪ create easy-to-use interfaces

Both types of applications use the same OLE commands. The

following sections use HTML examples.

A help file is provided for the OLE COM functions at:

C:\Program Files\Autodesk\PowerShapexxxxx\file\ole\help.chm.

http://www.microsoft.com/

Autodesk PowerShape Customizing PowerShape • 131

Connecting to PowerShape using HTML

Before you can use the PowerShape OLE server, you must connect

to a PowerShape session.

You can connect to an existing PowerShape session, but how you

connect to PowerShape will depend on whether your application is
HTML-based or an add-in.

For HTML-based applications, use:

set pshape = window.external

In vbscript, this would look as follows:

<script language="vbscript" >

set pshape = window.external

...

...

...

</script>

For add-in applications, use:

Set pshape = Getobject(,"PowerShape.Application")

Both methods create the object pshape, which is connected to an

existing PowerShape session.

With these methods, when you close the add-in applications,

PowerShape remains open.

Sending commands to PowerShape

The following method sends commands to the connected

PowerShape session:

pshape.Exec Command

where Command is a string expression containing a macro (see
page 7) command to run in PowerShape.

For example:

When the command button cmdCreateLine is clicked, a single line is

produced between the coordinates entered in four text boxes txtX1,

txtY1, txtX2, txtY2.

'When the command button is clicked....

Sub cmdCreateLine_Click()

132 • Customizing PowerShape Using Macros with PowerShape

'Set PowerShape into single line mode

pshape.Exec "CREATE LINE SINGLE"

'Enter the origin of the line

pshape.Exec txtX1.Text & " " & txtY1.Text

'Enter the incremental move required

pshape.Exec (txtX2.Text - txtX1.Text) & _

" " & (txtY2.Text - txtY1.Text)

'Set PowerShape back to select mode

pshape.Exec "SELECT"

End Sub

You can split a command into two lines by using an underscore

character "_" as a separator. For example, the following commands:

pshape.Exec (txtX2.Text - txtX1.Text) & _

" " & (txtY2.Text - txtY1.Text)

are the same as the command:

pshape.Exec (txtX2.Text - txtX1.Text) & " " & (txtY2.Text - txtY1.Text)

Getting information from PowerShape

If you can print the value of something in PowerShape, you can also
extract its value using the Evaluate command. The server returns a

VARIANT variable, which means the result can be a number, a
string, or a vector (an array of numbers).

To use the Evaluate method, the syntax is:

V = pshape.Evaluate(value_string)

where value_string is a string containing the object you require the
information on.

For example, you can use the following to extract the number of
selected objects:

V = pshape.Evaluate("selection.number")

For a list of strings for each object, see PowerShape object
information (see page 143).

Autodesk PowerShape Customizing PowerShape • 133

Getting information about a model

Use the pshape.activedocument method to get information about an

open model.

This method is assigned to an object using the following commands:

▪ Dim psmodel As Object

▪ Set psmodel = pshape.activedocument

When you set this object, it is associated with the current active
model. You can use this object to check whether the model is active

or editable using the following properties:

▪ psmodel.active

▪ psmodel.editable

If the model associated with psmodel is active, then the active
property will return true, otherwise it will return false. Similarly, if

the model is editable, then the editable property will return true,
otherwise it will return false.

 All PowerShape commands automatically operate on the
active model and some commands fail if Editable is false.

For example:

You can restrict the commands in your add-in application to one

model. The active document method allows you to observe a model,
you can then check if the model is active.
<script language = "vbscript">

set pshape = window.external

Set psmodel = pshape.activedocument

Private Sub Apply_Click()

If psmodel.active Then

If psmodel.editable Then

MsgBox ("Model editable!")

Else

MsgBox ("Model not editable!")

End If

Else

MsgBox ("Original model not active!")

End If

End Sub

</script>

134 • Customizing PowerShape Using Macros with PowerShape

Showing and hiding the PowerShape window

To show the PowerShape window:

pshape.Visible = True

To hide the PowerShape window:

pshape.Visible = False

Controlling the PowerShape window

You can control the PowerShape window using the WindowState

property. It enables you to specify the following states:

▪ minimise

▪ maximise

▪ normalised

▪ bring to foreground

pshape.WindowState = value

You can input value as a number from the following table:

Value Description

1 This is the state when you can resize and position

the window.

2 Maximise window.

4 Minimise window to the taskbar.

8 Bring window to the foreground.

For example:

The following minimizes the PowerShape window, performs some
commands and then maximizes the window again.

<script language="VBscript">

Set pshape = window.external

// This minimise the PowerShape window,

// carries out some commands, and

// maximises the window again

Sub Minimise_Click()

pshape.windowstate = 1

//Carry out some commands

...

...

Autodesk PowerShape Customizing PowerShape • 135

...

pshape.windowstate = 2

End Sub

</script>

How do I find the version number of PowerShape?

The pshape.Version property returns a string containing the version

number of PowerShape that your application is currently connected

to:

If you are not connected to PowerShape, an error is returned.

How do I know if PowerShape is busy?

The pshape.busy property checks if the connected PowerShape

session is busy:

If PowerShape is busy, this property returns True, otherwise it

returns False.

PowerShape is registered as busy when:

▪ the Import or Export dialogs are open

▪ the Print dialog is open

▪ any PowerShape dialog is displayed

This property is useful when waiting for a user to input a position in

an add-in application. For an example, see Add-in example using
Visual Basic (see page 135).

Add-in example using Visual Basic

This example waits for a point input in PowerShape after clicking a

button called cmdIndicate. It then extracts its coordinates into three
text boxes: txtX, txtY, and txtZ.

<script language="VBscript">

Set pshape = window.external

Private Sub cmdIndicate_Click()

'Send command to ask for user point input

'While waiting for point input, PowerShape

'will be registered as Busy

pshape.Exec "INPUT POINT 'Click Origin' $pos"

'Wait until point has been input

136 • Customizing PowerShape Using Macros with PowerShape

Do

Loop Until pshape.Busy = False

'Extract the position input from the PowerShape

'variable $pos which was used

txtX.Text = pshape.Evaluate("$pos_x")

txtY.Text = pshape.Evaluate("$pos_y")

txtZ.Text = pshape.Evaluate("$pos_Z")

End Sub

</script>

If the do…loop is not included, the program does not wait until the

point is entered. This would result in trying to extract values that

are not set. Try removing this loop to see what happens.

Show and hide dialogs, or suspend graphics during
commands

To access some functions, such as changing the name of an arc,

you need to display the Arc dialog. However, when the application
uses the OLE server, you want to access the functions within it, you

do not normally want to display the dialog.

The following commands control the display of the user interface

and dialogs, and control graphics refreshes, as operations are
carried out:

▪ Use ShowForms property to hide and display the dialogs when

sending OLE commands.

pshape.ShowForms = False

turns off the PowerShape interface updates until the state of the
property is changed.

pshape.ShowForms = True

restarts the display of dialogs.

▪ Use the following commands for one-off control of display of
toolbars:

FORMUPDATE

updates the interface to current state. The state of ShowForms is
unchanged.

FORMUPDATE ON

restarts the display of dialogs (same as ShowForms=True).

FORMUPDATE OFF

Autodesk PowerShape Customizing PowerShape • 137

stops the display of dialogs (same as ShowForms = False).

▪ Use the following commands for one-off control of the display of

the dialogs. The state of ShowForms is unchanged:

DIALOG ON

displays the dialog.

DIALOG OFF

hides the dialog.

▪ Use the following commands to suspend graphics:

REFRESH OFF

suspends graphics while operations are carried out, until

REFRESH ON is executed

REFRESH ON

restarts the graphics

REFRESH ON FORCE

overrides stacked REFRESH OFF commands, to force graphics to

restart

How do I exit PowerShape using my application?

Use the pshape.exit command to exit the PowerShape session you

are connected to.

No confirmation dialog is displayed before PowerShape quits.

Entering positions using OLE application

You can click positions in PowerShape and then read the position

data into your application.

Use the INPUT POINT command from the PowerShape macro
language in a pshape.Exec command.

For example,

pshape.Exec "INPUT POINT 'Click origin' $pos"

When the position is clicked, its coordinates are assigned to the
following variables: $pos_x, $pos_y and $pos_z.

You can access these variables using pshape.Evaluate command.

Example using vbscript:

Sub point_click()

//Send command to ask for user point input

pshape.Exec "INPUT POINT 'Click origin' $pos"

138 • Customizing PowerShape Using Macros with PowerShape

End Sub

Sub point_read()

//Extract the position input from the PowerShape

//variable $pos

document.helix.x_text.value = pshape.Evaluate("$pos_x")

document.helix.y_text.value = pshape.Evaluate("$pos_y")

document.helix.z_text.value = pshape.Evaluate("$pos_z")

End Sub

You cannot combine these commands into one procedure. If you do,

the following happens when you use the application.

▪ When the user clicks the position, the application continues to

the next command line without receiving the $pos data from
PowerShape.

▪ If you pause the application using the pshape.busy property, it

will loop.

Selecting objects

This topic describes how to use selected objects in your application.

You can use the following methods to select objects for use:

▪ Before it is run.

As soon as the application is run, you can use the selection
object information to interrogate the selection and then operate

on the selection.

▪ While it is running.

You need some method of telling the application that the objects
are selected. One way is to add a button to the application. When

you have selected the required objects, click the button to

complete the selection. You can then use the selection object
information (see page 143) to interrogate the selection and

operate on the selection.

For example:

Private Sub Cmd_cyl_Click()

'Check if a single cylinder is selected

If pshape.Evaluate("selection.number") = "1" Then

If pshape.Evaluate("selection.object[0].type") = "Cylinder" Then

Autodesk PowerShape Customizing PowerShape • 139

'Cylinder selected

cylinder = True

End If

Else

'Tell user that 1 cylinder must be selected

'and exit the procedure

MsgBox ("1 cylinder must be selected!")

Exit Sub

End If

pshape.Exec "Let cyl = selection.object[0]"

'Extract the origin of the cylinder and put in X, Y, and Z boxes

Txt_x.Text = pshape.Evaluate("$cyl.origin.x")

Txt_y.Text = pshape.Evaluate("$cyl.origin.y")

Txt_z.Text = pshape.Evaluate("$cyl.origin.z")

End Sub

Tips and tricks

Each command in an application communicates with PowerShape

using the Windows interpreter. Therefore, running each command
results in a short delay. If you have many PowerShape commands,

this delay can last a few seconds.

To minimize the delay where you have a block of PowerShape

commands, use a single execute command. Each line of commands
must be separated by a special character.

You can type the pshape.Exec command as follows:

pshape.Exec "command line 1" & vbCrLf _

& "command line 2" & vbCrLf _

& "command line 3" & vbCrLf _

& "command line 4" & vbCrLf _

& "command line 5" & vbCrLf _

& "command line 6"

Another way to reduce the time taken is to create a macro

containing the block of commands. You can then run the macro in
an Exec command.

140 • Customizing PowerShape Using Macros with PowerShape

Running a HTML-based application

To run an HTML-based application in the PowerShape browser

window:

1 Start PowerShape.

2 Double-click the Command box in the status bar to open the
Command window.

3 In the Command window, type:

browser explorer {path_of_html_file}

where {path_of_html_file} is the path to the file. This displays the

HTML file in the browser window in PowerShape.

You can then use the HTML-based application in PowerShape.

Running an add-in application

When you have created or downloaded an add-in application, you

can run it inside or outside PowerShape. When you run your

application, it begins executing its commands.

To run your application outside PowerShape, do one of the

following:

▪ Use the Run command from the Start menu.

▪ Double click your application's icon in Windows Explorer.

You can also add shortcuts to your application. For further details
see the Microsoft Windows Help.

To run your application inside PowerShape, you can use the Add-in
Manager to create a link to your application. This enables you to run

your application from within PowerShape.

For more information, see Working with add-in applications in

PowerShape (see page 140).

Working with add-in applications in PowerShape

To add an add-in application:

1 Select Home tab > Add-Ins panel > Add-ins > Manage. The Add-

In Manager dialog is displayed.

2 Click the Add button on the dialog.

A new item, called Add-in, is added to the list. This item is
highlighted, ready for you to change its name.

3 In the Title box, type the name of the item. This name appears in
the Home tab > Add-Ins panel > Add-ins menu.

Autodesk PowerShape Customizing PowerShape • 141

4 In the Command box, type the path where the application is

stored. Alternatively, click the Browse button to display the

Open dialog and search for your application .

5 In the Arguments box, type any start-up parameters for the

application.

6 In the Start in box, type the path where you want your
application to run.

7 Click Apply to save your changes. This adds the item to the list of
available macros.

8 Repeat steps 2 - 8 to add more applications.

9 Click Cancel to close the dialog.

 Add-in applications are only available to the person who

added them.

To run an add-in application:

1 Click Home tab > Add-Ins panel > Add-ins.

2 Select the application from the menu.

To change the name of an Add-in:

1 Select Home tab > Add-Ins panel > Add-ins > Manage. The Add-

In Manager dialog is displayed.

2 Select the Add-in application in the Menu contents list.

3 Edit the Title.

4 Click Apply to change the name.

5 Click Cancel to close the dialog.

To re-order the Add-in applications:

1 Select Home tab > Add-Ins panel > Add-ins > Manage. The Add-

In Manager dialog is displayed.

2 Select the item you want to move.

3 Use the Move Item Up and Move Item Down buttons to
reposition the selected item.

4 Click Apply to change the order.

5 Click Cancel to close the dialog.

142 • Customizing PowerShape Using Macros with PowerShape

To remove an Add-in application:

1 Select Home tab > Add-Ins panel > Add-ins > Manage. The Add-

In Manager dialog is displayed.

2 Select the item you want to delete.

3 Click the Delete button.

4 Click Apply to delete the item.

5 Click Cancel to close the dialog.

Autodesk PowerShape Customizing PowerShape • 143

Object information
You can access information about objects using special macro

commands. These commands help you identify precisely which
feature of an object you wish to retrieve and investigate.

For example, the command to access the start coordinates of a line
is:

line[name].start

This retrieves the start coordinates [x, y, z] of the line called name.

For the x coordinate of the start position of this line, the syntax is:

line[name].start.x

In the syntax, name appears (in italics) as object[name]. This is the

name of the object on the left of the square bracket [].

Sometimes, name appears more than once as:

object1[name].object2[name].

name of object 1 does not necessarily equal name of object 2.

 PowerShape allocates a unique identity number to each

object. You can substitute the name of an object for its

unique identity number. For example, you can use either:

line[id 75].start.x, where 75 is the unique identity number of

the line.

or

line[1].start.x, where 1 is the name of the line.

You can find information on the different commands for the

following types of objects:

Arc (page 145)

Level (page 178) Surface (page 207)

Application paths

(page 147)
Line (page 178) Symbol (page 221)

Assembly (page

148)

Mesh (see page

180)
Text (page 223)

Clipboard (page

156)

Mesh Doctor (page

181)

Tolerance (page

225)

Cloud (page 156) Model (page 182) Units (page 225)

144 • Customizing PowerShape Using Macros with PowerShape

Composite curve

(page 157)

Nesting (page 185) Updated (page

225)

Created (page 161) Parameter (page

186)

User (page 227)

Curve (page 162)

Pcurve (page 186) Version (page 227)

Dimension (page

166)

Point (page 188) View (page 228)

Drawing (page 170)

Printer (page 189) Window (page 228)

Drawing view (page

171)

Renderer (page

189)

Workplane (page

229)

Electrode (page

172)

Selection (page

190)

File (page 176) Shareddb (page

197)

Hatch (page 177) Sketcher (page

197)

Language (page

177)
Solid (page 197)

Autodesk PowerShape Customizing PowerShape • 145

Arc commands

The following arc commands are available:

Command Description

arc[name].exists 1 if arc exists; 0 otherwise.

arc[name].id unique identity number of the arc in

the model.

arc[id n].name name of the arc that has the given

identity number.

arc[name].start coordinates [x, y, z] of the start

position of the arc.

arc[name].start.x x coordinate of the start position of

the arc.

arc[name].start.y y coordinate of the start position of

the arc.

arc[name].start.z z coordinate of the start position of

the arc.

arc[name].end coordinates [x, y, z] of the end

position of the arc.

arc[name].end.x x coordinate of the end position of

the arc.

arc[name].end.y y coordinate of the end position of

the arc.

arc[name].end.z z coordinate of the end position of

the arc.

arc[name].mid coordinates [x, y, z] of the mid

position of the arc.

arc[name].mid.x x coordinate of the mid position of

the arc.

arc[name].mid.y y coordinate of the mid position of

the arc.

arc[name].mid.z z coordinate of the mid position of

the arc.

arc[name].radius radius value of the arc.

arc[name].centre coordinates [x, y, z] of the centre

position of the arc.

arc[name].centre.x x coordinate of the centre position

of the arc.

146 • Customizing PowerShape Using Macros with PowerShape

arc[name].centre.y y coordinate of the centre position

of the arc.

arc[name].centre.z z coordinate of the centre position

of the arc.

arc[name].length length of the circumference of the

arc.

arc[name].centre_mark the centre mark type. For each type
of centre marker, the standard

number is given below:

▪ 0 for none

▪ 1 for dot

▪ 2 for cross

arc[name].start_angle start angle of the arc.

arc[name].end_angle end angle of the arc.

arc[name].span_angle span angle of the arc.

arc[name].style.colour colour number of line style used to

draw the arc.

arc[name].style.color color (USA) number of line style

used to draw the arc.

arc[name].style.gap gap of line style used to draw the

arc.

arc[name].style.weight weight of line style used to draw

the arc.

arc[name].style.width width of line style used to draw the

arc.

arc[name].level level on which the arc exists.

Autodesk PowerShape Customizing PowerShape • 147

Application paths command

Command Description

app.paths displays path information for some of
the directories that PowerShape uses,

for example:

Program : C:\Program

Files\Autodesk\PowerShapexxxxx\sys\e

xec\powershape.exe

Document : C:\Program

Files\Autodesk\PSDocxxxxx\help

Pre-config macro : C:\Program
Files\Autodesk\PowerShapexxxxx\lib\m

acro\preconfig.mac

Post-config macro : C:\Program

Files\Autodesk\PowerShapexxxxx\lib\m

acro\postconfig.mac

Login macro : C:\Program

Files\Autodesk\PowerShapexxxxx\lib\m

acro\login.mac

Temp : C:\Documents and

Settings\xxx\Local Settings\Temp

Shareddb : C:\Documents and
Settings\All Users\Shared

Documents\Autodesk\shareddb

Parts : C:\Documents and Settings\All

Users\Shared

Documents\Autodesk\parts

Local config : C:\Documents and
Settings\xxx\Application

Data\PowerShape\

Home : C:\Documents and

Settings\xxx\Application Data\

148 • Customizing PowerShape Using Macros with PowerShape

Assembly commands

Command Description

comassembly component "c_name"

property set "name" "value"

set/change value of property.

comassembly component "c_name"

property remove "name" "value"
remove property.

comassembly component "c_name"
property remove all

remove all properties.

comassembly definition defn_name

thumbnail_view_dir direction

sets the view for the thumbnail

that is displayed in the
component library window.

where:

defn_name is the name of the

component definition
direction is a view direction.

