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Abstract

Trying to make a decision between two outcomes, when there is some level of uncertainty, is inherently difficult
because it involves probabilistic reasoning. Previous studies have shown that most people do not correctly apply
Bayesian inference to solve probabilistic problems for decision making under uncertainty. In an effort to improve
decision making with Bayesian problems, previous work has studied supplementing the textual description of prob-
lems with visualizations, such as graphs and charts. However, results have been varied and generally indicate that
visualization is not an effective technique. As these studies were performed over many years with a variety of goals
and experimental conditions, we sought to re-evaluate the use of visualization as an aid in solving Bayesian problems.
Many of these studies used the classic Mammography Problem with visualizations portraying the problem structure,
the quantities involved, or the nested-set relations of the populations involved. We selected three representative vi-
sualizations from this work and developed two hybrid visualizations, combining structure types and frequency with
structure. We also included a text-only baseline condition and a text-legend condition where all nested-set problem
values were given to eliminate the need for participants to estimate or calculate values. Seven hundred participants
evaluated these seven conditions on the classic Mammography Problem in a crowdsourcing system, where micro-
interaction data was collected from the participants. Our analysis of the user input and of the results indicates that
participants made use of the visualizations but that the visualizations did not help participants to perform more accu-
rately. Overall, static visualizations do not seem to aid a majority of people in solving the Mammography Problem.

Keywords: Bayesian reasoning, decision making, comparability criteria, visualization, crowdsourcing,
mammography problem.

1. Introduction

Decision making can be simple when there are lim-
ited choices and all the available options are known.
However, unknowns introduce probabilities and the
need for statistical inference. One method of modelling
statistical inference is Bayes theorem. For many years
Bayesian problems have been presented to subjects to
test if people are rational when making decisions under
uncertainty. However, the majority of people do not an-
swer these problems correctly.

Bayesian problems have been studied for many years
in the fields of medical decision making, human-
computer interaction (HCI), and information visualiza-
tion. To help people better understand the subtleties of
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these problems, visualizations of the problem structure
or the quantities involved have been studied. As these
studies were performed over a long period of time with
a variety of goals and experimental conditions, the aim
of the present paper is to re-evaluate the use of visual-
ization as an aid in solving Bayesian problems.

Given the variety of visual properties employed in the
visualizations of Bayesian problems in previous work,
we sought to control more factors of design properties
than has previously been done to better explain differ-
ences in performance. To this end, we developed com-
parability criteria to (a) help normalize the information
content of the visualizations across experimental con-
ditions, and (b) to develop the conditions for the ex-
periment, including two novel visualization conditions.
Also, following the recommendations made by a pre-
vious study on Bayesian visualization (Breslav et al.
(2014)), and other work in visual analytics (Segel and
Heer (2010)) and bioinformatics (Turkay et al. (2014)),
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we designed the problem presentation and recorded
micro-interaction data to confirm the effectiveness of
the way that the Bayesian problem was presented to
users. We ran a controlled crowdsourcing experiment
with 700 participants and we provide a detailed analysis
together with a complete supplemental material report.

The benefits of these contributions are twofold. First,
the work clearly shows the lack of benefit of static vi-
sualization in the Mammography Problem. Second,
we propose a generalized methodology of visualization
comparison which supports the comparison of distinct
visual representations of the same underlying data. This
is achieved by consideration of both the content and
structure of this underlying data. We use this method-
ology to produce distinct visual representations which
do not differ in the level of information provided to a
user, removing the potential confound that different vi-
sual representations provide participants with more or
less information. Removing these confounds allows us
to explore the effectiveness of different visual represen-
tations on a level playing field.

This study shows the value of capturing and study-
ing micro-interactions and the value of disaggregating
the analysis of the two key parts of the user input in
Bayesian problems (numerator and denominator). The
results point to the need to address confusion about
both the question and the visualization. This could
be achieved through a better correspondence between
the question and the visualization, which could perhaps
be presented using more compelling or engaging tech-
niques such as animated or interactive visualizations
(Wong et al. (2011)), to help increase accuracy rates for
this important class of problems.

