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Abstract

We present SkexGen, a novel autoregressive gen-
erative model for computer-aided design (CAD)
construction sequences containing sketch-and-
extrude modeling operations. Our model utilizes
distinct Transformer architectures to encode topo-
logical, geometric, and extrusion variations of
construction sequences into disentangled code-
books. Autoregressive Transformer decoders gen-
erate CAD construction sequences sharing cer-
tain properties specified by the codebook vectors.
Extensive experiments demonstrate that our dis-
entangled codebook representation generates di-
verse and high-quality CAD models, enhances
user control, and enables efficient exploration of
the design space. The code is available at https:
//samxuxiang.github.io/skexgen.

1. Introduction
Professional designers generate a diverse set of computer
aided design (CAD) models with topological or geometric
variations while achieving a design goal. In early concept
design, designers explore shapes with aesthetic and func-
tional advantages. In mechanical design, designers optimize
the physical properties of a part to maximize strength while
minimizing weight and manufacturing cost.

Training a computational agent with the capabilities of
a professional designer is an extremely challenging ma-
chine learning task. Designers traditionally rely on para-
metric CAD models that allow one to correct small mis-
takes (Camba et al., 2016), optimize geometric proper-
ties (Grasel et al., 2004), and generate a product family
by altering just a few parameters (Chakrabarti et al., 2011;
Maher et al., 1996). However, a parametric CAD model
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is brittle and fails over large design changes such as topo-
logical modifications. Furthermore, the construction of a
parametric CAD model itself requires the expertise of a
professional designer.

With the advance of deep learning, neural networks em-
power a family of exciting new methodologies (Wu et al.,
2021; Willis et al., 2021a; Ganin et al., 2021) towards an
intelligent system capable of diverse generation while un-
derstanding a design goal and allowing user control. This
paper pushes the frontier of the state-of-the-art by intro-
ducing “SkexGen”, a sketch-and-extrude generative model
for CAD construction sequences that enhances variations
in design generation while enabling effective control and
exploration of the design space.

SkexGen is a novel autoregressive generative model that
uses discrete codebooks (van den Oord et al., 2017) for
CAD model generation. We employ a sketch-and-extrude
modeling language to describe CAD construction sequences,
where a sketch operation creates 2D primitives and an ex-
trude operation lifts and combines them into 3D. Trans-
former encoders learn a disentangled latent representation
as three codebooks, capturing topological, geometric, and
extrusion variations. Given codebook vectors, autoregres-
sive Transformer decoders generate sketch-and-extrude con-
struction sequences, which are processed into a CAD model.

We evaluate SkexGen on a large-scale sketch-and-extrude
dataset (Wu et al., 2021). Qualitative and quantitative evalua-
tions against multiple baselines and state-of-the-art methods
demonstrate that our method generates more realistic and
diverse CAD models, while allowing effective control and
efficient exploration of the design space not possible with
prior approaches. We make the following contributions.

• SkexGen architecture that autoregressively generates high
quality and diverse CAD construction sequences.

• Disentangled codebooks, which encode topological, geo-
metric, and extrusion variations of construction sequences,
enabling effective control and exploration of designs.

• Extensive qualitative and quantitative evaluations on pub-
lic benchmarks, demonstrating state-of-the-art performance.

https://samxuxiang.github.io/skexgen
https://samxuxiang.github.io/skexgen
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2. Related Work

Constructive Solid Geometry: 3D shapes can be expressed
as a constructive solid geometry (CSG) tree, where paramet-
ric primitives, such as cuboids, spheres, and cones, are com-
bined together with Boolean operations. This lightweight
representation has been used extensively for reconstruction
tasks in combination with program synthesis (Du et al.,
2018; Nandi et al., 2017; 2018), neurally-guided program
synthesis (Sharma et al., 2018; Ellis et al., 2019; Tian et al.,
2019), unsupervised learning (Kania et al., 2020), and with
specialized parametric primitives (Chen et al., 2020; Yu
et al., 2022). Although CSG is a convenient representation,
parametric CAD remains the most prevalent paradigm for
mechanical design and makes extensive use of the sketch-
and-extrude modeling operations instead.