This may have the following
values:
top
bottom
right
left
front
back
iso1
iso2
iso3
iso4

comassembly component c_name
property list

print list of properties and their

values.

component

["c_name"].property["name"].value
check value of property.

component

["c_name"].property["name"].exists
check if the property is
present. Returns 1 if the

component exists, 0 if it does

not exist.

comassembly definition ["c_name"]
property list

print list of properties of
component definition and their

values.

comassembly

component_defn["cd_name"].property["

name"].exists

The command returns 1 if the

component exists. 0 if it does

not exist.

Autodesk PowerShape Customizing PowerShape • 149

comassembly definitions imported
refresh

refreshes imported definitions.
The command is only available

when a model is open.

COMASSEMBLY DEFINITION "definition
name" HIDE_IN_LIBRARY
COMASSEMBLY DEFINITION "definition
name" SHOW_IN_LIBRARY

Hide/display the component

definitions in the component

library window.

150 • Customizing PowerShape Using Macros with PowerShape

Relationships commands

Command Description

relationship['"assembly_name"
"relation_name"'].exists

1 if relationship exists; 0

otherwise.

relationship['"assembly_name"
"relation_name"'].gen_type

returns the type of the

relationship.

0 — plane/plane
1 — point to point

2 — plane/point
3 — point/plane

4 — line/line
5 — line/point

6 — point/line
7 — plane/line

8 — line/plane

relationship['"assembly_name"
"relation_name"'].add_type

returns additional type of the

relationship.

relationship['"assembly_name"
"relation_name"'].distance

distance value.

relationship['"assembly_name"
"relation_name"'].alignment

the alignment of the

relationship.

relationship['"assembly_name"
"relation_name"'].attachment_master

master attachment name of the

relationship.

relationship['"assembly_name"
"relation_name"'].attachment_slave

slave attachment name of the

relationship.

relationship['"assembly_name"
"relation_name"'].component_master

master component name of the

relationship.

relationship['"assembly_name"
"relation_name"'].component_slave

slave component name of the

relationship

relationship['"assembly_name"
"relation_name"'].is_broken

1 if relationship is broken; 0

otherwise.

relationship['"assembly_name"
"relation_name"'].has_distance

1 if the relationship has a

distance parameter; 0

otherwise.

relationship['"assembly_name"
"relation_name"'].tree_name

tree browser name of the

relationship.

Autodesk PowerShape Customizing PowerShape • 151

Attachment commands

Command Description

attachment[name].exists 1 if exists, 0 otherwise.

attachment[name].point returns point of given

attachment

attachment[name].vector vector of the given

attachment

attachment[name].is_default 1 if true, 0 if false.

External attachments on component definitions commands

comassembly create plane_attachment $attachment_name $posx $posy

$posz $vecx $vecy $vecz on definition $def_name

comassembly create plane_attachment $attachment_name $posx $posy

$posz $vecx $vecy $vecz on instance $inst_name

comassembly create line_attachment $attachment_name $posx $posy $posz

$vecx $vecy $vecz on definition $def_name

comassembly create line_attachment $attachment_name $posx $posy $posz

$vecx $vecy $vecz on instance $inst_name

comassembly create point_attachment $attachment_name $posx $posy

$posz on definition $def_name

comassembly create point_attachment $attachment_name $posx $posy

$posz on instance $inst_name

152 • Customizing PowerShape Using Macros with PowerShape

Component commands

Command Description

component[name].min_range_w minimum range of the

component with respect to the

world workplane.

component[name].max_range_w maximum range of the

component with respect to the

world workplane.

component[name].min_range minimum range of the
component with respect to the

active workplane.

component[name].max_range maximum range of the

component with respect to the

active workplane.

component[name].size size of the component.

component[name].exists 1 if component exists; 0

otherwise.

component[name].level level value of component.

component[name].status status of component

0 — free state
1 — undefined

2 — fully defined
3 — over-defined

4 — error position

Autodesk PowerShape Customizing PowerShape • 153

Parameter commands

Command Description

parameter[name].expression parameter expression.

parameter[name].dimension parameter dimension.

parameter[name].dep_items item(s) dependent on the

parameter.

parameter[name].hidden value of the HIDDEN flag.

parameter[name].expfl value of the EXPRESSION

flag.

parameter[name].main value of the MAIN flag.

parameter[name].automatic value of the AUTOMATIC

flag.

parameter.number number of non-hidden and
non-automatic parameters

in the model. This is the
number of entries in the

drop down list in the

Parameter Editor dialog.

154 • Customizing PowerShape Using Macros with PowerShape

Component definitions commands

Command Description

component_defn[name].exists 1 if component definition exists,

0 otherwise

component_defn[name].num_componen
ts

number of components using

the component definition

component_defn[name].is_active 1 if the component definition is

an active assembly; 0 otherwise

component_defn[name].is
sub_assembly

1 if the component definition is

a sub-assembly; 0 otherwise

component_defn[name].num_poi_attach
ments

number of point attachments.

component_defn[name].num_lin_attach
ments

number of linear attachments.

component_defn[name].num_pla_attach
ments

number of plane attachments.

component_defn[name].is_imported 1 if the component definition is

imported; 0 otherwise.

component_defn[name].is_model_defn 1 if component definition is a
model component definition, 0

otherwise.

component_defn[name].num_solids returns number of solids.

component_defn[name].num_axis_attac
hments

number of axis attachments.

component_defn[name].num_attachmen
ts

number of attachments.

component_defn[name].is_parametric 1 if component definition is

parametric; 0 otherwise.

component_defn ['assembly_name'].cog returns the centre of gravity of

the assembly

component_defn
['component_name'].cog

returns the centre of gravity of

the component.

preserve_params on preserves the global parameters

when registering a component

definition.

Autodesk PowerShape Customizing PowerShape • 155

component_defn["name
"].attachment["name "].surface...

where ….. can be any property
of a surface.

For example:

print

component_defn["name"].attachm

ent["name"].surface.name
print

component_defn["name"].attachm

ent["name"].surface.area

Power Features commands

Command Description

component_defn[assembly_name].pfs

ummary.source[source

path].feature[feature_name].target[tar

get_path].exists

returns the stored power
features summary data for

required source, feature, target.

component_defn[assembly_name].pfs

ummary.source[source

path].feature[feature_name].target[tar

get_path].flag

returns the value of power

features summary flag for

required source, feature, target.

TU-coordinates commands

Command Description

comassembly insert attachment

linked_by_tu ["name of defn"] ["name

of attachment"] ["surface's

name"]/surface ID POINT/PLANE t-value
u-value

inserts new attachment linked

to surface by tu-coordinate.

component_defn[name].attachment[na

me].is_linked_by_tu

1 if attachment is linked to

surface by tu-coordinates; 0

otherwise.

component_defn["name"].attachment["n

ame"].t

get t-value stored in

attachment.

component_defn["name"].attachment["n

ame"].u

get u-value stored in

attachment.

156 • Customizing PowerShape Using Macros with PowerShape

Tool Solid command

Command Description

solid['ToolSolid'].hide 1 if the solid is owned by

another item and not displayed;

0 if the solid is hidden.

Clipboard command

Command Description

clipboard.valid 1 if there is something on the

clipboard; 0 otherwise.

Cloud commands

Command Description

cloud[name].level returns the level that the

specified cloud is on.

cloud[name].exists 1 if the cloud exists, 0 otherwise.

cloud[name].id unique identity number of the

cloud in the model.

cloud[id n].name name of the cloud that has the

given identity number n.

cloud[name].style.colour colour number of line style used

to draw the cloud.

cloud[name].style.color color (USA) number of line style

used to draw the cloud.

cloud[name].style.gap gap of line style used to draw the

cloud.

cloud[name].style.weight weight of line style used to draw

the cloud.

cloud[name].style.width width of line style used to draw

the cloud.

Autodesk PowerShape Customizing PowerShape • 157

Composite curve commands

Commands for composite curves can take the following forms:

▪ compcurve[name]……

▪ composite curve[name]…..

To avoid duplication, the format compcurve[name] is used throughout.

Command Description

compcurve[name].exists 1 is the composite curve exists; 0

otherwise.

compcurve[name].id unique identity number of the

composite curve in the model.

compcurve[id n].name name of the composite curve that has

the given identity number.

compcurve[name].description the description of the curve is stored

in the database.

compcurve[name].closed 1 if the composite curve is closed; 0

otherwise.

compcurve[name].item.number number of items that make up the

composite curve.

compcurve[name].length length of the composite curve.

compcurve[name].length_between(a;

b)

length along the composite curve

between key points a and b.

compcurve[name].area area of the composite curve.

If the composite curve is:

▪ closed and planar, the area is the

enclosed area.

▪ open, it is closed with a straight

line for the area measurement.

▪ non-planar, PowerShape tries to

construct a plane from the first few
items. If this fails, the current

principal plane is used. The
composite curve is projected onto

the plane and the area is measured

from the projected curve.

compcurve[name] fillets the composite curve, where
name is the name of the composite

curve.

compcurve[name].level level on which the composite curve

exists.

158 • Customizing PowerShape Using Macros with PowerShape

Points in composite curve commands

Command Description

compcurve[name].point.number number of points in the

composite curve.

compcurve[name].point[number] coordinates [x, y, z] of the

composite curve's point.

compcurve[name].point[number].x x coordinate of the composite

curve's point.

compcurve[name].point[number].y y coordinate of the composite

curve's point.

compcurve[name].point[number].z z coordinate of the composite

curve's point.

compcurve[name].point[number].entry_
tangent

unit vector of the tangent

direction entering the point.

compcurve[name].point[number].entry_
tangent.x

x value of the unit vector that
defines the tangent direction

entering the point.

compcurve[name].point[number].entry_
tangent.y

y value of the unit vector that

defines the tangent direction

entering the point.

compcurve[name].point[number].entry_
tangent.z

z value of the unit vector that

defines the tangent direction

entering the point.

compcurve[name].point[number].exit_ta
ngent

unit vector of the tangent

direction leaving the point.

compcurve[name].point[number].exit_ta
ngent.x

x value of the unit vector that
defines the tangent direction

leaving the point.

compcurve[name].point[number].exit_ta
ngent.y

y value of the unit vector that

defines the tangent direction

leaving the point.

compcurve[name].point[number].exit_ta
ngent.z

z value of the unit vector that
defines the tangent direction

leaving the point.

compcurve[name].point[number].entry_
tangent.azimuth

azimuth angle of the tangent

entering the point.

compcurve[name].point[number].entry_
tangent.elevation

elevation angle of the tangent

entering the point.

compcurve[name].point[number].exit_ta
ngent.azimuth

azimuth angle of the tangent

leaving the point.

Autodesk PowerShape Customizing PowerShape • 159

compcurve[name].point[number].exit_ta
ngent.elevation

elevation angle of the tangent

leaving the point.

compcurve[name].point[number].entry_
magnitude

magnitude entering the point.

compcurve[name].point[number].exit_m
agnitude

magnitude leaving the point.

Bounding box around composite curve commands

Command Description

compcurve[name].size size of the bounding box around

the composite curve.

compcurve[name].size.x size in the x direction of the

bounding box around the

composite curve.

compcurve[name].size.y size in the y direction of the
bounding box around the

composite curve.

compcurve[name].size.z size in the z direction of the

bounding box around the

composite curve.

compcurve[name].min_range minimum coordinates of the
bounding box around the

composite curve.

compcurve[name].min_range.x x coordinate of the minimum
coordinates of the bounding box

around the composite curve.

compcurve[name].min_range.y y coordinate of the minimum

coordinates of the bounding box

around the composite curve.

compcurve[name].min_range.z z coordinate of the minimum
coordinates of the bounding box

around the composite curve.

compcurve[name].max_range maximum coordinates of the

bounding box around the

composite curve.

compcurve[name].max_range.x x coordinate of the maximum
coordinates of the bounding box

around the composite curve.

160 • Customizing PowerShape Using Macros with PowerShape

compcurve[name].max_range.y y coordinate of the maximum
coordinates of the bounding box

around the composite curve.

compcurve[name].max_range.z z coordinate of the maximum

coordinates of the bounding box

around the composite curve.

Centre of gravity of composite curve commands

Command Description

compcurve[name].cog coordinates [x, y, z] of the centre

of gravity of the composite curve.

compcurve[name].cog.x x coordinate of the centre of

gravity of the composite curve.

compcurve[name].cog.y y coordinate of the centre of

gravity of the composite curve.

compcurve[name].cog.z z coordinate of the centre of

gravity of the composite curve.

Style of composite curve commands

Command Description

compcurve[name].style.colour colour number of line style used

to draw the composite curve.

compcurve[name].style.color color (USA) number of line style

used to draw the composite

curve.

compcurve[name].style.gap gap of line style used to draw the

composite curve.

compcurve[name].style.weight weight of line style used to draw

the composite curve.

compcurve[name].style.width width of line style used to draw

the composite curve.

Autodesk PowerShape Customizing PowerShape • 161

Created commands

Use this group of commands to query which objects were created as a

result of the last operation. These objects are accessed from the
creation list.

Command Description

created.exists 1 if at least one item is in the

creation list; 0 otherwise.

created.number number of items in the creation list.

created.clearlist clears the creation list.

created.object[number] object type and its name in the

creation list. For example, Line[4],

Arc[1].

If n items are created, then number
is the item's number in the creation

list.

created.object[number].syntax object information as specified by the
syntax for object

created.object[number]. The syntax
you can use is given under each type

of object.

For example, if created.object[1] is

Line[2], then you can specify the
syntax as any syntax after

Line[name]. For further details see

Line (see page 178) .

For the x coordinate of the start of
the line, you can use

created.object[1].start.x where start.x is

the syntax.

162 • Customizing PowerShape Using Macros with PowerShape

created.type[number] type of an object in the creation list.

For example, Line, Arc.

If n objects are created, then number
is the item's number in the creation

list. number is from 0 to (n-1).

When you compare the type of an

object with a text string, you must
use the correct capitalisation. For

example, to check that
created.type[0] is a composite curve,

you must use:

created.type[0] == 'Composite Curve'

and not:

created.type[0] == 'Composite curve'

created.type[0] == 'composite curve'

created.name[number] name of an item in the creation list.

If n items are created, then number

is the item's number in the creation

list.

In all cases, number is from 0 to (n-

1).

Curve commands

Command Description

curve[name].exists 1 if curve exists; 0 otherwise.

curve[name].id unique identity number of the curve

in the model.

curve[id n].name name of the curve that has the given

identity number.

curve[name].description the description of the curve is stored

in the database.

curve[name].type checks the curve and returns one of

the following strings:

▪ Bézier

▪ Bspline

curve[name].number number of points in the curve.

curve[name].closed 1 if the curve is closed; 0 otherwise.

Autodesk PowerShape Customizing PowerShape • 163

curve[name].start start coordinates [x, y, z] of the

curve.

curve[name].start.x x coordinate of the start of the

curve.

curve[name].start.y y coordinate of the start of the

curve.

curve[name].start.z z coordinate of the start of the curve.

curve[name].end end coordinates [x, y, z] of the

curve.

curve[name].end.x x coordinate of the end of the curve.

curve[name].end.y y coordinate of the end of the curve.

curve[name].end.z z coordinate of the end of the curve.

curve[name].length length of the curve.

curve[name].length_between(a; b) length along the curve between key

points a and b.

curve[name].area area of the curve.

If the curve is:

▪ closed and planar, the area is the

enclosed area.

▪ open, it is closed with a straight

line for the area measurement.

▪ non-planar, the curve is projected
onto the current principal plane

and the area is measured from

the projected curve.

curve[name].size size of the bounding box around the

curve.

curve[name].size.x size in the x direction of the

bounding box around the curve.

curve[name].size.y size in the y direction of the

bounding box around the curve.

curve[name].size.z size in the z direction of the

bounding box around the curve.

curve[name].min_range minimum coordinates of the

bounding box around the curve.

curve[name].min_range.x x coordinate of the minimum

coordinates of the bounding box

around the curve.

164 • Customizing PowerShape Using Macros with PowerShape

curve[name].min_range.y y coordinate of the minimum
coordinates of the bounding box

around the curve.

curve[name].min_range.z z coordinate of the minimum

coordinates of the bounding box

around the curve.

curve[name].max_range maximum coordinates of the

bounding box around the curve.

curve[name].max_range.x x coordinate of the maximum
coordinates of the bounding box

around the curve.

curve[name].max_range.y y coordinate of the maximum

coordinates of the bounding box

around the curve.

curve[name].max_range.z z coordinate of the maximum

coordinates of the bounding box

around the curve.

curve[name].cog coordinates [x, y, z] of the centre of

gravity of the curve.

curve[name].cog.x x coordinate of the centre of gravity

of the curve.

curve[name].cog.y y coordinate of the centre of gravity

of the curve.

curve[name].cog.z z coordinate of the centre of gravity

of the curve.

curve[name].style.colour colour number of line style used to

draw the curve.

curve[name].style.color color (USA) number of line style used

to draw the curve.

curve[name].style.gap gap of line style used to draw the

curve.

curve[name].style.weight weight of line style used to draw the

curve.

curve[name].style.width width of line style used to draw the

curve.

curve[name].level level on which the curve exists.

