Analytic Drawing of 3D Scaffolds

Ryan Schmidt!? Azam Khan'
I Autodesk Research

Karan Singh? Gord Kurtenbach!

2University of Toronto

©

Figure 1: Our analytic drawing tool infers 3D scaffolds of linear segments (a) from sketched strokes. 3D feature curves can then be sketched
by deriving position and tangent constraints from the scaffold (b). After fixing the viewpoint and adding image-space silhouette curves (c),
we apply traditional hand-rendering techniques [Robertson 2003] to create a production design drawing of the espresso machine (d).

Abstract

We describe a novel approach to inferring 3D curves from perspec-
tive drawings in an interactive design tool. Our methods are based
on a traditional design drawing style known as analytic drawing,
which supports precise image-space construction of a linear 3D
scaffold. This scaffold in turn acts as a set of visual constraints for
sketching 3D curves. We implement analytic drawing techniques
in a pure-inference sketching interface which supports both single-
and multi-view incremental construction of complex scaffolds and
curve networks. A new representation of 3D drawings is proposed,
and useful interactive drawing aids are described. Novel techniques
are presented for deriving constraints from single-view sketches
drawn relative to the current 3D scaffold, and then inferring 3D line
and curve geometry which satisfies these constraints. The resulting
analytic drawing tool allows 3D drawings to be constructed using
exactly the same strokes as one would make on paper.

Keywords: sketch-based interactive design, perspective drawing,
geometric inference, constraints

1 Introduction

One premise underlying recent work in 3D design interfaces is that
2D drawing is more intuitive than traditional 3D modeling systems,
and hence sketch interpretation will lead to more efficient and ex-
pressive tools. A frequent approach is to utilize sketches as syntax,
incrementally constructing complex 3D models using a grammar
of gestural shape editing operations [Zeleznik et al. 1996; Igarashi
et al. 1999]. Attempts have also been made to interpret the se-
mantics of sketches, using databases of geometric information like
3D templates [Chen et al. 2008] and junction tables [Karpenko and
Hughes 2006]. To support truly freeform 3D design, projections of
sketched strokes can be geometrically inverted based on two draw-
ings of each curve [Cohen et al. 1999; Bae et al. 2008].

Although geometric inversion allows virtually any 3D curve to be
sketched, Karpenko et al. [2004] and others have observed that
it is challenging to “draw what one means” in 3D. This is due
both to drawing skill and inherent perceptual biases in estimates of
foreshortened shapes and dimensions [Taylor and Mitchell 1997;
Schmidt et al. 2009]. Although curves can be corrected in addi-
tional viewpoints [Kara and Shimada 2007], a more precise alterna-
tive is to utilize constraints, such as position and tangent constraints
at key points on a curve, guaranteeing that important relationships
are satisfied. Explicit representation of constraints as 3D geometry
has a long history in variational surface design [Welch and Witkin
1994; Nealen et al. 2007], but constraint specification involves 3D
manipulation which, even with a sketching interface, is a difficult
and tedious task [Schmidt et al. 2008].

Looking to design drawing guides, we find that designers have de-
veloped elegant analytic drawing techniques for specifying 3D ge-
ometric constraints via lines in 2D [Ching 1997; Robertson 2003;
Robertson 2004]. This approach makes extensive use of image-
space construction lines to fix the relative depth of vertices, result-
ing in an unambiguous 3D lattice or scaffold. This 3D scaffold
greatly simplifies the task of both human and automated sketch in-
terpretation. For example, the only valid line segments which ana-
lytic drawing allows are those parallel or perpendicular to existing
lines, or which connect known 3D points. By deriving these and
other constraints from the current scaffold, we can infer an individ-
ual 3D line or freeform curve from one sketch in a single view.

We describe a “pure-inference” drawing interface which under-
stands rules of analytic drawing, allowing designers to directly
sketch complex 3D scaffolds and curve networks without recourse
to modal tools (Figure 1). Our tool closely mimics the physical
motions of pencil-and-paper analytic drawing, while minimizing
the drudgery involving rulers and careful measurement (Section 2).
Since analytic drawing restricts which lines can be drawn, rough
and imprecise strokes can be interpreted with high accuracy. Our
inference strategy incrementally fixes strokes in 3D, creating a scaf-
fold which acts as a context for interpreting sketched curves (Sec-
tion 3). While our tool does allow view rotation, one can draw
extensively from a single view, making the experience much closer
to natural pencil-and-paper sketching than previous systems. We
evaluate the benefits, drawbacks, and limitations of our approach in
Section 4, and demonstrate its utility in a variety of design tasks.

Locate points

Measure size and distance —

Find centers-

Establish
alignment

Express tangential
and perpendicular
relationships—

Figure 2: Regulating lines define image-space scaffolds which express 3D relationships in a drawing (left, © Francis Ching). The other
examples, created by an expert analytic drawer ((©) Scott Robertson), demonstrate how scaffolds reduce the ambiguity of sketched 3D curves.

1.1 Related Work

Although constrained drawing has been studied extensively in
2D [Sutherland 1963; Gleicher and Witkin 1994; Eggli et al. 1997;
Igarashi et al. 1998], these tools do not understand 3D drawing con-
cepts. Many 3D tools do support interactive constraint-based design
in the form of snapping [Bier 1990], such as Chateau [Igarashi and
Hughes 2001], Sketchup [Google Inc. 2009], and architectural re-
construction tools [Sinha et al. 2008]. These interfaces have min-
imal support for curves, and hence are much more restrictive than
pencil-and-paper design sketching [Do 2002; Bae et al. 2003].

A long-term goal of sketch-based design interfaces is automated
interpretation of a complete sketch. Much of the work in this area
focuses on drawings of 3D polyhedra with restricted 2D edge-graph
topologies [Pugh 1992; Lipson and Shpitalni 1996], although recent
extensions support simple curved edges [Varley et al. 2004; Masry
et al. 2005; Das et al. 2005; Lee et al. 2008]. Chen et al. [2008] fo-
cus on architectural sketching, relaxing prior limitations by utilizing
a database of 3D template models. Karpenko and Hughes [2006]
support arbitrary silhouette curves with T-junctions, but this tech-
nique does not easily generalize to other types of curves. These
tools all require relatively clean input drawings, any extraneous
construction lines must be removed by some other means. In Sec-
tion 2 we will show that many of these construction lines implicitly
define the semantics that such algorithms are trying to recover.