Construction Sequence Generation: A precursor to
sketch-and-extrude construction sequence generation is
PolyGen (Nash et al., 2020), where n-gon mesh ver-
tices and faces are predicted using Transformers (Vaswani
et al., 2017) and pointer networks (Vinyals et al., 2015).
Large-scale datasets of parametric CAD construction se-
quences (Seff et al., 2020; Willis et al., 2021b) have opened
the door to learning directly from the modeling operations
by CAD users. (Willis et al., 2021b) and (Xu et al., 2021)
predict the sequence of extrude operations for partial re-
covery of the construction sequence without the underlying
sketch information. Predicting sequences of sketch primi-
tives (e.g., line, arc, circle) is a critical building block that
forms the 2D basis of CAD and can be readily extended to
3D with the addition of the extrude operation.

The Transformer architecture has enabled sketch/sketch-and-
extrude construction sequence generation in recent (Willis
et al., 2021a; Wu et al., 2021) and concurrent (Para et al.,
2021; Seff et al., 2022; Ganin et al., 2021) work. Although
these approaches can produce a diverse range of shapes,
providing user control over an existing design is more elu-
sive. To be useful for real world CAD applications, the
designer needs a way to influence the generated shape. One
approach is to condition the network on user-provided im-
ages (Ganin et al., 2021), point clouds (Wu et al., 2021),
or hand-drawn sketches (Seff et al., 2022). However, this
approach simply converts an existing design into a CAD
construction sequence representation. Instead we present a
novel approach for exploring the space of related designs
with separate control over topology and geometry.

Codebook Architectures: Codebooks have proven effec-
tive on a number of image and audio generation tasks since
their introduction by (van den Oord et al., 2017), improv-
ing the diversity of generated images (Razavi et al., 2019)
and providing additional user control (Esser et al., 2021).
They are particularly suited to encoding CAD modeling

sequences due to their high structural regularity.

3. Sketch-and-Extrude Construction Sequence
We define a sketch-and-extrude construction sequence rep-
resentation as a hierarchy of primitives, building on Turtle-
Gen (Willis et al., 2021a) and DeepCAD (Wu et al., 2021)
with several modifications to make the representation more
expressive and amenable for learning (See Figure 1).

Primitive Hierarchy: A “curve” (i.e., line, arc, or circle)
is the lowest-level primitive. A “loop” is a closed path,
consisting of one (i.e., circle) or multiple curves (e.g., line-
arc-line). A “face” is a 2D area bounded by loops, which
is new in our representation. Precisely, a face is defined by
one outer loop and some number of inner loops as holes, a
convention in many CAD systems (Lee & Lee, 2001). A
“sketch” is formed by one or multiple faces. An “extruded-
sketch” is a 3D volume, formed by extruding a sketch. A
“sketch-and-extrude” model is formed by multiple extruded-
sketches via Boolean operations (i.e., intersection, union,
and subtraction). Note that the DeepCAD (Wu et al., 2021)
representation does not have a face primitive and cannot rep-
resent a sketch with multiple faces (e.g., ES1 in Figure 1).

Construction Sequence: Following DeepCAD (Wu et al.,
2021), we represent a sketch-and-extrude CAD model us-
ing a sequence with five types of tokens: 1) A topol-
ogy token indicates a curve type (line/arc/circle); 2)
A geometry token contains a point coordinate; 3) An
end-primitive token indicates the end of a primitive
(curve/loop/face/sketch/extruded-sketch); 4) An extrusion
token contains parameters associated with the extrusion and
Boolean operations; and 5) An end-sequence token indi-
cates the end of the sequence. Figure 1 illustrates a sample
primitive hierarchy and a sequence. We provide the full
language specification in Appendix A.

4. SkexGen Architecture
SkexGen is an autoregressive generative model that learns
variations of sketch-and-extrude models with three disentan-
gled codebooks in two network branches. Figure 2 visual-
izes the SkexGen architecture. The “Sketch” branch learns
topological and geometric variations of 2D sketches, while
the “Extrude” branch learns variations of 3D extrusions
(e.g., directions). Both branches are similar and this sec-
tion explains the sketch branch with two encoders and one
decoder. Details of the extrude branch are in Appendix B.