Autodesk PowerShape Customizing PowerShape • 165

Points in a curve commands

Command Description

curve[name].point[number] coordinates [x, y, z] of the point.

curve[name].point[number].x x coordinate of the point.

curve[name].point[number].y y coordinate of the point.

curve[name].point[number].z z coordinate of the point.

curve[name].point[number].selected 1 if the point is selected; 0

otherwise.

curve[name].point[number].dependent 1 if the point is dependent; 0

otherwise.

curve[name].point[number].entry_tang
ent

unit vector of the tangent direction

entering the point.

curve[name].point[number].entry_tang
ent.x

x value of the unit vector which
defines the tangent direction

entering the point.

curve[name].point[number].entry_tang
ent.y

y value of the unit vector which

defines the tangent direction

entering the point.

curve[name].point[number].entry_tang
ent.z

z value of the unit vector which
defines the tangent direction

entering the point.

curve[name].point[number].exit_tange
nt

unit vector of the tangent direction

leaving the point.

curve[name].point[number].exit_tange
nt.x

x value of the unit vector which

defines the tangent direction

leaving the point.

curve[name].point[number].exit_tange
nt.y

y value of the unit vector which

defines the tangent direction

leaving the point.

curve[name].point[number].exit_tange
nt.z

z value of the unit vector which
defines the tangent direction

leaving the point.

curve.selected.points Returns the number of currently

selected points on a wireframe

curve (an INT).

compcurve.selected.points Returns the number of currently
selected points on a wireframe

composite curve (an INT).

166 • Customizing PowerShape Using Macros with PowerShape

curve[name].point[number].entry_tang
ent.azimuth

azimuth angle of the tangent

entering the point.

curve[name].point[number].entry_tang
ent.elevation

elevation angle of the tangent

entering the point.

curve[name].point[number].exit_tange
nt.azimuth

azimuth angle of the tangent

leaving the point.

curve[name].point[number].exit_tange
nt.elevation

elevation angle of the tangent

leaving the point.

curve[name].point[number].entry_mag
nitude

magnitude entering the curve's

point.

curve[name].point[number].exit_magni
tude

magnitude leaving the curve's

point.

Dimension commands

The following groups of dimension commands are available:

Command Description

dimension[name].exists 1 if dimension exists; 0 otherwise.

dimension[name].id unique identity number of the

dimension in the model.

dimension[id n].name name of the dimension that has the

given identity number.

dimension[name].value value of dimension.

dimension[name].diameter 1 if the dimension measures a

diameter; 0 otherwise.

dimension[name].leader.style style name of the leader of the

dimension

dimension[name].leader.trim 1 if the option Trim leader to text is
on; 0 otherwise. The Trim leader to

text option trims the leader to the

position of the dimension annotation.

Autodesk PowerShape Customizing PowerShape • 167

dimension[name].leader.keep 1 if the option Internal leader on small

dimensions is on; 0 otherwise.

When you have a dimension with

leaders placed on either side of the
dimension, the Internal leader on

small dimensions option adds a line

so that no gap exists between the

arrows of the leader.

dimension[name].leader.marksize size of the mark on the leader of the

dimension.

dimension[name].leader.marktype standard number indicating the type
of marker. For each type of marker,

the standard number is given below.

▪ Dot — 1

▪ Slash — 10

▪ Cross — 5

▪ Filled circle — 11

▪ Circle — 4

▪ Filled arrow — 9

▪ Arrow — 8

dimension[name].annotation.style style name of the annotation of the

dimension.

dimension[name].annotation.height height of the annotation.

dimension[name].annotation.embed 1 if the annotation is embedded; 0

otherwise.

dimension[name].annotation.horizontal 1 if the annotation is set to

horizontal; 0 otherwise.

dimension[name].annotation.proportio
nal

1 if the annotation is set to

proportional; 0 otherwise.

dimension[name].annotation.italic 1 if the annotation is set to italic; 0

otherwise.

dimension[name].annotation.gap gap between the text and the leader.

dimension[name].annotation.fraction 1 if decimal part of the dimension is

set to a fraction; 0 otherwise.

dimension[name].annotation.denom denominator of the fraction.

168 • Customizing PowerShape Using Macros with PowerShape

dimension[name].annotation.anglefor
mat

number to indicate the type of angle
format. For each type of angle

format, the number is given below:

▪ 1 — Decimal

▪ 2 — Degrees

▪ 3 — Degrees - Minutes

▪ 4 — Degrees - Minutes - Seconds

dimension[name].annotation.decimal number of decimal places of the

dimension.

dimension[name].witness.style style name of the witness line of the

dimension.

dimension[name].tolerance.style style name of the tolerance of the

dimension.

dimension[name].tolerance.value1 value 1 of the tolerance range.

dimension[name].tolerance.value2 value 2 of the tolerance range.

dimension[name].tolerance.height height of the tolerance text.

dimension[name].tolerance.alignment number to indicate the type of
tolerance alignment. For each type of

tolerance alignment, the number is

given below:

▪ 1 — alignment

▪ 2 — alignment

▪ 3 — alignment

dimension[name].tolerance.decimal number of decimal places of the

tolerance.

dimension[name].style.colour colour number of line style used to

draw the dimension.

dimension[name].style.color color (USA) number of line style used

to draw the dimension.

dimension[name].style.gap gap of line style used to draw the

dimension.

dimension[name].style.weight weight of line style used to draw the

dimension.

dimension[name].style.width width of line style used to draw the

dimension.

dimension[name].level level on which the dimension exists.

There are also commands to retrieve information on the position of the

dimension (see page 169).

Autodesk PowerShape Customizing PowerShape • 169

Position of the dimension commands

A dimension is specified by its text position and various other positions,
depending on the dimension type. The text position (position.text) is at the

centre of the text. There are three other possible positions: position.one,
position.two and position.three.

A linear dimension is specified as shown below. It has a text position

(position.text), position.one and position.two

An angular dimension has a text position (position.text), position.one,

position.two and position.three.

A radial dimension has a text position (position.text), position.one,

position.two and position.three.

Command Description

dimension[name].position.text coordinates [x, y, z] of the position of

the text of the dimension.

dimension[name].position.one coordinates [x, y, z] of position.one of

the dimension.

170 • Customizing PowerShape Using Macros with PowerShape

dimension[name].position.two coordinates [x, y, z] of position.two of

the dimension.

dimension[name].position.three coordinates [x, y, z] of position.three

of the dimension.

Drawing commands

The following drawing commands are available:

Command Description

drawing[name].exists 1 if drawing exists; 0 otherwise.

drawing[name].description description of the drawing.

drawing.number the number of drawings.

drawing[name].id unique identity number of the

drawing.

drawing[id n].name name of the drawing that has the

given identity number.

drawing.name[index] returns a drawing name where index
is greater than 0 and less than or

equal to the number of drawings.

drawing[name].width width of the drawing.

drawing[name].height height of the drawing.

drawing[name].template_model name of the model containing the

template_drawing used by the

drawing.

drawing[name].template_drawing name of the template drawing used

by the drawing.

drawing[name].tmpl_model_invalid 1 if the model, containing the
template drawing used by the

drawing, exists in the database; 0

otherwise.

drawing[name].tmpl_drawing_invalid 1 if the template drawing, used by the

drawing, exists; 0 otherwise.

drawing[name].views number of views on the drawing.

drawing[name].view.name[N] name of the Nth view on the drawing,
where

0 < N <= number of views.

drawing[name].no_of_items number of objects on the drawing.

drawing[name].view[view_name].needs
updating

1 if the view needs updating; 0

otherwise.

Autodesk PowerShape Customizing PowerShape • 171

Drawing view commands

Drawing view commands are only available in conjunction with Drawing

commands as indicated:

Command Description

drawing[name].view[name].xmin_extent x coordinate of the minimum extent

of the view on the drawing.

drawing[name].view[name].xmax_extent x coordinate of the maximum extent

of the view on the drawing.

drawing[name].view[name].ymin_extent y coordinate of the minimum extent

of the view on the drawing.

drawing[name].view[name].ymax_extent y coordinate of the maximum extent

of the view on the drawing.

drawing[name].view[name].scale scale of the view.

drawing[name].view[name].origin coordinates [x, y, z] of the origin of

the view.

drawing[name].view[name].no_of_items number of objects in the view.

drawing[name].view[name].transform[nu

mber]

the elements of the rotation matrix

and the translation vector of the view

in relation to the model space.

The value of number determines the

elements:

▪ 0, 1, 2 specifies the elements of

the first row of the rotation

matrix.

▪ 4, 5, 6 specifies the elements of
the second row of the rotation

matrix.

▪ 7, 8, 9 specifies the elements of

the third row of the rotation

matrix.

▪ 12, 13, 14 specifies elements of

the translation vector.

drawing[drawing_name].view[view_nam

e].drawing_to_view[x ; y ; z]

drawing[drawing_name].view[view_nam

e].drawing_to_world[x ; y ; z]

drawing[drawing_name].view[view_nam

e].view_to_drawing[x ; y ; z]

drawing[drawing_name].view[view_nam

e].world_to_drawing[x ; y ; z]

Use these variables to convert

between drawing, view and world

space.

172 • Customizing PowerShape Using Macros with PowerShape

drawing[drawing_name].view[view_nam

e].drawing_to_view[x ; y ; z].x

Use X/Y/Z modifiers with the above
variables to return the x-ordinate of

the converted point.

Electrode commands

The following electrode commands are available:

Command Description

electrode.list
electrode.list.all

list of all electrode names.

electrode.list.originals list of electrode names, excluding

copies.

electrode.list.copies list of electrode names of electrode

copies.

electrode[name].datum coordinates [x, y, z] of the origin of

the electrode's datum.

electrode[name].datum.x x coordinate of the origin of the

electrode's datum.

electrode[name].datum.y y coordinate of the origin of the

electrode's datum.

electrode[name].datum.z z coordinate of the origin of the

electrode's datum.

electrode[name].blank.name name of the electrode's blank.

electrode[name].blank.rectangular 1 if the blank is rectangular; 0 if it is

circular.

electrode[name].blank.length length of the electrode's blank.

electrode[name].blank.width width of the electrode's blank.

electrode[name].blank.diameter diameter of the electrode's blank.

electrode[name].blank.height height of the electrode's blank.

electrode[name].blank.material material of the electrode's blank.

electrode[name].holder.catalogue name of holder catalogue.

electrode[name].holder.base name of base holder.

electrode[name].holder.edm name of additional EDM holder.

electrode[name].holder.machining name of additional Machining holder.

electrode[name].holder.<base|machinin
g|edm>.items

electrode[name].holder.<base|machinin
g|edm>.item.number

number of items that make up the

base, machining or edm holder.

Autodesk PowerShape Customizing PowerShape • 173

electrode[name].holder.<base|machinin
g|edm>.item(n)
electrode[name].holder.<base|machinin
g|edm>.item(n).name

name of nth item that makes up

base, machining or edm holder.

electrode[name].holder.<base|machinin
g|edm>.item(n).id

ID of nth item that makes up base,

machining or edm holder.

electrode[name].holder.<base|machinin
g|edm>.item(n).type

type of nth item that makes up base,

machining or edm holder (Solid or

Symbol).

electrode[name].burn_region.surfaces Returns the number of surfaces in an

electrode's burn region.

electrode[name].burn_region.attached Checks if a new burn region has
been attached to an electrode.

Returns 1 for electrodes that are part

of a multi-impression burn.

electrode[name].burn_region.surface[n]

Zero-indexed access to the surfaces
in an electrodes burn region. Normal

surface attributes can be accessed,
for example:

electrode[name].burn_region.surface[0
].id.

electrode[name].quantity.rough the number of roughers in the

electrode family.

electrode[name].quantity.semi the number of semi-finishers in the

electrode family.

electrode[name].quantity.finish the number of finishers in the

electrode family.

electrode[name].undersize.rough the undersize of the rougher (in the

current units).

electrode[name].undersize.semi the undersize of the semi-finisher (in

the current units).

electrode[name].undersize.finish the undersize of the finisher (in the

current units).

electrode[name].frame.exists returns 1 if the electrode has a

frame; 0 otherwise

electrode[name].frame.length returns the length of electrode

frame.

electrode[name].frame.width returns the width of electrode frame.

electrode[name].frame.height returns the height of electrode

frame.

174 • Customizing PowerShape Using Macros with PowerShape

electrode[name].frame.has_chamfer returns 1 if the electrode frame has a

chamfer; 0 otherwise.

electrode[name].frame.chamfer_size returns the size of chamfer on the

electrode frame.

There are also General (see page 174) Electrode commands.

 In some electrode commands, you can specify the name of the

electrode. For example: electrode[name].exists.

In these commands, you can also enter index n, where n is the nth
electrode created in the model.

For example, the following expression checks if the first electrode
exists: electrode[index 1].exists.

General Electrode commands

Command Description

electrode.number number of electrodes in the model.

electrode[name].exists 1 if the electrode exists; 0 otherwise.

electrode[name].id identity number of the electrode in

the model.

electrode[id n].name name of the electrode that has the

given identity number.

electrode[name].level level on which the electrode exists.

electrode[name].rotation the rotation of the electrode from the

workplane of the electrode.

electrode[name].sparkgap spark gap of the electrode.

electrode[name].burn_depth distance in z from the bottom of the

electrode to the top of the burn

region.

electrode[name].surface_finish the surface finish selected on the
electrode family page of the wizard

for that electrode.

electrode[projected_area] area of the burn region as projected

onto the XY plane.

Autodesk PowerShape Customizing PowerShape • 175

electrode[name].solid.solid_attributes attributes of the solid depending on
the value of solid_attributes. For

example:

electrode[name].solid.volume

volume of the solid. For a complete
list of attributes, see Solid

commands (see page 197).

electrode[name].base_height height of the base of the electrode

can be defined using the variable.

electrode[name].active_solid the solid that the electrode was

extracted from.

electrode[name].active_workplane the workplane that was active when
the electrode was created. (These

are only available for electrodes that
are extracted, not those that are

copied).

electrode[name].fillins

electrode[name].fillin.number

number of fill-in surfaces associated

with this electrode.

electrode[name].fillin(n)

electrode[name].fillin(n).name

name of nth fillin surface for this

electrode (n starts at 1).

electrode[name].fillin(n).id ID of nth fillin surface for this

electrode.

electrode[name].details(1) the first additional description field

for the electrode. By default this is

the "Job No." entry.

electrode[name].details(2) the second additional description
field for the electrode. By default this

is the "Works Order" entry.

electrode[name].details(3) the third additional description field

for the electrode. By default this is

the "Description" entry.

electrode.number.all number of all electrodes.

electrode.number.originals number of electrodes, excluding

copies.

electrode.number.copies number of electrode copies.

electrode[name].is_copy 1 if an electrode is a copy. 0 if not a

copy.

electrode[name].parent the name of parent if the electrode is

a copy.

electrode[name].copies the number of copies of this

electrode.

176 • Customizing PowerShape Using Macros with PowerShape

electrode[name].angle.a angle of rotation of the extraction

vector in XY.

electrode[name].angle.b angle from the vertical.

electrode[name].angle.c rotation around the vector defined by

a and b.

electrode[name].burn_vector vector representing the extraction

direction.

electrode[name].vector_clearance distance the electrode is cleared
from the part along the burn vector

before it is moved in Z.

File commands

Command Description

file move file "pathname_from"

"pathname_to"

move a file to another location.

file copy file "pathname_from"

"pathname_to"

copy a file to another location.

file move dir "pathname_from]

[pathname_to"

move a directory to another location.

file copy dir "pathname_from"

"pathname_to"
copy a directory to another location.

file create dir "pathname" create a new directory.

file[name].exists 1 if file exists; 0 otherwise.

file[name].readable 1 if file is readable; 0 otherwise.

file[name].writeable 1 if file is writeable; 0 otherwise.

file[name].size returns file size in bytes.

file[name].mode 0 if file does not exists

1 if file

2 if directory.

directory[name].exists 1 if directory exists; 0 otherwise.

directory[name].readable 1 if directory is readable; 0 otherwise.

directory[name].writeable 1 if directory is writeable; 0

otherwise.

directory[name].mode 0 is directory does not exists

1 if file

2 if directory.

directory['pathname'].files['pattern'] returns a list of files in a directory.

Autodesk PowerShape Customizing PowerShape • 177

Hatch commands

The following hatch commands are available:

Command Description

hatch[name].exists 1 if drawing exists; 0 otherwise.

hatch[name].id unique identity number of the hatch in

the model.

hatch[id n].name name of the hatch that has the given

identity number.

hatch[name].cross 1 if hatch is crossed; 0 otherwise.

hatch[name].fill 1 if hatch is filled; 0 otherwise.

hatch[name].angle first angle of hatch.

hatch[name].angle1 first angle of hatch.

hatch[name].angle2 second angle of hatch.

hatch[name].spacing spacing of hatch.

hatch[name].boundaries number of boundaries enclosing the

hatch.

hatch[name].style.colour colour number of line style used to

draw the hatch.

hatch[name].style.color color (USA) number of line style used to

draw the hatch.

hatch[name].style.gap gap of line style used to draw the

hatch.

hatch[name].style.weight weight of line style used to draw the

hatch.

hatch[name].style.width width of line style used to draw the

hatch.

hatch[name].level level on which the hatch exists.

Language command

Command Description

print language.summary the language and system locale settings

being used by PowerShape.

178 • Customizing PowerShape Using Macros with PowerShape

Level commands

Command Description

level.number the number of used levels.

level[number].used 1 if the level is used; 0 otherwise.

level[id n].name name of the level that has the given

identity number.

level[number].active 1 if the level is on; 0 otherwise.

level.filtered.number number of filtered levels.

level.filtered[n].index level number for the nth filtered level,

where n is an integer between 0 to

(level.filtered.number)-1.

level.filtered.used 1 if the used filter is set; 0 otherwise.

level.filtered.named 1 if the named filter is set; 0 otherwise.

level.filtered.on 1 if the on filter is set; 0 otherwise.

Line commands

The following line commands are available:

Command Description

line[name].start start coordinates [x, y, z] of the line.

line[name].start.x x coordinate of the start of the line.

line[name].start.y y coordinate of the start of the line.

line[name].start.z z coordinate of the start of the line.

line[name].end end coordinates [x, y, z] of the line.

line[name].end.x x coordinate of the end of the line.

line[name].end.y y coordinate of the end of the line.

line[name].end.z z coordinate of the end of the line.

line[name].exists 1 if line exists; 0 otherwise.

line[name].id unique identity number of the line in the

model.

line[id n].name name of the line that has the given

identity number.

line[name].length length of the line.

line[name].style.colour colour number of line style used to draw

the line.

Autodesk PowerShape Customizing PowerShape • 179

line[name].style.color color (USA) number of line style used to

draw the line.

line[name].style.gap gap of line style used to draw the line.

line[name].style.width width of line style used to draw the line.

line[name].level level on which the line exists.

item[name].style.pattern.start_mark

item[name].style.pattern.end_mark

name of the mark type at the start or end

of the leader line item.

There are also commands to retrieve information on the angles of a line (see

page 179).

Angles of a line commands

Use the following variables to find the apparent and elevation angles of a line

(these are the same values shown on the line editing form).

