RXMesh: A GPU Mesh Data Structure

AHMED H. MAHMOUD, University of California, Davis, USA and Autodesk Research, Canada
SERBAN D. PORUMBESCU, University of California, Davis, USA

JOHN D. OWENS, University of California, Davis, USA

We propose a new static high-performance mesh data structure for triangle
surface meshes on the GPU. Our data structure is carefully designed for
parallel execution while capturing mesh locality and confining data access,
as much as possible, within the GPU’s fast “shared memory.” We achieve
this by subdividing the mesh into patches and representing these patches
compactly using a matrix-based representation. Our patching technique
is decorated with ribbons, thin mesh strips around patches that eliminate
the need to communicate between different computation thread blocks, re-
sulting in consistent high throughput. We call our data structure RXMesh:
Ribbon-matriX Mesh. We hide the complexity of our data structure behind
a flexible but powerful programming model that helps deliver high per-
formance by inducing load balance even in highly irregular input meshes.
We show the efficacy of our programming model on common geometry
processing applications—mesh smoothing and filtering, geodesic distance,
and vertex normal computation. For evaluation, we benchmark our data
structure against well-optimized GPU and (single and multi-core) CPU data
structures and show significant speedups.

CCS Concepts: « Computing methodologies — Massively parallel algo-
rithms; Mesh geometry models.

Additional Key Words and Phrases: mesh, data structure, GPU, parallel

ACM Reference Format:

Ahmed H. Mahmoud, Serban D. Porumbescu, and John D. Owens. 2021.
RXMesh: A GPU Mesh Data Structure. ACM Trans. Graph. 40, 4, Article 104
(August 2021), 16 pages. https://doi.org/10.1145/3450626.3459748

1 INTRODUCTION

Polygonal meshes are the fundamental representation of geometric
discrete objects for many computer-aided design, computer graphics,
visualization, physical simulation, and computational geometry ap-
plications. Requirements of such applications range from sampling
and evaluating the surface geometry or a subset of its attributes,
querying the incidence or adjacency of mesh elements, or modifying
the underlying geometry. Most of these requirements entail local
processing of the underlying mesh, where the inputs to the compu-
tations on each mesh element are limited to a local neighborhood.
Examples include computing discrete differential operators, mesh
smoothing, and matrix assembly for solving variational problems.
Modern applications require working on meshes with millions
of faces. Managing and manipulating such large meshes benefits
from a programming model and a framework that implements that
programming model, which ideally yields the benefits of perfor-
mance, simplicity, correctness, and flexibility. Today’s practitioners

Authors’ addresses: Ahmed H. Mahmoud, Serban D. Porumbescu, and John D.
Owens, Department of Electrical and Computer Engineering, University of Califor-
nia, Davis, One Shields Avenue, Davis, CA, 95616, USA, {ahmahmoud, sdporumbescu,
jowens}@ucdavis.edu.

© 2021 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3450626.3459748.

rely heavily on existing mesh data structure libraries and frame-
works (e.g., CGAL [Kettner 2019], OpenMesh [Botsch et al. 2002],
and libigl [Jacobson et al. 2018]) to liberate users from low-level
implementation details and to facilitate finding user solutions more
quickly, robustly, and with higher performance.

Most mesh processing today is still performed on CPUs. However,
the superior performance of modern GPUs would seem to make
them an excellent candidate for mesh processing applications due
to the data-parallel nature of mesh processing workloads. However,
existing CPU-based mesh library frameworks do not extend easily to
the GPU because their programming models and implementations
are designed around a serial mindset, or possibly target the limited
parallelism of multi-core platforms, and are not designed for the
hundreds of thousands of threads available on a modern GPU.

GPUs excel in processing structured grids (e.g., images or dense
matrices) because they map well to the underlying hardware. In
contrast, traditional approaches to mesh processing typically entail
many levels of memory reference indirection with little correspon-
dence between memory layout and the mesh topology layout, which
shatters locality of reference and makes caching ineffective.

Current solutions on the GPU fall into two categories:

o Hardwired application-specific mesh processing implementa-
tions (e.g., Delaunay triangulation [Coll and Guerrieri 2017],
mesh painting [Schéfer et al. 2014], and rendering subdivision
surfaces [Tobler and Maierhofer 2006]). Such implementa-
tions may achieve best-of-class performance on a particular
problem, but their data structures are specific to that problem.
They may not be easily modified for new or related problems,
and they may not make full use of the GPU’s capabilities.

Linear-algebraic reformulations of geometry processing work-
loads [Zayer et al. 2017] aiming to reduce intermediate data
but do not optimize for locality, which is essential for top per-
formance. This reformulation relies on representing meshes
as sparse matrices and computation as operations on them.
Our work shares this representation and advances the state of
the art in the areas of performance, generality, and flexibility.

While not discussed in prior art, a careful implementation of a
serial data structure on the GPU is possible. For example, storing
the halfedge data of Directed Edges [Campagna et al. 1998] in a
structure-of-array (SoA) format instead of array-of-structure (AoS)
can make it a competitive alternative. However, such an optimization
is beneficial only if the input is globally sorted; otherwise, caching
is ineffective. We show that our implementation delivers superior
performance even against Directed Edges with sorted input.

Delivering the highest performance on the GPU requires both
a high-performance data structure and a powerful programming
model. The data structure is responsible for capturing the locality of
the underlying mesh topology in order to maximize GPU through-
put. The programming model would permit its implementation to

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

104:2 « Mahmoud, Porumbescu, and Owens

M=(V, & F)

0 13 2|1 2|1 3]0 3]0 4|4 3|5 1|5 0
NN N N N N NN

€0 €1 €2 e3 €4 es €6 e7

Compact Mgy

—_— ——— —
fo h fa g

Compact Mg

|7 -0 -8]0 3 —4|4 -6 5|2 -1 -3
——

Fig. 1. It is possible to represent all incident and adjacency relations in a mesh in terms of sparse matrices. Here we show two such relations—EV and FE. In our
implementation, we only store the top-down incidence relation between each k-cell and (k — 1)-cell. Exploiting the matrices’ sparsity, we store them compactly
in flat arrays where indices indicate the elements connectivity. We generate all remaining incidence and adjacency matrices from these two (Appendix A).

transparently map work to computational resources through the
data structure without user intervention. The final goal is to provide
the user with the same experience as CPU-based libraries while
simultaneously enjoying the high performance of the GPU.

We present RXMesh, a GPU triangle mesh data structure that cap-
tures locality by partitioning the input mesh into small patches that
fit in the GPU’s fast shared memory, ensuring excellent caching irre-
spective of query operations or input order. Our patching technique
is fast, highly parallel, and accepts generic inputs. To eliminate com-
munication during query operations, we extend each patch with
information from neighboring patches with minimal overhead. Each
patch is then represented independently using a compact sparse
matrix representation that simultaneously allows for parallelization
and excellent query load balance. RXMesh’s complexity is hidden
behind a simple programming model and interface that allows both
ease of use and high performance across different applications. Our
data structure and its applications are open-source’.

In this paper, we make the following contributions:

e The design of RXMesh, a high-performance general-purpose
static triangle mesh data structure on the GPU. Our data struc-
ture can capture the locality of the underlying mesh topology
and uses bandwidth efficiently across the different levels of
the modern GPU memory hierarchy. Our data structure en-
ables a novel way of assigning work to computation resources
in a load-balanced way that has not been used before for GPU
mesh data structures.

o A clean programming abstraction that hides the complexity
of the data structure behind a flexible programming model
that allows the user to make the best use of our data structure
without worrying about performance.

e The combination of our programming model and data struc-
ture is thoroughly evaluated via benchmarks and applica-
tions and compared against a well-optimized parallel Directed
Edges [Campagna et al. 1998] data structure as well as (single-

Lhttps://github.com/owensgroup/RXMesh

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

and multi-core) CPU-based frameworks. We achieve signifi-
cant speedups over these frameworks.

RXMesh is meant primarily for GPU parallel applications. The
CPU serial or multi-core mesh processing literature already features
mature libraries and frameworks. Our work is limited to static appli-
cations that do not require changing the underlying mesh topology
but may possibly change the geometric attributes of the mesh.

2 BACKGROUND

Triangular mesh M discretely represents the topology and geom-
etry of some underlying 2D object embedded in 3D space. M =
(V,E,F) consists of a collection of k-cells for k = 0, 1,2 where
0-cells, 1-cells, and 2-cells are a set of vertices V, edges &, and
faces F respectively and each (k — 1)-cell lies on the boundary of a
k-cell. We use the term mesh element or (element for short) to refer
to a vertex, edge, or a face. A 2-manifold mesh has no more than
two faces sharing an edge and has two edges meeting at a vertex if
and only if there is a face that contains them both. Otherwise, it is a
non-manifold mesh. If an edge is on the boundary of only one face,
it is a boundary edge, otherwise, an internal edge. A vertex and face
incident to a boundary edge are a boundary vertex and boundary
face respectively. Two vertices are neighbors if they share an edge.
The valence of vertex V is the number of neighbor vertices of V.
The one-ring of vertex V is the set of vertices that are neighbors to
V. A face’s summit is the set of vertices that form that face. Finally,
adjacency relations assign a neighboring relation to two k-cells of
the same dimension, while incident relations are between k-cells of
different dimension. Such relations are summarized in Table 1.

3 RELATED WORK

The halfedge [Mantyla 1988] data structure is the most commonly
used mesh data structure supported by robust and reliable imple-
mentations (e.g., CGAL [Kettner 2019] and OpenMesh [Botsch et al.
2002]). Halfedge provides a straightforward way to manipulate

Table 1. Full set of first-order queries.

Query Definition

\A% For vertex V, return adjacent vertices

VE For vertex V, return incident edges
VF For vertex V, return incident faces
EV For edge E, return incident vertices
EF For edge E, return incident faces
FV For face F, return incident vertices
FE For face F, return incident edges
FF For face F, return adjacent faces

meshes with constant-time queries for all local adjacency and inci-
dent relations. With few modifications, halfedge can represent non-
manifold meshes [Dyedov et al. 2015]. Other data structures that
have similar characteristics include quad-edge [Guibas and Stolfi
1985], winged-edge [Baumgart 1972], and Corner Table [Rossignac
2001]. Directed Edges [Campagna et al. 1998] specializes halfedge
for triangular meshes and reduces the memory footprint of halfedge
by devising special indexing rules that implicitly encode some con-
nectivity information; in general, this and related “compact” mesh
representations cannot support generic (e.g., non-manifold) inputs,
which reduces their generality.

3.1 Mesh as a Matrix

Recent research, including this work, seeks to leverage the GPU’s
capabilities by formulating mesh data structures as matrices and
computations as operations on them. The basis for this formulation
rests firmly on algebraic topology and the elegant Linear Algebraic
Representation (LAR) of mesh elements [DiCarlo et al. 2014]. LAR
relies on encoding incidence relations between each k-cell to un-
ordered (k — 1)-cells in a sparse matrix format. These relations are
also known as boundary operators. Query computations are realized
in terms of sparse matrix-matrix multiplication—a well-studied topic
within the HPC community. Furthermore, LAR naturally represents
non-manifold meshes without any special treatment.

