[image:]

CLIENT GRAPHICS
IN
INVENTOR

Table of Contents
Client Graphics	3
API Object Model	4
Types of Client Graphics	4
Regular Client Graphics	4
Interaction Client Graphics	4
Graphics Data	5
Data Objects	5
Subsidiary Objects	5
General Procedure	6
Graphic Primitives	7
Point	7
Line	7
Line Strip	7
Triangle	8
Triangle Strip	8
Triangle Fan	9
Text	10
Curve	10
Surface	11
Using Index Sets	12
Using ‘Strip’ graphics	13
Using Model Native Data	14
Basic Properties	15
Interaction Client Graphics	16
Store Client Graphics	17
Advanced Functionality	18
Slice	18
Texture mapping	18
Further References	18
Sample code	18

[bookmark: _Toc276047113]
Client Graphics
Autodesk Inventor’s custom (client) graphics provide the ability to draw basic graphics alongside Inventor’s native graphics via the Application programmers Interface (API). Client Graphics are commonly used Inventor ‘add-in’ applications to represent their custom objects, to create interactive previews during the add-in commands, displaying the results of various analyses and for creating custom manipulators within a command. An example is a milling application in CAM, where the toolpath and the tool can be shown using client graphics. Another example is displaying the results of a finite element analysis performed on the Inventor model.

Inventor provides an API for programming such transient graphics independently of the underlying graphics platform that Inventor is running on, which provides major benefits in terms of portability and managing graphics library changes.

The Inventor API provides access to its own set of graphic primitives. These primitives include points, lines, triangles, text, and are collectively referred to as Client Graphics.

Client Graphics allow the developer to provide visual cues to actions being performed, and Inventor uses this feature itself in many scenarios, e.g. when the user creates an extrusion, a preview of the extruded part is displayed. While defining the extrude feature, a visual cue indicates what the final result will be. An add-in developer can provide similar visual cues within their own application.
[image: ClientGraphics1][image: cg1.png][image:]

[image:]
[image: cg1.png]
 (
Fig

1

: applications
with
 client
graphics
)

[bookmark: _Toc276047114]API Object Model
[image:]
Fig 2 : API Model Object
The diagram above outlines the API Object model associated with Inventor’s client graphics.
These are the major objects in the model:-
· ClientGraphics: Owner of a group of graphics. Control the visibility and selectability of the group.
· GraphicsNode: Owner of graphics primitives. Control the visibility, selectability, color, render style, position and transformation.
· Graphic primitives (TextGraphics, TriangleGraphics etc): The graphics displayed in the Inventor graphics window: points, lines, triangles, curves, text, and surface.
[bookmark: _Toc276047115]Types of Client Graphics
[bookmark: _Toc276047116]Regular Client Graphics

These types of client graphics are associated with an Inventor document. They are transient unless associated with a client feature, which means they are not retained by the document when the document is closed. One document, sheet or drawingview can have more than one client graphics object associated with it. Each client graphics object can have many graphics nodes. Each node can contain any number and any type of graphic primitives.