The commands return an absolute value, with the angle in the current units:

degrees or radians.

Command Description

line[xxx].apparent returns the apparent angle of the line
using the current working plane of the

currently active workspace

line[xxx].elevation returns the angle of elevation that the
line makes using the current principal

plane of the currently active

workspace.

Optionally, you can specify which principal plane to use:

▪ line[xxx].apparent.xy

▪ line[xxx].apparent.yz

▪ line[xxx].apparent.zx

▪ line[xxx].elevation.xy

▪ line[xxx].elevation.yz

▪ line[xxx].elevation.zx

180 • Customizing PowerShape Using Macros with PowerShape

Mesh commands

Command Description

mesh[name].level returns the level that the specified

mesh is on.

mesh[name].exists 1 if the mesh exists, 0 otherwise.

mesh[name].id unique identity number of the mesh in

the model.

mesh[id n].name name of the mesh that has the given

identity number n.

mesh[name].style.colour colour number of line style used to

draw the mesh.

mesh[name].style.color color (USA) number of line style used

to draw the mesh.

mesh[name].style.gap gap of line style used to draw the

mesh.

mesh[name].style.weight weight of line style used to draw the

mesh.

mesh[name].style.width width of line style used to draw the

mesh.

mesh[name].area area of mesh.

mesh[name].volume volume of mesh.

Autodesk PowerShape Customizing PowerShape • 181

Mesh Doctor commands

 mesh_doctor can be used instead of meshdoctor for the following

commands.

Command Description

meshdoctor.stage prints the current stage: 1,2,3 or 4.

meshdoctor.[fault

group].[fault.state].number

returns the total number of faults of

the given group, in the given state.

meshdoctor.[fault

group].[fault.state].num_selected

returns the total number of faults of

the given group, in the given state,

that are currently selected.

meshdoctor.[fault

group].[fault.state][n].[info]

reports information on the nth fault
of the given group, in the given

state.

meshdoctor.[fault].available_fixes.nu
mber

returns the total number of

available fixes for the given fault

type.

meshdoctor.[fault].available_fixes[n].
description

returns a description of the nth fix

available for the given fault type.

meshdoctor.[fault].available_fixes[n].
name

returns the name of the nth fix

available for the given fault type.

meshdoctor.[fault].[fault.state].numb
er

returns the total number of faults of
the given type, that are in the given

state.

meshdoctor.[fault].[fault.state].num_
selected

returns the number of selected
faults of the given type, that are in

the given state.

meshdoctor.[fault].[fault.state][n].[inf

o]

reports information on the nth fault

of the given type, that is in the

given state.

meshdoctor.[tolerance.name].toleran
ce

returns the tolerance value.

meshdoctor [tolerance.name]

tolerance [number]

sets the specified tolerance to the
value given by number.

This command can be called also

outside the Mesh Doctor if a mesh is

selected.

[fault group] can be: all (all faults), or topological (anything that is not a gap,
partial gap, hole or intersection).

182 • Customizing PowerShape Using Macros with PowerShape

[fault.state] can be: current_faults (the currently detected faults),
fixed_faults (faults fixed since the wizard was started), or selected_faults

(the currently selected faults).

[info] can be: selected (1 if the item is selected; 0 if not), visible (1 if the
item is visible; 0 if not), details (name of the item), fixes.number (total

number of possible fixes for this fault), fixes[n].name (name of nth fix for

this fault), or fixes[n].description (description of the nth fix for this fault).

[fault] can be: duplicate_node/vertex (two nodes or vertices closer than

tolerance), impossible_edge (an edge with more than 2 triangles attached),
reversed_edge (an edge with triangles attached that have different

orientations), gap (a narrow hole, or a hole with a narrow section), hole, or
intersection (overlapping triangles).

[tolerance.name] can be: gap_width (the maximum width for a narrow hole

to be considered a gap), split_edge (a number >=0 and <1 that is used by
the algorithm that classifies narrow holes into gaps or holes), zero_area

(triangles whose area is smaller than this value are considered a fault),
hole_fill (the grid spacing to use when filling a hole), or vertex_distance

(vertices that are closer than this value are considered duplicate).

Model commands

The following groups of model commands are available:

Command Description

model.selected name of the selected model.

model[name].selected 1 if the named model is selected; 0

otherwise.

model[name].exists 1 if the named model exists; 0

otherwise.

model[name].id unique identity number of the model.

model[id n].name name of the model that has the given

identity number.

model[name].open 1 if the named model is open; 0

otherwise.

Autodesk PowerShape Customizing PowerShape • 183

model.lines
model.arcs
model.curves
model.compcurves
model.surfaces
model.solids
model.workplanes
model.dimensions
model.hatches
model.symbols
model.texts
model.pcurves
model.boundaries
model.components

number of objects in model

model.filesize the size (in bytes) of the selected

model's database.

model[name].filesize the size (in bytes) of the named

model's database. Note, if the model

is not open, model[name].filesize is

assigned -1.

The collective size of the model's files
in its directory will be about 500 bytes

larger. The size can be even larger if
untruncated files exist. Use File > Info

> Compress Model to truncate files as
well as reducing the actual database

size too.

model[name].open.read 1 if the named model has read

access; 0 otherwise.

model[name].open.write 1 if the named model has write

access; 0 otherwise.

model.path pathname of the currently selected

model.

model[name].path pathname of the named model

For example, model[mouse].path

returns the pathname

C:\Users\Public\Documents\Autodesk\Parts\

m142.

model.locked 1 if the currently selected model is

locked; 0 otherwise.

model[name].locked 1 if the named model is locked; 0

otherwise.

model.changed 1 if the currently selected model has

changed; 0 otherwise.

184 • Customizing PowerShape Using Macros with PowerShape

model[name].changed 1 if the named model has changed; 0

otherwise.

model.corrupt 1 if the currently selected model is

corrupted; 0 otherwise.

model[name].corrupt 1 if the named model is corrupted; 0

otherwise.

model.file_doctor.all number of errors found for general

attributes, trimming, arcs and names.

model.file_doctor.gen_attributes number of errors found for general

attributes.

model.file_doctor.deps number of errors found for

dependencies.

model.file_doctor.trimming number of errors found for trimming.

model.file_doctor.arcs number of errors found for arcs.

model.file_doctor.names number of errors found for names.

model.file_doctor.solids returns the number of errors found by

the File Doctor solid checker.

model.file_doctor.orphans returns the number of errors found by
the File Doctor orphaned items

checker.

model.version current model version

model.previous_version version of model prior to upgrade

when the model was opened

model.upgraded 1 if the model was upgraded on

opening, 0 otherwise.

Autodesk PowerShape Customizing PowerShape • 185

Nesting

The following nesting commands are available:

Command Description

nestingex.num_parts number of unique Parts.

nestingex.num_sheets number of unique Sheets.

nestingex.item[object name].exists 1 if Part or Sheet with the given

name exists; 0 if not.

For example: nestingex.item["Solid

12"].exists

nestingex.item[object name].type whether the item with the given

name is a Part or a Sheet.

For example: nestingex.item["Curve

14"].type

nestingex.part[n number].name name of the nth Part.

For example: nestingex.part[n 4].name

nestingex.sheet[object

name].material_usage

material usage of the Sheet with the

given name.

For example: nestingex.sheet["Arc

20"].material_usage

nestingex.sheet[object name].number number of instances of the Sheet

with the given name.

For example: nestingex.sheet["Curve

24"].number

nestingex.part[n

number].num_colliding

number of instances of the nth Part

which are in collision.

For example: nestingex.part[n

0].num_colliding

nestingex.part[object

name].instance[n number].selected

whether the nth instance of the Part

with the given name is selected.

For example: nestingex.part["Solid

5"].instance[n 3].selected

nestingex.part[n number].instance[n

number].colliding

whether the nth instance of the nth

Part is in collision.

For example: nestingex.part[n

0].instance[n 3].colliding

186 • Customizing PowerShape Using Macros with PowerShape

Parameter command

Command Description

parameter[name].value value of parameter.

parameter[name].exists 1 if parameter exists; 0 otherwise.

parameter[name].id unique identity number of the

parameter in the model.

parameter[id n].name name of the parameter that has the

given identity number.

parameter.number returns the number of non-hidden and

non-automatic parameters in the
model. This is the number of entries

in the drop down list in the Parameter

Editor dialog.

Pcurve command

Command Description

pcurve[name].exists 1 if pcurve exists; 0 otherwise.

pcurve[name].number number of points in the pcurve.

pcurve[name].level level on which the pcurve exists.

pcurve[name].closed 1 if the pcurve is closed; 0 otherwise.

pcurve[name].id unique identity number of the pcurve

in the model.

pcurve[id n].name name of the pcurve that has the given

identity number.

pcurve[name].edge 1 if the pcurve is on the edge of a

surface; 0 otherwise.

pcurve[name].parent.name name of the surface on which the

pcurve lies.

pcurve[name].parent.id unique identification number of the

surface on which the pcurve lies.

pcurve[name].in_boundary 1 if the pcurve exists in any

boundary; 0 otherwise.

pcurve[name].start coordinates [x, y, z] of the start

position in the pcurve.

pcurve[name].start.xyz coordinates [x, y, z] of the start

position in the pcurve.

Autodesk PowerShape Customizing PowerShape • 187

pcurve[name].start.x x coordinate of the start position in

the pcurve.

pcurve[name].start.y y coordinate of the start position in

the pcurve.

pcurve[name].start.z z coordinate of the start position in

the pcurve.

pcurve[name].start.tu tu coordinates [t, u, 0] of the start

position in the pcurve.

pcurve[name].start.t t coordinate of the start position in the

pcurve.

pcurve[name].start.u u coordinate of the start position in

the pcurve.

pcurve[name].start.exists 1 if the start coordinates of the pcurve

exists; 0 otherwise.

pcurve[name].end coordinates [x, y, z] of the end

position in the pcurve.

pcurve[name].end.xyz coordinates [x, y, z] of the end

position in the pcurve.

pcurve[name].end.x x coordinate of the end position in the

pcurve.

pcurve[name].end.y y coordinate of the end position of the

pcurve.

pcurve[name].end.z z coordinate of the end position in the

pcurve.

pcurve[name].end.tu tu coordinates [t, u, 0] of the end

position in the pcurve.

pcurve[name].end.t t coordinate of the end position in the

pcurve.

pcurve[name].end.u u coordinate of the end position in the

pcurve.

pcurve[name].end.exists 1 if the end coordinates of the pcurve

exists; 0 otherwise.

pcurve[name].point[number] coordinates [x, y, z] of the pcurve's

point.

pcurve[name].point[number].xyz coordinates [x, y, z] of the pcurve's

point.

pcurve[name].point[number].x x coordinate of the pcurve's point.

pcurve[name].point[number].y y coordinate of the pcurve's point.

pcurve[name].point[number].z z coordinate of the pcurve's point.

188 • Customizing PowerShape Using Macros with PowerShape

pcurve[name].point[number].tu tu coordinates [t, u, 0] of the pcurve's

point.

pcurve[name].point[number].t t coordinate of the pcurve's point.

pcurve[name].point[number].u u coordinate of the pcurve's point.

pcurve[name].point[number].exists 1 if the pcurve's point exists; 0

otherwise.

Point commands

Command Description

point[name].exists 1 if the point exists; 0 otherwise.

point[name].id unique identity number of the point in

the model.

point[id n].name name of the point that has the given

identity number.

point[name].description description of the point as stored in

the database.

point[name].position coordinates [x, y, z] of the point.

point[name].position.x x coordinate of the point.

point[name].position.y y coordinate of the point.

point[name].position.z z coordinate of the point.

point[name].style.colour colour number of line style used to

draw the point.

point[name].style.color color (USA) number of line style used

to draw the point.

point[name].style.gap gap of line style used to draw the

point.

point[name].style.weight weight of line style used to draw the

point.

point[name].style.width width of line style used to draw the

point.

point[name].level level on which the point exists.

Autodesk PowerShape Customizing PowerShape • 189

Printer commands

Command Description

printer[name].exists 1 if the printer exists; 0 otherwise.

printer[name].id unique identity number of the printer.

printer[id n].name name of the printer that has the given

identity number.

printer[name].image_string_set 1 if the image command is set; 0

otherwise.

printer[name].image_string image command for this printer.

printer[name].plot_string_set 1 if the plot command is set; 0

otherwise.

printer[name].plot_string plot command for this printer.

printer[name].initialised 1 if the printer is initialised; 0

otherwise.

printer[name].num_pens number of pens stored for this printer.

printer[name].pen[n].colour colour number of pen n on this

printer.

printer[name].pen[n].width width of pen n on this printer.

printer[name].pen[n].active 1 if pen n is active; 0 otherwise.

Renderer commands

Command Description

renderer.has_hardware_triangles 1 if the hardware supports triangles; 0

otherwise.

renderer.has_depth_cueing 1 if the hardware supports depth

cueing; 0 otherwise.

renderer.has_anti_aliasing 1 if the hardware supports anti-

aliasing; 0 otherwise.

190 • Customizing PowerShape Using Macros with PowerShape

Selection commands

Command Description

selection.exists 1 if at least one item is selected; 0

otherwise.

selection.id unique identity number of the selection

in the model.

selection.number
selection.magnitude

number of selected items.

selection[name].description description of the selection as stored in

the database.

SELECTION.TYPES returns a list of strings such as { 'Line';
'Arc'; 'Solid'};one string per selected

item.

SELECTION.NAMES returns a list of strings such as { '1';

'1'; 'fred' };one string per selected

item.

selection.object[number] object type and its name in the

selection. For example, Line[4], Arc[1].

If n items are selected, number is the

item's number in the selection.

selection.object[number].syntax object information as specified by the

syntax for object
selection.object[number]. The syntax is

given under each type of object.

For example, if selection.object[1] is

Line[2], then you can specify the
syntax as any syntax after Line[name].

For further details, see Line (see page

178).

For the x coordinate of the start of the

line, you can use

selection.object[1].start.x where start.x is

the syntax.

Autodesk PowerShape Customizing PowerShape • 191

selection.type[number] type of an object in the selection. For

example, Line, Arc.

If n objects are selected, number is the

item's number in the selection.

If you compare the type of an object
with a text string, you must use the

correct capitalisation. For example, to
check that selection.type[0] is a

composite curve, use:

selection.type[0] == 'Composite Curve'

not:

selection.type[0] == 'Composite curve'

selection.type[0] == 'composite curve'

selection.name[number] name of an item in the selection.

If n items are selected, then number is

the item's number in the selection.

In all cases, number is from 0 to (n-1).

selection.size size of the bounding box around the

selection.

selection.size.x size in the x direction of the bounding

box around the selection.

selection.size.y size in the y direction of the bounding

box around the selection.

selection.size.z size in the z direction of the bounding

box around the selection.

selection.min_range minimum coordinates of the bounding

box around the selection.

selection.min_range.x x coordinate of the minimum

coordinates of the bounding box

around the selection.

selection.min_range.y y coordinate of the minimum
coordinates of the bounding box

around the selection.

selection.min_range.z z coordinate of the minimum

coordinates of the bounding box

around the selection.

selection.max_range maximum coordinates of the bounding

box around the selection.

selection.max_range.x x coordinate of the maximum
coordinates of the bounding box

around the selection.

192 • Customizing PowerShape Using Macros with PowerShape

selection.max_range.y y coordinate of the maximum
coordinates of the bounding box

around the selection.

selection.max_range.z z coordinate of the maximum

coordinates of the bounding box

around the selection.

selection.min_range_exact minimum coordinates of the bounding
box around the selection. The bounding

box ignores the centre of arcs and only
takes into account the trimmed region

of surfaces.

selection.min_range_exact.x x coordinate of the minimum

coordinates of the bounding box
around the selection. The bounding box

ignores the centre of arcs and only

takes into account the trimmed region

of surfaces.

selection.min_range_exact.y y coordinate of the minimum
coordinates of the bounding box

around the selection. The bounding box
ignores the centre of arcs and only

takes into account the trimmed region

of surfaces.

selection.min_range_exact.z z coordinate of the minimum
coordinates of the bounding box

around the selection. The bounding box
ignores the centre of arcs and only

takes into account the trimmed region

of surfaces.

selection.max_range_exact maximum coordinates of the bounding

box around the selection. The bounding
box ignores the centre of arcs and only

takes into account the trimmed region

of surfaces.

selection.max_range_exact.x x coordinate of the maximum
coordinates of the bounding box

around the selection. The bounding box
ignores the centre of arcs and only

takes into account the trimmed region

of surfaces.

Autodesk PowerShape Customizing PowerShape • 193

selection.max_range_exact.y y coordinate of the maximum
coordinates of the bounding box

around the selection. The bounding box
ignores the centre of arcs and only

takes into account the trimmed region

of surfaces.

selection.max_range_exact.z z coordinate of the maximum
coordinates of the bounding box

around the selection. The bounding box
ignores the centre of arcs and only

takes into account the trimmed region

of surfaces.

selection.size[n] size of the bounding box around the

nth object in the selection.

selection.size[n].x size in the x direction of the bounding

box around the nth object in the

selection.

selection.size[n].y size in the y direction of the bounding
box around the nth object in the

selection.

selection.size[n].z size in the z direction of the bounding

box around the nth object in the

selection.

selection.min_range[n] minimum coordinates of the bounding
box around the nth object in the

selection.

selection.min_range[n].x x coordinate of the minimum

coordinates of the bounding box

around the nth object in the selection.

selection.min_range[n].y y coordinate of the minimum

coordinates of the bounding box

around the nth object in the selection.

selection.min_range[n].z z coordinate of the minimum
coordinates of the bounding box

around the nth object in the selection.

selection.max_range[n] maximum coordinates of the bounding

box around the nth object in the

selection.

selection.max_range[n].x x coordinate of the maximum
coordinates of the bounding box

around the nth object in the selection.

194 • Customizing PowerShape Using Macros with PowerShape

selection.max_range[n].y y coordinate of the maximum
coordinates of the bounding box

around the nth object in the selection.

selection.max_range[n].z z coordinate of the maximum

coordinates of the bounding box

around the nth object in the selection.

selection.min_range_exact[n] minimum coordinates of the bounding
box around the nth object in the

selection. The bounding box ignores
the centre of arcs and only takes into

account the trimmed region of

surfaces.

selection.min_range_exact[n].x x coordinate of the minimum
coordinates of the bounding box

around the nth object in the selection.

