[bookmark: _Toc132185804]Lab 6 – PointMonitor

The steps for this lab are in two commands and two procedures. One of the commands and one of the procedures are created using the steps in the lab. The other command and procedure already exist and are not part of the lab steps. (These steps have been done in previous labs).
The new command (steps 1-3) will have a name like “addpointMonitor”. The name of the new procedure will have a name like “MyPointMonitor” (steps 4-26) and will be the call back for the PointMonitor added in the “addpointmonitor” command. In this callback that is called when the cursor moves it will get an object called FullSubentityPath from the PointMonitorEventArgs passed into the function. (If the cursor is over an entity). The FullSubentityPath consists of an array of object IDs and a SubentityId object. The subentity ID object contains the graphics system marker of the subentity and the type of the subentity (that is, edge, face, vertex).
The code will append a ToolTip with the entity type the cursor is over. In the callback you will also highlight the object entry in the TreeView created in previous labs.

[image:]

The pre existing command is “NewInput” (steps 27-30). In these steps you will use another PointMonitor but it will be added and then removed before the command ends. During the Editor GetPoint function the PointMonitor is used to draw temporary graphics at certain positions along the entity. In the lab’s existing procedure “MyInputMonitor” steps (31-44) you will use the Curve class GetPointAtDist method with values from the Extension Dictionary to control where the temporary graphics are drawn. To keep the size of the temporary graphics consistent regardless of the zoom value you use GetNumPixelsInUnitSquare. To create the temporary graphics you use methods of the PointMonitorEventArgs passed into the event callback.

[bookmark: _GoBack][image:]

The comments are the steps for the lab. You can copy the comments and code below to the vb file in your existing project (need to copy inside of an existing class) or open the Lab6 project that already has these procedures and steps.

' Start of Lab6
' Note: In step 10 you add a tooltip to the PointMonitor. In the first
' release of AutoCAD 2012 there is a problem and Tooltips are not displaying.
' unless the setting for ROLLOVERTIPS = 0
' This should be fixed in the first service pack. Also in AutoCAD 2012 you
' may get an assert when hovering over entities after adding the PointMonitor.
' (just ignore it) This problem has been reported to AutoCAD engineering.

' 1. Use the CommandMethod attribute and create a command named "addpointmonitor"
' name the Sub something like startMonitor
' Note: put the "End Sub" after step 3

' 2. Declare an Editor variable named ed. Instantiate it using the Editor property
' of the Application.DocumentManager.MdiActiveDocument

' 3. Use the AddHandler statement to had a Editor PointMonitor event
' Use the PointMonitor event of the Editor variable
' created in step 2 for the first parameter (Event). For the second
' parameter (Delegate) use the New statement and create an
' PointMonitorEventHandler use the AddressOf statement and the name
' of a procedure (MyPointMonitor) The procedure will be created in step 4.

' 4. Create a Public Sub named MyPointMonitor. This is the Sub that
' will be called everytime the mouse moves. (The name needs to be
' the name used in the Delegate parameter of step 3). The first parameter is an
' object. (Use ByVal and sender as the name of the Object). The second parameter is
' a PointMonitorEventArgs. (Use ByVal and e as the name of the PointMonitorEventArgs)
' Note: Put the End Sub after step 27

' 5. Declare an array of the Type FullSubentityPath type. For the name
' of the array use something like fullEntPath. Instantiate it by
' making it equal to the GetPickedEntities method of the Context
' property of the PointMonitorEventArgs passed into the Sub

' 6. Use an "If Then" statement and test the Length property of the array
' created in step 5
' Note: Put the "End If" after step 27

' 7. Declare a variable named trans as a Transaction. Instantiate it by makine it
' equal to the return of the StartTransaction method of the TransactionManager
' of the current database.
' Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction

' 8. Create a Try Catch block.
' Note: Put the Catch after step 25 and the Finally statements after step 26
' Put the End Try after step 27

' 9. Declare a variable as an Entity. Instantiate it using the
' GetObject method of the transaction created in step 7. For
' the ObjectId parameter use the first element in GetObjectIds(0)
' of the zero element in the array of FullSubentityPath created in
' step 5 open the Entity for read

' 10. Add a tooltip by using the AppendToolTipText method of the
' PointMonitorEventArgs passed into the Sub. Use something like this for
' string argument:
' "The Entity is a " + ent.GetType().ToString()

' 11. Use an "If Then" and Check that the palette (myPalette) has
'been created. (Is Nothing) If it does not exist return.