Interactive approaches interpret strokes as they are drawn. Raster-
style 3D drawing can be realized by projecting sketched strokes
onto an existing 3D surface, an approach taken in many
works [Grossman et al. 2002; Tsang et al. 2004; Kallio 2005;
Dorsey et al. 2007]. ILoveSketch [Bae et al. 2008] provides a
carefully designed and highly efficient interface to such techniques.
Similarly, [Tolba et al. 2001] exploits perspective geometry to al-
low limited 3D camera movement within a 2D sketch. Generally
these techniques limit the space of possible 3D curves to those ly-
ing on the original surface. Deforming the surface by manipulating
the embedded curves [Nealen et al. 2007] allows more complex 3D
curve networks to be developed.

By considering two sketches, the projection of an arbitrary 3D
space curve can be geometrically inverted, for example by apply-
ing epipolar constraints to sketches from two viewpoints [Karpenko
et al. 2004]. In a single view, drawing a curve and its shadow [Co-
hen et al. 1999] or a symmetric pair of curves [Bae et al. 2008] fixes
the 3D shape. As accurate unconstrained drawing is quite challeng-
ing, it is often necessary to edit the resulting curves by re-sketching
in additional viewpoints [Kara and Shimada 2007], although this
still suffers from perceptual foreshortening biases.

1.2 Analytic Drawing

The use of drawing in design processes is well-documented [Do
2002; Bae et al. 2003; Bae and Kijima 2003; Buxton 2007]. In
the early ideation stages of design, sketching is largely an artifact
of visual thinking. Often a designer will generate tens of freehand
sketches per hour, most of which are discarded. Once a concep-
tual design has been selected, final production drawings are care-
fully constructed for presentation to clients or management, and
then passed on to trained modelers who translate the drawings into
3D models using tools such as Alias Studio [Autodesk Inc. 2009].

Design drawing guidebooks [Ching 1997; Robertson 2003] de-
scribe in detail how drawing systems facilitate the translation of
concept sketches into final drawings. Drawing systems such as
two-point perspective, isometric, and elevation oblique, are sets of
heuristic rules which allow viewers to accurately interpret straight
lines in the drawing. Curves fall outside the rules of drawing sys-
tems, but the ambiguity of a curve can be reduced by indicating
intersection or tangency constraints with lines that are well-defined.

Analytic drawing is a mechanical process for depicting a 3D
form [Ching 1997]. Using a drawing system, the designer first con-
structs a scaffold of regulating lines which express 3D relationships
in the drawing (Figure 2). These guidelines act as contextual con-
straints for drawing curves, allowing them to be sketched with en-
hanced accuracy. [Schmidt et al. 2007] discussed visual scaffolding
in more general artistic contexts, of which analytic drawing scaf-
folds can be considered a subset. Figure 2 shows some examples
of analytic drawings with the scaffold still intact. We rarely see
these drawings because it is common practice to finish production
drawings by tracing the feature curves onto another piece of paper.

2 An Analytic Drawing Interface

The scaffolds in Figure 2 act as visual constraints for the designer,
allowing 3D geometry to be sketched more accurately. Analyzing
such scaffolds, we find that they are composed of lines which are
either parallel or perpendicular to existing lines, or connect known
3D points. If strokes are captured in real-time, these rules can be
applied to infer the 3D scaffold. Similarly, the position and tangents
of points on 3D feature curves can be specified in terms of scaffold
vertices and edges, so if a curve is drawn over the scaffold we can
attempt to infer the intended constraints. In this section we describe
a tool which understands these rules of analytic drawing.

One of our motivations was to explore the utility of a purely infer-
ential interactive drawing tool. While we use traditional UI widgets
to provide a drawing/erasing mode toggle, image-space pan/zoom,

and 3D pan/tumble/field-of-view controls, the sketching interface
closely mimics pencil-and-paper analytic drawing, providing assis-
tance only where it enhances the experience. Figure 3 provides an
illustrative example, in which the artist draws exactly the same lines
as would be drawn on a piece of paper. The only difference is that
we provide an initial 3D camera which determines the horizon line,
and the first stroke is assumed to lie in the ground plane (to initial-
ize inference). Alternatives such as estimating the camera from a
template sketch [Kara and Shimada 2007] could also be used.

The benefit of our tool over traditional drawing is that behind the
scenes, we infer 3D geometry from the input strokes to assist with
accurate drawing and to allow view changes. Our inference pipeline
is relatively straightforward. As each stroke is drawn, we first de-
termine if it is an image-space guideline. If not, we try to infer 3D
geometry (Section 3), and if this fails, leave the stroke as currently
free. When inference succeeds, we add the 3D geometry to an un-
derlying graph and associate it with the stroke (Figure 4). The 3D
graph does not differentiate between segments and curves, and em-
bodies what we believe to be the current 3D scaffold. We note that
while strokes are initially fixed in temporal order, they are some-
times re-processed when additional local context is added.

—| — — I

(2)

/ © \/ @
: 7'
(©

Figure 3: Embedding the first stroke in the ground plane defines
primary vanishing points (a). A stroke to a vanishing point (b) is
automatically interpreted as a guideline (c). 3D segments are cre-
ated by tracing along these vanishing lines (d), eliminating depth
ambiguity. Intersecting vanishing lines result in precise angles (e).
Guidelines fade out over time to reduce drawing clutter (f). Our in-

ference techniques allow the same box to be drawn without guide-
lines, assuming the artist can draw sufficiently accurately.

(b)

2.1 Representing Drawings

A da Vinci Window is a transparent surface through which a scene
is viewed, allowing an artist to create an accurate perspective depic-
tion by tracing contours on the glass. Inspired by this tool, we rep-
resent a 3D drawing as a set of virtual da Vinci Windows, which we
call sketch planes. Each sketch plane represents a fixed 3D view-
point, and stores all 2D strokes drawn from that viewpoint. 3D
geometry inferred from the drawing is loosely coupled with the rel-
evant strokes, but the original 2D data is maintained as the primary
representation (Figure 4), allowing inference to be re-applied at any
time. For example, after correcting an error, nearby strokes can be
automatically re-considered. Similarly, inference techniques devel-
oped in the future can be applied to existing drawings.

=
=
e
=
&
9
=
S
Z
s
2

sketch plane 1

Figure 4: In this 3D sketch, strokes drawn from two viewpoints
are stored on two associated sketch planes. Segments of the 3D
scaffold graph are dynamically inferred from the strokes, as are
stroke groupings. These associations are loose couplings, as the
edges and groups may be modified when the drawing changes.