We first describe the Mammography Problem in de-
tail and show how it represents Bayesian problems. We
then survey the visualizations that have been studied for
this problem and extract a design space that we will use
in a later section. Based on lessons learned in previ-
ous work, we present several criteria to consider when
performing experiments to compare visualizations, es-
pecially in a crowdsourcing environment. Taking both
the visualization design space and comparability crite-
ria into account, we present the visualizations we de-
signed for a controlled online experiment. To ensure
as much consistency as possible in the experimental en-
vironment of the participants, we discuss the presenta-
tion design as a critical control factor that has not been
discussed in previous works that have employed crowd-
sourcing. Finally, we present a controlled experiment
and report on the results. We conclude with a discus-
sion on the value of collecting and examining micro-
interaction data to help directly answer questions that

could previously only be answered indirectly.

2. The Mammography Problem

Bayesian problems can be presented in many differ-
ent ways but always have the same structure. For exam-
ple, if the problem uses a medical test as its scenario,
two pieces of information are given. First, the number
of people who receive a positive or negative test result is
stated. Second, the number of people who actually have
the condition, for which the test is being performed, is
stated. The subject is then asked to answer one of four
possible conditional probability questions.

To better compare results between experiments, a
canonical Bayesian problem called the Mammography
Problem, concerning probabilistic diagnosis, evolved
from Casscells et al. (1978) and Eddy (1982). This
problem is often used in decision making studies and
consists of two parts, a problem statement, containing
the two pieces of information mentioned above, and
a problem question. One textual representation of the
problem is:

At age forty, when women participate in rou-
tine screening for breast cancer, 10 out of
1000 will have breast cancer. However, 8 of
every 10 women with breast cancer will get a
positive mammography, and 95 out of every
990 women without breast cancer will also
get a positive mammography.

Given a new group of women at age forty
who got a positive mammography in routine
screening, how many of these women do you
expect to actually have breast cancer?

From the information given in the textual problem
statement, a number of values can be extracted and de-
rived, from which many problem questions can be an-
swered, including the question posed above. First, we
see that the whole population is 1000 women and that
there seem to be some implicit assumptions. For exam-
ple, by definition it seems that a mammography test is
either positive or negative and that a women either has
breast cancer or does not have breast cancer. This lat-
ter statement is actually supported in the problem state-
ment in that 10 women have cancer and 990 women
do not have cancer. Of the 10 women with breast can-
cer, 8 women will get a positive mammography (a true-
positive result), implying that 2 women with breast can-
cer will get a negative mammography (false-negative).
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Group Nested-Set Equation Value Outcome
Got positive mammography d 103 positive
Have breast cancer h 10 true
Have breast cancer & got positive mammography h∧d 8 true-positive
Have breast cancer & got negative mammography h∧¬d 2 false-negative
Got negative mammography ¬d 897 negative
Do not have breast cancer ¬h 990 false
Do not have breast cancer & got positive mammography ¬h∧d 95 false-positive
Do not have breast cancer & got negative mammography ¬h∧¬d 895 true-negative
Entire Population ¬d∧d 1000 negative & positive
Entire Population h∧¬h 1000 cancer & no cancer

Table 1: Extracted and derived values from the Mammography Problem. Blue cells are values extracted from the problem text
and yellow cells indicate derived values. Using the notation of Gigerenzer and Hoffrage (1995), d is data obtained from the
mammography test and h is the hypothesis or outcome of cancer.

Finally, the problem states that of the 990 women with-
out cancer, 95 women will still get a positive mammog-
raphy even though they do not have breast cancer (false-
positive). Since 990 − 95 = 895, this implies that 895
women who do not have breast cancer will correctly get
a negative mammography (true-negative). We can also
calculate the total number of women that got a positive
mammography as 8 + 95 = 103 women. And lastly, as
1000−103 = 897, this implies that, in total, 897 women
got a negative mammography. We summarize these val-
ues in Table 1. The first column describes the Group
of women in question, and the second column shows
the Nested-set Equation defining that Group. The Value
column shows the number of women in each Group
and has a blue background if the number is extracted
directly from the question text but has a yellow back-
ground if the number of women is derived from the ex-
tracted numbers using a simple calculation.

We can now answer the posed question: Given a new
group of women at age forty who got a positive mam-
mography in routine screening (got positive mammog-
raphy = 103), how many of these women do you expect
to actually have breast cancer (have breast cancer & got
positive mammography = 8)? Therefore the correct an-
swer is 8 out of 103 women.