The bounding box ignores the centre of
arcs and only takes into account the

trimmed region of surfaces.

selection.min_range_exact[n].y y coordinate of the minimum

coordinates of the bounding box
around the nth object in the selection.

The bounding box ignores the centre of
arcs and only takes into account the

trimmed region of surfaces.

selection.min_range_exact[n].z z coordinate of the minimum

coordinates of the bounding box
around the nth object in the selection.

The bounding box ignores the centre of
arcs and only takes into account the

trimmed region of surfaces.

selection.max_range_exact[n] maximum coordinates of the bounding
box around the nth object in the

selection. The bounding box ignores
the centre of arcs and only takes into

account the trimmed region of

surfaces.

selection.max_range_exact[n].x x coordinate of the maximum
coordinates of the bounding box

around the nth object in the selection.
The bounding box ignores the centre of

arcs and only takes into account the

trimmed region of surfaces.

Autodesk PowerShape Customizing PowerShape • 195

selection.max_range_exact[n].y y coordinate of the maximum
coordinates of the bounding box

around the nth object in the selection.
The bounding box ignores the centre of

arcs and only takes into account the

trimmed region of surfaces.

selection.max_range_exact[n].z z coordinate of the maximum
coordinates of the bounding box

around the nth object in the selection.
The bounding box ignores the centre of

arcs and only takes into account the

trimmed region of surfaces.

surface.selected.curves Returns the number of currently

selected surface curves (an INT).

surface.selected.points Returns the number of currently

selected surface curve points (an INT).

196 • Customizing PowerShape Using Macros with PowerShape

Selection positions commands

Currently, the selection position is only calculated when there is only one
object in the selection. Therefore, the number in brackets [] is always zero.

selection.key_point[0]

the number of the selected keypoint in a surface or curve.

For a curve, if the keypoint is the nth point, selection.key_point[0] is n.

For a surface, the following surface describes how the numbers are

identified.

The keypoints are numbered consecutively across the laterals as shown

below.

If a spine point is selected, then selection.key_point[0] is the number of

points in the surface plus its number in the spine. For example, if a surface

has 16 points and the third spine point is selected, then selection.key_point[0]

is 19.

selection.nearest_end[0]
the number of the end position nearest the position of selection in a line or

arc, where 1 is the start point and 2 is the end point.

selection.composite_item[0]
the number of the object selected in a composite curve. If the third object in

the composite curve is selected, then selection.composite_item[0] is 3.

Autodesk PowerShape Customizing PowerShape • 197

Shareddb command

Command Description

shareddb.path pathname of the shared database
being used, for example,

C:\Users\Public\Documents\shareddb.

Sketcher command

Command Description

sketch 1 if Sketcher is on; 0 otherwise.

Solid commands

The following solid commands are available:

Command Description

solid[name].closest_face(x; y; z) returns a string representing the name of
the closest face of a solid to a given

point. Enter the point in current units

and absolute coordinates.

solid[name].exists 1 if the solid exists; 0 otherwise.

XXXX[entity_name].owner returns the Owner string

XXXX[entity_name].owner.id returns the Owner ID

XXXX[entity_name].owner.name returns the Owner Name

XXXX[entity_name].owner.type returns the Owner Type, where XXXX is a

solid.

solid_active retrieves the id of the active solid.

solid.active returns the name of the currently active

solid.

solid[name].id unique identity number of the solid in the

model.

solid[id n].name name of solid that has the given identity

number.

198 • Customizing PowerShape Using Macros with PowerShape

solid[name].child[n] returns a string representing the name of
the numbered feature below the named

solid.

For example, print solid[Fred].child[3]

returns the name of the 3rd feature from

the top of the solid named Fred.

feature[name].child[n] returns a string representing the name of
the feature's numbered sub-branch, such

as a Boolean feature.

solid[N].parasolid returns 1 if the solid is a parasolid; 0

otherwise.

solid[N].v8 returns 1 if the solid is a version 8 solid;

0 otherwise.

solid[name].active 1 if the solid is active; 0 otherwise.

solid[name].ghost 1 for a ghost solid; 0 for a normal solid.

solid[name].type checks the solid and retrieves one of the

following strings:

▪ Plane

▪ Block

▪ Sphere

▪ Cylinder

▪ Cone

▪ Torus

▪ Extrusion

▪ GeneralSolid

▪ Revolution

solid[name].surfaces number of surfaces in the solid.

solid[name].surface[number] name of the surface in the solid.

solid[N].surface[M].id returns the id number of the Mth surface
of solid N, or the representation number

if a parasolid solid.

solid[N].surface[M].name returns the name of the Mth surface of
solid N. This is the same as

solid[N].surface[M].

solid[name].min_size minimum coordinates of the bounding

box around the solid.

solid[name].max_size maximum coordinates of the bounding

box around the solid.

solid[name].origin origin of the solid.

Autodesk PowerShape Customizing PowerShape • 199

solid[name].origin.x x coordinate of the origin of the solid.

solid[name].origin.y y coordinate of the origin of the solid.

solid[name].origin.z z coordinate of the origin of the solid.

solid[name].radius radius of a cylinder or a sphere.

solid[name].length length of one of the following primitives:

block; cylinder; cone; extrusion; plane.

solid[name].width width of a block or a plane.

solid[name].diameter diameter of solid.

solid[name].height height of a block.

solid[name].neglength negative length of an extrusion

solid[name].base_radius radius of a cone on the base of its

workplane.

solid[name].top_radius radius of a cone furthest from the base

of its workplane.

solid[name].major_radius major radius of a torus.

solid[name].minor_radius minor radius of a torus.

solid[name].draft_angle draft angle of an extrusion.

solid[name].angle angle of primitive revolution

solid[name].xaxis

solid[name].yaxis

solid[name].zaxis

The following return the X, Y or Z unit

axis vector of the primitive's workplane.

The vector is defined in relation to the

currently active workplane:

solid[name].xaxis.x

solid[name].xaxis.y

solid[name].xaxis.z

solid[name].yaxis.x

solid[name].yaxis.y

solid[name].yaxis.z

solid[name].zaxis.x

solid[name].zaxis.y

solid[name].zaxis.z

The following return the X, Y or Z entity
of the unit axis vector of the primitive's

workplane. The vector is defined in
relation to the currently active

workplane:

solid[name].area surface area of the solid.

solid[name].volume volume of the solid.

solid[name].watertight 1 if the solid is watertight within

tolerance; 0 otherwise.

solid[name].closed 1 if the solid is closed; 0 otherwise.

200 • Customizing PowerShape Using Macros with PowerShape

solid[name].cog coordinates [x, y, z] of the centre of

gravity of the solid.

solid[name].cog.x x coordinate of the centre of gravity of

the solid.

solid[name].cog.y y coordinate of the centre of gravity of

the solid.

solid[name].cog.z z coordinate of the centre of gravity of

the solid.

solid[name].moi coordinates [x, y, z] of the moment of

inertia of the solid.

solid[name].moi.x x coordinate of the moment of inertia of

the solid.

solid[name].moi.y y coordinate of the moment of inertia of

the solid.

solid[name].moi.z z coordinate of the moment of inertia of

the solid.

solid[name].nlinks number of linked half edges of a solid,

where a half edge is a segment of a

boundary of a face.

solid[name].tolerance tolerance to which the half edges are
known to link, where a half edge is a

segment of a boundary of a face.

solid[name].trimming_valid 1 if boundaries in the solid are valid; 0

otherwise.

solid[name].connected 1 if the surfaces which define the solid

connect together within tolerance; 0

otherwise.

solid[name].material.polish polish value of the material used on the

solid.

solid[name].material.emission emission value of the material used on

the solid.

solid[name].material.transparency transparency value of the material used

on the solid.

solid[name].material.reflectance reflectance value of the material used on

the solid.

solid[name].material.colour rgb colour values of the material used on

the solid.

solid[name].material.name name of the material used for the solid.

solid[name].style.colour colour number of line style used to draw

the solid.

Autodesk PowerShape Customizing PowerShape • 201

solid[name].style.color color (USA) number of line style used to

draw the solid.

solid[name].style.gap gap of line style used to draw the solid.

solid[name].style.weight weight of line style used to draw the

solid.

solid[name].style.width width of line style used to draw the solid.

solid[name].level level on which the solid exists.

solid.constraint.exists 1 if scaling constraint exists; 0

otherwise.

solid.constraint.type Fixed Size or Fixed Distance to indicate

the type of scaling constraint.

solid.constraint.origin the coordinates of the scaling constraint

plane origin.

solid.constraint.xaxis vector representing the X axis of the

scaling constraint plane.

solid.constraint.yaxis vector representing the Y axis of the

scaling constraint plane.

solid.constraint.zaxis vector representing the Z axis of the

scaling constraint plane.

There are also commands to retrieve information about solid features (see

page 201) and for picking faces of a solid (see page 206).

Features commands

Command Description

solid[name].feature[fname].exists

feature[fname].exists

1 if the feature exists; 0 otherwise.

solid[name].feature[fname].id

feature[fname].id
the integer id of the feature.

solid[name].feature[fname].exists

feature[fname].exists

1 if the feature exists; 0 otherwise.

solid[name].feature[fname].name

feature[fname].name
name of the feature.

solid[name].feature[fname].type

feature[fname].type

type of feature (for example, " fillet",

"boss").

solid[name].feature[fname].suppress
ed

feature[fname].suppressed

1 if the feature currently suppressed;

0 otherwise.

202 • Customizing PowerShape Using Macros with PowerShape

solid[name].feature[fname].error

feature[fname].error

1 if the feature error suppressed; 0

otherwise.

solid[name].feature[fname].surfaces

feature[fname].surfaces

number of visible surfaces in the

feature.

solid[name].feature[fname].length

feature[fname].length

the length/depth/height of the

cut/boss feature.

solid[name].feature[fname].angle

feature[fname].angle

angle of the cut/boss/bulge feature.

solid[name].feature[fname].radius

feature[fname].radius

radius of the fillet feature.

In addition, the following groups of feature commands are available:

▪ Holes (see page 202)

▪ Pockets and protrusions (see page 203)

▪ Number of features (see page 204)

▪ Workplane of feature (see page 204)

▪ Other feature commands (see page 205)

Holes commands

Command Description

solid[name].feature[fname].origin origin of the hole

solid[name].feature[fname].main_dep
th

depth of the hole's main section

solid[name].feature[fname].main_dia
meter

diameter of the hole's main section

solid[name].feature[fname].bore_dep
th

depth of the hole's bore section (if any)

solid[name].feature[fname].bore_dia
meter

diameter of the hole's bore section (if

any)

solid[name].feature[fname].sink_dia
meter

diameter of the hole's sink section (if

any)

solid[name].feature[fname].tap_dept
h

depth of the hole's tap section (if any)

solid[name].feature[fname].tap_diam
eter

diameter of the hole's tap section (if

any)

solid[name].feature[fname].tap_pitch pitch of the hole's tap section (if any)

Autodesk PowerShape Customizing PowerShape • 203

Pockets and protrusions commands

You can use the following commands to determine the dimensions of pockets
and protrusions. The commands return the required dimension and take the

form:

feature[name].length

The following commands are available for pockets and protrusions:

Command Description

length Length of the pocket

width Width of the pocket

height Height of the protrusion. This returns

the same value as depth

depth Depth of the pocket. This returns the

same value as height

angle1 Draft angle of top wall

angle2 Draft angle of right wall

angle3 Draft angle of bottom wall

angle4 Draft angle of left wall

radius Radius of joining fillet

radius1 Radius of top left corner fillet

radius2 Radius of top right corner fillet

radius3 Radius of bottom right corner fillet

radius4 Radius of bottom left corner fillet

radius5 Radius of base fillet of a pocket, or top

fillet of a protrusion

You can use the existing hole commands to determine the dimensions of the

hole in the corner(s) of the pocket. For example, the following command will
return the main diameter of the hole in the corner of the pocket:

print feature[name].main_diameter

204 • Customizing PowerShape Using Macros with PowerShape

Number of features commands

Command Description

solid[name].children

solid[name].features
number of features on the solid.

solid[name].children.all

solid[name].features.all

number of features on the solid,
including sub-branches on the feature

tree.

solid[name].children.selected

solid[name].features.selected

number of selected features on the solid.

feature[name].children

feature[name].features

number of features in the sub-branch. It
can be used with Boolean and Group

features.

feature[name].features.all number of features, including all sub-

branches.

Workplane of feature commands

Command Description

feature[name].xaxis

feature[name].yaxis

feature[name].zaxis

return the X, Y or Z unit axis vector of

the feature's workplane. The vector is
relative to the currently active

workplane.

feature[name].xaxis.x

feature[name].xaxis.y

feature[name].xaxis.z

feature[name].yaxis.x

feature[name].yaxis.y

feature[name].yaxis.z

feature[name].zaxis.x

feature[name].zaxis.y

feature[name].zaxis.z

return the X, Y or Z entity of the unit

axis vector of the feature's workplane.
The vector is relative to the currently

active workplane.

For example:

print feature[1].xaxis

print feature[1].xaxis.y

Autodesk PowerShape Customizing PowerShape • 205

Other feature commands

Command Description

feature[name].selected 1 for a selected feature; 0 otherwise.

feature[name].suppressed 1 for suppressed feature; 0 otherwise.

feature[name].error 1 for an error state for a feature; 0

otherwise.

feature[name].exists 1 if the solid feature exists; 0

otherwise.

feature[name].id unique identity number of the solid

feature in the model.

feature[id n].name name of solid feature that has the

given identity number.

feature[name].type checks the solid feature and retrieves a

string indicating the type of feature.

feature[name].surfaces number of visible surfaces that make

up the feature.

feature[name of feature].surface[n] the name of the nth surface of a solid

feature, where n is the number of the

surface of the solid feature.

feature[name].length length of the feature - applies to cut

and boss features only.

feature[name].angle angle of the feature. Applies to cut,

boss and bulge features only.

feature[name].radius radius of feature. Applies to fillet

feature only.

feature[feature name].machine 1 if feature is to be machined; 0

otherwise.

feature[feature

name].pre_machined

1 if feature is pre-machined; 0

otherwise.

feature[feature

name].existed_at_birth

1 if feature was present in the original

solid (for example, a feature existing in

a manufacturer standard moldbase
component); 0 if the feature was

added later.

feature.constraint.exists 1 if scaling constraint exists; 0

otherwise.

feature.constraint.type returns Fixed Size or Fixed Distance to

indicate the type of scaling constraint.

206 • Customizing PowerShape Using Macros with PowerShape

feature.constraint.origin returns the coordinates of the scaling

constraint plane origin.

feature.constraint.xaxis returns a vector representing the X axis

of the scaling constraint plane.

feature.constraint.yaxis returns a vector representing the Y axis

of the scaling constraint plane.

feature.constraint.zaxis returns a vector representing the Z axis

of the scaling constraint plane.

Picking faces of a solid commands

When in face selection mode, you can use commands to pick the faces of a

selected solid.

Command Description

pick face name <face_name>

pick face <face_name>

pick face replace name

<face_name>

pick face name <face_name>

Use these commands to replace the
currently selected faces with named

faces.

This is the same as using the mouse to

select the faces.

pick face add name <face_name>

pick face add <face_name>

Use these commands to add the named

face to the current selection.

This is the same as holding down the

SHIFT key and left-clicking.

pick face toggle name <face_name>

pick face toggle <face_name>

Use these commands to toggle the
named face into/out of the current

selection.

This is the same as holding down the

CTRL key and left-clicking.

<face_name> can be a word, string, integer or variable. The following are

valid:

▪ pick face fred

▪ pick face 'fred'

▪ pick face 23

▪ string face_name = 'fred'

▪ pick face $face_name

The commands are also available during the following operations:

Autodesk PowerShape Customizing PowerShape • 207

▪ Multiple-face selection modes; if you are in convex face selection
mode, several faces are selected, spreading out from the named

face.

▪ Solid Draft Face

▪ Solid Replace Face

▪ Solid Divide Face

Surface commands

The following surface commands are available:

Command Description

surface[name].exists 1 if the surface exists; 0 otherwise.

surface[name].id unique identity number of the surface

in the model.

surface[id n].name name of surface that has the given

identity number.

surface[name].description description of the surface as stored in

the database

surface[1].tangentpoint(1;2;3;4;5;6) A point on a surface such that if

viewed from an outside point, the line
joining the two points is tangent to the

surface. The first three coordinates are
a point outside the surface and the

last three coordinates are the initial

guess point on the surface.

surface[name].direction unit vector of the reference direction

of the surface.

surface[name].direction.x x value of the unit vector of the

reference direction of the surface.

surface[name].direction.y y value of the unit vector of the

reference direction of the surface.

surface[name].direction.z z value of the unit vector of the

reference direction of the surface.

surface[name].trimmed 1 if the surface's local trim flag is set;

0 otherwise.

surface[name].min_size coordinates [x, y, z] of the minimum
point of the smallest box that fully

encloses the surface.

208 • Customizing PowerShape Using Macros with PowerShape

surface[name].min_size.x x coordinate of the minimum point of
the smallest box that fully encloses the

surface.

surface[name].min_size.y y coordinate of the minimum point of

the smallest box that fully encloses the

surface.

surface[name].min_size.z z coordinate of the minimum point of
the smallest box that fully encloses the

surface.

surface[name].max_size coordinates [x, y, z] of the maximum

point of the smallest box that fully

encloses the surface.

surface[name].max_size.x x coordinate of the maximum point of
the smallest box that fully encloses the

surface.

surface[name].max_size.y y coordinate of the maximum point of
the smallest box that fully encloses the

surface.

surface[name].max_size.z z coordinate of the maximum point of

the smallest box that fully encloses the

surface.

surface[name].type checks the surface and retrieves one

of the following strings:

▪ Plane

▪ Block

▪ Sphere

▪ Cylinder

▪ Cone

▪ Torus

▪ Extrusion

▪ Revolution

▪ Powersurface

▪ BCP

▪ NURB

▪ PDGS

surface[name].area area of the surface.

surface[name].diameter diameter of surface.

surface[name].volume volume of the surface.

surface[name].cog coordinates [x, y, z] of the centre of

gravity of the surface.