This representation has many benefits (Figure 5). Unrecognized
or free strokes fade away when the viewpoint changes, similar
to [Bourguignon et al. 2001], but re-appear if their associated view-
point is selected from an automatic bookmark list. Free strokes
can also be transformed with 2D pan/zoom operations, hence they
act as view-dependent annotations. If relevant new information is
provided, inference is re-applied to free strokes, possibly resolv-
ing prior uncertainty. Oversketching and continuation is also sup-
ported, but we group strokes rather than merge them, in case later
evidence suggests that the grouping was incorrect.

To tune the visual fidelity of the drawing, the designer can inter-
actively interpolate between the original stroke and a projection of
the 3D geometry. Again, this is only a rendering enhancement;
the original stroke geometry is not modified. Rendering is done in
2D, using high-quality stamp-based raster techniques. The result
is much closer to actual pencil-and-paper drawing than anti-aliased
line rendering, which is important for designer acceptance of com-
puter drawing tools. Since our strokes are 2D, implementation of
an area eraser is straightforward. If within a small pixel threshold,
our eraser also “snaps” to the nearest stroke. Inference is re-applied
to erased strokes, possibly correcting earlier failures or errors.

2.2 Guidelines

Although every stroke in an analytic drawing can, in some sense,
be considered a guideline, actual guidelines are purely functional,
and only obscure the drawing once they have served their pur-
pose. Hence, we treat certain types of guideline strokes as a special
case, short-circuiting our more general stroke inference. Automatic
guidelines fade out over time, limiting visual interference.

The most common guideline is the vanishing line, representing a
3D direction which may or may not have a 3D origin. Parallel 3D
directions converge at a single 2D vanishing point, often lying on
the horizon line. We locate and display these elements using 2D
image-space line intersections. A vanishing guideline is created
by drawing a stroke from some known point to a vanishing point,
or in the direction of the vanishing point if it is off-screen (Fig-
ure 3b,c). Horizontal and vertical guidelines parallel to the image
plane, which lack a vanishing point, are also supported. These are
not foreshortened and can be used to make arbitrary measurements.

While this approach is very explicit, it is exactly how guidelines
work on paper, and hence is easy for designers to comprehend. We
experimented extensively with predictive guideline generation, but
found that it actually made drawing slower, as the artist would ex-
amine the generated guidelines instead of simply drawing the de-
sired one (the latter quickly becomes an almost subconscious act).

\

Windoys|

A

(2) (b)

=

Figure 5: Our 2D stroke representation allows unrecognized “

\

\

e)

k
(h)
I ® (€3) @)

ree” strokes (blue) to be treated as view-dependent annotations (a), which

(k)

fade away as the view is rotated (b), and can be recovered using automated viewpoint bookmarks. Inference is re-applied to free strokes when
lines are drawn nearby, possibly leading to new 3D geometry (c-e). Overlapping strokes are automatically merged when appropriate, and
the artist can tune the cleanliness of the drawing (f). An area eraser (circle) can be used to clean up construction lines (g), but is less useful
near junctions (red box). Our “smart” eraser snaps to nearby edges within a distance threshold (h), allowing us to erase behind other edges
(i). Inference is re-applied to erased edges, allowing drawing errors to be corrected (j,k).

2.3 Dimension Ticks

Studies in human perception have conclusively shown that we make
systematic errors when estimating foreshortened shapes and dimen-
sions [Reith and Liu 1995; Nicholls and Kennedy 1995; Taylor
and Mitchell 1997; Schmidt et al. 2009]. Ching [1997] describes
a geometric technique for computing arbitrary dimensions based
on special vanishing points called measuring points. We automated
this technique, but discovered that designers were largely unfamil-
iar with it, and found it as confusing and unintuitive as we did.

Since we have 3D information, our problem is not in actually calcu-
lating measurements, but in providing an inobtrusive interface. We
draw our inspiration from the “tick-marks” one often makes when
visually estimating dimensions. The intersection of a tick-mark and
a guideline is located in 3D and snapped to any nearby 3D scaffold
points. We then find any intersecting 3D guidelines, and if the 3D
distance from the tick to an intersection point is A, we add ticks at
distances A and - A from the intersection point along the intersect-
ing guideline (Figure 6). This mechanism supports a wide range
of 3D dimensioning tasks. For example, as image-parallel guide-
lines are not foreshortened, they can be used to “eyeball” arbitrary
dimensions, which can then be transferred back to 3D (Figure 6g-i).

3 Inferring 3D Geometry from Strokes

Our task is the inherently ambiguous problem of inferring an in-
tended 3D line segment [corresponding to a 2D stroke s. We
are aided by the additional contextual information encoded in the
current scaffold, namely geometric constraints that filter the space
of admissible 3D segments. Conceptually, our algorithm is simi-
lar to that of a standard snapping technique [Bier 1990]. First, we
query the current scene (i.e. scaffold) for all potential constraints
that [could satisfy. Next we enumerate all possible non-conflicting
combinations of constraints, producing a list of constraint sets {c; }
which define potential line segments. Finally, we select the most
likely line segment by evaluating a fitness function based on the
stroke, constraints, current scene, and our prior assumptions about
what designers will draw.

The constraints we infer from the scaffold are hard point and direc-
tion snap constraints. Point constraints can be derived from known
vertices, intersections, or the nearest point on another line. The last
is a parameterized constraint, as the nearest point can vary. Di-
rection constraints are determined from right angles, lines through
fixed points, and the directions of other lines in the scene.

In our system all of these constraints may exist at the same point
in 3D space. Hence, a segment [can satisfy many different com-
binations of constraints. This redundancy makes the segment more

(a) (b)

©

LD
o -
K

(& (h) @

Figure 6: To copy dimension A (a), we first add guidelines (b).
A tick-mark over the vertex transfers the dimension A to the inter-
secting guideline, in both directions from the guideline intersection
point (c). Additional guidelines (d) and a second tick-mark (e) com-
plete the dimension transfer (f). Image-parallel guidelines (g) are
not foreshortened, allowing an edge to be visually subdivided (h,i).

likely. We also prefer certain types of constraints to others - for
example, snapping to an endpoint or intersection is more likely a
priori than snapping to any other point along a line. Some lines are
also more likely than others, such as those the same length as other
lines in the scene. Hence, we define the fitness of a line segment as

(l)ZC(ci,l) (1)

Here S(s,!) measures the deviation between [and s, G(I) ex-
presses how well | matches with our prior beliefs about which ge-
ometry is more likely. The summation varies over all constraint sets
c; that are satisfied by I. Then C(c;, 1) is defined as

F(l) =

C(c;) if satisfies ¢;
C(c,l) =) ’ 2
(e, 1) {0 otherwise @
for constraint set c;. Unfortunately

where C(c;) is the we1%lht”
this term makes F(I) highly discontinuous - many constraints are

satisfied only at a smgle point in space. Hence, we must utilize a
combinatorial scheme to find the optimal segment /, but our method
is easy to implement, and also applies to 3D curve inference.