4.1. Topology Encoder

The topology encoder takes a subsequence of the input,
where the token is either 1) a topology token (T ), which
indicates one of the 3 curve types (line/arc/circle); 2) an
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Figure 1. A sample sketch-and-extrude model is illustrated as a primitive hierarchy and a code sequence. It consists of two sketches,
which are formed by faces, loops, and curves. The sequence starts by a topology token (T1), indicating the start of a curve (type arc). Two
geometry tokens follow (G1 and G2), each of which stores a 2D point coordinate. Note that a circle is defined by four points with four
geometry tokens (e.g., G5–G8). An arc is defined by three points (e.g., G1–G3) but with two tokens, where the third point is specified by
the next curve (or the first curve when a loop is closed). Similarly, a line is defined by start point (e.g., G4). G8 is the last point for curve
(C4), loop (L2), and face (F1). Therefore, the geometry token (G8) is followed by end-primitive tokens for curve, loop, and face.

end-primitive token (E) for one of the 3 primitive types
(loop/face/sketch); or 3) An end-sequence token (End),
indicating the end of the sequence. Accordingly, a token is
initialized with a one-hot vector of dimension 7(= 3+3+1).

Embeddings: The one-hot vector is transformed into a
dE = 256 dimensional embedding. We consider a topology
token T in the subsequence where htp

T is the 7-dim one hot
vector and iT denotes its index in the input subsequence. Its
embedding vector is computed as:

T ←Wtphtp
T + p(iT ), (1)

where Wtp ∈ RdE×7 denotes a learnable matrix. p(iT ) ∈
RdE denotes the learnable position encoding at index iT of
the topology subsequence1.

Architecture: The encoder is based on a standard Trans-
former architecture (Vaswani et al., 2017) with four layer
blocks, each of which contains a self-attention layer with
eight heads, layer-normalization and feed-forward layers.
Following Vision Transformer (Dosovitskiy et al., 2021),
the input topology information is encoded into a “code-

1With abuse of notation, T denotes a sequence token and its
latent embedding. A bold-font indicates learnable parameters.

token”, which is prepended to the input and initialized with
a learnable embedding Ztp. Let Ze

tp be the embedding of
a code-token at the output of the encoder. The embedding
Ze
tp is quantized to the closest code in the codebook of size

N : {b(i)
tp | i = 1, 2 · · ·N}. The final code-token ZQ

tp after
encoding and quantization is then passed to the decoder:

ZQ
tp ← b

(k)
tp , where k = argminj∥Ze

tp − b
(j)
tp ∥2. (2)

Here we assumed one code-token for simplicity. In prac-
tice, the topology encoder has four code-tokens and makes
four output codes

(
Z

Q(1)

tp , Z
Q(2)

tp , Z
Q(3)

tp , Z
Q(4)

tp

)
. We tried

different codebook sizes and found that N = 500 achieves
good results.

4.2. Geometry Encoder

The geometry encoder takes a subsequence of the in-
put, where a token is either 1) a geometry token (G);
2) an end-primitive token (E) for one of the 4 primitive
types (curve/face/loop/sketch); or 3) an end-sequence token
(End). The geometry token G specifies a 2D point coor-
dinate along a curve. Since a coordinate is numerical, we
discretize sketches into 64× 64 (6 bits) pixels and consider



SkexGen: CAD Construction Sequence Generation with Disentangled Codebooks

…

Extrude Encoder

…

…

…

END

END……

…

END

Codebook

…

Geometry Encoder

Codebook Codebook

Topology Encoder

END

Select Select Select…

END

STR …

…
Sketch Decoder… …

STR …

… END

…

END

Extrude Decoder

Merge

Figure 2. The SkexGen architecture has two branches. The sketch branch (left) has two encoders that learn topological and geometric
variations of sketches in two codebooks. An autoregressive decoder generates the sketch subsequence given codebook vectors. The
extrude branch (right) has an encoder and a decoder that learns variations of extrude and Boolean operations. The two branches are trained
independently. Another autoregressive decoder learns to select effective combinations of codes from the three codebooks (not shown).

642 possible pixel locations2. Therefore, a one-hot vector
of dimension 4101(= 642 +4+1) uniquely determines the
token information.

Embeddings: We follow Eq. 1 and use a learnable ma-
trix Wge ∈ RdE×4101 together with position encoding to
initialize input token embeddings. Token E and End are
initialized similarly to the topology token T , by multiply-
ing their one-hot vector with Wge and adding the position
encoding. Geometry tokens G are initialized differently as:

G ← Wgehge
G +Wxhx

G +Wyhy
G + p(iG). (3)

hge
G ∈ R4101 denotes the one-hot vector. The geometry

tokens G have additional coordinate embeddings where
hx
G, h

y
G ∈ R64 is a one-hot vector indicating the x, y co-

ordinate of the pixel. Wx,Wy ∈ RdE×64 are learnable
coordinate matrices. Coordinate embeddings are optional
but further improve results in our experiments.