In LAR, any incidence or adjacency relation can be represented
with sparse matrices where the matrix rows represent the source
or input and the columns represent the target or output. Figure 1
shows two such matrices, where a nonzero value means the two
mesh elements are incident. To reduce its memory footprint, LAR
proposed storing only a subset of these matrices and dynamically
computing the rest on demand from the stored subset.

For a triangle mesh, the minimum number

~ Myy =ML, M
of matrices to fully represent all mesh ele- | VVV EV'EV
ments is two: one matrix for each top-down | Myvg = MI?V
(from k-cell to (k — 1)-cell) or bottom-up | My g = M]:IVMIZE
(from (k — 1)-cell to k-cell) incident rela- | pfpp = MJZE
tions. For example, storing Mgy (incidence | Mgy, = MppMgy
from edges to vertices) and Mpg (incidence | pfpr = Mpg MIZE
from faces to edges) is enough to perform
all queries as shown in the inset (and in more detail in Appendix A).
Note that this matrix-matrix multiplication uses a different semir-
ing than traditional matrix multiplication: replacing summation
with logical or and multiplication with logical and, leading to a

RXMesh: A GPU Mesh Data Structure « 104:3

binary representation of incidence/adjacency. Higher-order queries
can be answered similarly by using information from first-order
queries. For example, computing the one-ring of the faces’ summits
is Mpyy = MpyMyy. While LAR sets the theoretical foundation
for general-purpose high-performance mesh data structures on the
GPU, it does not attempt to capture the mesh locality, which is
crucial for high throughput.

Representing meshes as sparse matrices indicates, in theory, that
a general-purpose sparse matrix library could be used to implement
LAR operations. However, we see two obstacles here. The first is
that most sparse matrix libraries do not support alternate semirings.
The second is that because meshes have a particular structure (e.g.,
Mgy will always associate one edge with two vertices), a general-
purpose sparse matrix library misses opportunities for mesh-specific
optimizations to sparse operations.

The LAR representation is the basis of recent work that targets
mesh processing on the GPU, e.g., Mesh Matrix [Zayer et al. 2017]
and the ternary sparse matrix representation [Mueller-Roemer et al.
2017] for volumetric meshes. Mesh Matrix represents surface meshes
by encoding the relation between 2-faces (triangles) and 0-faces
(vertices), limiting it to applications that do not require explicit edge
representations. Mesh Matrix offers a compact representation as
a single array augmented with an action map, a small local map
that encodes the interaction between vertices. With the action map,
Mesh Matrix claims to eliminate the need to create intermediate
data. However, Mesh Matrix does not improve locality which, as we
will show, is crucial for achieving top performance.

3.2 Programming Models for GPU Mesh Processing

GPU-specific programming models are found in many domains, e.g.,
graph processing [Wang et al. 2017], sparse voxel computation [Hu
et al. 2019], and simulation [Bernstein et al. 2016]. The challenge for
a programming model for GPU mesh processing is to provide both
an intuitive, high-level abstraction for the programmer that encom-
passes a large set of mesh processing applications while making the
best use of the underlying hardware.

The programming model of Mesh Matrix is one approach with its
programming model centered on linear algebra primitives and ac-
tion maps. Mesh Matrix refrains from mimicking existing halfedge-
like operations and instead casts mesh processing workloads in the
language of linear algebra. Mesh Matrix’s programming model is
orthogonal to ours. While Mesh Matrix seeks to reformulate the
whole geometry processing pipeline, ours does not intervene in how
the downstream computation is performed but only how it is sched-
uled and assigned to the computation resources. For example, Mesh
Matrix requires re-writing applications in the language of linear al-
gebra while ours provides the user with primitive query operations
with which the user can compose their complex applications.

4 RXMESH PROGRAMMING MODEL

Traditionally, a mesh data structure provides the user with handles
to operate over various elements. These handles abstract away ele-
ment indices with iterators and circulators [Botsch et al. 2002]. This
abstraction is suitable for serial processing since a single thread

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

104:4 « Mahmoud, Porumbescu, and Owens

works on elements sequentially. The same abstraction could be ap-
plied in the GPU-parallel context, where different threads work
on different elements identified by the thread index. However, this
could lead to poor performance due to memory divergence because
elements that are topologically close could be assigned to threads
that are not in the same index range. Thus, we depart from this
traditional sequential mesh processing programming model in favor
of one that offers higher performance.

Our programming model decouples user-specified computation
from how that computation is assigned to GPU computation re-
sources (e.g., threads). The user defines only the computation, which
will typically include one or more query operations. Then our im-
plementation assigns GPU threads to elements with the goal of
exploiting locality for query operations and inducing load balance.
This maximizes query performance, which is usually the bottleneck
of mesh processing pipelines on the GPU. The user can define com-
putation on either all or a subset of elements. While computing over
all elements typically makes the best use of the GPU’s computa-
tional power, our implementation is still able to exploit locality even
when operating on a subset of the elements. A similar programming
model has been used for sparse voxel computation [Hu et al. 2019]
and proved to be powerful, performant, and flexible.

From a user perspective, our programming model is similar to
the “think like a vertex” (TLAV) [McCune et al. 2015] programming
model for the parallel processing of graphs. In TLAV, the user devel-
ops an algorithm by focusing on one vertex and the computation on
that vertex based on its local data and incident and adjacent vertex
and edge data, then applying that computation to all (or a subset
of) vertices. Our programming model generalizes this idea to all
three types of mesh elements: vertices, edges, and faces. Programs
in our programming model, then, run in parallel over all elements,
evaluate one or more queries into the mesh for each element, then
combine those query results at each element with arbitrary user-
specified computation. With this programming model, the user can
specify single kernels that can operate on any combination of ver-
tices, edges, or faces, and within those kernels, operate on each
primitive set efficiently, in parallel.

As an example, consider computing the vertex normal at each
vertex in a mesh by simply computing the normal of each face and
atomically adding it to each of its three vertices. Our programming
model requires the user to specify the computation, which includes
making queries to fetch the three vertices of the face, computing the
face normal, and then atomically adding the normal components to
each vertex. It does not require the user to consider either parallel
execution across faces, mapping threads to queries, or memory
locality. This allows the user to write the computation kernels as
shown in Listing 1 without worrying about these low-level details.

When operating on a subset of the elements, it is possible to query
all the elements and then only use the results of those in the active
set. However, this is a waste of memory bandwidth. Thus, we require
the user to specify the participating elements in the active set using
a lambda function that takes the element index as an input and
returns a boolean indicating the element’s membership in the active
set. For example, the user can use the input element index to index
a boolean array of the active set. By default, this lambda function
returns true, thus the query should be applied on all elements.

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

__global__ void
ComputeVertexNormal (RXMesh rxmesh ,
Vec3<float>* VertexNormals,
const Vec3<float>* VertexCoords) {
rxmesh.template kernel<Op::FV>(
[&](const uint32_t f_id, const Iterator fv_iter){
//The face's three vertices
uint32_t vo(fv_iter[@0]), vi1(fv_iter[1]), v2(fv_iter[2]);

//Compute face normal

Vec3<float> faceNormal = ComputeFaceNormal(ve, v1, v2,
VertexCoords);

//Update vertex normals with faceNormal component

atomicAdd<Vec3<float>>(VertexNormals[ve], faceNormal);

atomicAdd<Vec3<float>>(VertexNormals[v1], faceNormal);

atomicAdd<Vec3<float>>(VertexNormals[v2], faceNormal);});

Listing 1. Our parallel RXMesh programming model abstracts away the
details of assigning work to processors. Here, threads are assigned auto-
matically to faces, which leads to high throughput on queries. The user can
focus on specifying only the computation, i.e., computing the face normal
and adding it to the face’s three vertices.

5 GOALS AND DESIGN PRINCIPLES
5.1 Goals

Given the programming model, we now describe a static triangle
mesh data structure for the GPU that implements the queries in
Table 1. Our data structure meets the following design goals:

Performance: Our primary goal is performance, measured by the
elapsed time to process a mesh computation. We achieve this per-
formance by exploiting locality, reducing memory operations, effi-
ciently utilizing the different layers of the GPU memory hierarchy,
and maximizing GPU occupancy. While much of a typical geome-
try processing application consists of local computations that are
suitable for parallelization, the topological locality of the mesh rep-
resentation is not usually captured in the data structures used in
prior work. This lack of locality leads to poor memory performance.
To maximize overall performance, we aim to capture this locality in
our data structure. We focus on computation that queries mesh ele-
ments’ local neighbors. A GPU-optimized data structure for global
operations (e.g., BVH) is out of the scope of this paper.

Generality: While hardwired application-specific data structures
can result in high-performance implementations of a specific appli-
cation, their performance often degrades when they are deployed in
a different application. Our goal is to provide a data structure that
supports sustained high performance across a variety of applica-
tions. The target applications should be able to efficiently perform
queries on any mesh element. Additionally, we make no assump-
tion about the input mesh quality—we assume generic, possibly
non-manifold, meshes expressed as indexed triangle inputs.

Compactness: Generality and high performance might be achieved
by storing all possible query results, but at the cost of higher mem-
ory overhead, which can limit the user to small inputs only. More
importantly, the limited size of the GPU’s programmer-managed
shared memory limits the amount of locality we can exploit. We
strive to store a minimal amount of data and instead efficiently com-
pute queries dynamically, resulting in a minimal memory footprint.

Fig. 2. Color indicates the face index, highlighting the different ways of
capturing locality; global sorting (left) and patching (right).

Easy to use: Different applications may have different require-
ments for how they access a mesh data structure. The user might
need to access the data structure directly from within user-defined
GPU kernels. We aim to provide a data structure that allows efficient
access with an intuitive access model for a variety of use cases.

5.2 Design Principles

In this section, we explore two different methods to capture mesh
locality: sorting and patching. We analyze why patching is the right
choice, design a compact LAR-based representation for patches, and
contrast it against alternative less-compact representations. Finally,
we detail the importance of decorating the patches with ribbons for
better locality.

5.2.1 Locality by Patching. Ideally, all the accesses necessary to
perform a computation would be stored in the memory layer with
the highest bandwidth. For the GPU, this is the L1 cache or the
per-block shared memory. The mesh operations that we target have
access patterns with high locality between mesh elements and their
neighbors, so we would benefit from a data organization that can
better capture that locality. Specifically, we aim for a coherent corre-
spondence between the mesh topology and how the mesh is stored
in the GPU global memory, i.e., elements that are topologically close
are also stored nearby in memory.

The most straightforward implementation of our programming
model would place all mesh data in global memory, making no
optimization for locality. For this implementation, if the mesh data
is unstructured, it is likely that hardware caches would capture little
locality, limiting the performance.