To successfully answer this question, it seems that
some knowledge about sets and nested-set relations will
be needed. There may also be some cultural knowledge
needed such as the definition of the word ‘mammog-
raphy’ and understanding that, even though the word
‘positive’ has a connotation of good fortune, the term
‘positive mammography’ is in fact an unfortunate result.

Previous work has identified several opportunities for
error in considering how to answer the question posed
above. Specific difficulties have been examined such as

the format of numeric data and the typical use of opaque
percentages (e.g., “7.8%”) or probability formats over
a more transparent frequency format (Gigerenzer and
Hoffrage, 1995), such as “8 out of 103”.

The complex interplay between the three Bayesian
parameters, namely sensitivity (true-positive rate),
specificity (true-negative rate), and prevalence (number
of cases of the condition in the population), has also
been studied. For example, Cole (1989) found that sub-
jects would significantly overestimate the effect of sen-
sitivity or underestimate the effect of specificity when
the problem was presented in this manner.

An understanding of the procedure to correctly apply
Bayesian reasoning has also been investigated (Gigeren-
zer and Hoffrage, 1995). Other difficulties include base
rate (prevalence) neglect or misjudging scale (Spiegel-
halter et al., 2011), and mistakenly equating P(A|B) with
P(B|A), that is, the probability of A given B is incor-
rectly thought to be equivalent to the probability of B
given A (Casscells et al., 1978).

Unfortunately, explicitly providing Bayes theorem
would require a lengthy mathematical explanation. The
theorem states that the probability of A given B is equiv-
alent to the probability of B given A multiplied by the
probability of A, divided by the probability of B (see
Equation 1).

P(A|B) =
P(B|A)P(A)

P(B)
(1)

Understanding even this basic formulation is chal-
lenging. When making an important decision, know-
ing how to apply and interpret this mathematical for-
mula containing conditional probabilities with several
interacting parameters is inherently difficult (Cole and
Davidson, 1989). Yet this scenario is surprisingly com-
monplace in medical decision making, given laboratory
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test results (Cole, 1989), when seeking informed con-
sent, understanding the risks and benefits of participat-
ing in a clinical trial (Schapira et al., 2008), or for mak-
ing financial decisions about investments without guar-
anteed returns (Spiegelhalter et al., 2011).

In making critical decisions in the medical domain,
physicians and health care workers will presumably
spend time with patients to achieve 100% understand-
ing to ensure that all patients fully understand their test
results and their implications. However, this is doubtful
as physicians have also been shown to have poor under-
standing of Bayesian inference and so, may not be able
to help patients in making informed medical decisions
(Gigerenzer et al., 2007).

As an alternative to using significant educational
efforts to help individuals to understand and apply
Bayesian reasoning, researchers have proposed many
kinds of visualizations of Bayesian problems includ-
ing hierarchical trees, Euler diagrams, frequency grids
and more. However, experimental results have gener-
ally been poor with recent work showing very low accu-
racy levels of only 5.0% from participants when solving
the Mammography Problem (Micallef et al., 2012). To
better understand why 95.0% of people do not correctly
solve the Mammography problem, we examine previous
studies and the visualizations they employed.

3. Visualizing the Mammography Problem

Visualizations of the Mammography Problem, used
in studies over the past 25 years, are shown in Figure 1
together with untested and novel visualizations arranged
to indicate commonalities between neighbouring visual-
izations. They are not designed to explain Bayes theo-
rem in general but attempt to show this particular prob-
lem in a way that may help people to reason in accor-
dance with Bayes’ theorem to support better decision
making.

We classify these depictions into three types of visual
representation: branching (Figure 2a), nested-set rela-
tions (Figure 2b), and frequency (Figure 2c). Shown in
Figure 2 is a group of 100 individuals that is made up
of two subgroups with 10 members in one subgroup and
90 in the other. Figure 2a shows branching which uses
node-link diagrams to represent the branching struc-
tures of trees. When reading the diagram in a top-down
fashion, we call the splitting of a group into two dis-
tinct subgroups a Branch style. When two subgroups
come together to form a larger group, we call this a Join
style. Figure 2b shows the Nested style which spatially
emphasizes containment, or the group membership of
nested-set relations, by positioning circles representing

subgroups within each other. We use the term nested as
a short-form for nested-set relation. Figure 2c shows the
Frequency style which spatially emphasizes the scale of
the number of individuals in each subgroup. Here, each
individual is represented explicitly as an icon or a glyph.
Shading, together with a legend, is used to differentiate
subgroup membership.