Architecture: Similar to the topology encoder, code-tokens
in the geometry encoder produces the embedding {Ze(i)

ge }
and the quantized code {ZQ(i)

ge }. We use two code-tokens
for the geometry encoder (i = 1, 2). Codebook size is 1000.

4.3. Sketch Decoder

The sketch decoder takes as input the topology and geom-
etry codebooks and generates geometry tokens G and end-
primitive tokens E (for curve/loop/face/sketch) to recover
the sketch subsequence. Note that topology tokens T are

26 bits yield enough precision for most CAD models as de-
scribed in Vitruvion (Seff et al., 2022). More bits bring little
improvement at the cost of significantly more network parameters.

not generated, as they can be inferred from the number of
geometry tokens within each curve (i.e., line/arc/circle have
1/2/4 G tokens). This means that geometry encoder and
sketch decoder have similar subsequence (see Figure 2).

Input: Given the past k − 1 tokens, the autoregressive
decoder predicts the conditional probability of the kth token.
The training input sequences are shifted one to the right,
with the “start” symbol (initialized by the position encoding)
added at front. Since the types of possible tokens in the
decoder are equivalent to those of the geometry encoder, we
use the same one-hot encoding scheme of dimension 4101
and also a learnable matrix of size dE × 4101 with position
encoding to initialize the embedding vectors.

Output: The decoder produces a subsequence “shifted one
to the left”, that is, predicting the original k tokens in the
input (See Figure 2). Let K be a token in the output of
sketch decoder, which has a dE dimensional embedding. We
use a learnable matrix Wout ∈ R4101×dE to predict the
probability likelihood over 4101 classes as:

hout
K ← softmax

(
WoutK

)
. (4)

Cross-attention: The Transformer architecture takes four
and two quantized codebook vectors from the topology and
the geometry codebooks via cross-attention. To distinguish
two different codebooks, we borrow the idea of position
encoding and add learnable embedding vectors p(qtp) ∈
R4×dE and p(qge) ∈ R2×dE to the topology code {ZQ(i)

tp }
and geometry code {ZQ(i)

ge } respectively:

Z
Q(i)

tp + p(qtp) or Z
Q(i)
ge + p(qge). (5)
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The base network setting is the same as the encoder (i.e., 4
layer-blocks with 8 heads), except that it is autoregressive
with masking (only previous tokens are attended).

4.4. Training

The topology encoder, geometry encoder, and sketch de-
coder are jointly trained with three loss functions:∑

K

CrossEntropy(hout
K , hgt

K) + (6)

∣∣∣∣sg (Ze
tp

)
− btp

∣∣∣∣2
2
+ β

∣∣∣∣Ze
tp − sg (btp)

∣∣∣∣2
2
+∣∣∣∣sg (Ze

ge

)
− bge

∣∣∣∣2
2
+ β

∣∣∣∣Ze
ge − sg (bge)

∣∣∣∣2
2
.

The first line computes the sequence reconstruction loss,
where hout

K is the predicted probability likelihood from the
sketch decoder and hgt

K is the ground-truth one-hot vector.
The second and the third lines are standard codebook and
commitment losses used with VQ-VAE (van den Oord et al.,
2017)3. sg denotes the stop-gradient operation, which is the
identity function in the forward pass but blocks gradients
in the backward pass. β scales the commitment loss and
is set to 0.25. This ensures the encoder output commits to
one code vector. We omit explicitly writing out the multiple
code-tokens within each encoder for simplicity.

Given a ground-truth subsequence, we run the two encoders
and autoregressively run the decoder until the same number
of tokens are generated. Instead of feeding back the gener-
ated tokens, we do teacher forcing and pass the ground-truth
to the input of the decoder, which effectively allows us to
train the decoder for a single step each.

4.5. Generation

SkexGen generates CAD models in two steps: 1) code
generation from the three codebooks; and 2) sketch-and-
extrude construction sequence generation given the codes.

Code generation: Unlike a VAE, our quantized codes do
not follow a Normal distribution. After using the trained
topology, geometry, and extrude encoders to obtain codes
from each training sample, we train a Transformer decoder
that generates codes, i.e. selecting code indexes from each of
the three codebooks. Our framework also allows conditional
code generation with a minor modification to the architec-
ture. For example, a “topology conditioned code selector”
selects the compatible geometry and extrude codes given
topology codes. We provide full details in Appendix C.

Sequence generation: Given the codes, the sketch and the
extrude decoders autoregressively generate construction sub-
sequences separately by nucleus sampling (Holtzman et al.,

3We use the exponential moving average updates of a decay
rate 0.99, which was effective in VQ-VAE-2 (Razavi et al., 2019).