We can improve locality capture, and hence performance, by
sorting the input mesh coherently [Kerbl et al. 2018], using some
kind of spatial information as the sort key (Figure 2). However, this
approach has two disadvantages:

e It requires sorting not just the topology but also the mesh
attributes (e.g., coordinates, texture coordinates, normals),
which have a considerably larger storage requirement than
the requirement for the mesh topology alone.

e Even if the initial sorting and data movement is not an issue,
there is no generic method of sorting all mesh elements co-
herently, especially for meshes with a high genus number.
For example, vertices can be sorted lexicographically based
on their coordinates, but this leaves the faces and edges un-
sorted, and thus accesses to them will not be cache-friendly.
Additionally, such sorting would always create occasional

RXMesh: A GPU Mesh Data Structure « 104:5

(a) Traditional work assignment (b) RXMesh work assignment
Fig. 3. Directly assigning threads to mesh elements leads to load imbalance
due to irregular mesh topology. Our RXMesh programming model assigns
mesh patches to blocks, enabling threads to cooperatively perform their
queries, leading to well-balanced computation.

gaps between two neighbor elements, i.e., seams where there
will be a transition in the element index.

The L1 cache may also be rapidly exhausted if mesh attributes are
queried simultaneously with topology queries, which is the common
case. Thus, we implemented an alternate design: subdivide the mesh
into small patches that can fit in the user-managed shared memory
and perform all the computation/queries in the shared memory. This
guarantees that we always exploit the highest memory bandwidth
even if the mesh attributes are used in the computation.

5.2.2 Work Mapping. Now that our accesses are within the fast
shared memory, we turn to efficiently scheduling our computation.
Because mesh data is sparse, simple methods to map work to pro-
cessing resources often leads to idle threads, branch divergence, and
memory divergence. For example, consider assigning mesh vertices
to threads where each vertex may have a different valence (Figure 3).
Ensuring good computation performance through load balancing
is one of our key design goals. We achieve this load balance by ap-
propriate work mapping where threads cooperate to perform their
respective queries. We discuss this implementation in Section 6.2.

5.2.3 Index Space. The memory footprint of a patch can be reduced
by using 16-bit indices to represent its elements. However, such local
indices can only represent standalone independent patches, which is
insufficient since the user expects a single index/handle per element
that can be used for accessing mesh attributes. For that, we map each
local index to a global one, resulting into two index spaces: a local
and global index space. The local index space is used to perform
the query operations, which return their results after being mapped
to the global index space, thus hiding the complexity and details
of patching from the user. The mapping has a low overhead as it
only requires a single coalesced bulk read from the global memory,
which we discuss in Section 6.2.

5.24 Compact Patch Representation. Our top priority in choosing
a data structure is supporting the operations specified in our pro-
gramming model (Section 4). Not all data structures support all
operations; for instance, indexed triangles do not allow working on
edges. Beyond this, we aim for a data structure that gives us both

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

104:6 « Mahmoud, Porumbescu, and Owens

Fig. 4. We augment each patch by a ribbon (shown in white) to eliminate
the communication between different thread blocks.

compactness and high performance. While a smaller overall mem-
ory footprint for a mesh is desirable, even more important for high
performance, in the presence of our patching strategy, is minimizing
storage per patch. Patches must be able to fit into shared memory,
so storing more elements per patch allows more work per patch,
increasing GPU utilization. Here we discuss two viable options:

Directed Edges: Directed Edges is a variant of the halfedge data
structure specialized for edge manifold meshes. Directed Edges,
which support all first-order queries, requires 21 bytes/face using
16-bit indices to represent the vertices, edges, halfedges, and faces
within a patch in its local index space. The disadvantages of using
directed edges are:

o It uses more memory than necessary (as we show below).

o It is only limited to edge manifold meshes. Generalizing it to
non-manifold requires extra storage [Dyedov et al. 2015].

e It does not easily allow for threads to cooperate to fulfill
queries; instead, each thread works independently, which
might incur load imbalance in irregular meshes.

Mesh as a Matrix: Our choice, LAR, is an attractive representation
for patch information because:

e A patch can be represented using only 12 bytes/face by only
storing EV and FE in two matrices, namely Mgy and Mpg
(Figure 1). All other relations can be queried on the fly.

e It can represent any mesh irrespective of its quality (e.g.,
non-manifold) without any special treatment.

e Threads can cooperate to perform queries. For example, com-
puting VE is simply transposing Mgy, which can be computed
by dividing rows equally among the threads. Since a row
in Mgy contains only two entries, the computation is well-
balanced across threads. We discuss these implementation
details in Section 6.2.

5.2.5 Ribbons. Once we divide our mesh into patches, we find that
the boundary mesh elements of the patches require special treatment
because otherwise they will falsely represent boundaries of the mesh.
For instance, querying the neighbor vertices of a patch boundary
vertex will require reading another patch from global memory. This
approach leads to both branch divergence and additional global
memory accesses. Thus, we augment each patch with a ribbon—
the union of the one-ring of the patch’s boundary vertices—and

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

add it to the patch local index space (Figure 4). This moderately
increases memory usage per patch (we quantify this in Section 7)
while significantly increasing the locality. Note that if the input
mesh has a boundary, we do not add ribbons so we can accurately
identify boundary elements.

6 IMPLEMENTATION DETAILS

We discuss here some details crucial for implementing our data
structure.

6.1 Memory Storage
For every ribbon-augmented patch we store the following:

o Mpg and Mgy matrices with three and two nonzero entries
per row, respectively.

o Local-to-global mapping for vertices, edges, and faces stored
in a flat array, indexed by the element’s local index and storing
its respective global index.

o The total and owned number of vertices, edges, and faces in
the patch.

Matrices: Mpg and Mgy are very sparse and thus a sparse matrix
format is a natural way to store them (e.g., as compressed-sparse-
row [CSR]). Zayer et al. [2017] showed that sparse-matrix-based
storage of meshes can be further reduced from what CSR provides
by taking advantage of the fixed number of entries per row. For
Mgy, we store the edges in a flat array of size 2n., where n, is the
number of edges and each pair of entries represents an edge. We
store the vertices such that the first vertex is the source and the
second is the target. Similarly, we store Mpg in a flat array of size
3ng, where ng is the number of faces. We reorder the edges of each
face such that their order indicates the face orientation and reserve
one bit in each entry for the edge sign, as shown in Figure 1.

Local-to-Global Mapping: Since we augment patches with ribbons,
some mesh elements are shared between more than one patch. For
that, we define the “ownership” of an element by a patch as the
patch that possesses all the information necessary to perform all
queries for this element. Each mesh element is owned by only one
patch, which we enforce by a mapping between (globally indexed)
elements and their owning patches. When assigning local index
to the different elements within a patch, we make sure that lower
indices are given to the owned elements. Thus, if we want to check
if an element is owned by a patch, we check its local index against
the number of owned elements by the patch of that element type.

Global-to-Local Mapping: We store the patch owning the mesh
elements as three arrays (for vertices, edges, and faces), indexed
by the mesh global index. Once the patch is known, we can search
within its local-to-global mapping array for the local index. However,
this search is not needed for first-order queries.

6.2 Queries

We now discuss how to perform efficient queries given the patched
mesh from how we assign threads to mesh elements to how we
perform such queries. Ashkiani [2017] presented a novel per-thread-
assignment, per-warp-processing strategy for parallel tasks on the
GPU. In this strategy, the user, through the programming model,

assigns parallel tasks to threads, but the implementation instead
assigns threads within a warp to work together to fulfill their tasks
collaboratively. The result is increased warp efficiency due to better
load balance when compared to traditional per-thread work assign-
ment and processing, where branch and memory divergence may
significantly inhibit high performance. Such an approach has been
previously used in high-performance hash tables [Ashkiani et al.
2018] and graph data structures [Awad et al. 2020] on the GPU.

In this work, we extend Ashkiani’s strategy to per-thread as-
signment, per-block processing. From the user’s perspective, each
thread is responsible for a mesh element’s queries, but all threads
in the block cooperate to fulfill their queries by both sharing useful
information via fast shared memory and leveraging the even-faster
intra-warp communication when possible. While queries are han-
dled cooperatively, per-element computation instead uses traditional
per-thread processing. Note that this processing and assignment is
not exposed to the user and is done automatically. The user only
implements the operation that each thread performs on the given
mesh query output, closely following our programming model (Sec-
tion 4). Since many mesh processing applications perform identical
operations on the mesh elements (utilizing information about the
mesh element’s local neighborhood), our programming model can
be adopted easily for these applications.

6.2.1 Structuring All Queries: For all queries, we first assign a sin-
gle CUDA block to each patch. Let the number of source mesh
elements owned by the patch be N; and the number of the threads
in a block T; each thread is nominally responsible for N;/T mesh
elements. One primary goal of our query implementation is to min-
imize global-memory communication and ensure load balance by
performing as much computation locally within a block (in shared
memory and registers) as possible and let threads collaborate to per-
form otherwise imbalanced queries. We start by loading the patch
information from global memory into shared memory. Because we
bound the maximum size of a patch, we guarantee that all storage
can fit within shared memory, as it allows using 16-bit unsigned
integers to represent the indices of per-patch mesh elements.?

Mpy, Mgy, and Mpg queries return a fixed number of outputs
(k = 2-3); we term these fixed offset queries because we know for
any input element i, its output will be stored in output locations
[ki, k(i+1)). Other queries are variable offset because queries on all
elements do not return the same number of outputs for each query
(e.g., Myy produces a variable-sized one-ring). We store the output
of fixed-offset queries in a flat array in shared memory where the
offset determines the boundary of each source’s output. For variable-
offset queries, we store the output in two arrays: one for the values
and another for the prefix-sum of the offsets.

Now, the output needs to be mapped to the global index space.
Reading the mapping from global memory would entail many scat-
tered memory reads. Instead, we load the local-to-global mapping

*The size of a patch Sj, does not exceed 768 faces. The Euler-Poincaré characteristic,
then, implies no more than 3/2S;, edges per patch. Since we store two vertices for each
edge (in Mgy) along with the three edges for each face (in MpE), the total storage is
6Sp. Since we use unsigned 16-bit indices to store the patch information, we require
less than 10 kB per patch, which can fit in shared memory on any NVIDIA GPU. In
addition and depending on the query operation, we might need to load only Mrg or
only Mgy, leading to less shared memory usage and potentially better occupancy.

RXMesh: A GPU Mesh Data Structure « 104:7

of the output element type into shared memory. Once the output is
computed in local space, we use the local-to-global mapping to map
the output of the query into the global index space. The mapping
happens on the fly only when the user fetches the query’s output.

It is possible to structure similar queries that only act on a subset
of the mesh elements. In this scenario, each thread checks if any of
its assigned source elements are part of the active set (Section 4).
If one thread in the block has an active source element, the whole
block performs the request query for the respective patch.