' 12. The following steps will make the text of the entry for a DBEntity
' in the palette created in Lab4 Bold. Declare a variable named fontRegular
' as a System.Drawing.Font. Instantiate it by making it equal to a New
' System.Drawing.Font. For the arguments use the following:
' "Microsoft Sans Serif", 8, Drawing.FontStyle.Regular

' 13. Declare a variable named fontBold as a System.Drawing.Font.
' Instantiate it by making it equal to a New
' System.Drawing.Font. For the arguments use the following:
' "Microsoft Sans Serif", 8, Drawing.FontStyle.Bold

' 14. Use the SuspendLayout() method of the TreeView created in Lab4 to
' wait until after the steps below are processed. Use the "Me" Keyword to
' get to the Palette (myPalette) with the TreeView.

' 15. Here we will search for an object in the treeview control so the font
' can be chaged to bold.
' Create a For Each statement. Use node for the element name and the type is
' Forms.Treenode. The group paramater is the Nodes in the TreeView.
' (myPalette.TreeView1.Nodes)
' Note: put the Next statement below step 21.
' (In this For Each if the cursor is over an entity and the entity is
' an entry in the TreeView it will be highlighted.

' 16. use an "If Else Then" and see if the Tag property of the node
' is equal to the ObjectId of the entity declared in step 9.
' (Use ToString for the comparison)
' Note: put the "Else" after step 19
' Put the "End IF" after step 21.

' 17. If we get here then the node is the one we want.
' Use "If Not" and use the Equals method of the
' System.Drawing.Font variable created in step 12. For
' the Object parameter use the NodeFont property of the node.
' Note: Put the "End If" after step 19

' 18. Make the NodeFont property of the node equal to the
' System.Drawing.Font variable created in step 13.

' 19. Make the Text property of the node equal to the
' node.Text property.

' 20. If we get here then the node is not the node we want.
' Use "If Not" and use the Equals method of the
' System.Drawing.Font variable created in step 12. For
' the Object parameter use the NodeFont property of the node.
' Note: Put the "End If" after step 21.

' 21. Make the NodeFont property of the node equal to the
' System.Drawing.Font variable created in step 12

' 22. Now it's time to recalc the layout of the treeview. Use the
' ResumeLayout() method of the TreeView. Use the "Me" Keyword to
' get to the Palette with the TreeView.

' 23. Refresh the TreView with the Refresh method() of the TreeView.

' 24. Update the TreView with the Update method() of the TreeView.

' 25. All is ok if we get here so Commit the transaction created in
' step 7.

' 26. Use the WriteMessgae of the editor to put the text of
' the exception on the AutoCAD command line.
' Application.DocumentManager.MdiActiveDocument.Editor

' 27. Whatever happens we must dispose the transaction. (This is
' in the Finally block). Use the Dispose method of the
' transaction created in step 7.
' Note: continue to step 28 in the NewInput function. You could also build and
' test the addPointmonitor command before completing the following steps.

<CommandMethod("newInput")> _
Public Sub NewInput()

 ' start our input point Monitor
 ' get the editor object
 Dim ed As Editor = Application.DocumentManager.MdiActiveDocument.Editor
 ' now add the delegate to the events list
 AddHandler ed.PointMonitor, New PointMonitorEventHandler(AddressOf MyInputMonitor)

 ' 28. Need to enable the AutoCAD input event mechanism to do a pick under the prevailing
 ' pick aperture on all digitizer events, regardless of whether a point is being acquired
 ' or whether any OSNAP modes are currently active. Use the TurnForcedPickOn method
 ' of the Editor created above. "ed"

 ' 29. Here we are going to ask the user to pick a point. Declare a variable as a
 ' PromptPointOptions. Instantiate it by creating a New PromptPointOptions
 ' for the Message parameter using something like "Pick A Point : "

 ' 30. Declare a variable as a PromptPointResult. Instantiate it using the GetPoint
 ' method of the editor created above. "ed". Pass in the PromptPointOptions created
 ' in step 28.

 ' if ok
 'If (getPointResult.Status = PromptStatus.OK) Then
 ' ' do something...
 'End If

 ' 31. Now remove our point monitor as we are finished With it.
 ' Use RemoveHandler for the object use the PointMonitor property of the
 ' Editor created above. "ed". For the Delegate argument use AddressOf and
 ' the name of the callback function. "MyInputMonitor"
 ' Continue to step 31 in the MyInputMonitor Sub.