Autodesk PowerShape Customizing PowerShape • 209

surface[name].cog.x x coordinate of the centre of gravity of

the surface.

surface[name].cog.y y coordinate of the centre of gravity of

the surface.

surface[name].cog.z z coordinate of the centre of gravity of

the surface.

surface[name].evaluate(t; u).position coordinates [x, y, z] of the position on
the surface defined by the t and u

parameters.

surface[name].evaluate(t;

u).position.x

x coordinate of the position defined on

the surface by the t and u parameters.

surface[name].evaluate(t;

u).position.y

y coordinate of the position defined on

the surface by the t and u parameters.

surface[name].evaluate(t;

u).position.z

z coordinate of the position defined on

the surface by the t and u parameters.

surface[name].evaluate(t; u).normal unit vector of the normal to the
surface at the position defined by the t

and u parameters.

surface[name].evaluate(t; u).normal.x x value of the unit vector of the

normal to the surface at the position

defined by the t and u parameters.

surface[name].evaluate(t; u).normal.y y value of the unit vector of the
normal to the surface at the position

defined by the t and u parameters.

surface[name].evaluate(t; u).normal.z z value of the unit vector of the
normal to the surface at the position

defined by the t and u parameters.

surface[name].evaluate(t;
u).curvature.min

minimum curvature at the position on

the surface defined by the t and u

parameters.

surface[name].evaluate(t;
u).curvature.max

maximum curvature at the position on
the surface defined by the t and u

parameters.

210 • Customizing PowerShape Using Macros with PowerShape

surface[name].near(x; y; z) t and u parameters on the surface

nearest to the coordinates [x, y, z].

For complex surfaces, you can speed
up calculations by supplying

approximate t and u values that are
close to the coordinates. The

approximate values are added in

brackets, as shown below:

surface[name].near(x; y; z; guess_t;

guess_u)

surface[name].near(x; y; z).t

t parameter on the surface nearest to

the coordinates [x, y, z].

surface[name].near(x; y; z).u

u parameter on the surface nearest to

the coordinates [x, y, z].

XXXX[entity_name].owner returns the Owner string

XXXX[entity_name].owner.id returns the Owner ID

XXXX[entity_name].owner.name returns the Owner Name

XXXX[entity_name].owner.type returns the Owner Type, where XXXX

is a surface.

surface[name].material.polish polish value of the material used on

the surface.

surface[name].material.emission emission value of the material used on

the surface.

surface[name].material.transparency transparency value of the material

used on the surface.

surface[name].material.reflectance reflectance value of the material used

on the surface.

surface[name].material.colour RGB colour values of the material used

on the surface.

surface[name].material.name name of the material used for the

surface.

surface[name].trimming_valid 1 if the trim boundaries on the surface

form a valid trim region; 0 otherwise.

surface[name].boundaries number of boundaries on the surface.

surface[name].pcurves number of pcurves on the surface.

Autodesk PowerShape Customizing PowerShape • 211

surface[name].pcurve[number] name of the pcurve on the surface.
Each pcurve on the surface has a

unique number, where number ranges
from 1 to the value of

surface[name].pcurves.

surface[name].style.colour colour number of line style used to

draw the surface if it is one of the
basic 16 colours or -1 if it is an RGB

colour.

The following variables exist to check

the RGB colour of items

surface[name].style.colour.red

surface[name].style.colour.green

surface[name].style.colour.blue

surface[name].style.colour.rgb

surface[name].style.colour.r

surface[name].style.colour.g

surface[name].style.colour.b

surface[name].style.color color (USA) number of line style used

to draw the surface.

surface[name].style.gap gap of line style used to draw the

surface.

surface[name].style.weight weight of line style used to draw the

surface.

surface[name].style.width width of line style used to draw the

surface.

surface[name].level level on which the surface exists.

You can also use the following groups of commands:

▪ Primitives (see page 212)

▪ Laterals (see page 214) and longitudinals (see page 216)

▪ Spines (see page 220)

▪ Number of selected surface curves/surface curve points (see page
190)

212 • Customizing PowerShape Using Macros with PowerShape

Primitive commands

Surface syntax in this section applies to primitive surfaces (including
extrusions). It outputs data about the surface's dimensions and workplane

instrumentation.

Command Description

surface[name].radius radius of a cylinder or a sphere.

surface[name].length length of one of the following primitives:

block; cylinder; cone; extrusion; plane.

surface[name].width width of a block or a plane.

surface[name].height height of a block.

surface[name].base_radius radius of a cone on the base of its

workplane.

surface[name].top_radius radius of a cone furthest from the base

of its workplane.

surface[name].major_radius major radius of a torus.

surface[name].minor_radius minor radius of a torus.

surface[name].neglength negative length of an extrusion.

surface[name].draft_angle draft angle of an extrusion.

surface[name].origin coordinates [x, y, z] of the origin of the

primitive's workplane instrumentation.

surface[name].origin.x x coordinate of the origin of the

primitive's workplane instrumentation.

surface[name].origin.y y coordinate of the origin of the

primitive's workplane instrumentation.

surface[name].origin.z z coordinate of the origin of the

primitive's workplane instrumentation.

surface[name].xaxis unit vector which defines the orientation
of the X-axis of the primitive's

workplane instrumentation.

surface[name].xaxis.x x value of the unit vector which defines

the orientation of the X-axis of the

primitive's workplane instrumentation.

surface[name].xaxis.y y value of the unit vector which defines
the orientation of the X-axis of the

primitive's workplane instrumentation.

surface[name].xaxis.z z value of the unit vector which defines

the orientation of the X-axis of the

primitive's workplane instrumentation.

Autodesk PowerShape Customizing PowerShape • 213

surface[name].yaxis unit vector which defines the orientation
of the Y-axis of the primitive's

workplane instrumentation.

surface[name].yaxis.x x value of the unit vector which defines

the orientation of the Y-axis of the

primitive's workplane instrumentation.

surface[name].yaxis.y y value of the unit vector which defines
the orientation of the Y-axis of the

primitive's workplane instrumentation.

surface[name].yaxis.z z value of the unit vector which defines

the orientation of the Y-axis of the

primitive's workplane instrumentation.

surface[name].zaxis unit vector which defines the orientation
of the Z-axis of the primitive's

workplane instrumentation.

surface[name].zaxis.x x value of the unit vector which defines
the orientation of the Z-axis of the

primitive's workplane instrumentation.

surface[name].zaxis.y y value of the unit vector which defines

the orientation of the Z-axis of the

primitive's workplane instrumentation.

surface[name].zaxis.z z value of the unit vector which defines
the orientation of the Z-axis of the

primitive's workplane instrumentation.

surface[name].xaxis

surface[name].yaxis

surface[name].zaxis

return the X, Y or Z unit axis vector of

the primitive's workplane. The vector is
relative to the currently active

workplane.

surface[name].xaxis.x

surface[name].xaxis.y

surface[name].xaxis.z

surface[name].yaxis.x

surface[name].yaxis.y

surface[name].yaxis.z

surface[name].zaxis.x

surface[name].zaxis.y

surface[name].zaxis.z

return the X, Y or Z entity of the unit

axis vector of the primitive's workplane.

The vector is relative to the currently

active workplane.

214 • Customizing PowerShape Using Macros with PowerShape

Surface lateral commands

Command Description

surface[name].lateral[number].start coordinates [x, y, z] of the start

position of the lateral.

surface[name].lateral[number].start.
x

x coordinate of start position of the

lateral.

surface[name].lateral[number].start.
y

y coordinate of start position of the

lateral.

surface[name].lateral[number].start.
z

z coordinate of start position of the

lateral.

surface[name].lateral[number].end coordinates [x, y, z] of the end position

of the lateral.

surface[name].lateral[number].end.x x coordinate of end position of the

lateral.

surface[name].lateral[number].end.y y coordinate of end position of the

lateral.

surface[name].lateral[number].end.z z coordinate of end position of the

lateral.

surface[name].lateral[number].numb
er

number of points in the lateral.

surface[name].lateral[number].length length of the lateral.

surface[name].lateral[number].length

_between(a; b)

length along the lateral between lateral

points a and b.

surface[name].lateral[number].exists 1 if lateral exists; 0 otherwise.

surface[name].lateral[number].id unique identity number of the lateral.

surface[name].lateral[number].name name of the lateral.

surface[name].lateral[number].point[

number]

coordinates [x, y, z] of the position of

the lateral's point.

surface[name].lateral[number].point[

number].x

x coordinate of the position of the

lateral's point.

surface[name].lateral[number].point[

number].y

y coordinate of the position of the

lateral's point.

surface[name].lateral[number].point[

number].z

z coordinate of the position of the

lateral's point.

surface[name].lateral[number].point[

number].entry_magnitude

magnitude entering the lateral's point.

surface[name].lateral[number].point[

number].exit_magnitude

magnitude leaving the lateral's point.

Autodesk PowerShape Customizing PowerShape • 215

surface[name].lateral[number].point[

number].entry_tangent

unit vector of the tangent direction

entering the lateral's point.

surface[name].lateral[number].point[

number].entry_tangent.x

x value of the unit vector which defines

the tangent direction entering the

lateral's point.

surface[name].lateral[number].point[

number].entry_tangent.y

y value of the unit vector which defines
the tangent direction entering the

lateral's point.

surface[name].lateral[number].point[

number].entry_tangent.z

z value of the unit vector which defines

the tangent direction entering the

lateral's point.

surface[name].lateral[number].point[

number].exit_tangent

unit vector of the tangent direction

leaving the lateral's point.

surface[name].lateral[number].point[

number].exit_tangent.x

x value of the unit vector which defines

the tangent direction leaving the

lateral's point.

surface[name].lateral[number].point[

number].exit_tangent.y

y value of the unit vector which defines
the tangent direction leaving the

lateral's point.

surface[name].lateral[number].point[

number].exit_tangent.z

z value of the unit vector which defines

the tangent direction leaving the

lateral's point.

surface[name].lateral[number].point[

number].entry_tangent.azimuth

azimuth angle of the tangent entering

the point.

surface[name].lateral[number].point[

number].entry_tangent.elevation

elevation angle of the tangent entering

the point.

surface[name].lateral[number].point[

number].exit_tangent.azimuth

azimuth angle of the tangent leaving

the point.

surface[name].lateral[number].point[

number].exit_tangent.elevation

elevation angle of the tangent leaving

the point.

surface[name].lateral[number].point[

number].entry_normal

unit vector of the normal entering the

lateral's point.

surface[name].lateral[number].point[

number].entry_normal.x

x value of the unit vector of the normal

entering the lateral's point.

surface[name].lateral[number].point[

number].entry_normal.y

y value of the unit vector of the normal

entering the lateral's point.

surface[name].lateral[number].point[

number].entry_normal.z

z value of the unit vector of the normal

entering the lateral's point.

surface[name].lateral[number].point[

number].exit_normal

unit vector of the normal leaving the

lateral's point.

216 • Customizing PowerShape Using Macros with PowerShape

surface[name].lateral[number].point[

number].exit_normal.x

x value of the unit vector of the normal

leaving the lateral's point.

surface[name].lateral[number].point[

number].exit_normal.y

y value of the unit vector of the normal

leaving the lateral's point.

surface[name].lateral[number].point[

number].exit_normal.z

z value of the unit vector of the normal

leaving the lateral's point.

surface[name].lateral[number].cog coordinates [x, y, z] of the centre of

gravity of the lateral.

surface[name].lateral[number].cog.x x coordinate of the centre of gravity of

the lateral.

surface[name].lateral[number].cog.y y coordinate of the centre of gravity of

the lateral.

surface[name].lateral[number].cog.z z coordinate of the centre of gravity of

the lateral.

surface[name].lat_closed 1 if the surface's laterals are closed; 0

if open.

surface[name].nlats number of laterals in the surface.

surface[name].lateral.selected list of names of the currently selected

laterals of the surface.

surface[name].lateral[number].select
ed

1 if lateral is selected; 0 if unselected.

Surface longitudinal commands

Command Description

surface[name].longitudinal[number].
start

coordinates [x, y, z] of the start position

of the longitudinal.

surface[name].longitudinal[number].
start.x

x coordinate of start position of the

longitudinal.

surface[name].longitudinal[number].
start.y

y coordinate of start position of the

longitudinal.

surface[name].longitudinal[number].
start.z

z coordinate of start position of the

longitudinal.

surface[name].longitudinal[number].
end

coordinates [x, y, z] of the end position

of the longitudinal.

surface[name].longitudinal[number].
end.x

x coordinate of end position of the

longitudinal.

Autodesk PowerShape Customizing PowerShape • 217

surface[name].longitudinal[number].
end.y

y coordinate of end position of the

longitudinal.

surface[name].longitudinal[number].
end.z

z coordinate of end position of the

longitudinal.

surface[name].longitudinal[number].
number

number of points in the longitudinal.

surface[name].longitudinal[number].l
ength

length of the longitudinal.

surface[name].longitudinal[number].l

ength_between(a; b)

length along the longitudinal between

longitudinal points a and b.

surface[name].longitudinal[number].e
xists

1 if longitudinal exists; 0 otherwise.

surface[name].longitudinal[number].i
d

unique identity number of the

longitudinal.

surface[name].longitudinal[number].
name

name of the longitudinal.

surface[name].longitudinal[number].

point[number]

coordinates [x, y, z] of the position of

the longitudinal's point.

surface[name].longitudinal[number].

point[number].x

x coordinate of the position of the

longitudinal's point.

surface[name].longitudinal[number].

point[number].y

y coordinate of the position of the

longitudinal's point.

surface[name].longitudinal[number].

point[number].z

z coordinate of the position of the

longitudinal's point.

surface[entity_name].evaluate(T;

U).udirb

surface[entity_name].evaluate(T;

U).udira

tangent vector U, direction before/after
(around lateral) of the specified (T,U)

point on the surface.

surface[entity_name].evaluate(T;

U).tdirb
surface[entity_name].evaluate(T;

U).tdira

tangent vector T, direction before/after
(along longitudinal) of the specified

(T,U) point on the surface .

surface[entity_name].evaluate(T; U) coordinates of the specified (T,U) point

on the surface .

surface[entity_name].evaluate(T;

U).position

coordinates of the specified (T,U) point

on the surface.

surface[entity_name].evaluate(T;

U).normal

normal direction of the specified (T,U)

point on the surface.

surface[entity_name].evaluate(T;

U).draft_angle

draft angle of the surface at specified

(T,U) point.

218 • Customizing PowerShape Using Macros with PowerShape

surface[entity_name].evaluate(T;

U).curvature.min

minimum curvature of the surface at

specified (T,U) point.

surface[entity_name].evaluate(T;

U).cuvature.max

maximum curvature of the surface at

specified (T,U) point.

surface[name].longitudinal[number].

point[number].entry_magnitude

magnitude entering the longitudinal's

point.

surface[name].longitudinal[number].

point[number].exit_magnitude

magnitude leaving the longitudinal's

point.

surface[name].longitudinal[number].

point[number].entry_tangent

unit vector of the tangent direction

entering the longitudinal's point.

surface[name].longitudinal[number].

point[number].entry_tangent.x

x value of the unit vector which defines
the tangent direction entering the

longitudinal's point.

surface[name].longitudinal[number].

point[number].entry_tangent.y

y value of the unit vector which defines

the tangent direction entering the

longitudinal's point.

surface[name].longitudinal[number].

point[number].entry_tangent.z

z value of the unit vector which defines

the tangent direction entering the

longitudinal's point.

surface[name].longitudinal[number].

point[number].exit_tangent

unit vector of the tangent direction

leaving the longitudinal's point.

surface[name].longitudinal[number].

point[number].exit_tangent.x

x value of the unit vector which defines

the tangent direction leaving the

longitudinal's point.

surface[name].longitudinal[number].

point[number].exit_tangent.y

y value of the unit vector which defines
the tangent direction leaving the

longitudinal's point.

surface[name].longitudinal[number].

point[number].exit_tangent.z

z value of the unit vector which defines

the tangent direction leaving the

longitudinal's point.

surface[name].longitudinal[number].

point[number].entry_tangent.azimuth

azimuth angle of the tangent entering

the point.

surface[name].longitudinal[number].
point[number].entry_tangent.elevatio
n

elevation angle of the tangent entering

the point.

surface[name].longitudinal[number].

point[number].exit_tangent.azimuth

azimuth angle of the tangent leaving the

point.

surface[name].longitudinal[number].

point[number].exit_tangent.elevation

elevation angle of the tangent leaving

the point.

Autodesk PowerShape Customizing PowerShape • 219

surface[name].longitudinal[number].

point[number].entry_normal

unit vector of the normal entering the

longitudinal's point.

surface[name].longitudinal[number].

point[number].entry_normal.x

x value of the unit vector of the normal

entering the longitudinal's point.

surface[name].longitudinal[number].

point[number].entry_normal.y

y value of the unit vector of the normal

entering the longitudinal's point.

surface[name].longitudinal[number].

point[number].entry_normal.z

z value of the unit vector of the normal

entering the longitudinal's point.

surface[name].longitudinal[number].

point[number].exit_normal

unit vector of the normal leaving the

longitudinal's point.

surface[name].longitudinal[number].

point[number].exit_normal.x

x value of the unit vector of the normal

leaving the longitudinal's point.

surface[name].longitudinal[number].

point[number].exit_normal.y

y value of the unit vector of the normal

leaving the longitudinal's point.

surface[name].longitudinal[number].

point[number].exit_normal.z

z value of the unit vector of the normal

leaving the longitudinal's point.

surface[name].longitudinal[number].c
og

coordinates [x, y, z] of the centre of

gravity of the longitudinal.

surface[name].longitudinal[number].c
og.x

x coordinate of the centre of gravity of

the longitudinal.

surface[name].longitudinal[number].c
og.y

y coordinate of the centre of gravity of

the longitudinal.

surface[name].longitudinal[number].c
og.z

z coordinate of the centre of gravity of

the longitudinal.

surface[name].lateral[number].point[

number].entry_tangent.flare

flare angle of the longitudinal entering

the point.

surface[name].lateral[number].point[

number].entry_tangent.twist

twist angle of the longitudinal entering

the point.

surface[name].lateral[number].point[

number].exit_tangent.flare

flare angle of the longitudinal leaving

the point.

surface[name].lateral[number].point[

number].exit_tangent.twist

twist angle of the longitudinal leaving

the point.

surface[name].longitudinal[number].

point[number].entry_tangent.flare
flare angle entering the point.

surface[name].longitudinal[number].

point[number].entry_tangent.twist

twist angle entering the point.

surface[name].longitudinal[number].

point[number].exit_tangent.flare
flare angle leaving the point.

220 • Customizing PowerShape Using Macros with PowerShape

surface[name].longitudinal[number].

point[number].exit_tangent.twist

twist angle leaving the point.

surface[name].lon_closed 1 if the surface's longitudinals are

closed; 0 if open.

surface[name].nlons number of longitudinals in the surface.

surface[name].longitudinal.selected list of names of the currently selected

laterals or longitudinals of the surface.

surface[name].longitudinal[number].s
elected

1 if lateral or longitudinal is selected; 0

if unselected.