Queries that go beyond the first-order queries benefit from having
the majority of the information resident in the shared memory after
performing the first-order query. For example, querying the vertex
two-ring is done by reading the one-ring of the one-ring. After
performing the first one-ring, the next one-ring is already resident
in the shared memory. However, for near-ribbon elements, this may
require reading neighbor patches from global memory. For that,
each thread adds to a shared-memory buffer the patch it needs to
read in order to complete its query. This list is then filtered in place
to generate a list of unique patches. The whole block then iterates
over this list, performs the query for the whole patch, then allows
threads to complete their queries. Subsequently, if additional patches
still need to be read, they are scheduled in the next pass. Additional
details on individual queries are discussed in Appendix B.

6.3 Patching

6.3.1 Patch Quality: We seek to partition the input mesh into a set
of disjoint patches P. A single patch should be contiguous, i.e., a
single connected component. The patch size S, is identified by its
faces count. Ideally, we seek equal-sized patches to ensure perfect
load balance when patches are assigned to different blocks. How-
ever, this is not feasible since partitioning a graph into roughly
equal partitions is NP complete [Bulug et al. 2016]. Additionally, our
experiments showed that occasional small patches do not degrade
performance. Since we assign one CUDA block per patch, if a patch
is small, its assigned block will finish in a shorter time, freeing the
SM for another block ensuring full occupancy of the GPU. Smaller
patches require less shared memory and thus may allow more thread
blocks to be resident on one SM at the same time. However, smaller
patches also increase storage overhead due to ribbons. Thus, our
partitioning goal is contiguous patches of as equal size as possible,
while tolerating small patches. The patching process should be fast,
easy to parallelize, and incur low memory overhead.

Partitioning and clustering graphs and meshes for the purpose
of distributing them across parallel processors reduces complexity
and induces load balance. Bulug et al. [2016] summarize many of
the plethora of techniques for graph and mesh partitioning. Mesh
partitioning is used as a preprocess step to improve vertex locality to
increase rendering performance [Kerbl et al. 2018], to approximate
3D shapes [Cohen-Steiner et al. 2004], to simplify meshes [Kalvin
and Taylor 1996], and for mesh parameterization [Carr et al. 2006].
What makes our problem unique is our requirement for small-sized
contiguous patches, with a patch size of S =~512-768 faces.

State-of-the-art graph partitioning tools are not suitable to meet
these requirements. For example, ParMETIS [Schloegel et al. 1997]
is a MPI-based multi-core parallel graph and mesh partitioning

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

104:8 « Mahmoud, Porumbescu, and Owens

tool based on multilevel recursive-bisection, multilevel k—way, and
multi-constraints partitioning schemes. ParMETIS excels at pro-
ducing patches of equal size; however, it does not guarantee that
result patches are contiguous. nvGRAPH? is a CUDA-based high-
performance tool for solving various graph-based problems. nv-
GRAPH provides graph partitioning routines based on spectral
clustering [Naumov and Moon 2016]. While nvGRAPH is parallel,
fast, and able to partition graphs into roughly equal-sized partitions,
it can only do this for coarse-grain partitions, i.e., fewer than 40
partitions. Otherwise, the required memory footprint is too high.

6.3.2 Patching Algorithm: We design a new mesh partitioning tech-
nique on the GPU to meet our requirements while taking advantage
of 1) having no hard constraints over the number of patches and
2) having only upper bounds on the patch size. We leverage ideas
from Lloyd’s k-means clustering algorithm [1982], which is a highly
parallel process to partition a given graph.

Given a graph G = (V, &) with nonnegative edge weights w €
R0, k-means seeks to partition G into k partitions Py, ..., Py of
equal weights, i.e., the sum of weights of all edges in a partition is
equal. Alternatively, weights could be associated with the vertices
and the sum will run over the vertex weights. Lloyd’s clustering
algorithm is an iterative process to compute these partitions. After
randomly selecting k (vertex) seeds, it iterates over two phases:

e Assigning vertices to the “nearest” seed to create k partitions.

5 L«

e Updating the partition’s seed with the partition’s “centroid.”

The algorithm iterates until seeds are no longer updated or a max-
imum number of iterations is reached. The algorithm requires a
distance metric between vertices to compute the vertex’s nearest
seed and the partition’s centroid.

We employ Lloyd’s algorithm where the mesh faces are consid-
ered the vertices of the graph to be partitioned, two vertices are
neighbors if the two faces they represent are adjacent, and all edges
have a weight of 1. This formulation makes Lloyd’s algorithm ap-
plicable regardless of the input mesh quality (e.g., non-manifold).
Lloyd’s algorithm is excellent in minimizing large variances in size
between initial patches. However, the convergence of the algorithm
plateaus after a few iterations, often leaving a few overly large
patches. We overcome this by inserting more seeds in the large
patches, effectively reducing their sizes in subsequent iterations.
Our patching process stops when the largest patch size is less than
Sp. Appendix C provides more implementation details.

7 EVALUATION

We evaluate our data structure and programming model on both
fundamental query operations and full applications in Section 8.
We perform our comparisons on an NVIDIA DGX Station with an
NVIDIA Tesla V100 GPU with 32 GB of device memory. The CPU is
an Intel Xeon E5-2698 v4 with 20 cores and 256 GB main memory.
All code was compiled on Ubuntu 20.04 with gcc 9.3 and CUDA 11.1.
Input meshes are collected from Thingil0K [Zhou and Jacobson
2016] and Smithsonian [Smithsonian Institution Digitization Pro-
gram Office 2020] repositories.

We compare our RXMesh against GPU and CPU data structures:

3nvGRAPH is available at https://developer.nvidia.com/nvgraph/.

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

(1) Parallel Directed Edges (PDE): our well-optimized GPU-parallel
implementation of Directed Edges [Campagna et al. 1998].
We have implemented the best possible version of this data
structure that we could. Our implementation includes the
following optimizations:

o Using index-based instead of pointer-based data structures.
o Using SoA instead of AoS to store a halfedge’s information.

We store the target vertex, face and next halfedge in three
different buffers, each indexed by a halfedge index. Each
vertex and face stores their halfedge in two different buffers
indexed by the vertex and face index respectively. All other
indirections are calculated implicitly, e.g., the two halfedges
of an edge i take the indices 2i and 2i + 1 and thus the twin
halfedge can be referenced implicitly.

Storing query outputs in registers (when possible) before

storing them to slower global memory. This helps reduce

memory transactions yielding better memory performance
when the output size is known beforehand (e.g., FV query).

OpenMesh (Version 8.1) [Botsch et al. 2002] and CGAL [Ket-

tner 2019], the state-of-the-art CPU mesh libraries. We com-

pare against both serial and OpenMP-parallel implementa-
tions (with the thread count set to omp_get_max_threads

[40 on a DGX machine]).

—
)
~

Our measurements do not include the time it takes to read meshes
from disk or the time to transfer data to the GPU. Additionally, our
timings do not include the time it takes to create the patches de-
signed to fit into GPU local memory. We do this for two reasons:
(1) we get more fine-grained information about the performance
of different parts of our system; (2) the cost of patch construction
is quickly amortized over subsequent query operations. Patching
time ranges from a few tens of milliseconds for small models up to
15 seconds for very large ones. Figure 5a shows the performance
measurements of our patching technique on all data sets used in all
experiments where it shows that patching time scales linearly with
face count. Additionally, we compare against ParMETIS [Schloegel
et al. 1997] on 8 input meshes containing 16-57M faces. On aver-
age, our patching technique is ~4.1X faster than ParMETIS while
producing contiguous patches that ParMETIS does not guarantee.

Patch Size. One factor that affects RXMesh performance is the
patch size. There are several competing factors that determine the
patch size. While larger patches are desirable because they decrease
ribbon overhead, they require more shared memory, which leads to
fewer resident blocks per SM. The ratio between owned and ribbon
mesh elements could be too low for small patches, leading to less
useful work returned when the whole block processes a patch. To
determine the best patch size, we tested six candidate patch sizes. We
measure their performance on seven queries on an input with 20M
faces, as shown in Figure 5b. We choose a maximum patch size of 768
faces for all experiments in this paper as it strikes the best balance
between the competing factors delivering the best performance. We
expect newer GPUs with more shared memory capacity would allow
for larger patch sizes without degrading performance, leading to
lower ribbon overhead and a more compact data structure. Figure 5¢
shows examples of the output patches on a few selected inputs.

100,000 5.5
Input Order

20,000 defauit 501 ger
10,000 shuffle ? e

2,000 540 @u
1,000 2

100 5

200 £50 J

Patching time (ms)
- e mean (
o
@
L]
H

20
0

2

1.
10,000 100,000 1,000,000 10,000,000 100,000,000 200 600 1,000 1,400 1,800 2,200
Number of Faces. Patch Size

(a) Time to patch (b) Patch size

(c) An assortment of the output patches

Fig. 5. We show different aspects of the patching process; a) timing per-
formance of the patching algorithm on all inputs used in this paper using
default and shuffle input order, b) experimenting with different patch size
on different queries, and c) examples of the output patches.

7.1 Query Operations

We evaluate the performance of RXMesh on the eight first-order
query operations listed in Table 1. In each test, we pre-allocate
enough memory to store the results of a query and do not count
this allocation in the runtime.

PDE. We assign a thread to each mesh element source identified
by the thread global index and launch enough blocks to cover all
sources. Each thread then works independently, in parallel, to per-
form the query operation, then writes its output to its pre-allocated
location in global memory.

RXMesh. Our programming model frees the user from explicit
thread assignment. Instead, the user only writes the operations to
be performed by every source element. Here, this is simply writing
the output to global memory. Since we decouple the source mesh
element index from the thread index, we could choose to write them
in an order determined by either the element index or thread index.
We choose the latter as it is likely to have better cache performance.

OpenMesh and CGAL. Both provide the user with iterators to
circulate over different mesh elements. Given a query operation,
we iterate over the source mesh elements in a for loop, use the
provided iterators to query the given source mesh element for the
query operation, and finally write the output to the memory.

RXMesh: A GPU Mesh Data Structure « 104:9

Each experiment is run 10 times and we report the average timing
in milliseconds. We run and analyze three different input orders for
each query operation:

o Default: Input face and vertex order as specified in the input
o Shuffle: Randomly shuffle the vertex and faces
o Sorted: Using patching output to sort the vertex and faces

In general, OpenMesh and CGAL have the slowest performance
by a factor of more than 100 when compared against the GPU alter-
natives (Figure 6). This performance gap motivates the development
of a general-purpose mesh data structure on the GPU. Table 2 shows
the speedup comparison between RXMesh and PDE of the three
variants. We additionally report the timing for all methods in Fig-
ure 6. The shuffle input order is used to highlight the importance of
locality for PDE. The PDE data structure does not require the input
to expose any locality, instead relying on the user to capture locality,
leading to 1) a loss in performance in the worst case scenario (i.e.,
randomized inputs) and 2) a failure to make the best use of locality
even if the inputs are sorted (e.g., VV queries). In contrast, RXMesh
exploits locality more efficiently by making patching an integral
part of the data structure, leaving a randomized input no chance to
jeopardize its performance. Below we analyze the different query
operations, focusing only on sorted inputs.