2020). The subsequences are merged to form a complete
sketch-and-extrude sequence, which is then parsed to bound-
ary representation (Weiler, 1986) using CAD software.

5. Experiments
In this section we perform experiments to understand: 1)
the ability of SkexGen to generate high quality and diverse
results, 2) the level of control that codebooks enable over the
generation process, and 3) the performance of SkexGen for
applications such as design exploration and interpolation.

5.1. Experiment Setup

Dataset: We use the DeepCAD dataset (Wu et al., 2021)
which contains 178,238 sequences and a data split of 90%
train, 5% validation, and 5% test. Duplicates are removed
in a similar manner to Willis et al. (2021a). We separately
remove duplicate sketch subsequences and duplicate extrude
subsequences. Invalid sketch-and-extrude operations are
also removed. The resulting training dataset contains 74,584
sketch subsequences and 86,417 extrude subsequences. For
experiments with single sketches, we extract sketches from
all steps of the CAD construction sequences. This leads to
114,985 training samples after duplicate removal.

Implementation details: SkexGen is implemented in Py-
Torch (Paszke et al., 2019) and trained on a RTX A5000. For
fair comparison, we follow DeepCAD (Wu et al., 2021) and
use a Transformer with four-layer blocks where each block
contains eight attention heads, pre-layer normalization, and
feed-forward dimension of 512. The input embedding di-
mension is 256. Dropout rate is 0.1. During training, we use
the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 0.001. Linear warm-up and gradient clipping are
used as in DeepCAD. We skip code quantization in the ini-
tial 25 epochs and find this stabilizes the codebook training.
For data augmentation, we add small random noise to the
coordinates of the geometry tokens. SkexGen is trained for
a total of 500 epochs with a batch size of 128. Maximum
length is 200 for sketch subsequences and 100 for extrude
subsequences. At test time, we use nucleus sampling (Holtz-
man et al., 2020) with top-p of 0.95 and temperature of 1.0
to autoregressively sample from the decoders.

Metrics: We use the following metrics for the quantitative
evaluation. For 2D sketches, “Fréchet inception distance
(FID)" (Heusel et al., 2017) measures the generation fidelity.
It compares mean and covariance of real and generated
data distributions. Following (Das et al., 2020), we use
features from ResNet-18 (He et al., 2016) pre-trained on
a human sketch classification task (Eitz et al., 2012). For
3D CAD models, “Coverage" (COV) is the percentage of
real data that match generated data based on the closest
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Figure 3. Uniformly sampled random sketch generation results by
CurveGen, DeepCAD, and SkexGen. Circle is red, arc is green,
and line is black. Visually, SkexGen generates more realistic and
complex shapes.

Table 1. Quantitative evaluations on the sketch generation task.
We report the FID score to measure generation fidelity and the
percentage of Unique and Novel.

FID Unique Novel
↓ % ↑ % ↑

CurveGen 109.12 93.05 83.82
DeepCAD 75.47 98.79 97.45
SkexGen 18.56 96.02 83.54

Chamfer distance of 2,000 uniformly sampled points on
the surface. “Minimum Matching Distance" (MMD) is the
average minimum matching distance between a generated
sample and its nearest neighbor in the real set. “Jensen-
Shannon Divergence" (JSD) is the similarity between the
real and generated distributions based on the marginal point
distribution. For both sketches and CAD models, the “Novel”
score is the percentage of generated data that does not appear
in the training set, the “Unique” score is the percentage
of data that only appears once in the generated samples.
We consider two data samples equal if all tokens in the
sequence are the same after 6-bit quantization. Please refer
to (Achlioptas et al., 2018; Wu et al., 2021) for details.

5.2. Random Generation

To assess the ability of SkexGen to generate high quality
and diverse results, we compare 10,000 randomly generated
samples from SkexGen with four other baselines: Curve-
Gen (Willis et al., 2021a), DeepCAD (Wu et al., 2021),
SkexGen with a single codebook without code disentangle-
ment, and SkexGen with VAE without code quantization or
code disentanglement. Other sketch generative models from

Table 2. Quantitative evaluations on the CAD generation task
based on the Coverage (COV) percentage, Minimum Matching
Distance (MMD), Jensen-Shannon Divergence (JSD) and the per-
centage of Unique and Novel. The first row is the existing state-of-
the-art DeepCAD (Wu et al., 2021). The last three rows provide
an ablation study of SkexGen over two features: code disentangle-
ment (Fd) and code quantization (Fq). The second from last row
disables the code disentanglement (i.e., using a single codebook),
resembling standard VQ-VAE. The third from last row further
disables the code quantization, resembling standard VAE.