[bookmark: _Toc276047117]Interaction Client Graphics

This type of client graphics is available when using Interaction Events. They are always transient. The InteractionEvents object can have any number of nodes and graphics primitives, like Regular Client Graphics.
[bookmark: _Toc276047118]Graphics Data
In Inventor most client graphics are defined using two different types of objects; graphics data and graphic primitives. The graphics data define the low-level information that can be used to define primitives. By separating the data from the primitives, the data can be re-used by many different graphics primitives.
[bookmark: _Toc276047119]Data Objects
For Point, Line, LineStrip, Triangle, TriangleStrip, and TriangleFans, the data object provides the list of coordinates that the graphics can be based upon, along with any other necessary data sets such as the ‘color’ and ‘surface normal vector’ information.
[image: cg2.png]
Fig 3 : Data Objects
· Coordinate Sets: The coordinates used to specify the vertices for the graphic sets.
· Color Sets: A set of colors used by a graphic set. It overrides any other color information assigned to the set. Colors in the color set can be bound to the entire graphic set, each individual primitive in the set (e.g. each triangle in a triangle strip), or each vertex in the set (i.e. interpolated color).
· Normal Sets: Contains a set of normal vectors (which can be used to define how the lighting is calculated for the triangles).
· Index Sets: Each graphics primitive can access this set to more efficiently use an associated coordinate or color.
[bookmark: _Toc276047120]Subsidiary Objects
· TransientGeometry
The TransientGeoemtry object is a utility object you use to create various points, curves, surfaces, and mathematical objects like vectors, and matrices. In association with client graphics, the ability to create different types of curves is useful because you can use these as input to define Curve type graphics.
· TransientBrep
The TransientBRep object is used to create transient surface and solid models. These can be used to create Surface graphics.
[bookmark: _Toc276047121]General Procedure
Creation of Client Graphics follows the general procedure:
1. Get the GraphicsDataSetsCollection object from the Document
2. Add a GraphicsDataSets object and create the graphics data
(for Curve or Surface, create graphics data using the TransientGeometry and TransientBrep objects)
3. Get the ClientGraphicsCollection from the graphics owner, which can be:-
· A component in Part or Assembly
· A View or a Sheet in Drawing document
· InteractionEvents for Interaction Client Graphics
· Client Feature
4. Add a ClientGraphics object to ClientGraphicsCollection
5. Add as many GraphicsNodes as you need
6. Add GraphicsPrimitive objects to the node(s)
7. Assign graphics data to the primitives
8. Update the view(s)
 (
‘
Draw
LineGraphics
 (two points)
Public Sub
DrawLineGraphics
()
 Dim
oDoc
 As Document
 Set
oDoc
 =
ThisApplication.ActiveDocument

'Get the
GraphicsDataSetsCollection
 object from the Document. Add a
GraphicsDataSets
 object
 Dim
oDataSets
 As
GraphicsDataSets
 Set
oDataSets
 =
oDoc.GraphicsDataSetsCollection.Add
(
"
TestCG
")

 Dim
oCompDef
 As
ComponentDefinition
 Set
oCompDef
 =
oDoc.ComponentDefinition

 'Get the
ClientGraphicsCollection
 from the graphics owner. Add a
ClientGraphics
 Dim
oClientGraphics
 As
ClientGraphics
Set
oClientGraphics
 =
oCompDef.ClientGraphicsCollection.Add
(
"
TestCG
")

Dim
oCoordSet
 As
GraphicsCoordinateSet
 Set
oCoordSet
 =
oDataSets.CreateCoordinateSet
(
1)

' Create
 graphics data. In this case, prepare two points for line graphics
 Dim
oPointCoords
(
5) As Double

oPointCoords
(
0) = 0:
oPointCoords
(1) = 0:
oPointCoords
(2) = 0
 ‘point 1

oPointCoords
(
3) = 1:
oPointCoords
(4) = 0:
oPointCoords
(5) = 0
‘point 2

 Call
oCoordSet.PutCoordinates
(
oPointCoords
)
 'Add
GraphicsNodes
 Dim
oGraphicsNode
 As
GraphicsNode
 Set
oGraphicsNode
 =
oClientGraphics.AddNode
(
1)

 'Add
GraphicsPrimitive
 to node
 Dim
oGraphic
 As
LineGraphics
 Set
oGraphic
 =
oGraphicsNode.AddLineGraphics

 'Assign graphics data to the primitives

oGraphic.CoordinateSet
 =
oCoordSet

 '
update
 the view

ThisApplication.ActiveView.Update

End Sub
)

[bookmark: _Toc276047122]Graphic Primitives
[bookmark: _Toc276047123]Point
Point is the simplest graphics object available. You could change the point style such as circular dot, a cross etc, and from Inventor 2011, a Point can be displayed with an image.
 (
<
code
 snippet :
Point
>
Dim
oPointCoords
(
8) As Double
oPointCoords
(
0) = 0:
oPointCoords
(1) = 0:
oPointCoords
(2) = 0
oPointCoords
(
3) = 0:
oPointCoords
(4) = 1:
oPointCoords
(5) = 0
oPointCoords
(
6) = 1:
oPointCoords
(7) = 1:
oPointCoords
(8) = 1