VV, VE, and VF. In these queries, RXMesh outperforms PDE by
factors of ~3.49X on average with sorted inputs. For PDE, these op-
erations require each vertex to iterate over its halfedges. These mem-
ory reads could be at best cached but never coalesced. RXMesh relies
on coalesced reads from global memory and confining computation
within the shared memory, leaving no change for scattered global
memory read. In addition, our efficient parallel matrix transpose
in shared memory allows multiple threads to work cooperatively,
avoiding any thread or memory divergence.

FV, FE, and FF. For PDE, these queries require (at most) three
memory reads after each thread reads the halfedge associated with
its face. These reads cache well, making PDE’s performance match
RXMesh'’s. For FF queries, RXMesh requires more shared memory,
which lowers the GPU occupancy and leads to lower performance.
We note that PDE is limited to edge-manifold input and is thus less
generic compared to RXMesh.

EV and EF. Given an edge, PDE only does two memory reads for
these queries to read the two vertices (or faces) associated with an
edge’s halfedges. These reads are always cached regardless of the
input order, since the halfedges of an edge take two consecutive
IDs. RXMesh performs a matrix transpose for EF since we assume
non-manifold inputs, leading to a slight slowdown for this query.

The design we chose for PDE will always cache (and thus is best
suited for) edge queries (EV and EF). An alternative design we could
have chosen for PDE instead caches and prioritizes face queries
(FV, FE, FF). In this design, we would implicitly reference a face’s
three halfedges, i.e., given a face i, assign its interior halfedges to
indices 3i, 3i + 1, and 3i + 2. This design would require slightly more
memory (44 bytes/face). In contrast, the RXMesh user need not face
such a design choice since RXMesh effectively caches all queries.
This design advantage of RXMesh is most evident for the vertex

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

104:10 « Mahmoud, Porumbescu, and Owens
10,000 10,000 10,0005 10,000 Implementation
o0 3 CGALMultiCore
] o CGALSingleCore
_ 1,000 o ¥V _ _ 1,000 _ 1,000 . % bl ot S
9 L 8%° 0 0 3 0 0% & OpenMeshsingleCore
E P E E 1 E PDE
£ 0% i g H e 100 g 100 £ RXMesh
] o8 o %8 g - § 3 H oo ? Input Order
% . o
o 10 & #%, . e &° o 102 . g 0 - ’ default
E = E s E | £ o 8 e] shu
E 82 L s =] [] 1 a sorted
g 8 o o s o H] £ £ F pe
] 1 B o £ - 3 3 14 5 1 ° o
H 3 " S T 2 H R & - ¥
: 0.1 o* * # 5 0. 1: z 0.1 ‘ s s
’ D " - 2 e ’ b
(] i e
001 1 001 B 001 1 0018
10,000 100,000 1,000,000 10,000,000 10,000 100,000 1,000,000 10,000,000 10,000 100,000 1,000,000 10,000,000 10,000 100,000 1,000,000 10,000,000
Number of Faces Number of Faces Number of Faces Number of Faces
10,000 10,000 1,000 1,000 Implementation
== o°° ° CGALMultiCore
o CGALSingleCore
_ 1000 =20 _ 1000 o2 §3° . 100 = »* . 100 o ** OpenM‘esghMu\terore
n o N oS 0 5 N o OpenMeshSingleCore
E ¢ E 000 & E ° E o ° DE
< 100 o,; ® < 100 B < 10 "&“ < 10 " RXMesh
g o 3 9 ° 3 = 3 = 8 Input Order
E 3 E P o° £ P £ M Befault
e 10 . - s 10 o & s i o s . efau
E 5 . o7 E #5 e E »” H .ﬂ. shuffle
E o P Sa s ® o° @ - 0 o - ° . sorte
p £ - £ £ F
3 1 ® L 3 1 & 3 01 L] 3 01
& o & & [/ @ P
w » w " > a w .
w ° U w V¢ B w . o w H
0.1 g3 o 0.1 # 0.01 (] 0.01 L]
” oo
e 8 :
0.0: 0.01 : 0.001 0.001

"'1,000,000 10,000,000 "
Number of Faces

[]
10,000 100,000 10,000 100,000 1,000,000 10,000,000

Number of Faces

10,000 ' 100,000

1,000,000 10,000,000 "
Number of Faces

1,000,000 10,000,000 " 10,000 ' 100,000

Number of Faces

Fig. 6. Results of the first-order queries using RXMesh, PDE, OpenMesh, and CGAL. Each query shows runtime vs. number of input faces on the default,

sorted, and shuffle input mesh ordering.

Table 2. Speedup of RXMesh over PDE for all query operations on different
input order.

Operation VvV VE VF Fv FE FF EV EF
.. default | 495 348 48 127 1.05 0.87 0.86 0.64
Q
B sorted | 392 289 377 1.04 093 0.72 0.86 0.63
© shuffle | 837 548 819 3.86 201 255 085 0.62

queries (VV, VE, and VF); no alternative design for PDE can cache
such queries.

PDE enjoys a speedup over RXMesh for some queries (FE, FF, EV
and EF) averaging ~1.28X for sorted inputs. For the other queries,
RXMesh’s speedup over PDE is on average ~2.58X. Since complex ap-
plications require a mix of these operations, RXMesh strikes a good
balance in optimizing different operations and allowing working on
generic meshes (i.e., non-manifold) without any specialization.

Memory Footprint Comparison. RXMesh requires 45.4 bytes/face
(a detailed calculation is shown in Appendix D) while PDE requires
42 bytes/face, i.e., ~8% less memory than RXMesh. It is possible to
reduce RXMesh’s memory footprint to 34 bytes/face if computations
are restricted to only first-order queries, leading to a ~19% savings
in global memory vs. PDE.

8 APPLICATIONS

In this section we put the RXMesh system to work on a set of
real-world geometry processing applications and evaluate its perfor-
mance against both parallel CPU and GPU implementations using
OpenMesh and PDE, respectively. In all our experiments, we use
the sorted input order for fair comparisons.

Each application explores and tests a certain aspect of our data
structure and programming model. Mesh smoothing using mean
curvature flow (Section 8.1) integrates significant computation that
repeatedly queries the vertices’ one-ring exemplifying many applica-
tions that have a similar pattern of computation. Geodesic distance

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

Fig. 7. Examples of removing high-frequency noise by smoothing using
mean curvature flow (left) and computing geodesic distance (right).

(Section 8.2) illustrates the programmability of our programming
model and how it could be adopted for computations that are run on
a subset of the vertices while delivering high performance. Bilateral
filtering (Section 8.3) shows the performance of RXMesh on queries
that go beyond the first-order queries and how our programming
model is amenable for such computation. Finally, vertex normal
(Section 8.4) is a simple application that shows that RXMesh is able
to match the performance of a hardwired application-specific data
structure with almost no performance penalty.

8.1 Mean Curvature Flow

Geometry processing applications that require solving a linear sys-
tem of equations are ubiquitous. Examples include mesh editing [Yu
et al. 2004], mesh parameterization [Mullen et al. 2008], and simula-
tion [Narain et al. 2012]. Unfortunately, many of these solvers are
difficult to parallelize on the GPU. One costly aspect of solving these
systems is the need to perform matrix assembly from the underlying
mesh data structure into a sparse matrix while also maintaining the

original mesh representation. Iterative matrix-free solvers, which
we use in this application, remove this obstacle and are the standard
approach for parallelizing solver-based applications on large inputs
containing millions of faces.

Here we implement smoothing/fairing of irregular meshes based
on mean curvature flow [Desbrun et al. 1999], which is an effective
method to remove the high-frequency noise from an input mesh
(Figure 7). Our implementation uses an (un-preconditioned) con-
jugate gradient (CG) solver [Shewchuk 1994] using cotan weights
computed at every iteration on-the-fly using VV queries. Given
RXMesh’s fast neighborhood queries, we can directly perform the
necessary matrix-vector computations and make use of the easily
parallelizable matrix-free iterative CG solver. Appendix E shows the
user implementation of this application highlighting the simplicity
of using RXMesh programming model where all the complexity of
making the best use of the GPU is hidden from the user enabling
them to focus on the application implementation.

For comparison, we implemented the matrix-free CG using (single
and multi-core) OpenMesh and PDE. Figure 8a shows a single CG
iteration timing for the different methods. We observe more than
210X (18.3%) speedup between RXMesh and OpenMesh single-core
(multi-core) implementations, respectively. This further emphasizes
the benefits of utilizing the GPU for such computation. RXMesh
is on average 4.6X faster than PDE. We attribute this speedup to
how computation is scheduled. For RXMesh, we first perform all the
queries in shared memory, which requires coalesced memory reads.
Any uncoalesced/scattered memory reads of mesh attributes are
scheduled afterward, allowing the L1 and L2 cache to have a smaller
working set. PDE performs both global memory reads of the data
structure and mesh attributes simultaneously, stressing the caches
and leading to more memory transactions and slower performance.

8.2 Geodesic Distance

In this application, we compute the geodesic distance from a single
source vertex to all other vertices (Figure 7). Our implementation is
based on the front propagation for computing approximate geodesic
distance using the minimalistic parallel algorithm by Romero et
al. [2019]. The core idea is based on propagation of distance infor-
mation from a set of vertices closer to the source vertex to the set
of vertices further away such that multiple vertices can be updated
in parallel. These sets of vertices are called topological level sets
and their topological distance (i.e., number of hops away) from the
source is computed as a preprocessing step.

The algorithm iteratively selects a set of eligible vertices based
on topological distance, updates their distance in parallel, and then
computes an error to decide the next set of vertices. This application
demonstrates how to limit computation to a set of active vertices and
compares the performance against PDE and single-core OpenMesh.
With RXMesh, we simply check if the vertex is contained in the
active set based on the topological set eligible for update, following
our programming model (Section 4). If the vertex is active, it then
performs the necessary query (VV) and updates its distance. Behind
the scenes, RXMesh assigns blocks to patches and threads to vertices,
performs the queries for active patches, and retires blocks that are
assigned to patches with no active vertices. In contrast, PDE only

RXMesh: A GPU Mesh Data Structure « 104:11

launches enough threads to cover the active vertices, which are read
in a coalesced manner.

While RXMesh performs more work by checking on non-active
vertices, it outperforms PDE since the extra work is trivial compared
to the overall computation. Figure 8b shows the timing for RXMesh,
PDE and OpenMesh. On average, RXMesh is 15.5X and 122X faster
than PDE and OpenMesh respectively. This shows that patching
and careful scheduling of queries delivers significant performance
gains even if the computation is limited to a subset of the vertices.