Spine commands

Command Description

surface[name].spine.exists 1 if the spine exists; 0 otherwise.

surface[name].spine.id unique identity number of the spine.

surface[id n].spine.name name of the spine that has the given

identity number.

surface[name].spine.number number of spine points.

surface[name].spine.length length of the spine.

surface[name].spine.length_between(

a; b)

length along the spine between spine

points a and b.

surface[name].spine.start start coordinates [x, y, z] of the spine.

surface[name].spine.start.x x coordinate of the start of the spine.

surface[name].spine.start.y y coordinate of the start of the spine.

surface[name].spine.start.z z coordinate of the start of the spine.

surface[name].spine.end end coordinates [x, y, z] of the spine.

surface[name].spine.end.x x coordinate of the end of the spine.

surface[name].spine.end.y y coordinate of the end of the spine.

surface[name].spine.end.z z coordinate of the end of the spine.

surface[name].spine.point[number] coordinates [x, y, z] of the spine point.

surface[name].spine.point[number].x x coordinate of the spine point.

surface[name].spine.point[number].y y coordinate of the spine point.

surface[name].spine.point[number].z z coordinate of the spine point.

surface[name].spine.point[number].ta
ngent

unit vector of the tangent direction

through the spine point.

Autodesk PowerShape Customizing PowerShape • 221

surface[name].spine.point[number].ta
ngent.x

x value of the unit vector of the tangent

direction through the spine point.

surface[name].spine.point[number].ta
ngent.y

y value of the unit vector of the tangent

direction through the spine point.

surface[name].spine.point[number].ta
ngent.z

z value of the unit vector of the tangent

direction through the spine point.

surface[name].spine.point[number].e
ntry_tangent.azimuth

azimuth angle of the tangent entering

the spine point.

surface[name].spine.point[number].e
ntry_tangent.elevation

elevation angle of the tangent entering

the spine point.

surface[name].spine.point[number].e
xit_tangent.azimuth

azimuth angle of the tangent leaving the

spine point.

surface[name].spine.point[number].e
xit_tangent.elevation

elevation angle of the tangent leaving

the spine point.

Symbol commands

The following symbol commands are available:

Command Description

symbol[name].exists 1 if the symbol exists; 0 otherwise.

symbol[name].id unique identity number of the symbol

in the model.

symbol[id n].name name of the symbol that has the given

identity number.

symbol[name].position[pin number] coordinates [x, y, z] of the named pin.

symbol[name].position[pin

number].x

x coordinate of the named pin.

symbol[name].position[pin

number].y
y coordinate of the named pin.

symbol[name].position[pin number].z z coordinate of the named pin.

symbol[name].number number of pins in the symbol.

symbol[name].style.colour colour number of line style used to

draw the symbol.

symbol[name].style.color color (USA) number of line style used

to draw the symbol.

symbol[name].style.gap gap of line style used to draw the

symbol.

222 • Customizing PowerShape Using Macros with PowerShape

symbol[name].style.weight weight of line style used to draw the

symbol.

symbol[name].style.width width of line style used to draw the

symbol.

symbol[name].level level on which the symbol exists.

symbol[name].area area of triangulated symbols.

symbol[name].volume volume of triangulated symbols.

symbol.constraint.exists 1 if scaling constraint exists; 0

otherwise.

symbol.constraint.type Fixed Size or Fixed Distance to indicate

the type of scaling constraint.

symbol.constraint.origin the coordinates of the scaling

constraint plane origin.

symbol.constraint.xaxis a vector representing the X axis of the

scaling constraint plane.

symbol.constraint.yaxis a vector representing the Y axis of the

scaling constraint plane.

symbol.constraint.zaxis a vector representing the Z axis of the

scaling constraint plane.

symbol_def[name].exists 1 if the symbol definition exists; 0

otherwise.

symbol_def[name].id unique identity number for the symbol

definition.

symbol_def[id n].name name of the symbol definition that has

the given identity number.

Autodesk PowerShape Customizing PowerShape • 223

Text commands

Command Description

text[name].exists 1 if the text exists; 0 otherwise.

text[name].id unique identity number of the text in

the model.

text[id n].name name of the text that has the given

identity number.

text[name].string text string.

text[name].livetext 1 if text created using PowerShape

standard text editor; 0 for DUCT editor.

text[name].colour number of the colour used by the text.

text[name].level level on which the text exists.

text[name].string.unstripped text string with format characters.

text[text_name].string.unstripped.leng
th

returns length of unstripped text.

text[text_name].string.unstripped.cha

r[ipos]

returns the character at the specified

position in unstripped text string, where
ipos is greater or equal to 0 and less

than the string length

text[name].string.stripped text string without format characters.

text[text_name].string.stripped.lengt
h

returns length of stripped text.

text[text_name].string.stripped.char[i

pos]

returns the character at the specified

position in stripped text string, where
ipos is greater or equal to 0 and less

than the string length.

text[text_name].string.stripped.locate

[string]

returns the location of string in stripped

text string. If string isn't found, -1 is

returned.

text[name].font name of the font used by the text.

224 • Customizing PowerShape Using Macros with PowerShape

text[name].origin the origin of the text is output as one of

the following strings:

▪ Bottom Left

▪ Bottom Centre

▪ Bottom Right

▪ Centre Left

▪ Centre

▪ Centre Right

▪ Top Left

▪ Top Centre

▪ Top Right

text[name].position coordinates [x, y, z] of the position at

which the text was placed.

text[name].position.x x coordinate of the position at which the

text was placed.

text[name].position.y y coordinate of the position at which the

text was placed.

text[name].position.z z coordinate of the position at which the

text was placed.

text[name].char_height height of the characters.

text[name].char_spacing spacing between individual characters

(pitch).

text[name].angle angle of the text.

text[name].line_spacing spacing between lines of text.

text[name].justification

justification of the text is output as one

of the following strings:

▪ Left

▪ Centre

▪ Right

text[name].horizontal 1 if text characters are horizontal; 0

otherwise.

text[name].italic

1 if text is italic; 0 otherwise.

Autodesk PowerShape Customizing PowerShape • 225

Tolerance commands

Command Description

tolerance.general value of general tolerance.

tolerance.drawing value of drawing tolerance.

Units commands

Command Description

unit[type].name name of the units for type. For example,

type length's output can be mm.

unit[type].factor number by which the default unit is

multiplied by to give the units in

unit[type].name.

For example, type length has default units mm. If unit[length].name is inches,

then the unit[length].factor is 0.039370.

Updated object commands

You can use these commands to query which objects were updated as a
result of the last operation. These objects are accessed from the updated

list.

Command Description

updated.exists 1 if at least one item is in the updated

list; 0 otherwise.

Updated.clearlist objects are removed from the updated

list.

updated.number number of items in the updated list.

updated.object[number] object type and its name in the updated

list. For example, Line[4], Arc[1].

If n items are updated, then number is

the item's number in the updated list.

226 • Customizing PowerShape Using Macros with PowerShape

updated.object[number].syntax object information as specified by the
syntax for object updated.object[number].

The syntax you can use is given under

each type of object.

For example, if updated.object[1] is

Line[2], then you can specify the syntax

as any syntax after Line[name]. For

further details see Line (see page 178).
For the x coordinate of the start of the

line, you can use updated.object[1].start.x

where start.x is the syntax.

updated.type[number] type of an object in the updated list. For

example, Line, Arc.

If n objects are updated, then number is

the item's number in the updated list.

When you compare the type of an object
with a text string, you must use the

correct capitalisation. For example, to

check that updated.type[0] is a composite

curve, use:

updated.type[0] == 'Composite Curve'

not:

updated.type[0] == 'Composite curve'

updated.type[0] == 'composite curve'

updated.name[number] name of an item in the updated list.

If n items are updated, then number is

the item's number in the updated list.

In all cases number is from 0 to (n-1).

Autodesk PowerShape Customizing PowerShape • 227

User commands

Command Description

user details of the user currently using

PowerShape. It is output in the following
form:

user login : user name : start macro :

security level

user.login login of the user currently using

PowerShape.

user.name name of the user currently using

PowerShape.

user.macro pathname of the login macro of the user

currently using PowerShape.

user.security security level of the current user using

PowerShape.

Product version commands

Command Description

version version of PowerShape that is being

used, for example, 18121.

version.major first digits of the version of PowerShape
being used. For example, if you are using

18121, version.major returns 18.

version.minor middle digit of the version of
PowerShape being used. For example, if

you are using 18121, version.minor

returns 1.

version.revision last two digits of the version of
PowerShape being used. For example, if

you are using 18121, version.revision

returns 21.

version.has.excel tests if MS Excel is installed.

228 • Customizing PowerShape Using Macros with PowerShape

View commands

Command Description

view[name].exists 1 if the view exists; 0 otherwise.

view[name].id unique identity number of the view.

view[id n].name name of the view that has the given

identity number.

view[name].rotation_centre [x y z] coordinates of the rotation centre

of the view.

view[name].rotation_centre.x x coordinate of the rotation centre of the

view.

view[name].rotation_centre.y y coordinate of the rotation centre of the

view.

view[name].rotation_centre.z z coordinate of the rotation centre of the

view.

Window commands

Command Description

cwindow clear clears the Command window.

window.selected number of the selected window.

window.number number of windows opened.

window[name].exists 1 if the window exists; 0 otherwise.

window[name].id unique identity number of the window.

window[name].size size of the window in x and y.

window[name].size.x size of the window in x.

window[name].size.y size of the window in y.

window[name].type type of the window from one of the

following: model or drawing.

window[name].model name of the model opened in the window.

window[name].drawing name of the drawing if opened in the

window and a blank string otherwise.

Autodesk PowerShape Customizing PowerShape • 229

Workplane commands

If you don't specify the name of the workplane, the active workplane is used;

for example, workplane.origin returns the origin of the active workplane. An
error is displayed when there is no active workplane.

The following workplane commands are available:

Command Description

workplane[name].active 1 if the workplane is active; 0 otherwise.

workplane.active name of the active workplane. If no

workplane is active, World is returned,

even in a foreign language.

workplane[name].xaxis unit vector which defines the orientation
of the X-axis of workplane from its

origin.

workplane[name].xaxis.x x value of the unit vector which defines

the orientation of the X-axis of

workplane from its origin.

workplane[name].xaxis.y y value of the unit vector which defines

the orientation of the X-axis of

workplane from its origin.

workplane[name].xaxis.z z value of the unit vector which defines
the orientation of the X-axis of

workplane from its origin.

workplane[name].yaxis unit vector which defines the orientation

of the Y-axis of workplane from its

origin.

workplane[name].yaxis.x x value of the unit vector which defines
the orientation of the Y-axis of workplane

from its origin.

workplane[name].yaxis.y y value of the unit vector which defines

the orientation of the Y-axis of workplane

from its origin.

workplane[name].yaxis.z z value of the unit vector which defines

the orientation of the Y-axis of workplane

from its origin.

workplane[name].zaxis unit vector which defines the orientation
of the Z-axis of workplane from its

origin.

workplane[name].zaxis.x x value of the unit vector which defines

the orientation of the Z-axis of

workplane from its origin.

230 • Customizing PowerShape Using Macros with PowerShape

workplane[name].zaxis.y y value of the unit vector which defines
the orientation of the Z-axis of

workplane from its origin.

workplane[name].zaxis.z z value of the unit vector which defines

the orientation of the Z-axis of

workplane from its origin.

workplane[name].exists 1 if the workplane exists; 0 otherwise.

workplane[name].id unique identity number of the workplane

in the model.

workplane[id n].name name of the workplane that has the

given identity number.

workplane[name].level level on which the workplane exists.

workplane[name].locked 1 if the workplane is locked; 0 otherwise.

workplane[name].origin coordinates [x, y, z] of the origin of the

workplane.

workplane[name].origin.x x coordinate of the origin of the

workplane.

workplane[name].origin.y y coordinate of the origin of the

workplane.

workplane[name].origin.z z coordinate of the origin of the

workplane.

workplane[name].style.colour colour number of line style used to draw

the workplane.

workplane[name].style.color color (USA) number of line style used to

draw the workplane.

workplane[name].style.gap gap of line style used to draw the

workplane.

workplane[name].style.weight weight of line style used to draw the

workplane.

workplane[name].style.width width of line style used to draw the

workplane.

Autodesk PowerShape Customizing PowerShape • 231

Autodesk PowerShape Autodesk Legal Notice • 233

© 2023 Autodesk, Inc. All Rights Reserved. Except where otherwise
noted, this work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 Unported License that can be
viewed online at http://creativecommons.org/licenses/by-nc-

sa/3.0/. This license content, applicable as of 16 December 2014 to

this software product, is reproduced here for offline users:

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND

DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS
LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP.

CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-
IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES

REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS
LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS

OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR
"LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR

OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS

PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU

ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS
LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO

BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS

CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

1. Definitions

Autodesk Legal Notice

234 • Autodesk Legal Notice Using Macros with PowerShape

a. "Adaptation" means a work based upon the Work, or upon the
Work and other pre-existing works, such as a translation,

adaptation, derivative work, arrangement of music or other
alterations of a literary or artistic work, or phonogram or

performance and includes cinematographic adaptations or any
other form in which the Work may be recast, transformed, or

adapted including in any form recognizably derived from the
original, except that a work that constitutes a Collection will not

be considered an Adaptation for the purpose of this License. For

the avoidance of doubt, where the Work is a musical work,
performance or phonogram, the synchronization of the Work in

timed-relation with a moving image ("synching") will be
considered an Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works,
such as encyclopedias and anthologies, or performances,

phonograms or broadcasts, or other works or subject matter
other than works listed in Section 1(g) below, which, by reason

of the selection and arrangement of their contents, constitute

intellectual creations, in which the Work is included in its entirety
in unmodified form along with one or more other contributions,

each constituting separate and independent works in themselves,
which together are assembled into a collective whole. A work

that constitutes a Collection will not be considered an Adaptation
(as defined above) for the purposes of this License.

c. "Distribute" means to make available to the public the original
and copies of the Work or Adaptation, as appropriate, through

sale or other transfer of ownership.

d. "License Elements" means the following high-level license
attributes as selected by Licensor and indicated in the title of this

License: Attribution, Noncommercial, ShareAlike.

e. "Licensor" means the individual, individuals, entity or entities
that offer(s) the Work under the terms of this License.

f. "Original Author" means, in the case of a literary or artistic
work, the individual, individuals, entity or entities who created

the Work or if no individual or entity can be identified, the
publisher; and in addition (i) in the case of a performance the

actors, singers, musicians, dancers, and other persons who act,
sing, deliver, declaim, play in, interpret or otherwise perform

literary or artistic works or expressions of folklore; (ii) in the

case of a phonogram the producer being the person or legal
entity who first fixes the sounds of a performance or other

sounds; and, (iii) in the case of broadcasts, the organization that
transmits the broadcast.

Autodesk PowerShape Autodesk Legal Notice • 235

g. "Work" means the literary and/or artistic work offered under
the terms of this License including without limitation any

production in the literary, scientific and artistic domain, whatever
may be the mode or form of its expression including digital form,

such as a book, pamphlet and other writing; a lecture, address,
sermon or other work of the same nature; a dramatic or

dramatico-musical work; a choreographic work or entertainment
in dumb show; a musical composition with or without words; a

cinematographic work to which are assimilated works expressed

by a process analogous to cinematography; a work of drawing,
painting, architecture, sculpture, engraving or lithography; a

photographic work to which are assimilated works expressed by
a process analogous to photography; a work of applied art; an

illustration, map, plan, sketch or three-dimensional work relative
to geography, topography, architecture or science; a

performance; a broadcast; a phonogram; a compilation of data
to the extent it is protected as a copyrightable work; or a work

performed by a variety or circus performer to the extent it is not
otherwise considered a literary or artistic work.

h. "You" means an individual or entity exercising rights under

this License who has not previously violated the terms of this
License with respect to the Work, or who has received express

permission from the Licensor to exercise rights under this
License despite a previous violation.

i. "Publicly Perform" means to perform public recitations of the
Work and to communicate to the public those public recitations,

by any means or process, including by wire or wireless means or

public digital performances; to make available to the public
Works in such a way that members of the public may access

these Works from a place and at a place individually chosen by
them; to perform the Work to the public by any means or

process and the communication to the public of the performances
of the Work, including by public digital performance; to

broadcast and rebroadcast the Work by any means including
signs, sounds or images.

j. "Reproduce" means to make copies of the Work by any means

including without limitation by sound or visual recordings and the
right of fixation and reproducing fixations of the Work, including

storage of a protected performance or phonogram in digital form
or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from

limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

236 • Autodesk Legal Notice Using Macros with PowerShape

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-

exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or
more Collections, and to Reproduce the Work as incorporated in

the Collections;

b. to create and Reproduce Adaptations provided that any such

Adaptation, including any translation in any medium, takes

reasonable steps to clearly label, demarcate or otherwise identify
that changes were made to the original Work. For example, a

translation could be marked "The original work was translated
from English to Spanish," or a modification could indicate "The

original work has been modified.";

c. to Distribute and Publicly Perform the Work including as

incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

The above rights may be exercised in all media and formats
whether now known or hereafter devised. The above rights include

the right to make such modifications as are technically necessary to
exercise the rights in other media and formats. Subject to Section

8(f), all rights not expressly granted by Licensor are hereby
reserved, including but not limited to the rights described in Section

4(e).