COV MMD JSD Unique Novel
% ↑ ↓ ↓ % ↑ % ↑

DeepCAD 76.8 1.68 2.01 91.0 87.0

SkexGen - (Fd, Fq) 74.3 1.54 0.92 97.8 91.9
SkexGen - (Fd) 80.4 1.55 1.12 99.8 99.3
SkexGen 83.6 1.48 0.81 99.9 99.8

concurrent work (Para et al., 2021; Seff et al., 2022; Ganin
et al., 2021) rely on sketch constraint labels, and ideally a
sketch constraint solver, and are not directly comparable.

Sketch generation: We report quantitative results for sketch
generation in Table 1. SkexGen has by far the best FID
score. The unique and novel percentage are similar or better
than CurveGen, with the exception that novel percentage is
lower than DeepCAD. Closer examination of the qualitative
results in Figure 3 reveals that DeepCAD produces many
invalid results containing self-intersecting curves and non-
watertight geometry. Since invalid results do not appear
in the training data, they are all counted as novel and the
score is high. The FID metric detects that the invalid data is
far from the ground truth distribution and consequently the
DeepCAD FID score is much worse. The Unique metric for
DeepCAD is only slightly better than SkexGen; we suspect
this is due to the increased noise in the generated data.

Overall, we find that sketches from SkexGen are better
in terms of quality with more complex shapes, fewer self-
intersections, and stronger symmetry. CurveGen also gener-
ates good quality results, but with fewer complex arrange-
ments of rectangles and circles. DeepCAD can produce
more complex shapes than CurveGen but with a lot of noise.
Additional visualizations of our generated sketches are avail-
able in Appendix D.

CAD generation: Table 2 provides quantitative evaluations
on the sketch-and-extrude CAD model generation. We find
that SkexGen performs the best across all metrics. Qual-
itative results for SkexGen and DeepCAD are shown in
Figure 4 with additional results available in Appendix D.
SkexGen generates CAD models that are considerably more
complex, exhibit symmetries, and make frequent use of
the arc curve type, reminiscent of human design. Results
from SkexGen also contain frequent multi-step sketch-and-
extrude sequences, whereas DeepCAD results are mostly
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Figure 4. Uniformly sampled random sketch-and-extrude model generation results by DeepCAD and SkexGen. Visually, SkexGen
generates more realistic and complex models.

single-step. The amount of similar shapes generated by
DeepCAD is also high. The middle two rows in Table 2
demonstrate the effectiveness of multiple disentangled code-
books. The generation quality decreases after reduction of
multiple codebooks to just one and SkexGen is similar to a
VQ-VAE. Results are the worst when no codebook is used
and SkexGen effectively becomes a VAE.

Running time: SkexGen is slower than DeepCAD due to
autoregressive sampling, taking 90 secs to generate 10,000
samples compared to 15 secs for DeepCAD. However, it is
2× faster than CurveGen since CurveGen has two dependent
autoregressive decoders.

5.3. Controllable Generation

Disentangled codebooks allow effective control and design
exploration. The left of Figure 5 illustrates “topology condi-
tioned code selection” results, where the conditioned topol-
ogy codes are the same for each row and the other codes
are obtained by nucleus sampling. For example, in row b,
all sketches contain two separate faces, which consist of an
inner circle and an outer loop of six lines. The geometric
properties such as face size and distance between the two
faces vary. The right of Figure 5 similarly shows “geometry
conditioned code selection” results, where the geometry
codes are fixed for each row. In row g, all the sketches have
roughly the same size and arrangement of curves, while the
topology of the outer loops are different, from lines (left)
to circle (middle) to arcs (right). For CAD models in the
bottom rows, extrude operations further vary, influencing
the 3D layout of the models (e.g., row e). Figure 6 has more
controllable generation results with different conditional

code selectors, demonstrating the capability of SkexGen.

To quantitatively measure the disentanglement between the
three codebooks, we follow the evaluation in β-VAE (Hig-
gins et al., 2017). A pair of sketch-and-extrude sequences
are generated by the decoders by keeping one of the topol-
ogy, geometry or extrude tokens the same, and sampling
the rest. A small Transformer-based classifier is trained
to identify which code is fixed using the average pairwise
difference in the encoded latent space over all pairs of data.
The classification accuracy for SkexGen is 99.8± 0.1%.