8.3 Bilateral Filtering

We implement an additional denoising application based on Bilateral
Mesh Denoising (BMD) [Fleishman et al. 2003] to explore RXMesh’s
programmability and ability to generate k-ring queries. BMD is an
iterative process that computes new, smoother coordinates for the
input mesh by filtering the vertices in the normal direction using
their local neighborhoods. The critical part of BMD is calculating
the local neighborhood for a vertex. We calculate this neighborhood
by generating a ball centered at the vertex based on the shortest
edge length to the one-ring vertices. We then gather all the neighbor
vertices that fall inside this ball by querying the k-ring where k > 1.
This stops when none of the vertices of a k-ring fall inside the ball.
The resulting vertices are then used to determine the distance to
move the vertex along its normal vector.

In our implementation, the user starts with a VV query, during
which each thread is assigned to a vertex and its output is used
to computed the ball’s radius. Subsequent queries beyond the one-
ring are first checked if they are for vertices that are owned by the
currently processed patch. If so, the output is resident in shared
memory and is returned. Otherwise, the required patch is scheduled
to be processed later. The user only implements the computation per-
formed on the vertex and its query output while the programming
model takes care of scheduling and processing the patches.

We implemented the BMD algorithm and compared RXMesh’s
performance against PDE and an OpenMesh-based implementation.
RXMesh’s speedup (Figure 8c) is on average 68.4x and 9.6X times
faster than the single-core and multi-core OpenMesh implemen-
tation, respectively. PDE is only 1.12x faster than RXMesh. The
reason behind this is RXMesh has to read more patches to fulfill
the query of near-ribbon vertices, which could be as high as 10-20
additional patches depending on the mesh topology. The amount
of useful information obtained by processing these patches is too
low compared with the amount of work that needs to be done since
these additional patches are processed to only benefit few vertices.
We leave further optimizing higher-order queries as future work.

8.4 Vertex Normal

Computing a vertex normal is a fundamental mesh computation
in many applications (e.g., smooth shading computation and dis-
crete differential operators). We implement the weighted vertex
normal [Max 1999] using RXMesh and compare against a hard-
wired, vertex-normal-specific data structure, where the incident
vertices of each face are stored directly in global memory (i.e., in an
indexed triangle format). We also implemented the vertex normal
using Mesh Matrix [Zayer et al. 2017], as outlined in their paper.

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

104:12 « Mahmoud, Porumbescu, and Owens

100,000

Implementation
10,000, _ OpenMeshMultiCore

10,000,000
Implementation

OpenMeshsingleCore . o 1,000,0004 O OpenteshingleCore

PDE - -
- N 8
£ 1,000/ ©RXMesh o8 £ 100,000, ©RXMesh o
9 : 2 5

o £ 10,000] 2
~,§. 100 a’ L K 4
€ = H :
5 g
c ¢ 1,000 i b
5 10 b C E] " 5’9 >
H 8 3 | L
of 3 100 ! N
! 8 o 104 i

°

0.1 1
10,000 100,000 1,000,000 10,000,000 10,000 100,000

Number of Faces

1,000,000 10,000,000
Number of Faces

(a) Mean curvature flow (b) Geodesic distance

10,000,000
100
° Implementation
50 O Hardwired

Implementation

1,000,000 OpenMeshMultiCore

OpenMeshsingleCore I
T RE 9 H MeshMatrix
E 100,000 & pymesh o £ 10, ORxMesh
E o o i s
1 R K
£ 10,000 £ . ¢
€ 3 &
3 e o 3
g L0 it I o
£ o o ° H i
F ° Z 02
3 100 ° % pr
i ° 'g‘ go1 8
g
3

10. 8 i
> 0.02] ,
0.01

1
10,000 ' 100,000 1,000,000 = 10,000,000

Number of Faces

10,000 100,000 1,000,000 10,000,000

Number of Faces

(c) Bilateral filtering (d) Weighted vertex normal

Fig. 8. Timing performance of RXMesh, PDE, and OpenMesh on four different applications. All applications run on sorted input.

Listing 1 shows the implementation of vertex normal using RXMesh.
Mesh Matrix and the hardwired implementation have the same
memory layout, where each face only reads its three vertices with-
out any additional memory indirection. Even without a perfectly-
matched data structure, RXMesh is able to match their performance
(Figure 8d); the hardwired implementation and Mesh Matrix are
only 1.12X and 1.14X faster than RXMesh. This demonstrates that
RXMesh’s generality imposes only a minimal performance penalty.

9 LIMITATIONS AND FUTURE WORK

RXMesh currently targets only static meshes that do not change over
time. While processing static meshes has broad applicability, we
hope to enlarge the class of applications we can target by designing
a programming model and implementation that supports dynamic
meshes. One primary obstacle is a lack of well-defined semantics for
low-level parallel mesh manipulation when multiple threads attempt
to modify the same mesh element. Nonetheless we believe that our
data structure, with its focus on mesh partitioning, is well suited
for an evolution toward dynamic capability because parallelizing
across partitions helps ease the problems with concurrency. We
are further encouraged by recent advances in mesh subdivision
on the GPU [Mlakar et al. 2020] and dynamic GPU graph data
structures [Awad et al. 2020; Winter et al. 2018].

Currently, the patch creation time could be higher than the appli-
cation runtime. Exploring further relaxation of the patch require-
ments in favor of speeding up the process is left for future work.
Additionally, we have no theoretical guarantees that our patching
process will always work. We may also encounter meshes with ex-
treme structures (e.g., one vertex with a high valence that exceeds
Sp) that may violate our assumptions and where no conforming
patching is possible. We note that we have not encountered either a
failed partition or such an extreme case in our experiments to date.

We assume that mesh-based computation is dependent on local
neighborhood information only, which covers a large set of applica-
tions (e.g., finite-element/finite-volume methods). Our programming
model is not well suited for computation that extends beyond the
local neighborhood and requires global information, e.g., ray tracing
or winding number.

Our data structure is specialized for triangle meshes only, which
are ubiquitous within the geometry and mesh processing commu-
nity. This specialization made it possible to greatly optimize our

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

implementation. Extending our data structure and programming
model to other type of discrete geometry (e.g., quad and volumetric
meshes) is left for future work.

10 CONCLUSION

In this paper, we showed the importance of mesh locality for triangle
mesh processing. While relying on hardware caching has been
the standard way to exploit locality, we showed how programmer-
managed caching, hidden from the user beneath the programming
model, can improve the performance even further. It is particularly
challenging to exploit locality in generic mesh processing because
the user may interact with and compute on three different kinds of
elements. However, we believe patching is the right way to exploit
mesh locality and deliver sustained high performance regardless of
operations or input quality. RXMesh’s patch representation allows
for several optimizations that are otherwise infeasible, e.g., PDE
has no straightforward way to profitably use shared memory. Our
programming model allows both flexibility to implement different
and complex applications as well as an implementation that allows
us to schedule query operations with high cache efficiency.

ACKNOWLEDGMENTS

The authors would like to thank Nina Amenta, Michael Garland,
Pradeep Kumar Jayaraman, Kerry A. Seitz, and the anonymous re-
viewers for their feedback on the manuscript. We also thank Nigel
Morris and Massimiliano Meneghin for the illuminating discussions
and their continuous support. The authors appreciate the research
support of the National Science Foundation (award # CCF-1637442),
DARPA (AFRL awards # FA8650-18-2-7835 and # HR0011-18-3-0007),
a UC Davis New Initiative Grant award, and Sandia National Labo-
ratories, as well as equipment donations from NVIDIA.

This material is based on research sponsored by the Air Force
Research Lab (AFRL) and the Defense Advanced Research Projects
Agency (DARPA). The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Lab (AFRL) and
the Defense Advanced Research Projects Agency (DARPA) or the
U.S. Government.

REFERENCES

Saman Ashkiani. 2017. Parallel Algorithms and Dynamic Data Structures on the Graphics
Processing Unit: a warp-centric approach. Ph.D. Dissertation. University of California,
Davis. https://escholarship.org/uc/item/5qd0r4ws

Saman Ashkiani, Andrew A. Davidson, Ulrich Meyer, and John D. Owens. 2017. GPU
Multisplit: an extended study of a parallel algorithm. ACM Transactions on Parallel
Computing 4, 1 (Aug. 2017), 2:1-2:44. https://doi.org/10.1145/3108139

Saman Ashkiani, Martin Farach-Colton, and John D. Owens. 2018. A Dynamic Hash Ta-
ble for the GPU. In Proceedings of the 32nd IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2018). 419-429. https://doi.org/10.1109/IPDPS.2018.
00052

Muhammad A. Awad, Saman Ashkiani, Serban D. Porumbescu, and John D. Owens.
2020. Dynamic Graphs on the GPU. In Proceedings of the 34th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2020). 739-748. https://doi.
0rg/10.1109/IPDPS47924.2020.00081

Bruce G. Baumgart. 1972. Winged Edge Polyhedron Representation. Technical Report
STAN-CS-72-320. Stanford University Computer Science Department, Stanford, CA,
USA. https://apps.dtic.mil/dtic/tr/fulltext/u2/755141.pdf

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for Physical Simulation
on CPUs and GPUs. ACM Trans. Graph. 35, 2, Article 21 (May 2016), 12 pages.
https://doi.org/10.1145/2892632

M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. 2002. OpenMesh - a generic and
efficient polygon mesh data structure. In 1st OpenSG Symposium. https://www.
graphics.rwth-aachen.de/media/papers/openmesh1.pdf

Aydin Bulug, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
2016. Recent Advances in Graph Partitioning. Springer International Publishing,
117-158. https://doi.org/10.1007/978-3-319-49487-6

Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. 1998. Directed Edges—A Scalable
Representation for Triangle Meshes. Journal of Graphics Tools 3, 4 (Dec. 1998), 1-11.
https://doi.org/10.1080/10867651.1998.10487494

Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. 2006. Rectangular
Multi-Chart Geometry Images. In Symposium on Geometry Processing (SGP06). 181~
190. https://doi.org/10.2312/SGP/SGP06/181-190

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational Shape
Approximation. ACM Transactions on Graphics 23, 3 (Aug. 2004), 905-914. https:
//doi.org/10.1145/1015706.1015817

Narcis Coll and Marité Guerrieri. 2017. Parallel Constrained Delaunay Triangulation
on the GPU. International Journal of Geographical Information Science 31, 7 (July
2017), 1467-1484. https://doi.org/10.1080/13658816.2017.1300804

Mathieu Desbrun, Mark Meyer, Peter Schroder, and Alan H. Barr. 1999. Implicit
Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings
of the 26th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH °99). ACM Press/Addison-Wesley Publishing Co., USA, 317-324. https:
//doi.org/10.1145/311535.311576

Antonio DiCarlo, Alberto Paoluzzi, and Vadim Shapiro. 2014. Linear algebraic rep-
resentation for topological structures. Computer-Aided Design 46 (2014), 269-274.
https://doi.org/10.1016/j.cad.2013.08.044 2013 SIAM Conference on Geometric and
Physical Modeling.