' Create
 an image set
Dim
oImageSet
 As
GraphicsImageSet
Set
oImageSet
 =
oDataSets.CreateImageSet
(
oDataSets.count
 + 1)
Dim
oImage
 As
IPictureDisp
Set
oImage
 =
LoadPicture
(
"C:\Temp\MyImage.bmp")
Call
oImageSet.Add
(
1,
oImage
)
‘
add
 point graphics and assign the data
Call
oCoordSet.PutCoordinates
(
oPointCoords
)
Dim
oPointGraphics
 As
PointGraphics
Set
oPointGraphics
 =
oPointNode.AddPointGraphics
oPointGraphics.PointRenderStyle
 =
kFilledCrossPointStyle

oPointGraphics.CoordinateSet
 =
oCoordSet
oPointGraphics.BurnThrough
 = True
)

[image:]

 (
Fig

4
: Point
Graphics
)
[bookmark: _Toc276047124]Line
These are individual line segments. Line graphics use two coordinates to define a line, and then the next two coordinates to define the next line, and so on through the defined coordinates.

[bookmark: _Toc276047125]Line Strip
These are a connected set of lines. Line strips use the first two coordinates to define the first line and then the last point of the first line becomes the first point of the second line and the next coordinate is used as the end point of the second line. This results in the set of points being connected by a continuous set of lines, drawing a continuous curve. So to define 2 connected lines, just 3 coordinates would be required.

 (
<
code
 snippet:
Line or
LineStrip
>
Dim
oPointCoords
(
11) As Double

‘
create 4 points

oPointCoords
(
0) = 0:
oPointCoords
(1) = 0:
oPointCoords
(2) = 0
oPointCoords
(
3) = 1:
oPointCoords
(4) = 1:
oPointCoords
(5) = 0
oPointCoords
(
6) = 2:
oPointCoords
(7) = 0:
oPointCoords
(8) = 0
oPointCoords
(
9) = 3:
oPointCoords
(10) = 1:
oPointCoords
(11) = 0
Call
oCoordSet.PutCoordinates
(
oPointCoords
)

‘
Line: every 2 points for 1 Line
Dim
oGraphic
 As
Line
Graphics
Set
oGrap
hic
 =
oGraphicsNode.AddLine
Graphics
‘
Line strip: totally, 3 lines
‘Dim
oGraphic
 As
LineStripGraphics
‘Set
oGraphic
 =
oGraphicsNode.AddLineStripGraphics

oGraphic.CoordinateSet
 =
oCoordSet
)

[image:]
Fig 5: Line Graphics

[image:]
 						Fig 6: Line Strip Graphics

[bookmark: _Toc276047126]Triangle
These are used to define individual triangles. Each set of three coordinates defines a triangle. The next tree coordinates then define the next triangle, and so on through all of the coordinates that are provided.

[bookmark: _Toc276047127]Triangle Strip
These provide a connected set of triangles. The first three coordinates define a triangle and the next coordinate defines another triangle using the previous two coordinates. You could also specify the strip length. This is provided for performance reasons.

 (
<
code
 snippet: Triangle
 or Triangle Strip
>
Dim
oPointCoords
(
20
) As Double
‘
create
7
 points,
oPointCoords
(
0) = 0:
oPointCoords
(1) = 0:
oPointCoords
(2) = 0
oPointCoords
(
3) = 1:
oPointCoords
(4) = 1:
oPointCoords
(5) = 0
oPointCoords
(
6) = 2:
oPointCoords
(7) = 0:
oPointCoords
(8) = 0
oPointCoords
(
9) = 3:
oPointCoords
(10) = 1:
oPointCoords
(11) = 0
oPointCoords
(
12) = 4:
oPointCoords
(13) = 0:
oPointCoords
(14) = 0
oPointCoords
(
15) = 5:
oPointCoords
(16) = 1:
oPointCoords
(17) = 0
oPointCoords
(
15) = 5:
oPointCoords
(16) = 1:
oPointCoords
(17) = 0
oPointCoords
(
1
8
) =
6
:
oPointCoords
(1
9
) =
0
:
oPointCoords
(
20
) = 0

Call
oCoordSet.PutCoordinates
(
oPointCoords
)
‘
Triangle: every 3 points for 1 triangle
Dim
oGraphic
 As
TriangleGraphics
Set
oGraphic
 =
oGraphicsNode.AddTriangleGraphics