S / f}\/ PN
° ,’ e} \,' \
C N @2 -'(b) -2 ©@r-15 A4 (s
’/ : —
o .] .
o S \ | N J/
' N / ’
' ~ ‘.
' (e)f=2 (f)r=125 . (g)f=125 ‘ (h)f=125

Figure 7: Our system allows segment endpoints to be snapped to
hard position constraints C°, including scaffold vertices (a), guide-
line intersections (b), intersections with lines/curves (c), and near-
est points on guidelines (d). Potential direction constraint types C
include lines through scaffold vertices (e,f), perpendicular direc-
tions (g), and directions to existing vanishing points (h). Distance
constraints C* are determined by either one of (a-d), or by the near-
est point along the projected direction defined by C%.

3.1 Inferring Line Segments

Instructing artists on how to draw a straight line, [Ching 1997]
states that one should place the pen at the starting point and then
focus on the desired end point, rather than track the pen tip. Hence,
we consider only the endpoints when measuring the correspon-
dence between stroke and segment. If {s4,sp} and {l4,lp} are
the 2D stroke and (projected) line endpoints, respectively, then we
define S as the product of Gaussians centered at each endpoint:

S(s,l) = G(|la-sal,04)G(|lz-sB|,dB) 3)

Here G(d,0) = exp (-d*/o”), and mechanical error is modeled
by the uncertainty radius §; = Lerp(vi/Vmaz, Omin, Omaz). The
velocity v; = |Si+1-8i|/(ti+1-t:) and constants should be DPI-
relative, we use Vmaz = 40in/s, dmin = 0.1in, and dmae = 0.5in.

We break down the G term into two factors, the segment length |{|
and direction d, each defined as a mixture-of-gaussians based on
the segments [; that already exist in the drawing:

au _1+f2g\l| L)+ 30 601d - dy,ra) @)
J

where r; = avg(|l;]) and rq4 = 1-cos(10°).

As mentioned, a given constraint set restricts which line segments
are admissible. While a segment could satisfy an arbitrary con-
straint set, we would then need to somehow normalize for the num-
ber of constraints. Instead, since [= o + td, we limit c¢ to three
constraints ¢! = {C®,C%,C"} and define C as a product of hand-
tuned constants f for each constraint type (Figure 7):

C(c') = f(C°) () f(C"))

Having defined each term in Equation 1, we now consider how to
find the optimal segment [for a given stroke s. Since constraints ex-
ist at well-defined points on the scaffold, we can safely assume that
only constraints whose 2D projections are near to s are relevant.
Hence, the first step is to collect all possible position constraints
C® which could be applied to either endpoint of s, based on image-
space proximity. Then for each endpoint, we find all possible direc-
tion constraints C¢, and for each of those, find all possible C'. The
result of this exhaustive enumeration is a list of constraint triplets
¢k, each of which defines a segment I, If the constraints are param-
eterized, we fix these parameters using nearest points on the stroke.
Since many c!, define the same line, we gather the unique segments
and evaluate Equation 1, summing over the constraint sets, to find
the best-fitting 3D geometry.

We have thus far assumed that the stroke s is exactly the stroke
the designer intended to draw. In practice strokes are inaccurate,
moreso as one becomes comfortable with the system and draws
more quickly. We prefer to think of s as a sample from some distri-
bution of strokes which could have been sketched. We define this
distribution independently for each endpoint, as a uniform Gaus-
sian with a deviation defined by our uncertainty radius 0. Then we
can sample other possible strokes, find the best segment for each,
collect duplicates, and, falling back on our redundancy argument,
select the most frequent as the inferred segment. For efficiency,
we collect all potential constraints within ¢ as a pre-computation,
then hold the constraint combinations fixed, allowing hundreds of
sampled strokes to be considered in a fraction of a second.

We can express the confidence in our choice of line based on an
uncertainty metric F(11)/F(lo), where lp and [; are the best and
second-best lines, respectively. In Figure 8 we map line uncertainty
to red, showing (a-c) that the inference of an otherwise highly am-
biguous stroke is resolved by adding 3D guidelines. Another pos-
sibility would be to automatically re-apply inference to the highly
uncertain stroke when more context was added, such as the other
box edges. We have experimented with this, but during interactive
drawing it can be confusing. An interface for indicating such auto-
matic corrections to the artist is left for future work.

PP
ejeded

Figure 8: The diagonal segment in (a) has been embedded in the
ground plane but the bright red color indicates high uncertainty.
Two guidelines clarify our intent, ensuring that the same stroke be-
comes a vertical segment (b,c). Often this context already exists,
and guidelines are unecessary. For example, the box corners over-
lap in (d), but our line inference finds the correct result (e,f).

3.2 Inferring Curves

The principle behind our curve inference is that the strokes design-
ers draw represent imagined 3D curves which satisfy various con-
straints. In analytic drawing, the scaffold visually depicts many of
these constraints. Hence, given a stroke we first infer 3D position
and tangency constraints from the scaffold, then construct a curve ¢
which explicitly satisfies these constraints while minimizing repro-
jection error (Figure 9).