Vladimir Dyedov, Navamita Ray, Daniel Einstein, Xiangmin Jiao, and Timothy J. Tautges.
2015. AHF: array-based half-facet data structure for mixed-dimensional and non-
manifold meshes. Engineering with Computers 31, 3 (July 2015), 389-404. https:
//doi.org/10.1007/s00366-014-0378-6

Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. 2003. Bilateral Mesh Denoising.
ACM Transactions on Graphics 22, 3 (July 2003), 950-953. https://doi.org/10.1145/
882262.882368

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi. ACM Transactions on Graphics 4, 2
(April 1985), 74-123. https://doi.org/10.1145/282918.282923

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
2019. Taichi: A Language for High-Performance Computation on Spatially Sparse
Data Structures. ACM Transactions on Graphics 38, 6 (Nov. 2019), 201:1-201:16.
https://doi.org/10.1145/3355089.3356506

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Alan D. Kalvin and Russell H. Taylor. 1996. Superfaces: Polygonal Mesh Simplification
with Bounded Error. IEEE Computer Graphics and Applications 16, 3 (May 1996),
64-77. https://doi.org/10.1109/38.491187

Bernhard Kerbl, Michael Kenzel, Elena Ivanchenko, Dieter Schmalstieg, and Markus
Steinberger. 2018. Revisiting The Vertex Cache: Understanding and Optimizing
Vertex Processing on the Modern GPU. Proceedings of the ACM on Computer Graphics
and Interactive Techniques 1, 2, Article 29 (Aug. 2018), 16 pages. https://doi.org/10.
1145/3233302

Lutz Kettner. 2019. Halfedge Data Structures. In CGAL User and Reference Manual
(4.14 ed.). CGAL Editorial Board. https://doc.cgal.org/4.14/Manual/packages.html#
PkgHalfedgeDS

RXMesh: A GPU Mesh Data Structure « 104:13

Stuart P. Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions on
Information Theory 28, 2 (March 1982), 129-137. https://doi.org/10.1109/TIT.1982.
1056489

Yu Lu and Harrison H. Zhou. 2016. Statistical and Computational Guarantees of Lloyd’s
Algorithm and its Variants. arXiv:1612.02099v1 [math.ST]

M. Méntyla. 1988. Introduction to Solid Modeling. W. H. Freeman & Co., New York, NY,
USA.

Nelson Max. 1999. Weights for Computing Vertex Normals from Facet Normals. Journal
of Graphics Tools 4, 2 (March 1999), 1-6. https://doi.org/10.1080/10867651.1999.
10487501

Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking Like a Vertex: A
Survey of Vertex-Centric Frameworks for Large-Scale Distributed Graph Processing.
Comput. Surveys 48, 2, Article 25 (Oct. 2015), 39 pages. https://doi.org/10.1145/
2818185

D. Mlakar, M. Winter, P. Stadlbauer, H.-P. Seidel, M. Steinberger, and R. Zayer. 2020.
Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Con-
nectivity on the GPU. Computer Graphics Forum 39, 2 (2020), 335-349. https:
//doi.org/10.1111/cgf.13934

J. S. Mueller-Roemer, C. Altenhofen, and A. Stork. 2017. Ternary Sparse Matrix Rep-
resentation for Volumetric Mesh Subdivision and Processing on GPUs. Computer
Graphics Forum 36, 5 (2017), 59-69. https://doi.org/10.1111/cgf.13245

Patrick Mullen, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. 2008. Spectral Confor-
mal Parameterization, In Proceedings of the Symposium on Geometry Processing.
Computer Graphics Forum, 1487—1494. https://doi.org/10.5555/1731309.1731335

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive Anisotropic Remesh-
ing for Cloth Simulation. ACM Transactions on Graphics 31, 6 (Nov. 2012), 152:1-
152:10. https://doi.org/10.1145/2366145.2366171

Maxim Naumov and Timothy Moon. 2016. Parallel Spectral Graph Partitioning. Technical
Report NVR-2016-001. NVIDIA Research. https://research.nvidia.com/publication/
parallel-spectral-graph-partitioning.

Luciano A. Romero Calla, Lizeth J. Fuentes Perez, and Anselmo A. Montenegro. 2019.
A minimalistic approach for fast computation of geodesic distances on triangular
meshes. Computers & Graphics 84 (2019), 77-92. https://doi.org/10.1016/j.cag.2019.
08.014

J. Rossignac. 2001. 3D compression made simple: Edgebreaker with Zip&Wrap on a
Corner-Table. In Proceedings of the International Conference on Shape Modeling and
Applications. 278-283. https://doi.org/10.1109/SMA.2001.923399

H. Schifer, B. Keinert, M. Niefiner, and M. Stamminger. 2014. Local Painting and
Deformation of Meshes on the GPU. Computer Graphics Forum 34, 1 (Aug. 2014),
26-35. https://doi.org/10.1111/cgf.12456

Kirk Schloegel, George Karypis, and Vipin Kumar. 1997. Parallel Multilevel Diffusion
Algorithms for Repartitioning of Adaptive Meshes. Technical Report 97-014. University
of Minnesota, Department of Computer Science. http://glaros.dtc.umn.edu/gkhome/
node/87.

Jonathan Richard Shewchuk. 1994. An introduction to the conjugate gradient method
without the agonizing pain. https://www.cs.cmu.edu/~quake-papers/painless-
conjugate-gradient.pdf

Smithsonian Institution Digitization Program Office. 2020. Smithsonian 3D Digitization.
https://3d.si.edu/.

Robert F. Tobler and Stefan Maierhofer. 2006. A Mesh Data Structure for Rendering
and Subdivision. In Proceedings of WSCG (International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision). 157-162. http://www.
vrvis.at/publications/PB-VRVis-2006-007

Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan Wang,
Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel, and John D. Owens.
2017. Gunrock: GPU Graph Analytics. ACM Transactions on Parallel Computing 4, 1
(Aug. 2017), 3:1-3:49. https://doi.org/10.1145/3108140

Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and Markus Steinberger.
2018. faimGraph: High Performance Management of Fully-Dynamic Graphs Under
Tight Memory Constraints on the GPU. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC ’18). Article
60, 13 pages. https://doi.org/10.1109/SC.2018.00063

Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-
Yeung Shum. 2004. Mesh Editing with Poisson-Based Gradient Field Manipulation.
ACM Transactions on Graphics 23, 3 (Aug. 2004), 644-651. https://doi.org/10.1145/
1015706.1015774

Rhaleb Zayer, Markus Steinberger, and Hans-Peter Seidel. 2017. A GPU-adapted Struc-
ture for Unstructured Grids. In Computer Graphics Forum (Proceedings of Eurograph-
ics 2017), Vol. 36. 495-507. Issue 2. https://doi.org/10.1111/cgf.13144

Qingnan Zhou and Alec Jacobson. 2016. Thingil0K: A Dataset of 10,000 3D-Printing
Models. CoRR (May 2016). arXiv:cs.GR/1605.04797

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

104:14 « Mahmoud, Porumbescu, and Owens

A LAR EXAMPLE:

Figure 9 shows the six incident and adjacency queries with ref-
erence to the example shown in Figure 1. Each of these queries
is represented as a sparse matrix resulting from a matrix-matrix
multiplication or matrix transpose shown under the matrix.

B STRUCTURING SPECIFIC QUERIES:

We discuss here the implementation of RXMesh data structure on
how to compute different queries where the needed patch informa-
tion (Mpg, Mgy, or both) resides in shared memory. To minimize
our shared-memory footprint, we aggressively reuse shared mem-
ory wherever possible, e.g., by overwriting the query output where
patch information is stored.

In our implementation, we only store Mpg and Mgy and synthe-
size any other queries we require, as described below. The significant
advantage of this decision is that we minimize storage (Section 5.2.4)
and thus enable larger patches with their greater efficiency. This
advantage comes with the computation cost of having to construct
the queries listed below on the fly. Thus, we have invested signifi-
cant effort into making this computation as inexpensive as possible,
aided significantly by the storage of the relevant per-patch matrices
in fast shared memory.

FE and EV: They do not require any further computation after
reading them from global memory.

FV: Since FV = FE X EV, each thread reads the three edges of the
face(s) assigned to it from Mg and replaces the edges with three
vertices. We incorporate information about the face orientation and
edge direction to result in three unique vertices for each face (i.e.,
we write the first vertex of the edge unless the edge is flipped). The
code snippet in Listing 2 shows how such computation can be done
without thread divergence.

EF and VE: They are simply matrix transposes of Mrr and Mgy
respectively. Below, we discuss how to efficiently compute matrix
transpose.

VF: We first compute FV as shown earlier and then transpose the
output matrix in place. The input matrix has the same structure as
MFg, i.e., three entries per row.

VV: This query can be computed by first computing VE and then
replacing each edge with the appropriate (other) vertex.

FF: Since FF = FE x EFT, we first transpose Mgr. Then each
thread reads the three edges of its face(s), counts the number of
(other) faces incident to this edge, and stores the results in a shared
memory buffer. We then compute a prefix-sum of this buffer so that
each face knows where to store its results in shared memory. This
query requires both Mg and its transpose to be resident at the
same time in shared memory, which slightly increases the shared
memory requirement for this particular query.

Matrix Transpose as Multisplit: It is now obvious that matrix trans-
pose is such an important kernel for the majority of the queries (5 of
the 8 queries require matrix transpose). Given the structure of the
input matrices, we realize matrix transpose as a multisplit operation.
Multisplit [Ashkiani et al. 2017] is a GPU parallel primitive that,

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

given an unordered set of keys and a function that splits those input
keys into buckets, outputs the buckets such that each bucket output
is contiguous but otherwise unordered. This exactly matches the
matrix transpose operation where the input is Mpg, Mgy, or My,
the function is the key itself, and the buckets are the matrix columns.
We implement a custom multisplit for our transpose, which differs
from Ashkiani et al.s [2017] in that our total number of buckets (the
number of columns) is significantly larger than any bucket’s output.
For instance, the valence of a vertex is on average 6 while a patch
can have on average 384 vertices.

Listing 3 shows how we implement matrix transpose (inspired by
multisplit) in a scenario where the offset is overwritten in the input
matrix buffer. It requires a single template parameter, which can
be derived from the maximum allowed size of a patch. Threads can
than read a fixed number of entries from the input matrix (line 5-13).
Each thread atomically adds the number of buckets it reads (line
18-22) so that a prefix sum can be computed (line 24) that tells each
thread where to place its results (line 26-32). This kernel illustrates
how threads can collaborate to perform an otherwise imbalanced
computation by distributing the work among the threads.