100

10 90
100

10
90

10 90

(a) Branching           (b) Nested           (c) Frequency

100

9010

Branch

Join

Figure 2: Branching, Nested, and Frequency diagram styles
emphasizing specific characteristics of the data as spatial
structures.

In Figure 1, we place the three visualization types
(Branching, Nested, Frequency) at the three corners of
a design space. Between these, we place hybrid visu-
alizations that combine features of these extremes. We
now describe each visualization shown in Figure 1.

Figure 3: Double-tree visualization from Wassner et al.
(2004).

3.1. Visualization Designs
Double-tree (Figure 1a and Figure 3): In Wassner

et al. (2004), a double-tree representation is used to con-
vey all of the sizes of the nested-sets for the Mammog-
raphy Problem (as described in Table 1). The double-
tree fully captures the double branching structure of
a Bayesian problem, including the re-classification of
members (shown as branches joining in the lower half
of the diagram), and includes the complete set of all
nine numeric values needed for Bayesian inference,
avoiding the need for any kind of arithmetic calcu-
lation or estimation on the part of the participant.
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Figure 1: Design space of Bayesian visualizations: primary techniques at extents with hybrid combinations on edges. Visualizations
are grouped to emphasize branching structure, frequency (scale of the subsets), and nested-set relations (emphasized by using
properties of Euler diagrams). (a), (b), and (c) emphasize Branching characteristics, (d) and (e) exhibit a mix of Branching and
Frequency, (f) primarily shows Frequency, (g) and (h) exhibit a mix of Frequency and Nested characteristics, (i) emphasizes
Nested-set relations, and (j) is a mix of Nested and Branching styles. See Section 3 for detailed descriptions of the designs.
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The false-positive/true-positive and false-negative/true-
negative symmetry of the problem is directly repre-
sented in a visual way. However, note that the size of
the sets is drawn as a box around the number, and does
not reflect the size of the set. That is, the frequency in-
formation in the problem is represented numerically but
not graphically in this type of visualization.

Tree (Figure 1b and Figure 4): A common visual
representation for probability is the simple hierarchical
tree (Sedlmeier, 1997; Sedlmeier and Gigerenzer, 2001;
Dolan and Iadarola, 2008). The nodes in the tree may
contain probability values between 0.0 and 1.0 or natu-
ral frequency values, between 0 and the size of the total
population. Natural frequency whole numbers were pre-
ferred by Gigerenzer et al. (2007) and Kurz-Milcke et al.
(2008), among others, arguing that natural frequencies
constitute a proper representation of uncertainty.

Figure 4: Tree visualization from Sedlmeier (1997).

Cole and Davidson (1989) suggested that using trees
to represent probability is limiting and not well under-
stood by students. Furthermore, as the tree is a subset of
the double-tree, several of the complete set of values are
not directly shown, implying that calculation or estima-
tion is needed, limiting the usefulness of this represen-
tation. As in the case of the double-tree, frequency in-
formation is only represented numerically, not spatially.

Pipe Diagram (Figure 1c and Figure 5): To bet-
ter visually represent the proportion, or probability, of
one event over another, Konold (1996) suggested a pipe
branching metaphor with node labels in the centre of
the links and numeric weights on the branches. Fre-
quency information was visually represented by widen-
ing the pipes for larger values. While this was shown for
joint probabilities, a similar approach could be used for
conditional probability. Like the tree, the pipe diagram
presents a subset of the full problem information, all of

which is available directly in the double-tree.

Figure 5: Comparison of tree (left) and pipe (right) diagrams,
oriented left-to-right, from Konold (1996).

Figure 6: A Sankey diagram, proposed here as a previously
untested visualization type for the Mammography Problem.
The structure is similar to the Double-tree diagram and the
frequency representation is similar to the Frequency Grid dia-
gram.