Bae et al. [2003] observed that designers generally constructed
complex curves out of inflection-free segments. Hence, we rep-
resent ¢ by a multi-segment C cubic Bezier spline, with a segment
between each pair of position constraints. Given a set of fixed rays
through stroke points in the image plane, we find the best-fit 3D
Bezier curve by solving the least-squares optimization problem

arg min Z lc(0,ts) U(Si7ui)|2 (6)

0,t;,u;

where 0 is the set of variables defining the curve, c(0, t;) is a point
on the curve at parameter ¢;, and v is the 3D point defined by the

parameter u; along the ray through stroke sample s;. We solve
this problem via gradient descent, using the standard fooz-point ap-
proach [Wang et al. 2006]. First 6 is held constant and new ray and
curve parameters {¢;, u; } are found using the nearest point on ¢(6)
to each ray, and then {¢;, u; } are fixed and 6 updated. To speed con-
vergence, we fix {¢;} to a regular sampling, optimize 6 and {u;},
then tune the result using the full optimization. The curve variables
0 are the 3D Bezier segment endpoints and tangent vectors. Hard
constraints are enforced by rewriting components in terms of fewer
variables. For example, a direction constraint d on a tangent vec-
tor replaces three variables (z, y, z) in the definition of ¢ with the
single-variable point (td, tdy, td.).

Our line inference strategy needs only minor alterations to support
inference of ¢ from a stroke s. The same model as in Equation 1
is used, simply replacing [with c. For the term S(s, ¢), instead of
using only the endpoints, we sample ¢ with a fixed number of points
N and project the samples onto the image plane, creating a set of
2D points c;, and then evaluate a mixture-of-Gaussians:

S(s,c) = %Zg(ds@),km @)

where d; determines the distance to the stroke polyline, and d; is
again the velocity-based uncertainty radius, measured at the near-
est point on s and scaled by a constant factor to account for the
increased imprecision of freehand curve drawing (we use k, = 2).

As in the segment case, we collect a set of potential position and
tangent direction constraints from the scaffold based on 2D proxim-
ity (Figure 9), and enumerate all possible combinations. Planarity
is explicitly enforced if all constraints are co-planar. Also, if the
constraints are mirror-symmetric about the plane perpendicular to
the vector between the two endpoints, we generate combinations
with and without a symmetry constraint. Hence, the constraint set
for a curve is ¢® = {CP'",C*¥™,CI*...CR'}, and the term C is
again a product of constant terms. For planarity and symmetry f
is 1.5 and 1.1, respectively, if the constraints are satisfied, and 1
otherwise. For each constrained curve point f = 1.5 if the point
has a tangent constraint, and 1.1 otherwise. To normalize for the
number of positional constraints we scale C by (1 + e "~2),
where A = 0.25 controls the falloff of the exponential distribution.

This normalization is approximate, so including an extra constraint
point will increase C, even if it causes the curve to vary wildly in
depth. Also, the S term must be tuned to allow for very “sketchy”
strokes. Hence, compared to line inference, the quality of curve
inference depends much more on the geometry term G. We have
experimented with many factors, including arc-length, depth varia-
tion, tangent vectors, and so on, but these showed no improvement
over the following, based on total absolute curvature:

ittt)

Ropt

G() =G (®

Here r(c, t) is the curvature of ¢ at ¢ and . = 2. The ideal or opti-
mal curvature Kopt is defined as mtmax /arclength(c), which results
in G(c¢) = 1 for circular arcs.

Lacking a reasonable model of how drawing errors affect sketched
curves, we cannot sample the distribution of possible curve strokes
as we did for line segments, so we select the curve with the highest
value F(c). Again, the list of other likely curves could be useful in
a suggestive interface. Once a curve has been selected we check to
see if it is close to an elliptic arc, and if so, snap it to the arc. This
allows perfect circles and ellipses to be drawn, which are frequent
elements of design drawings [Bae et al. 2003].

Figure 9: In row (a), the curve lacks a tangent direction at the
middle point, and so the unconstrained 3D shape is optimized to fit
the projection. A guideline is added in row (b), fixing the tangent
direction, which in turn allows a symmetry constraint to be satis-
fied. In row (c) an accidental constraint is detected, but ignored by
our inference strategy. In (d,e) a series of strokes (green) are drawn
over a simple scaffold. Although there are many possibilities, our
inference technique picks out the intended constraint sets.

A limitation of this approach is that the number of curves to be
tested grows exponentially as constraint points are added. We ob-
serve that G has a maximum value of 1, C can be computed without
fitting the curve, and S will always be maximized by unconstrained
tangents, thus defining an upper bound on the total fitness of any
curves with matching point constraints and further-constrained tan-
gents. After fitting a curve we can compute these upper bounds and
discard any matching curves with a maximum possible fitness lower
than the current best fitness, often resulting in order-of-magnitude
reductions in the number of curves that need be tested. For exam-
ple, over 390, 000 constraint combinations were generated for the
9-point helix in Figure 10a, but only 1, 377 curves were actually fit.
The total fitting time was still over a minute, but would be signifi-
cantly reduced by proper optimization and parallelization. Drawing
the same helix with two 5-point segments (Figure 10b) results in
roughly a 2 second delay for each curve.

4 Evaluation

A major advantage of our approach is that since most artists are fa-
miliar with analytic drawing techniques, the key concepts and inter-
actions in our interface are immediately understood. We have had
several artists successfully draw basic 3D shapes with no training
whatsoever. In this sense the tool succeeds at being a transparent in-

(©)

/

Figure 10: Complex self-intersecting curves can be drawn in a
single-view with the appropriate scaffold. The helix in (a) was cre-
ated with a single stroke, although incremental sketching is more
accurate (b). We can also draw knots (c), and use traditional geo-
metric techniques to construct precise polygons (d).

@

terface to a traditional drawing style. As most artists do not strictly
follow the rules of analytic drawing, however, we must inevitably
explain implementation details. We have also observed several
fundamental conflicts between constraints and freehand drawing,
which we illustrate with a few examples.

4.1 Inference Limitations

Line inference works very well in practice. In unambiguous cases
the proximity-based S(I, s) term reproduces the nearest-snapping
behavior commonly used in CAD tools like Sketchup [Google Inc.
2009]. In complex scaffolds such as those in Figure 15, ambiguity is
frequent and nearest-snapping performs poorly. Here our constraint
and geometry priors usually allow the intended line to be drawn
without needing to hunt for a completely unobstructed viewpoint.

Failures can occur if the artist attempts to take freehand shortcuts.
A common example is shown in Figure 11, where snapping to an
unconstrained endpoint results in a non-perpendicular edge. These
misalignments can lead to problems later in the drawing, such as
segments which appear to be co-planar but do not actually intersect
in 3D. This particular case can be avoided by adding an explicit ver-
tical guideline or drawing an extended vertical stroke, but this may
not be obvious to the artist. Increasing the weight of perpendicular-
ity constraints (Figure 7) leads to the desired result, but also restricts
intentional creation of non-perpendicular segments. To communi-
cate this ambiguity, we display temporary visual feedback in the
form of traditional “right-angle” markers, which are colored blue
for 90° angles and red for near-perpendicular connections.