C PATCHING ALGORITHM:

Our patching process implements Lloyd’s algorithm on the GPU
by iterating over three stages in order: patch assignment, patch
construction, and seed update. Since we have no hard constraint
on the number of patches, we add a fourth stage, seed addition, to
accelerate convergence. Initially, patches are imbalanced and the
traditional Lloyd’s algorithm helps to deliver patches of equal size.
However, this process is slow to converge [Lu and Zhou 2016]. Since
our only hard requirement is patches below a certain size, adding a
modest number of additional patches helps us to quickly meet our
convergence criterion.

Initialization. We start the patching process by selecting random
faces as the seeds for Lloyd’s algorithm. If the mesh is composed of
multiple components, we first add one seed per component and then
distribute the remaining seeds proportionally to the components’
size. The initial number of seeds is the number of input faces divided
by the desired patch size Sp,. Each seed face is assigned to a distinct
patch. We also store the face count in each patch, initialized to one.

Patch Assignment. We implement a parallel iterative process for
patch assignment such that a face assigned to a patch propagates
its patch ID to each of its neighboring faces if they have not been
assigned yet (using atomic compare-and-swap).

We store patch IDs per mesh face in a pre-allocated buffer in
global memory. Patch assignment ends when all faces have been
assigned to a patch. Because faces are assigned to patches only
by their neighbors, our patch assignment process guarantees that
each patch is a single connected component. If the seeds are well-
spaced, this stage tends to produce patches of relatively uniform size.
Isolated faces are identified at the beginning as separate components.
These faces will be seeds but will not grow further.

Construct Patches. After assigning faces to patches, we construct a
patch data structure. We represent patches in a compact format that
consists of an offset array and a value array. The offset array is the

Myg = M,,TV

h f
ey 1
e1 1
e 1

es
€6
e7
€8

MEgF = MIZE

My = MEVM};E

Mrv = MFEMEv

RXMesh: A GPU Mesh Data Structure « 104:15

Fig. 9. With reference to the example mesh shown in Figure 1, here we show the remaining incident and adjacency relations between different mesh elements, expressed as sparse

matrices, and computed as matrix-matrix multiplication and matrix transpose of the two stored matrices i.e., Mgy and MpEg.

__device__ void
ComputeFV(const uint32_t pNumFaces,
uint16_t* s_Mfe) {

const uintl16_t* s_Mev,

for (uint32_t f =
for (uint32_t e
uint32_t edge =

threadIdx.x; f<pNumFaces;
=0; e< 3; +te) {
s_Mfel[f*3 + e];

f+= blockDim.x) {

// get edge direction

uint32_t edge_dir = edge & 1;

// shift right to get the actual edge index
edge = edge >>1

// if the edge
uint16_t vertex =
vertex =

is flipped, take the second vertex
(2*xedge) + (1 + edge_dir);
s_Mev[vertex]

//store results

s_Mfe[f*3 + e] = vertex;

Listing 2. Computing FV using patch matrices in shared memory.

prefix sum of the patch size array while the value array stores the
IDs of the patch’s faces. We construct this compact format by first
computing the maximum patch size, necessary for termination, with
CUB’s* parallel reduce (with the maximum operator) on the patch
size buffer. Next, we run CUB’s inclusive prefix sum to compute the
offset array. Finally, we launch a kernel where threads are assigned
to different faces. Each thread atomically adds its face to its patch
value array.

4CUB is included in CUDA: https://docs.nvidia.com/cuda/archive/11.1.1/cub/.

__device__ void template <uint16_t itemPerThread>
MatrixTranspose(uint16_t* Matrix, uintl16_t* Output,
uint16_t* nRows, uintl16_t* nCols,
uint16_t* nnzPerRow) {
uint16_t nnz = nRows * nnzPerRow;
uintl16_t thread_datalitemPerThread];
uint16_t local_offset[itemPerThread];
for (int i = @; i < itemPerThread; ++i) {
uint32_t index = itemPerThread * threadIdx.x + ij;
if (index < nnz) {
thread_datal[i] = Matrix[index];
Matrix[index] = 0;
} else {
thread_datal[i]l = @xFFFF;
}
3
__syncthreads ();
for (int i = @; i < itemPerThread;
if (thread_datal[il] != @xFFFF) {
local_offset[i]=atomicAdd (Matrix[thread_datal[i]],1);

++i) {

}
}
__syncthreads () ;
CUBPrefixSum(Matrix, nCols);
for (int i = @; i < itemPerThread;
if (thread_data[i] != @xFFFF) {
uint16_t offset = Matrix[thread_datali]Jl+local_offset[il];
uint16_t row = (itemPerThread * threadIdx.x + i) /
nnzPerRow;
Output[offset] = row;

++i) {

}
}
}

Listing 3. Matrix transpose

Update Seeds. The next step chooses a new seed per patch. We aim
to choose a seed that is as central within the patch as possible. We
begin by launching a kernel that assigns one block per patch. Each

ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

104:16 « Mahmoud, Porumbescu, and Owens

void SmoothingMCF (RXMesh rxmesh, Attribute<float, 3> X@,
float tol, float time_step,
uint32_t max_iter){
//CG variables. X is the smoothed coordinates
//initialized to X@ i.e., the initial coordinates
Attribute<float, 3> Q, D, R, B, X;
Vec3<float> alpha, beta, delta, delta_old, delta_9;
uint32_t iter(0);
[/ *xkkkxkkkkxx Initialization *xxkxkkxxkx%xx//
InitB(rxmesh, X0, B);

//Q = matrixxX
MatVec(rxmesh, X0, time_step, X, Q);

//This computation takes place on the GPU
R =8B -20Q;
D = R;

delta = R.dot(R);
delta_0@ = delta;
[/ xxxxKkkkkxxkx CG loop **xxxxxkkkx//
while (iter < max_iter) {
//Q = matrixxD
MatVec(rxmesh, X0, time_step, D, Q);

alpha = Q.dot(D);
alpha = delta / alpha;
X = X + alpha * D;
R = R - alpha * Q;

delta_old = delta;
delta = R.dot(R);
if (delta < tol * tol * delta_0) {
break;
}
beta = delta / delta_old;
D = beta * D + R;
++iter;
}
}
//‘k‘k****‘k‘k‘k‘k‘k‘k*****‘k‘k‘k‘k‘k‘k***‘k*‘k‘k‘k‘k‘k‘k***‘k‘k‘k‘k‘k*‘k***‘k*‘k‘k‘k*‘k‘k****‘k‘k‘k
__global__ void MatVec (RXMesh rxmesh, Attribute<float, 3> X0,
float time_step, Attribute<float, 3> IN,
Attribute<float, 3> 0OUT){
rxmesh.template kernel<Op::VV>(
[&](const uint32_t v_id, const Iterator vv_iter) {
float v_weight (@), sum_e_weight (0);

//Last vertex in the one-ring

uint32_t q_id = vv_iter.back();

Vec3 res(90);

for (const uint32_t r_id vv_iter) {//iterate over 1-ring
uint32_t s_id = vv_iter.next(); //vertex next to r_id
float e_weight = edge_cotan_weight(v_id, r_id, q_id,

s_id, X0);
e_weight = max(@, e_weight);
e_weight *= time_step;
sum_e_weight += e_weight;
res -= e_weight x IN(r_id);
float tri_area = partial_voronoi_area(v_id, q_id,
r_id, X0);

v_weight += max(tri_area, 0);
q_id = r_id;
}
float diag = 2* v_weight + sum_e_weight;
OUT(v_id) = res + diag x IN(v_id);
1
}
] 5k o ok ko ok ok o ok ok ok ok ok o ko ok ok ok ok ok o ok ok o ok ok K ok o ok ok ok ok ok ko ok Kok ok
__global__ void InitB(RXMesh rxmesh, Attribute<float, 3> X0,
Attribute<float, 3> B){
rxmesh.template kernel<Op::VV>(
[&](const uint32_t v_id, const Iterator vv_iter){
float v_weight = 0;

//Last vertex in the one-ring

uint32_t q_id = vv_iter.back();

for (const uint32_t r_id vv_iter) {//iterate over 1-ring
float tri_area = parital_voronoi_area(v_id, r_id,

q_id, X0);

v_weight += max(tri_area, 0);
q_id = r_id;

}

B(v_id) = Xo(v_id) x (2 * v_weight);

1

Listing 4. Smoothing by Mean Curvature Flow
ACM Trans. Graph., Vol. 40, No. 4, Article 104. Publication date: August 2021.

block starts by constructing the patch boundary faces, i.e., faces in
this patch incident to faces assigned to a different patch. We store
these boundary faces in a “visited” shared-memory buffer. Starting
from these boundary faces, we use “push” traversal to identify the
faces neighbor to the boundary faces and inside this patch. We assign
threads to visited faces, and on each round, each thread checks if
any of its incident faces is inside this patch and is not visited (using
atomic compare-and-swap). If so, the thread marks the neighbor face
as visited and adds it to the visited buffer. When all faces in the
patch have been added to the visited list, we pick a face randomly
from the faces added in the final round. This face—hopefully one at
the “center” of the patch—is a seed in the next iteration.

Seed Addition. We repeat the above three stages until the maxi-
mum patch size is less than S;,. We accelerate the convergence by
inserting new seeds along the boundaries of the large patches that
violate the patch-size criterion. However, we do not do this on every
iteration, instead prioritizing Lloyd’s algorithm’s opportunity to
rebalance the existing patches toward equal sizes. We only insert
new seeds when the convergence rate slows down. Our experiments
show that inserting new seeds after every fifth iteration best bal-
ances accelerating the convergence without excessively increasing
the number of patches.

D MEMORY FOOTPRINT:

We consider a simplified manifold input for RXMesh memory cal-
culation. For each patch, RXMesh stores two matrices, Mpg and
Mgy, each of size 35, (following the Euler-Poincaré characteristic).
The entries of these matrices are 16-bit unsigned integers, totaling
12S,, bytes/patch. In addition, we store the vertex, edge, and face
local-to-global mappings as 32-bit unsigned integers, requiring an
additional 125, bytes/patch. The total storage per patch without the
ribbon is thus 245, bytes. We observe that the increase in memory
due to the ribbon does not exceed 39%. The total memory require-
ment per patch is thus ~ 33.4S, bytes. The total number of patches
is F/s,,, where F is the total number of faces in the input mesh. Thus,
the storage requirements for all patches is 33.4 bytes/face. This is the
total memory footprint needed if computation is restricted to the
first-order queries. Additionally, we also store the owner patch using
32-bit unsigned integers, which requires in total 12 bytes/face. This
extra storage is needed only for higher-order queries (e.g., k-ring),
increasing the memory storage of RXMesh to 45.4 bytes/face.

E APPLICATION CODE:

Listing 4 shows the user implementation of the smoothing applica-
tion (Section 8.1). We follow the same implementation of the con-
jugate gradient by Shewchuk et al. [1994] and the variable names
match those in Appendix B2 therein.