‘
or
 Triangle Strip: totally
5 triangles
‘
Dim
oGraphic
 As
Triangle
Strip
Graphics
‘
Set
oGraphic
 =
oGraphicsNode.AddTriangle
Strip
Graphics

oGraphic.CoordinateSet
 =
oCoordSet
)

[image:]
Fig 7: Triangle
[image:]
 Fig 8: Triangle Strip

[bookmark: _Toc276047128]Triangle Fan
This defines a set of connected triangles. The first coordinate is shared in all triangles. The first three coordinates define a triangle. And the next coordinate defines another triangle using the previous coordinates: one of which is the first coordinate. If all the coordinates surround the first point, then the resulting graphics looks like a fan. Again this facility is provided primarily for performance reasons.

 (
<
code
 snippet:
TriangleFan
>

 Dim
oPointCoords
(
17) As Double

‘
Create 6 points

oPointCoords
(
0) = 0:
oPointCoords
(1) = 0:
oPointCoords
(2) = 0

oPointCoords
(
3) = 1:
oPointCoords
(4) = 0:
oPointCoords
(5) = 0

oPointCoords
(
6) = 0:
oPointCoords
(7) = 1:
oPointCoords
(8) = 0

oPointCoords
(
9) = -1:
oPointCoords
(10) = 0:
oPointCoords
(11) = 0

oPointCoords
(
12) = 0:
oPointCoords
(13) = -1:
oPointCoords
(14) = 0

oPointCoords
(
15) = 1:
oPointCoords
(16) = 0:
oPointCoords
(17) = 0

‘
totally
 4 triangles.
A
ll around the first point

Dim
oGraphic
 As
Triangle
Fan
Graphics
 Set
oGraphic
 =
oGraphicsNode.AddTriangle
Fan
Graphics

oGraphic.CoordinateSet
 =
oCoordSet
)	

[bookmark: _Toc276047129]Text
TransientGeometry creates the anchor point for TextGraphics. Other properties are: text string, font, bold, horizontal alignment etc.
 (
<
code
 snippet: Text>
Dim
oTG
 As
TransientGeometry
Set
oTG
 =
ThisApplication.TransientGeometry
Dim
oTextGraphics
 As
TextGraphics
Set
oTextGraphics
 =
oNode.AddTextGraphics
oTextGraphics.Text
 = Text
oTextGraphics.Anchor
 =
oPosition
oTextGraphics.Bold
 = True
oTextGraphics.Font
 = "Arial"
oTextGraphics.FontSize
 = 40
oTextGraphics.HorizontalAlignment
 =
kAlignTextLeft
oTextGraphics.Italic
 = True
Call
oTextGraphics.PutTextColor
(
0, 255, 0)
)

[image:] [image:]
 Fig 9: Triangle Fan Fig10: Text

[bookmark: _Toc276047130]Curve
Curves include the following objects: LineSegment, Circle, Arc3d, EllipseFull, EllipticalArc and BSplineCurve. The object TransientGeometry is used to create the geometry and client graphics then uses this geometry as input. You can also use the geometry from a model’s native data too.

 (
<
code
 snippet: Curve>
Dim
oTG
 As
TransientGeometry
Set
oTG
 =
ThisApplication.TransientGeometry
Dim
oCircle
 As
Inventor.Circle
Set
oCircle
 =
oTG.CreateCircle
(
oTG.CreatePoint
(0, 0, 0),

oTG.CreateUnitVector
(
0, 0, 1), 5#)

Dim
oGraphic
 As
CurveGraphics
Set
oGraphic
 =
oGraphicsNode.AddCurveGraphics
(
oCircle
)

)

		

[bookmark: _Toc276047131] Surface
TransientBrep is used to create the underlying geometry data, and client graphics objects then use this geometry. Again you can use the model’s native data: face, faces or face collection too.