In general, our experience has been that curve inference usually se-
lects the intended constraint set, but re-drawing may be necessary
to find the 2D curve that will produce the intended 3D shape. We
found that in most cases this was not due to inference failures, but
rather to an inability on the part of the artist to correctly draw the
projection of the intended curve. The camera manipulation needed
to evaluate the inferred 3D curve can be reduced with ground-plane
shadows and temporary indicators of the included constraint points
and tangent directions. Once the right set of constraints is found,
experimental re-sketching could be avoided with multi-view correc-
tive oversketching [Kara and Shimada 2007] or direct manipulation
of the constrained tangents.

Because we must allow for significant fitting error to handle im-
precise strokes, our inference strategy tends to prefer curves with a
larger number of constrained vertices. Our curvature score (Equa-
tion 8) rules out most spurious constraints, although it can also dis-
card multi-segment curves with tight bends, which then must be

E (a) % (b) (©)
-’

.

Figure 11: Tracing along a guideline (a) without a vertical in-
tersection results in an unconstrained endpoint (b). A connecting
vertical segment is then skewed from perpendicularity, indicated
with red joint markers (c). These misalignments result in additional
vanishing points (d) and can propagate through the drawing. An
extended vertical stroke snaps to the desired right-angle (e).

drawn as individual segments. More problematic is that in some
cases spurious constraint points are included that only have a small
effect on the fitting score (Figure 12). Since our constraint collec-
tion thresholds are in image-space, these cases can often be avoided
by zooming in. Alternately, to avoid camera manipulation we have
added a simple “scratch-out” gesture which temporarily suppresses
vertices from the constraint collection phase.

curve

shadow

7

(d) (e ® (@

Figure 12: [fthe curvature factor v, is too permissive, unintended
constraints will not be discarded (a), but if it is too restrictive then
intended constraints (b) may also be skipped (c). We show ground-
plane shadows to better support visual evaluation from a single
view. The stroke in (d) results in an over-constrained curve (e)
which cannot be resolved by the curvature score. A scratch-out
gesture over the offending vertex temporarily exempts it from con-
straint collection (f), leading to the desired result (g).

4.2 User Case Studies

We had six users perform pilot experiments with the software -
graphics researchers G1 and G2, designers D1 and D2 and archi-
tects Al and A2. All subjects were highly proficient with both
drawing and 3D modeling, but only G1 had used similar ‘3D draw-
ing’ interfaces. A2 was a paid participant, and D1 and D2 were
contractors at Autodesk Inc. Each session lasted from 2 to 4 hours,
some results are shown in Figure 13.

Subjects G1, D1, and Al were provided with 15-minute introduc-
tory training, after which we answered questions but otherwise did
not intervene. The artists quickly grasped the basics of line draw-
ing, but had difficulty with curve drawing. During follow-up dis-
cussions we found that subjects could not adequately explain to us

Al

—

A2

D1 D2

Figure 13: After simple warm-up exercises (left), subjects sketched 3D drawings of varying complexity, labeled here with the subject number
(see text). We have removed most remaining scaffold lines, and manually lightened hidden lines, to make the final form clearer.

how the system was interpreting their curves. Additional training
provided to D1 resulted in a significant improvement in the ability
to construct curved forms. Hence, we conducted extended training
sessions with subjects G2, D2, and A2. After a short tutorial we had
them draw a cube (this required our guideline ticks), a coffee mug,
and then one or two more complex drawings. Throughout the ses-
sion we intervened when the subjects appeared confused although
this was rarely necessary after the first hour. With this guidance,
subjects learned how to draw curves more effectively, and were able
to construct more complex drawings.

Overall, subjects exhibited similar levels of proficiency with most
aspects of the the tool within a few hours, and were satisfied with
their ability to express ideas. We found that the architects were
the most comfortable with the perspective-drawing interface, and
clearly enjoyed using it. In a post-mortem questionnaire, subject
A2 answered the question “What did you like about the drawing
interface?” with “very natural way of drawing” and “I would use
this tool for my first design incursions where I would normally be
sketching on paper”.

The computer scientists and architects both noted that it was diffi-
cult to represent intended surfaces with only a few 3D curves. The
designers seemed more adept at this, so it may be an issue of ex-
perience. The most frequently reported problem was that verifying
the 3D shape of inferred geometry and guidelines required view ro-
tation. As most subjects understood our right-angle markers with-
out explanation, we believe additional transient feedback may help
to reduce projective ambiguity and minimize the need for rotation.
The misalignment issues caused by nearly-parallel vanishing direc-
tions (Figure 11) were frequent, and noted by most subjects as a
significant issue. Automatic filtering may help here, but perhaps
the most promising approach was suggested by subject A2, who
wanted explicit control over vanishing directions in the same way
as we provided for guidelines.

Analysis of several drawing sessions logs are shown in Figure 14.
We note that the proportions of time spent drawing and exploring
the 3D form, and of strokes which are guidelines, is relatively sim-
ilar between subjects and drawings. This suggests to us that during
the in-depth training sessions, subjects reached some comparable
level of proficiency. However, we found that most subjects did not
use analytic drawing techniques in the way we had expected. They
were reluctant to leave scaffold segments in the drawing, erasing
them immediately after use and preferring to rely on our transient
guidelines if possible. This in turn limited their ability to spec-

ify 3D curve tangents, as guidelines can only be constructed along
existing vanishing directions. Several subjects did point out this
problem, and after instruction were able to the sketch tangent scaf-
folds necessary to draw their intended curves, but they still felt that
a more explicit tangent manipulation interface was desirable.

In an effort to determine the capabilities of our tool in the hands of
an expert user, the first author trained himself in analytic drawing
techniques using [Ching 1997] and [Robertson 2003]. Figure 15
shows some drawings created during two 3-day periods of inten-
sive use. During this extended experimentation we learned how
to construct arbitrary tangent directions using small triangles (Fig-
ure 15b, inset) and create arbitrary polyhedral scaffold blocks by
cutting them out of boxes (Figure 15¢). These emergent tools af-
forded us much more control over curve shape and 3D orientation,
suggesting that artists who invest the time to learn analytic drawing
will find our approach even more effective.