5.4. Applications

We demonstrate two applications enabled by the proposed
SkexGen system.

Interpolation allows intuitive design exploration. Given a
pair of models, we follow the same encoding and decoding
process in Sect. 4, except that we linearly interpolate their
codes before quantization ({Ze}) and produce one model.
Precisely, we 1) use the encoders to extract 10 codes (4
topology {Ze

tp}, 2 geometry {Ze
ge}, and 4 extrude {Ze

ex})
from each model; 2) linearly interpolate them; and 3) per-
form the code quantization and autoregressive sequence
generation to produce an interpolated model. Note that we
take the token of the highest score during the autoregres-
sive generation for consistent interpolation instead of the
nucleus sampling. Figure 7 shows interesting topological
and geometric changes over the interpolation. In column b,
the topology of the sketch changes from a set of 12 lines
to a set of 4 lines and 2 circles, and finally to a set of 6
circles. The radius of the middle circle gradually increases
until enclosing the four smaller ones. In column h, a rect-
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a.

b.

c.

d.

e.

f.

Same Topology Code Same Geometry Code

g.

i.

j.

h.

k.

l.

Figure 5. Controllable generation results. Each row shares the same topology (left) or the same geometry (right) codes. Other codes are
randomly sampled by the code selector. Top rows are sketches and bottom rows are sketch-and-extrude CAD models.

  Same Topology & Geometry Code Same Extrude Code

Figure 6. Controllable generation results. Each row shares the
same topology and geometry (left) or the same extrude (right)
codes. Other codes are randomly sampled by the code selector.

angular solid gradually morphs into a circular hollow disk.
Note that the results are often not “smooth”, but our inter-
polation tasks are particularly challenging, requiring many
topological changes that are discrete in nature.

Topology, geometry, and extrude code mixing enables
generation results not seen in previous work. In Figure 8
we mix the topology, geometry, or extrude codes from one
data with those of another to produce a hybrid result. For
example, in row a, the generated sketch has two inner circles

as in the reference topology while the placement of the two
circles resembles that of the reference geometry. In row
k, the reference topology indicates many cylinders and the
reference geometry indicates a square, resulting in many
cylinders in the arrangement of a square.

6. Conclusion
We introduced SkexGen, a novel generative model for CAD
construction sequences that enhances topological and ge-
ometric variations to enable better design control and ex-
ploration. SkexGen is a step towards an intelligent system
capable of generating diverse CAD models while compre-
hending design goals and allowing user control.
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a. b. c. d. e. f. g. h.

Figure 7. Design interpolation results for sketches (left) and CAD models (right). The top and the bottom rows show the source and target
shapes, interpolated results appear in the middle rows.

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

l.

m.

n.

o.

Figure 8. Topology, geometry, and extrude code mixing results. Given two reference CAD models or sketches (A and B), SkexGen can
generate a new data whose topological property is similar to A and the geometric property is similar to B, by simply copying the topology
codes from A, the geometry codes from B, and passing the mixed codes to the decoders for sampling.
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A. Construction Sequence: Full Specification
A construction sequence must follow certain rules to be a valid sketch-and-extrude model. Instead of providing a full
specification as a context free grammar, which is possible, we describe rules with a few bullet points.

• A sketch-and-extrude model consists of multiple extruded-sketches.

• A sketch consists of multiple faces.

• A face consists of multiple loops.

• A loop consists of multiple curves.

• A curve is either a line, an arc, or a circle, which consist of 2, 3, or 4 points, respectively.

• A loop with a circle can not contain additional curves since it is already a closed path.

• A point is represented by a geometry token.

• An end-primitive token appears at the end of each primitive (curve, line, face, loop, sketch, or extruded-sketch).

• When a face consists of multiple loops, the first loop defines the external boundary, and the remaining loops define
internal loops (i.e., holes).

B. Extrude Branch Architecture
The extrude branch takes a subsequence of the input, where a token is either 1) An extrude token, which is one of the five
types (H ,R,O, S, B); 2) An end-primitive token (E) for the extruded-sketch primitive type; and 3) An end-sequence token
(End).

• H indicates the displacements of the top and the bottom planes from the reference plane in which a sketch is extruded
to form a solid. Since we know that the two values are necessary, we repeat H tokens twice in the sequence instead
of having one token encode two values. We quantize each height value into 64 bins and represent the value as a 64
dimensional one-hot vector.