 (
<code
snippet
: Surface>
Dim
oTransientBRep
 As

TransientBRep
Set
oTransientBRep
 =
ThisApplication.TransientBRep
Dim
oT
G
 As
TransientGeometry
Set
oT
G
 =
ThisApplication.TransientGeometry
Dim
oBody
 As
SurfaceBody
Set
oBody
 =
oTransientBRep.CreateSolidCylinderCone
(
oT
G.
CreatePoint
(
0, 0, 0),

oTG.
CreatePoint
(
0, 10, 0

5, 5, 0)
Dim
oSurfaceGraphics
 As
SurfaceGraphics
Set
oSurfaceGraphics
 =
oSurfacesNode.AddSurfaceGraphics
(
oBody
)

)

[image:]
[image:]
[bookmark: _Toc271490407]
 Fig 11: Curve Fig 12: Surface

[bookmark: _Toc276047132]Using Index Sets
The Index Set provides a flexible way to arrange the coordinate set, color set and normal set (for triangles). For example, with the same coordinate data, the figure below, on the left, creates the line graphics from 1-2-3-4 where all lines have the same color, while the figure on the right creates the line from 1-3-2-4 and each line has a different color defined using an index set.

[image:][image:]
 (
Fig 14:
Line graphics with color and

c
oordinate
 index
) Fig 13: Line graphic without index
 (
<
code
 snippet:
Line, With
Coordinate Index Set
 and Color Set
>
 Dim
oPointCoords
(
11) As Double
'create 4 points

oPointCoords
(
0) = 0:
oPointCoords
(1) = 0:
oPointCoords
(2) = 0

oPointCoords
(
3) = 1:
oPointCoords
(4) = 1:
oPointCoords
(5) = 0

oPointCoords
(
6) = 0:
oPointCoords
(7) = 1:
oPointCoords
(8) = 0

oPointCoords
(
9) = 1:
oPointCoords
(10) = 0:
oPointCoords
(11) = 0
 Call
oCoordSet.PutCoordinates
(
oPointCoords
)

'Line strip: totally, 3 lines
 Dim
oGraphic
 As
LineGraphics
 Set
oGraphic
 =
oGraphicsNode.AddLineGraphics

oGraphic.LineWeight
 = 5

‘
Create
Coordinate Index Set
 Dim
oCoordinateIndex
 As
GraphicsIndexSet
 Set
oCoordinateIndex
 =
oDataSets.CreateIndexSet
(
oDataSets.count
 + 1)

oCoordinateIndex.Add
 1,
1
 'from
 point 1

oCoordinateIndex.Add
 2,
3
'connect
 to point 3

oCoordinateIndex.Add
 3,
3
'from
 point 3

oCoordinateIndex.Add
 4,
2
 'connect
 to point 2

oCoordinateIndex.Add
 5,
2
'from
 point 2

oCoordinateIndex.Add
 6,
4
'connect
 to point 4

'Create the color set: two colors.
 Dim
oColorSet
 As
GraphicsColorSet
 Set
oColorSet
 =
oDataSets.CreateColorSet
(
oDataSets.count
 + 1)
 Call
oColorSet.Add
(
1, 255, 0, 0)
 Call
oColorSet.Add
(
2, 0, 255, 0)

' Create
 the index set for color
 Dim
oColorIndex
 As
GraphicsIndexSet
 Set
oColorIndex
 =
oDataSets.CreateIndexSet
(
oDataSets.count
 + 1)

oColorIndex.Add
 1,
2
'line
 1 uses color 2

oColorIndex.Add
 2,
1
'line
 2 uses color 1

oColorIndex.Add
 3,
2
'line
 3 uses color 2

oGraphic.CoordinateSet
 =
oCoordSet

oGraphic.CoordinateIndexSet
 =
oCoordinateIndex

oGraphic.ColorIndexSet
 =
oColorIndex

oGraphic.ColorSet
 =
oColorSet

oGraphic.ColorBinding
 =
kPerItemColors

)

[bookmark: _Toc276047133]Using ‘Strip’ graphics
Strip Graphics are used to group the coordinates associated with a series of connected graphics objects and are only available with LineStrip, TriangleStrip or TriangleFan. You can specify the strip length. e.g. in the code below, points 1,2,3 are defined as one triangle strip, whilst points 4,5,6,7 are used to defined as another strip. Each strip is independent of the other strips. You can also specify the color for each.