100

75

50

activity (%)

25

0
130 60 90 120

time (m)

1 30 60

| W drawing [erasing [orbiting = other

stroke type (%)

1 30 60 90 120
time (m)

1 30 60

[Mlines M curves guidelines |

Figure 14: Proportions of overall activity (top) and stroke type
(bottom) accumulated over time, for three drawing sessions (in-
sets). Activity time is determined by pen contact with display.

5 Conclusions and Future Work

Motivated by pencil-and-paper analytic drawing, we have described
an approach to constrained inference of 3D lines and curves from
single-view sketches. Our pure-inference interface supports cre-
ation of 3D curve networks comparable to those demonstrated in
recent works such as ILoveSketch [Bae et al. 2008], but without the

Figure 15: Examples created by the first author while learning to draw analytically. Early models like the fighter (a, 1 hour) were limited
to basic curves contained in well-defined boxes. More complex curves, such as those running the length of the car body (b, 3 hours), were
possible once we discovered how to draw arbitrary tangent directions (inset). To create the torso (¢, 45 minutes) we followed [Ching 97],
creating a full scaffold by ‘cutting’ arbitrary polyhedra out of boxes and then drawing the feature curves. The stick figure in (d) was sketched
without any editing in under 5 minutes, and the taxi (e) in a 30 minute session.

need to specify a drawing mode or manipulate the camera for each
curve. By inferring constraints from a well-defined 3D scaffold, it
is more likely that the curve is in the right spatial location, partially
mitigating the effects of drawing skill and perceptual errors.

Although artists readily understand that scaffolds must be assem-
bled to draw curves, we have found that learning how to con-
struct a suitable scaffold often requires some geometric ingenuity.
The helix scaffold in Figure 10 provides a good example - once
known, it can be constructed quickly, but it was only discovered
after several failed attempts. The process laid out in design draw-
ing books [Ching 1997] for blocking out or massing a shape before
adding curves is highly relevant when using our interface. How-
ever, freehand shortcuts are often taken on paper, so even design-
drawing experts will have an adjustment period as they learn how
to construct proper 3D scaffolds. Similar sorts of geometric “best-
practices” are common both in design drawing and in 3D modeling,
suggesting that users will find this learning process to be tractable.

Even with the constraints that analytic drawing places on the
sketching process, comments from architects and designers have
been highly positive, and we have found a strong stated preference
for drawing from a single fixed view. While we suspect benefits
of occasional camera manipulation would quickly be discovered,
single-view drawing appears to be highly valued by artists, and may
provide a more gradual transition to advanced 3D drawing tech-
niques. Our interface is particularly suited to architectural drawing
(Figure 16), and could also be used to reconstruct objects from pho-
tographs [Sinha et al. 2008], even those with curved surfaces.

Our scaffold drawing techniques may be beneficial in less con-
strained tools [Bae et al. 2003], while their similarity constraints
could also be integrated into our inference engine. A hybrid ap-
proach would allow the designer to draw freehand, but also con-
struct accurate scaffolds when desirable. In light of perceptual
drawing limitations [Schmidt et al. 2009], this is likely to be neces-
sary. We have frequently encountered disbelief from those who try
our software and find that their perspective intuition can be radically
incorrect. This discovery is virtually always followed by a sugges-
tion to provide our tool as a teaching aid for perspective drawing.

Since one of our goals was to explore the boundaries of a “pure-
inference” drawing tool, we took a minimalist approach to our an-
alytic drawing interface. Sketchup-style interactions for tasks like
specitying angles and dimensions, drag-and-drop scaffold editing,
and simple 3D tasks like extrusion, would improve design effi-
ciency. Recent work in variational editing of curve networks [Gal
et al. 2009] could be adapted to deform scaffolds while taking our
inferred constraints into account. However, we do find it quite sat-
isfying to simply draw, without the need for more traditional inter-
actions. In that context, interesting future directions could include
analytic-drawing-aware versions of 2D image-editing tools like cut-
and-paste and the clone brush.

Two omissions from our tool are inference of surfaces and support
for silhouette curves. These are related problems - given silhou-
ettes it may be possible to infer surfaces. Once surfaces are avail-
able, we can explore analytic drawing on surfaces, which is in some
cases the only way to accurately specify the intended 3D shape of
a curve. Hand-painted rendering of 3D objects (Figure 1d) is also
widely practiced in visual design [Robertson 2003], and it would be
interesting to explore how this data could be utilized to more fully
specify surface shapes.

Figure 16: Analytic drawing is widely used in architecture. In
addition to novel buildings, we can quickly sketch renovations in
the context of existing structures (b), or reconstruct the interior of
a room from noisy and incomplete scan data (c).

Acknowledgements

The authors are indebted to Seok-Hyung Bae, Ramtin Attar, Venk Prabhu,
Igor Mordatch, Simon Breslav, Hyunyoung Song, Keenan Crane, Aaron
Hertzmann, Chris Cheung, the other members of the DGP and Autodesk
Research, and our reviewers, for their encouragement and constructive crit-
icism. This work was funded in part by NSERC and MITACS.

References

AUTODESK INC., 2009. Autodesk AliasStudio. autodesk.com/aliasstudio.

BAE, S.-H., AND KUJIMA, R. 2003. Digital styling for designers: in
prospective automotive design. In Proc. Virtual Systems and Multimedia.

BAE, S.-H., KiM, W.-S., AND KWON, E.-S. 2003. Digital styling for
designers: Sketch emulation in computer environment. In Proc. ICCSA,
690-700.

BAE, S.-H., BALAKRISHNAN, R., AND SINGH, K. 2008. ILoveSketch:
as-natural-as-possible sketching system for creating 3D curve models. In
Proc. UIST *08, 151-160.

BIER, E. 1990. Snap-dragging in three dimensions. In Proc. 13D ’90,
193-204.

BOURGUIGNON, D., CANI, M.-P., AND DRETTAKIS, G. 2001. Drawing
for illustration and annotation in 3D. Comp. Grap. Forum 20, 3, 114—
122.

BUXTON, B. 2007. Sketching User Experiences: Getting the Design Right
and the Right Design. Morgan Kaufmann.

CHEN, X., KANG, S. B., XU, Y.-Q., DORSEY, J., AND SHUM, H.-Y.
2008. Sketching reality: Realistic interpretation of architectural designs.
ACM Trans. Graph. 27,2, 1-15.

CHING, F. D. K. 1997. Design Drawing. Wiley.