• R is a 3D rotation of the extrusion direction. Looking through 3× 3 rotation matrices in our datasets, each entry of the
rotation matrix has a value of either -1, 0, or 1. These three values cover almost all rotations from DeepCAD dataset
(>99%). Similarly to H , we repeat R nine times in the sequence, where each token indicates one of the three values as
a 3 dimensional one-hot vector.

• O is a 3D translation vector applied to the extruded solid. Similarly to H , we know that three values are necessary, and
we repeat O three times in the sequence. We quantize each height value into 64 bins and represent the value as a 64
dimensional one-hot vector.

• S indicates a sketch scaling factor consisting of three values: the center of scaling as a 2D coordinate and the uniform
scaling factor. Similarly, we quantize each value into 64 bins as a 64 dimensional one-hot vector.

• B indicates one of the three Boolean operations (intersection, union, or subtraction) and is represented by a 3
dimensional one-hot vector.

Embeddings: Figure 1 in the main paper shows that an extrude subsequence consists of 7 types of tokens includ-
ing End. In fact, an extrude subsequence after flatten consists of 19(= 2 + 9 + 3 + 3 + 1 + 1) individual tokens:
[HHRRRRRRRRROOOSSSBE] (not counting End). Each token is represented by a 72(= 64 + 3 + 3 + 1 + 1)
dimensional one-hot vector, where numeric tokens (H , O, S) share the 64 bins.

Extrude encoder: The encoder is the same as the topology or geometry encoder except that a one-hot vector is of 72
dimensional instead of 4101. Similar to Eq. 5, we also add an additional learnable embedding which distinguish the token
types (e.g. the 9 rotation matrix tokens VS the 3 translation tokens).
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Extrude decoder: The decoder is the same as the sketch decoder except 1) Only one (instead of two) codebook is used
and no learnable embedding is added to distinguish different codebooks in cross-attention (Eq. 5); 2) The output hout

K is of
dimension 72 instead of 4101.

Training: Similar to Eq. 6, reconstruction loss, codebook loss, and commitment loss are used for training. Extrude branch
has a total of four code-tokens and a codebook size of 1000.

C. Code Selector: Details
The topology, geometry, and extrude codebooks provide 10(= 4 + 2 + 4) codes to the sketch and extrude decoders for
model generation. Without loss of generality, let us explain a topology-geometry conditioned extrude code selector. In our
experiments, the maximum size of each codebook is 1,000, and we simply use a 1000 dimensional one-hot encoding to
represent each code in a codebook.

Just as in the sketch decoder (Sect. 4.3), one-hot vectors are multiplied with a learnable matrix of size (256 × 1000) to
compress feature embedding to 256 dimensional. Codes from the topology and the geometry codebooks are then injected
via cross-attention to the decoder. We use the same position encoding to the codebook vectors as in Eq. 5. The decoder
architecture is similar to the sketch decoder, producing the missing four extrude codes one by one in an autoregressive
manner. The output embeddings finally pass through a fully-connected layer (1000 × 256) and softmax, predicting the
probability likelihood over the 1000 codebook indexes.

D. Additional Results
D.1. Sketch Generation

Figure 9 to Figure 15 show uniformly sampled random sketches generated by SkexGen.

D.2. CAD Generation

Figure 16 to Figure 22 show uniformly sampled random CAD models generated by SkexGen.
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Figure 9. Uniformly sampled random sketches generated by SkexGen.
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Figure 10. Uniformly sampled random sketches generated by SkexGen.
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Figure 11. Uniformly sampled random sketches generated by SkexGen.
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Figure 12. Uniformly sampled random sketches generated by SkexGen.
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Figure 13. Uniformly sampled random sketches generated by SkexGen.
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Figure 14. Uniformly sampled random sketches generated by SkexGen.
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Figure 15. Uniformly sampled random sketches generated by SkexGen.
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Figure 16. Uniformly sampled random CAD models generated by SkexGen.
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Figure 17. Uniformly sampled random CAD models generated by SkexGen.
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Figure 18. Uniformly sampled random CAD models generated by SkexGen.
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Figure 19. Uniformly sampled random CAD models generated by SkexGen.
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Figure 20. Uniformly sampled random CAD models generated by SkexGen.
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Figure 21. Uniformly sampled random CAD models generated by SkexGen.
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Figure 22. Uniformly sampled random CAD models generated by SkexGen.