[image:]
 (
Fig 1
5
:
Triangle using strip
)

 (
<
code
 snippet:
Triangle Strip, Set Strip
>
Dim
oPointCoords
(
20
) As Double
‘
create
7
 points,
oPointCoords
(
0) = 0:
oPointCoords
(1) = 0:
oPointCoords
(2) = 0
oPointCoords
(
3) = 1:
oPointCoords
(4) = 1:
oPointCoords
(5) = 0
oPointCoords
(
6) = 2:
oPointCoords
(7) = 0:
oPointCoords
(8) = 0
oPointCoords
(
9) = 3:
oPointCoords
(10) = 1:
oPointCoords
(11) = 0
oPointCoords
(
12) = 4:
oPointCoords
(13) = 0:
oPointCoords
(14) = 0
oPointCoords
(
15) = 5:
oPointCoords
(16) = 1:
oPointCoords
(17) = 0
oPointCoords
(
15) = 5:
oPointCoords
(16) = 1:
oPointCoords
(17) = 0
oPointCoords
(
1
8
) =
6
:
oPointCoords
(1
9
) =
0
:
oPointCoords
(
20
) = 0

Call
oCoordSet.PutCoordinates
(
oPointCoords
)

‘
or
 Triangle Strip: totally
5 triangles
Dim
oGraphic
 As
Triangle
Strip
Graphics
Set
oGraphic
 =
oGraphicsNode.AddTriangle
Strip
Graphics

Dim
oStrip
(
1) As Long
oStrip
(
0) = 3

‘
 point 1,2,3 for strip 1
oStrip
(
1) = 4

‘
 point 4,5,6,7 for strip 2
oGraphic.PutStripLengths

oStrip
'Create the color set: two colors.
 Dim
oColorIndex
 As
GraphicsIndexSet
 Set
oColorIndex
 =
oDataSets.CreateIndexSet
(
oDataSets.count
 + 1)

oColorIndex.Add
 1, 1

oColorIndex.Add
 2, 2

oColorIndex.Add
 3, 1

oColorIndex.Add
 4, 2

oColorIndex.Add
 5, 1

' Create
 the index set for color
 Dim
oColorSet
 As
GraphicsColorSet
 Set
oColorSet
 =
oDataSets.CreateColorSet
(
oDataSets.count
 + 1)
 Call
oColorSet.Add
(
1, 255, 0, 0)
 Call
oColorSet.Add
(
2, 0, 255, 0)
oGraphic.CoordinateSet
 =
oCoordSet
oGraphic.ColorIndexSet
 =
oColorIndex

oGraphic.ColorSet
 =
oColorSet

oGraphic.ColorBinding
 =
kPerStripColors
)

[bookmark: _Toc276047134]Using Model Native Data
Most scenarios where Client Graphics are required are based on the models native geometry. It is quite easy to get the data using Inventor API objects. e.g. SurfaceBody, Face, Edge, Vertex in Part or Assembly Documents, and DrawingCurve in drawing documents. The code below creates and transforms a surface using an existing SurfaceBody from the model.

It is also possible to obtain a coordinate data set from the existing SurfaceBody, Edge or Face objects using the CalculateStrokes method. You determine the tolerance (the number of points you need) by first calling GetExistingStrokeTolerances. You may need to do this multiple times in order to assess the average tolerance for the model. Similarly, obtain triangular facets from A SurfaceBody or Face using CalculateFacets.

[image:]
Fig 16: Using surface body

 (
<
code
 snippet: Using model native data>

 Dim
oPartDef
 As
PartComponentDefinition
 Set
oPartDef
 =
ThisApplication.ActiveDocument.ComponentDefinition

 Dim
oTransientBRep
 As
TransientBRep
 Set
oTransientBRep
 =
ThisApplication.TransientBRep

‘
by
 Transient
Brep
 class to
copy the surface body

Dim
oBody
 As
SurfaceBody

Set
oBody
 =
oTransientBRep.Copy
(
oCompDef.SurfaceBodies.Item
(1))

' Create
 client graphics based on the transient body
 Dim
oSurfaceGraphics
 As
SurfaceGraphics
 Set
oSurfaceGraphics
 =
oSurfacesNode.AddSurfaceGraphics
(
oBody
)