COHEN, J., MARKOSIAN, L., ZELEZNIK, R., HUGHES, J., AND BARZEL,
R. 1999. An interface for sketching 3D curves. In Proc. I3D 99, 17-21.

DaAs, K., DIAZ-GUTIERREZ, P., AND GOPI, M. 2005. Sketching free-
form surfaces using network of curves. In Proc. SBIM ‘05.

Do, E. Y. 2002. Drawing marks, acts, and reacts: Toward a computational
sketching interface for architectural design. Artif. Intell. Eng. Des. Anal.
Manuf. 16, 3, 149-171.

DORSEY, J., XU, S., SMEDRESMAN, G., RUSHMEIER, H., AND MCMIL-
LAN, L. 2007. The Mental Canvas: A tool for conceptual architectural
design and analysis. In Proc. Pacific Graphics.

EGGLI, L., Hsu, C.-Y., BRUDERLIN, B., AND ELBER, G. 1997. Infer-
ring 3D models from freehand sketches and constraints. Computer-Aided
Design 29,2, 101-112.

GAL, R., SORKINE, O., MITRA, N., AND COHEN-OR, D. 2009. iWIRES:
An analyze-and-edit approach to shape manipulation. ACM Trans.
Graph 28, 3, Article 33.

GLEICHER, M., AND WITKIN, A. 1994. Drawing with constraints. Vis.
Comput. 11, 1,39-51.

GOOGLE INC., 2009. SketchUp 7. http://sketchup.google.com.

GROSSMAN, T., BALAKRISHNAN, R., KURTENBACH, G., FITZMAU-
RICE, G., KHAN, A., AND BUXTON, B. 2002. Creating principal 3D
curves with digital tape drawing. In Proc. CHI 02, 121-128.

IGARASHI, T., AND HUGHES, J. 2001. A suggestive interface for 3D
drawing. In Proc. UIST "01, 173-181.

IGARASHI, T., KAWACHIYA, S., TANAKA, H., AND MATSUOKA, S.
1998. Pegasus: a drawing system for rapid geometric design. In Proc.
CHI ‘98,24-25.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: a sketch-
ing interface for 3D freeform design. In Proc. SSIGGRAPH ’99, 409-416.

KALLIO, K. 2005. 3D6B Editor: Projective 3D sketching with line-based
rendering. In Proc. SBIM ’05.

KARA, L. B., AND SHIMADA, K. 2007. Sketch-based 3D-shape creation
for industrial styling design. IEEE Comput. Graph. Appl. 27, 1, 60-71.

KARPENKO, O., AND HUGHES, J. 2006. SmoothSketch: 3D free-form
shapes from complex sketches. ACM Trans. Graph. 25, 3, 589-598.

KARPENKO, O., HUGHES, J., AND RASKAR, R. 2004. Epipolar methods
for multi-view sketching. In Proc. SBIM ‘04.

LEE, S., FENG, D., AND GOOCH, B. 2008. Automatic construction of 3D
models from architectural line drawings. In Proc. 13D ’08, 123-130.

LIPSON, H., AND SHPITALNI, M. 1996. Optimization-based reconstruc-
tion of a 3D object from a single freehand line drawing. Computer-Aided
Design 28, 651-663.

MASRY, M., KANG, D., AND LIPSON, H. 2005. A freehand sketching
interface for progressive construction of 3D objects. Comp. & Graph.
29, 563-575.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M. 2007. Fiber-
Mesh: designing freeform surfaces with 3D curves. ACM Trans. Graph.
26, 3, Article 41.

NICHOLLS, A., AND KENNEDY, J. 1995. Foreshortening in cube drawings
by children and adults. Perception 24, 1443—1456.

PUGH, D. 1992. Designing Solid Objects Using Interactive Sketch Inter-
pretation. In Proc. I3D ‘92, 117-126.

REITH, E., AND Li1u, C. H. 1995. What hinders accurate depiction of
projective shape? Perception 24, 995-1010.

ROBERTSON, S. 2003. How to Draw Cars the Hot Wheels Way. Motor-
Books.

ROBERTSON, S., 2004. The techniques of scott robertson volume 1: Basic
perspective form drawing. Gnomon Workshop. Instructional DVD.

SCHMIDT, R., ISENBERG, T., JEPP, P., SINGH, K., AND WYVILL, B.
2007. Sketching, scaffolding, and inking: a visual history for interactive
3D modeling. In Proc. NPAR 07, 23-32.

SCHMIDT, R., SINGH, K., AND BALAKRISHNAN, R. 2008. Sketching
and composing widgets for 3d manipulation. Comp. Graph. Forum 27,
2,301-310.

SCHMIDT, R., KHAN, A., KURTENBACH, G., AND SINGH, K. 2009. On
expert performance in 3D curve-drawing tasks. In Proc. SBIM “09.

SINHA, S., STEEDLY, D., SZELISKI, R., AGRAWALA, M., AND POLLE-
FEYS, M. 2008. Interactive 3D architectural modeling from unordered
photo collections. ACM Trans. Graph. 27, 5, Article 159.

SUTHERLAND, I. E. 1963. Sketchpad: A man-machine graphical commu-
nication system. In Proc. Spring Joint Comput. Conf., 329-346.

TAYLOR, L., AND MITCHELL, P. 1997. Judgements of apparent shape
contaminated by knowledge of reality: Viewing circles obliquely. British
J. Psych. 88, 653-670.

TOLBA, O., DORSEY, J., AND MCMILLAN, L. 2001. A projective drawing
system. In Proc. I3D 01, 25-34.

TSANG, S., BALAKRISHNAN, R., SINGH, K., AND RANJAN, A. 2004. A
suggestive interface for image guided 3D sketching. In Proc. CHI 04,
591-598.

VARLEY, P., TAKAHASHI, Y., MITANI, J., AND SUZUKI, H. 2004. A
two-stage approach for interpreting line drawings of curved objects. In
Proc. SBIM "04, 117-126.

WANG, W., POTTMANN, H., AND L1U, Y. 2006. Fitting B-spline curves
to point clouds by curvature-based squared distance minimization. ACM
Trans. Graph. 25, 2, 214-238.

WELCH, W., AND WITKIN, A. 1994. Free-form shape design using trian-
gulated surfaces. In Proc. SSGGRAPH ’94, 247-256.

ZELEZNIK, R., HERNDON, K., AND HUGHES, J. 1996. SKETCH: an
interface for sketching 3D scenes. In Proc. SIGGRAPH ’96, 163-170.