Sankey Diagram (Figure 1d and Figure 6): The
Sankey Diagram was developed to visually describe
flows of quantities as they are transformed by a number
of processes (Schmidt, 2008). Like the pipe diagram,
the Sankey diagram conveys the scale of the values
spatially with wider paths. However, this unique dia-
gram type combines both double-branching and double-
joining (both branches and joins in a left-to-right read-
ing order) together with frequency information. It can
therefore, when subsets are labelled, represent all of the
information needed for solving a Bayesian problem re-
moving the need for estimation or calculation. In terms
of branching, the Sankey is equivalent to the double-
tree, but oriented right-to-left instead of top-down.

To our knowledge, the Sankey Diagram has not pre-
viously been evaluated as a visualization of Bayesian
problems. However, we propose that this hybrid rep-
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resentation of both graphical branching structure and
spatial frequency information, represented by the width
of the branches, is a promising visualization type for
Bayesian problems and was included in our experiment
described later.

Hybrid-tree and Icon Array (Figure 1e and Fig-
ure 7): As mentioned above, poor accuracy in study
results are often interpreted as participants misjudging
scale, or base rate (prevalence) neglect (Cole, 1989).
To better draw the subjects’ attention to the prevalence
rate, Spiegelhalter et al. (2011) presented a hybrid di-
agram combining the typical tree representation with
large groups of icons explicitly showing the exact num-
ber of members of each subset, or each branch.

Figure 7: A hybrid-tree and icon array diagram, from Spiegel-
halter et al. (2011).

While this diagram is visually pleasing, it mixes its
representation of scale as both an icon array of human
figures in some cases, and larger or smaller human fig-
ures in other cases. Descriptive text explains each sub-
set but only one of the branches is rejoined resulting in
a partial double-tree. The join is indicated by an outline
around the group members, which could also be consid-
ered as containment, as in the nested style.

Frequency Grid (Figure 1f and Figure 8): The fre-
quency grid, also known as an icon array, forgoes rep-
resentations of structural information, such as branch-
ing or containment, in favour of a complete enumeration
of every individual in the population where each one is
visually associated with a specific subgroup, differenti-
ated by icon fill and border colors. An accompanying

legend provides the mapping between a visual element
and its associated subgroup (Cole and Davidson, 1989;
Sedlmeier and Gigerenzer, 2001; Dolan and Iadarola,
2008; Brase, 2009). As this type of visualization favors
frequency completely, over any visual representation of
branching or nested-set relations, we place this diagram
type at a corner of the design space. Stone et al. (1997)
showed that glyph styles do not effect performance and
Müller et al. (2014) shows that glyphs can be used to
encode a significant amount of information.

Figure 8: The frequency grid diagram, from Micallef et al.
(2012).

Frequency Set Diagram (Figure 1g and Figure 9):
This hybrid representation (Brase, 2009) combines the
frequency grid with Venn-like outlined subsets, similar
to the group of icons in Figure 1e. Labels with arrows
identify the groups and their nested-set relations.

Figure 9: The frequency set diagram, from Brase (2009).

Area-Proportional Euler Diagram (Figure 1h and
Figure 10): To help participants estimate relative set
sizes, an area-proportional Euler diagram is used (Mi-
callef et al., 2012). In this case, a hybrid Euler-
frequency grid representation is used to reinforce the
sense that each set contains a number of individuals rep-
resented by the icons. Also, this visual frequency infor-
mation is organized spatially as in the Euler diagram
conveying nested-set relations. Note that both a legend
and set labels are used to convey set membership, but
numeric values are not shown.
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Figure 10: Area-proportional Euler diagram, from Micallef
et al. (2012).

Euler Diagram (Figure 1i and Figure 11): In Brase
(2009), a traditional Euler diagram is used. This rep-
resentation is not area-proportional nor does it convey
frequency in other ways. This type of diagram favours
the representation of nested-set relations over specific
quantities or branching structure and so, is placed at a
corner of our design space.

Figure 11: The Euler diagram, from Brase (2009).