4. Restrictions. The license granted in Section 3 above is expressly
made subject to and limited by the following restrictions:

Autodesk PowerShape Autodesk Legal Notice • 237

a. You may Distribute or Publicly Perform the Work only under
the terms of this License. You must include a copy of, or the

Uniform Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform. You may not

offer or impose any terms on the Work that restrict the terms of
this License or the ability of the recipient of the Work to exercise

the rights granted to that recipient under the terms of the
License. You may not sublicense the Work. You must keep intact

all notices that refer to this License and to the disclaimer of
warranties with every copy of the Work You Distribute or Publicly

Perform. When You Distribute or Publicly Perform the Work, You
may not impose any effective technological measures on the

Work that restrict the ability of a recipient of the Work from You
to exercise the rights granted to that recipient under the terms of

the License. This Section 4(a) applies to the Work as

incorporated in a Collection, but this does not require the
Collection apart from the Work itself to be made subject to the

terms of this License. If You create a Collection, upon notice from
any Licensor You must, to the extent practicable, remove from

the Collection any credit as required by Section 4(d), as
requested. If You create an Adaptation, upon notice from any

Licensor You must, to the extent practicable, remove from the
Adaptation any credit as required by Section 4(d), as requested.

b. You may Distribute or Publicly Perform an Adaptation only
under: (i) the terms of this License; (ii) a later version of this

License with the same License Elements as this License; (iii) a
Creative Commons jurisdiction license (either this or a later

license version) that contains the same License Elements as this
License (e.g., Attribution-NonCommercial-ShareAlike 3.0 US)

("Applicable License"). You must include a copy of, or the URI,

for Applicable License with every copy of each Adaptation You
Distribute or Publicly Perform. You may not offer or impose any

terms on the Adaptation that restrict the terms of the Applicable
License or the ability of the recipient of the Adaptation to

exercise the rights granted to that recipient under the terms of
the Applicable License. You must keep intact all notices that refer

to the Applicable License and to the disclaimer of warranties with
every copy of the Work as included in the Adaptation You

Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Adaptation, You may not impose any effective

technological measures on the Adaptation that restrict the ability
of a recipient of the Adaptation from You to exercise the rights

granted to that recipient under the terms of the Applicable
License. This Section 4(b) applies to the Adaptation as

incorporated in a Collection, but this does not require the

Collection apart from the Adaptation itself to be made subject to
the terms of the Applicable License.

238 • Autodesk Legal Notice Using Macros with PowerShape

c. You may not exercise any of the rights granted to You in
Section 3 above in any manner that is primarily intended for or

directed toward commercial advantage or private monetary
compensation. The exchange of the Work for other copyrighted

works by means of digital file-sharing or otherwise shall not be
considered to be intended for or directed toward commercial

advantage or private monetary compensation, provided there is
no payment of any monetary compensation in connection with

the exchange of copyrighted works.

d. If You Distribute, or Publicly Perform the Work or any

Adaptations or Collections, You must, unless a request has been
made pursuant to Section 4(a), keep intact all copyright notices

for the Work and provide, reasonable to the medium or means
You are utilizing: (i) the name of the Original Author (or

pseudonym, if applicable) if supplied, and/or if the Original

Author and/or Licensor designate another party or parties (e.g.,
a sponsor institute, publishing entity, journal) for attribution

("Attribution Parties") in Licensor's copyright notice, terms of
service or by other reasonable means, the name of such party or

parties; (ii) the title of the Work if supplied; (iii) to the extent
reasonably practicable, the URI, if any, that Licensor specifies to

be associated with the Work, unless such URI does not refer to
the copyright notice or licensing information for the Work; and,

(iv) consistent with Section 3(b), in the case of an Adaptation, a
credit identifying the use of the Work in the Adaptation (e.g.,

"French translation of the Work by Original Author," or
"Screenplay based on original Work by Original Author"). The

credit required by this Section 4(d) may be implemented in any
reasonable manner; provided, however, that in the case of a

Adaptation or Collection, at a minimum such credit will appear, if

a credit for all contributing authors of the Adaptation or
Collection appears, then as part of these credits and in a manner

at least as prominent as the credits for the other contributing
authors. For the avoidance of doubt, You may only use the credit

required by this Section for the purpose of attribution in the
manner set out above and, by exercising Your rights under this

License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original

Author, Licensor and/or Attribution Parties, as appropriate, of
You or Your use of the Work, without the separate, express prior

written permission of the Original Author, Licensor and/or
Attribution Parties.

e. For the avoidance of doubt:

Autodesk PowerShape Autodesk Legal Notice • 239

i. Non-waivable Compulsory License Schemes. In those
jurisdictions in which the right to collect royalties through any

statutory or compulsory licensing scheme cannot be waived,
the Licensor reserves the exclusive right to collect such

royalties for any exercise by You of the rights granted under
this License;

ii. Waivable Compulsory License Schemes. In those
jurisdictions in which the right to collect royalties through any

statutory or compulsory licensing scheme can be waived, the
Licensor reserves the exclusive right to collect such royalties

for any exercise by You of the rights granted under this
License if Your exercise of such rights is for a purpose or use

which is otherwise than noncommercial as permitted under
Section 4(c) and otherwise waives the right to collect royalties

through any statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right
to collect royalties, whether individually or, in the event that

the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society,

from any exercise by You of the rights granted under this
License that is for a purpose or use which is otherwise than

noncommercial as permitted under Section 4(c).

f. Except as otherwise agreed in writing by the Licensor or as

may be otherwise permitted by applicable law, if You Reproduce,
Distribute or Publicly Perform the Work either by itself or as part

of any Adaptations or Collections, You must not distort, mutilate,
modify or take other derogatory action in relation to the Work

which would be prejudicial to the Original Author's honor or
reputation. Licensor agrees that in those jurisdictions (e.g.

Japan), in which any exercise of the right granted in Section 3(b)

of this License (the right to make Adaptations) would be deemed
to be a distortion, mutilation, modification or other derogatory

action prejudicial to the Original Author's honor and reputation,
the Licensor will waive or not assert, as appropriate, this Section,

to the fullest extent permitted by the applicable national law, to
enable You to reasonably exercise Your right under Section 3(b)

of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

240 • Autodesk Legal Notice Using Macros with PowerShape

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN
WRITING AND TO THE FULLEST EXTENT PERMITTED BY APPLICABLE

LAW, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING

THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE,

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER

DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT

ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THIS
EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY

APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU
ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,

CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING
OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF

LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this

License. Individuals or entities who have received Adaptations or
Collections from You under this License, however, will not have

their licenses terminated provided such individuals or entities

remain in full compliance with those licenses. Sections 1, 2, 5, 6,
7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted
here is perpetual (for the duration of the applicable copyright in

the Work). Notwithstanding the above, Licensor reserves the
right to release the Work under different license terms or to stop

distributing the Work at any time; provided, however that any
such election will not serve to withdraw this License (or any

other license that has been, or is required to be, granted under
the terms of this License), and this License will continue in full

force and effect unless terminated as stated above.

8. Miscellaneous

Autodesk PowerShape Autodesk Legal Notice • 241

a. Each time You Distribute or Publicly Perform the Work or a
Collection, the Licensor offers to the recipient a license to the

Work on the same terms and conditions as the license granted to
You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation,
Licensor offers to the recipient a license to the original Work on

the same terms and conditions as the license granted to You
under this License.

c. If any provision of this License is invalid or unenforceable
under applicable law, it shall not affect the validity or

enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such

provision shall be reformed to the minimum extent necessary to
make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived

and no breach consented to unless such waiver or consent shall
be in writing and signed by the party to be charged with such

waiver or consent.

e. This License constitutes the entire agreement between the

parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to

the Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication

from You. This License may not be modified without the mutual
written agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced,
in this License were drafted utilizing the terminology of the Berne

Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of

1961, the WIPO Copyright Treaty of 1996, the WIPO

Performances and Phonograms Treaty of 1996 and the Universal
Copyright Convention (as revised on July 24, 1971). These rights

and subject matter take effect in the relevant jurisdiction in
which the License terms are sought to be enforced according to

the corresponding provisions of the implementation of those
treaty provisions in the applicable national law. If the standard

suite of rights granted under applicable copyright law includes
additional rights not granted under this License, such additional

rights are deemed to be included in the License; this License is
not intended to restrict the license of any rights under applicable

law.

Creative Commons Notice

242 • Autodesk Legal Notice Using Macros with PowerShape

Creative Commons is not a party to this License, and makes no
warranty whatsoever in connection with the Work. Creative

Commons will not be liable to You or any party on any legal theory
for any damages whatsoever, including without limitation any

general, special, incidental or consequential damages arising in
connection to this license. Notwithstanding the foregoing two (2)

sentences, if Creative Commons has expressly identified itself as
the Licensor hereunder, it shall have all rights and obligations of

Licensor.

Except for the limited purpose of indicating to the public that the

Work is licensed under the CCPL, Creative Commons does not
authorize the use by either party of the trademark "Creative

Commons" or any related trademark or logo of Creative Commons
without the prior written consent of Creative Commons. Any

permitted use will be in compliance with Creative Commons' then-

current trademark usage guidelines, as may be published on its
website or otherwise made available upon request from time to

time. For the avoidance of doubt, this trademark restriction does
not form part of this License.

Creative Commons may be contacted at
https://creativecommons.org/.

Certain materials included in this publication are reprinted with the
permission of the copyright holder.

Creative Commons FAQ

Autodesk's Creative Commons FAQ can be viewed online at

https://knowledge.autodesk.com/customer-service/share-the-
knowledge, and is reproduced here for offline users.

Creative Commons is a simple, open licensing model which allows
individuals to freely modify, remix, and share digital content created

for learning and support.

Borrow from the Autodesk Learning, Support and Video libraries to

build a new learning experience for anyone with any particular need
or interest. It’s out there. You can use it. It’s yours.

In collaboration with Creative Commons, Autodesk invites you to

share your knowledge with the rest of the world, inspiring others to
learn, achieve goals, and ignite creativity.

What is Creative Commons?

Creative Commons (CC) is a nonprofit organization that offers a
simple licensing model that frees digital content to enable anyone to

modify, remix, and share creative works.

Autodesk PowerShape Autodesk Legal Notice • 243

How do I know if Autodesk learning content and Autodesk University
content is available under Creative Commons?

All Autodesk learning content and Autodesk University content
released under Creative Commons is explicitly marked with a

Creative Commons icon specifying what you can and cannot do.
Always follow the terms of the stated license.

What Autodesk learning content is currently available under Creative
Commons?

Over time, Autodesk will release more and more learning content
under the Creative Commons licenses.

Currently available learning content:

▪ Autodesk online help-Online help for many Autodesk products,

including its embedded media such as images and help movies.

▪ Autodesk Learning Videos-A range of video-based learning

content, including the video tutorials on the Autodesk YouTube™
Learning Channels and their associated iTunes® podcasts.

▪ Autodesk downloadable materials-Downloadable 3D assets,
digital footage, and other files you can use to follow along on

your own time.

Is Autodesk learning and support content copyrighted?
Yes. Creative Commons licensing does not replace copyright.

Copyright remains with Autodesk or its suppliers, as applicable. But

it makes the terms of use much more flexible.

What do the Autodesk Creative Commons licenses allow?
Autodesk makes some of its learning and support content available

under two distinct Creative Commons licenses. The learning content
is clearly marked with the applicable Creative Commons license. You

must comply with the following conditions:

▪ Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) This license

lets you copy, distribute, display, remix, tweak, and build upon
our work noncommercially, as long as you credit Autodesk and

license your new creations under the identical terms. Terms of

this license can be viewed online at
https://creativecommons.org/licenses/by-nc-sa/3.0/us/

▪ Attribution-NonCommercial-No Derivative Works (CC BY-NC-ND)

This license lets you copy, distribute, and display only verbatim
copies of our work as long as you credit us, but you cannot alter

the learning content in any way or use it commercially. Terms of
this license can be viewed online at

https://creativecommons.org/licenses/by-nc-
nd/3.0/us/deed.en_US

244 • Autodesk Legal Notice Using Macros with PowerShape

▪ Special permissions on content marked as No Derivative Works For
video-based learning content marked as No Derivative Works

(ND), Autodesk grants you special permission to make
modifications but only for the purpose of translating the video

content into another language.

These conditions can be modified only by explicit permission of

Autodesk, Inc. Send requests for modifications outside of these
license terms to creativecommons@autodesk.com.

Can I get special permission to do something different with the learning
content?

Unless otherwise stated, our Creative Commons conditions can be

modified only by explicit permission of Autodesk, Inc. If you have
any questions or requests for modifications outside of these license

terms, email us at creativecommons@autodesk.com.

How do I attribute Autodesk learning content?
You must explicitly credit Autodesk, Inc., as the original source of

the materials. This is a standard requirement of the Attribution (BY)
term in all Creative Commons licenses. In some cases, such as for

the Autodesk video learning content, we specify exactly how we
would like to be attributed.

This is usually described on the video's end-plate. For the most part
providing the title of the work, the URL where the work is hosted,

and a credit to Autodesk, Inc., is quite acceptable. Also, remember
to keep intact any copyright notice associated with the work. This

may sound like a lot of information, but there is flexibility in the way
you present it.

Here are some examples:

"This document contains content adapted from the Autodesk®

Maya® Help, available under a Creative Commons Attribution-

NonCommercial-Share Alike license. Copyright © Autodesk, Inc."

"This is a Finnish translation of a video created by the Autodesk

Maya Learning Channel @ www.youtube.com/mayahowtos.
Copyright © Autodesk, Inc."

"Special thanks to the Autodesk® 3ds Max® Learning Channel @
www.youtube.com/3dsmaxhowtos. Copyright © Autodesk, Inc."

Do I follow YouTube's standard license or Autodesk's Creative
Commons license?

The videos of the Autodesk Learning Channels on YouTube are
uploaded under YouTube's standard license policy. Nonetheless,

these videos are released by Autodesk as Creative Commons
Attribution-NonCommercial-No Derivative Works (CC BY-NC-ND)

and are marked as such.

Autodesk PowerShape Autodesk Legal Notice • 245

You are free to use our video learning content according to the
Creative Commons license under which they are released.

Where can I easily download Autodesk learning videos?

Most of the Autodesk Learning Channels have an associated iTunes
podcast from where you can download the same videos and watch

them offline. When translating Autodesk learning videos, we
recommend downloading the videos from the iTunes podcasts.

Can I translate Autodesk learning videos?

Yes. Even though our learning videos are licensed as No Derivative
Works (ND), we grant everyone permission to translate the audio

and subtitles into other languages. In fact, if you want to recapture
the video tutorial as-is but show the user interface in another

language, you are free to do so. Be sure to give proper attribution
as indicated on the video's Creative Commons end-plate. This

special permission only applies to translation projects. Requests for
modifications outside of these license terms can be directed to

creativecommons@autodesk.com.

How do I let others know that I have translated Autodesk learning
content into another language?
Autodesk is happy to see its learning content translated into as

many different languages as possible. If you translate our videos or

any of our learning content into other languages, let us know. We
can help promote your contributions to our growing multilingual

community. In fact, we encourage you to find creative ways to
share our learning content with your friends, family, students,

colleagues, and communities around the world. Contact us at
creativecommons@autodesk.com.

I have translated Autodesk learning videos into other languages. Can I
upload them to my own YouTube channel?

Yes, please do and let us know where to find them so that we can
help promote your contributions to our growing multilingual

Autodesk community. Contact us at
creativecommons@autodesk.com.

Can I repost or republish Autodesk learning content on my site or blog?

Yes, you can make Autodesk learning material available on your site
or blog as long as you follow the terms of the Creative Commons

license under which the learning content is released. If you are
simply referencing the learning content as-is, then we recommend

that you link to it or embed it from where it is hosted by Autodesk.

That way the content will always be fresh. If you have translated or
remixed our learning content, then by all means you can host it

yourself. Let us know about it, and we can help promote your
contributions to our global learning community. Contact us at

creativecommons@autodesk.com.

246 • Autodesk Legal Notice Using Macros with PowerShape

Can I show Autodesk learning content during my conference?

Yes, as long as it's within the scope of a noncommercial event, and
as long as you comply with the terms of the Creative Commons

license outlined above. In particular, the videos must be shown
unedited with the exception of modifications for the purpose of

translation. If you wish to use Autodesk learning content in a
commercial context, contact us with a request for permission at

creativecommons@autodesk.com.

Can I use Autodesk learning content in my classroom?
Yes, as long as you comply with the terms of the Creative Commons

license under which the learning material is released. Many teachers
use Autodesk learning content to stimulate discussions with

students or to complement course materials, and we encourage you
to do so as well.

Can I re-edit and remix Autodesk video learning content?

No, but for one exception. Our Creative Commons BY-NC-ND license
clearly states that "derivative works" of any kind (edits, cuts,

remixes, mashups, and so on) are not allowed without explicit

permission from Autodesk. This is essential for preserving the
integrity of our instructors' ideas. However, we do give you

permission to modify our videos for the purpose of translating them
into other languages.

Can I re-edit and remix Autodesk downloadable 3D assets and footage?

Yes. The Autodesk Learning Channels on YouTube provide
downloadable 3D assets, footage, and other files for you to follow

along with the video tutorials on your own time. This downloadable
material is made available under a Creative Commons Attribution-

NonCommercial-ShareAlike (CC BY-NC-SA) license. You can
download these materials and experiment with them, but your

remixes must give us credit as the original source of the content
and be shared under the identical license terms.

Can I use content from Autodesk online help to create new materials for
a specific audience?

Yes, if you want to help a specific audience learn how to optimize
the use of their Autodesk software, there is no need to start from

scratch. You can use, remix, or enrich the relevant help content and
include it in your book, instructions, examples, or workflows you

create, then Share-Alike with the community. Always be sure to

comply with the terms of the Creative Commons license under
which the learning content is released.

Autodesk PowerShape Autodesk Legal Notice • 247

What are the best practices for marking content with Creative Commons
Licenses?

When reusing a CC-licensed work (by sharing the original or a
derivative based on the original), it is important to keep intact any

copyright notice associated with the work, including the Creative
Commons license being used. Make sure you abide by the license

conditions provided by the licensor, in this case Autodesk, Inc.

Trademarks

The following are registered trademarks or trademarks of Autodesk,
Inc., and/or its subsidiaries and/or affiliates in the USA and other

countries: 3ds Max, ADSK, Alias, ATC, AutoCAD LT, AutoCAD,
Autodesk, Autodesk Construction Cloud, Autodesk Forge, Autodesk

Fusion 360, BIM 360, BuildingConnected, Civil 3D, Dancing Baby,
The (image) Eagle, FBX, FeatureCAM, Flame, FormIt, Forge, Forge

Devcon, Forge Fund, Fusion 360, Glue, Green Building Studio,
ICMLive, InfoWater, InfoWorks, InfraWorks, Innovyze,

Instructables, Inventor, Make Anything, Maya, Moldflow,
MotionBuilder, Mudbox, Navisworks, Netfabb, PartMaker, Plangrid,

PowerInspect, PowerMill, PowerShape, Pype, RasterDWG, Redshift,
RealDWG, ReCap, Revit, Shotgun, SketchBook, Spacemaker,

Tinkercad, TrustedDWG, VRED.

All other brand names, product names or trademarks belong to their
respective holders.

Disclaimer

THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS

MADE AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC.
DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

REGARDING THESE MATERIALS.

 Except where otherwise noted, this work is licensed

under a Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported License. Please see the Autodesk Creative Commons

FAQ for more information.