End Sub

Public Sub MyInputMonitor(ByVal sender As Object, ByVal e As PointMonitorEventArgs)

 ' first lets check what is under the Cursor
 Dim fullEntPath() As FullSubentityPath = e.Context.GetPickedEntities()
 If (fullEntPath.Length) Then

 ' start a transaction
 Dim trans As Transaction = Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction
 Try

 ' open the Entity for read, it must be derived from Curve
 Dim ent As Curve = trans.GetObject(fullEntPath(0).GetObjectIds(0), OpenMode.ForRead)

 ' ok, so if we are over something - then check to see if it has an extension dictionary
 If (ent.ExtensionDictionary.IsValid) Then

 ' open it for read
 Dim extensionDict As DBDictionary = trans.GetObject(ent.ExtensionDictionary, OpenMode.ForRead)

 ' find the entry
 Dim entryId As ObjectId = extensionDict.GetAt("MyData")

 ' if we are here, then all is ok
 ' extract the xrecord
 Dim myXrecord As Xrecord
 ' read it from the extension dictionary
 myXrecord = trans.GetObject(entryId, OpenMode.ForRead)

 ' 32. ' We will draw temporary graphics at certain positions along the entity
 ' Create a "For Each" loop. For the element use a TypedValue
 ' named myTypeVal. For the group use the Data property of the Xrecord
 ' instantiated above. "myXrecord".
 ' Note" put "Next" after step 45.

 ' 33. Use an "If Then" and see if the TypeCode of the TypedValue
 ' is a real. (Use DxfCode.Real as the test).
 ' Note: Put the "End If" after step 45.

 ' 34. To locate the temporary graphics along the Curve
 ' to show the distances we need to get the point along the curve.
 ' Declare a vaiable as a Point3d object. Instantiate it using
 ' the GetPointAtDist method of the ent instantatied above. "ent"
 ' For the Value parameter using the Value property of the TypedValue

 ' 35. We need to work out how many pixels are in a unit square
 ' so we can keep the temporary graphics a set size regardless of
 ' the zoom scale. Declare a variable as a Point2d name it something
 ' like "pixels". Instantiate it using the GetNumPixelsInUnitSquare method
 ' of the current Viewport. (Pass in the Point3d created in step 34).
 'Use: e.Context.DrawContext.Viewport.GetNumPixelsInUnitSquare()

 ' 36. We need some constant distances. Declare a variable as a Double
 ' named something like "xDist". make it equal to 10 divided by the
 ' X property of the Point2d variable created in step 35.

 ' 37. Declare a variable as a Double named something like "yDist".
 ' make it equal to 10 divided by the Y property of the Point2d variable
 ' created in step 35.

 ' 38. Draw the temporary Graphics. Declare a variable as a Circle
 ' instantiate is by creating a New Circle. Use the Point3d variable
 ' created in step 33 for the for the center. For the normal use
 ' Vector3d.ZAxis. For the radius use the double from step 36.

 ' 39. Use the Draw method to display the circle. (Pass in the Circle).
 ' Use: e.Context.DrawContext.Geometry.Draw()

 ' 40. Here we will add more temporary graphics. (text). Declare
 ' a variable as DBText. Instantiate it by creating New DBText.

 ' 41. Always a good idea to set the Database defaults With things like
 ' text, dimensions etc. Use the SetDatabaseDefaults method of the DBText
 ' from step 40

 ' 42. Set the position of the text to the same point as the circle,
 ' but offset by the radius. Use the Position property and make it
 ' equal to the Point3d created in step 34 plus a New Vector3d. For
 ' the X parameter use the Double from step 36. For the Y parameter use
 ' the Double from step 37. For Z just use zero.

 ' 43. Use the data from the Xrecord for the text. Use the TextString
 ' property of the DBText created in step 49. Make it equal to the
 ' Value of the TypedValue. (use ToString)

 ' 44. Make the Height of the DBText equal to the Double created in
 ' step 36

 ' 45. Use the Draw method to display the text. (Pass in the DBText).
 ' Use: e.Context.DrawContext.Geometry.Draw()
 ' Note: The backgound color may impact the display of the temporary
 ' text. (it displays as white in this example, so may need to change
 ' the background color to see it, or change the color of the DBText)

 ' End of Lab6

 End If

 ' all ok, commit it
 trans.Commit()
 Catch ex As Exception

 Finally
 ' whatever happens we must dispose the transaction
 trans.Dispose()

 End Try

 End If

End Sub
image1.png

image2.png