‘
move
 the graphics to a new location

D
im
oMatrix
 As Matrix

S
et
oMatrix
 =
ThisApplication.TransientGeometry.CreateMatrix

oMatrix.SetTranslation

ThisApplication.TransientGeometry.CreateVector
(
0, 0, 100)

oSurfacesNode.Transformation
 =
oMatrix

)

	

[bookmark: _Toc276047135]Basic Properties
Graphics has some properties to control the basic behavior.
Render Style
By default, the linetype, lineweight and color will use the settings on RenderStyle until they are overridden by LineType, LineWeight, Color (for Curve and Surface objects), and ColorSet (for Line, Triangle and TriangleFan objects).
Point Style
Specific to Point objects only, and controls the point style.
Visibility
Controls whether or not the graphics are visible.
Selectable
Specifies whether client graphics can be selected when the Select command is running.
Burn Through
This specifies whether or not graphics are always visible even if they are blocked by other objects.
Transformation
 This property is used to transform a graphics node.
Transform Behavior
Two special transform behaviors: front facing and pixel scaling.
· Front Facing
Client graphics with this property do not rotate as the view is rotated but maintain the same orientation on the screen. They are positioned at a specified location within model space and their position on the screen will change as the view is zoomed in and out and scrolled, but their orientation will not change.
· Pixel Scaling
Here client graphics maintain the same size and position relative to the screen. As the user zooms in and out in the graphic window, these objects remain static.

Any graphics object can also have no transform behavior (which means it's size, position, and orientation are maintained relative to model space), front facing, pixel scaling, or front facing & pixel scaling. By default an object has no transform behavior, with the exception of text. Text always has front facing behavior regardless of the behavior type set through this method.
Anchor Behavior
	This will anchor the primitive in view space so that the graphics will display in one fixed position, no matter how the view changes.
	
[bookmark: _Toc276047136]Interaction Client Graphics
Interaction Client Graphics operate in a similar manner to regular ClientGraphics, except that it all happens in the context of InteractionEvents. ClientGraphics created via InteractionGraphics are optimized for this environment , and run much faster. They are well suited to real-time feedback during a command. As the client graphics are displayed in the context of an InteractionEvents object, they can take advantage of mouse movement information, selection information, in fact any events supported by the InteractionEvents objects. These graphics are automatically removed once the associated InteractionEvents object stops.

The interaction graphics can be Preview or Overlay. Preview graphics are equivalent to regular Client Graphics. The only difference between Overlay and Preview graphics is that Overlay graphics can be drawn independently, in a single view (window), and then merged with the last full redraw of the scene by drawing the graphics in a special "overlay" plane. It doesn't mean that the graphics are always drawn on top. You can position them anywhere you want and you can toggle the "burn through" option. In short, anything you can do with preview graphics you can do with overlay graphics.

The creation of interaction graphics is not transacted. This is done for performance reasons, and to avoid some side effects, like clearing of the selection set. This also means that transacting operations cannot be mixed with preview graphics.

[image:]
Fig 17: Interaction graphics – removed when event stops
 (
<
code
 snippet:
interaction events (Overlay)
>
‘
start
 interaction event and get the overlay graphics
Dim
oIE
 As
InteractionEvents
Set
oIE
 =
ThisApplication.CommandManager.CreateInteractionEvents

oIE.Start
Dim
oClientGraphics
 As
ClientGraphics
Set
oClientGraphics
 =
oIG.OverlayClientGraphics
‘
create
 line strip graphics
Dim
oLineStrip
 As
LineStripGraphics
Set
oLineStrip
 =
oLineStripNode.AddLineStripGraphics

' Assign
 the same coordinate set to the line strip.
oLineStrip.CoordinateSet
 =
oCoordSet
' Update
 the view to see the resulting spiral.
oIG.UpdateOverlayGraphics

ThisApplication.ActiveView
)

[bookmark: _Toc276047137]Store Client Graphics
In general, ClientGraphics, will be maintained and transformed by Inventor for the duration of the session only. Using the GraphicsDataSetsCollection.Add2 method will allow the data to be saved with the file. When the document is opened, the ClientGraphics are persisted, and are still available to be further manipulated.

In Part or Assembly documents, you can attach client graphics to ClientFeature objects, so the graphics will be stored with document. The presumption is the graphics data is created by GraphicsDataSetsCollection.Add2. In Drawing documents only the data can be saved. A developer’s application has to redraw the graphics using the client graphics data after the Drawing document has been re-opened.

[image:]
Fig 18 : Client Feature with Client Graphics
 (
<
code
 snippet:
store client graphics
 with client
feature>
Dim
invCF
 As
ClientFeature
‘
get/create

ClientFeature
Dim
invCFD
 As
ClientFeatureDefinition
invCFD
 =
invCF.Definition
‘
Create & store graphics data

Dim
oGraphicsData
 As
GraphicsDataSets
Set
oGraphicsData
 =
oDoc.GraphicsDataSetsCollection.
Add2
(
"
TestCG_StoreData
", True)

‘
create

graphics
 in the
ClientFeature

Dim
oClientGraphics
 As
Inventor.ClientGraphics
 Set
oClientGraphics
 =
invCFD.ClientGraphicsCollection
(
"
ClientFeatureTest
")

‘
create
 graphics
 node

Dim
oGraphicsNode
 As
GraphicsNode
 Set
oGraphicsNode
 =
oClientGraphics.AddNode
(
oClientGraphics.count
 + 1)
Dim
oPointCoords
(
11) As Double 'create 4 points

oPointCoords
(
0) = 0:
oPointCoords
(1) = 0:
oPointCoords
(2) = 0

oPointCoords
(
3) = 1:
oPointCoords
(4) = 1:
oPointCoords
(5) = 0

oPointCoords
(
6) = 2:
oPointCoords
(7) = 0:
oPointCoords
(8) = 0

oPointCoords
(
9) = 3:
oPointCoords
(10) = 1:
oPointCoords
(11) = 0
 Call
oCoordSet.PutCoordinates
(
oPointCoords
)

 'Lin
es
: totally,
2
 lines
 Dim
oGraphic
 As
LineGraphics
 Set
oGraphic
 =
oGraphicsNode.AddLineGraphics

oGraphic.CoordinateSet
 =
oCoordSet
)

[bookmark: _Toc276047138]Advanced Functionality
[bookmark: _Toc276047139]Slice
This provides the functionality that slices the graphics based on the input planes and optionally caps the sliced end.
[bookmark: _Toc276047140]Texture mapping
Texture mapping provides the ability to more accurately define color mapping to the model. For example, with the previous functionality you were limited to assigning colors to vertices and then relying on Inventor to interpolate the color across the triangle. If you had a plane constructed of two triangles you would not be able to define any intermediate colors between the vertices.

[image:][image:]

 (
Fig
 19

:
Slicing
) (
Fig
 20

:
Mapping
)
[bookmark: _Toc276047141]Further References
Inventor API help document
· Objects, methods and properties
· Samples
[bookmark: _Toc276047142]Sample code
The zip file provided with this document also contains some VBA and VB.Net examples.

· Clientgraphics.ivb
It contains VBA code, and can be loaded into the Inventor VBA environment via the VBA IDE. There are 3 modules and 1 class.
· modBasicSample
These macros demonstrate the creation of graphics primitives, using an index set, strip graphics and using native model geometry as a basis for generating client graphics. You can run the macros from the VBA IDE or from the Inventor user interface directly from the tools menu; ToolsMacros.

· modInteractionGraphics
These macros demonstrate client graphics of when associated with the InteractionEvents object.

· modAdvancedFun
This macro demonstrates some advanced client graphics functionality.

· clsDragComponent:
A utility class that is used with the InteractionGraphics sample.

Each macro is commented to help explain what it is doing, and how the task is accomplished.

· VBNet_ClientGraphics
This is a VB.Net addin, which is accessed from Inventor from the Ribbon Bar.

· ClientGraphicsSetup.msi
This is the installer. After installing, open a Part, Assembly or Drawing document, then run the command from the user interface as follows (Select ToolsClient Graphics). This displays a dialog with a series of buttons that run each of the individual samples. They illustrate various techniques related to client graphics creation. Selecting an option in the CComBox will draw the relevant graphics primitive in the current view.

· Source code
The source code can be loaded and run in Microsoft’s Visual Studio development environment.

[image:]

Thank you.
Developer Technical Services
Autodesk.
19

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image1.jpeg

image2.jpeg

image26.png