Flowchart (Figure 1j and Figure 12): In surveying
existing visualizations, we have presented representa-
tions that exclusively present branching, frequency, or
nested-set relations information. While hybrid visual-
izations have been developed that mix branching with
frequency (Sankey 1d), and frequency with nested-set
relations (Area-proportional Euler 1h), no hybrid vi-
sualizations combining branching with nested-set rela-
tions has been developed to our knowledge. We there-
fore designed such a hybrid visualization of Bayesian
problems that we call a Flowchart. This visualization
includes the complete set of information available in
the double-tree diagram but encloses subset regions in
nested outlined areas and uses color and arrows to con-
vey set membership. We also included this diagram type
in our experiment described later.

Figure 12: A novel Flowchart diagram, proposed here as a
previously untested visualization type. This hybrid diagram
emphasizes the Double-tree structure together with nested-set
relations as in the Euler diagram.

3.2. Design Space of Visualizations

We organize these graphical representations into
three non-exclusive categories: branching, frequency,
and nested-set relations (see Figure 1). Branching struc-
tures (Figures 1a, 1b, 1c, 1d, 1e, 1j) can be used to con-
vey how sets of values breakdown into their constituent
parts or combine to form resultant sets. Frequency can
be encoded numerically (Figures 1a, 1b, 1d, 1j), or
graphically (Figures 1c, 1d). Also, frequency is empha-
sized in Figures 1e, 1f, 1g, 1h through the use of glyphs
representing each individual in the set, to better convey
how many people are in each set. Finally, nested-set re-
lations are visually represented in Figures 1g, 1h, 1i, 1j
through outlined overlapping regions.

Each of the three primary visualizations represent one
dominant property. The Double-tree directly represents
branching graphically. Indirectly, frequency informa-
tion is conveyed numerically and nested-set structures
may be inferred by understanding the parent-child rela-
tionships embedded in the double-tree. The Euler Di-
agram directly represents the nested-set relations of a
Bayesian problem graphically. Indirectly, frequency in-
formation may be added by labels or in a legend. How-
ever, branching is not conveyed directly or indirectly.
The Frequency Grid directly represents the number of
individuals in each set graphically. Indirectly, nested-
set relations may be inferred through color and glyph
edge treatment. However, as with the Euler Diagram,
branching is not conveyed at all.

Hybrid visualizations, that mix primary visualization
types, are shown along the edges of the design space
(see Figure 1). We introduce the use of a Sankey Dia-
gram as a branching-with-frequency hybrid and we de-
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veloped a novel Flowchart diagram as a nested-with-
branching hybrid visualization. The existing Propor-
tional Euler diagram conveys a nested-with-frequency
hybrid visualization.

We next discuss the challenge of fairly comparing
these visualizations, given their diversity of information
content and design features, and we put forth principles
to better judge the validity or compatibility of a given
comparison.

4. Comparability Criteria

We seek to compare visualizations from our design
space mentioned above to explore the role that major
visual features may play in the performance of partic-
ipants trying to solve the Mammography Problem. To
guide the design of the visualizations being compared,
we introduce three control measures to help ensure that
experimental results reflect the visualization features
unique to each condition. By increasing the number of
visualization elements with a common visual treatment,
and increasing the number of common informational el-
ements, we hope to increase the relation between perfor-
mance differences and the design sources of the differ-
ences.

We define three criteria to be met when comparing a
set of visualizations: completeness of information, con-
sistency of visual encoding, and consistency of presen-
tation.

4.1. Completeness of Information

To compare two visualizations, they should contain
the same level of information. If they do not, assuming
that it is possible to reconstruct the absent data items,
the missing information must be derived or calculated
by the person using the visualization. This situation
makes it difficult to compare the performance of the vi-
sualizations when one of them calls for estimation or
calculation which could consume a significant amount
of time from the person using the visualization. To
avoid this confound, we analyse the information con-
tent of the visualizations to ensure that we are testing
the visualization and not the ability of a participant to
perform arithmetic operations.

Beginning with the textual description of the Mam-
mography Problem, we see there are five numeric pieces
of information given: 1000, 10, 8, 990, and 95. How-
ever, as shown in Table 1, four additional values must
be derived to properly answer the possible probability
questions. As shown in Figure 13, the tree visualization
(Figure 1b) shows two additional values, 2 and 895, but

Figure 13: Methods of representation used in several visu-
alizations. ”num” indicates a numeric representation while
”count” indicates a set of icons/glyphs are used to represent
the quantity. The top three rows are also numeric but are fur-
ther sub-labelled as ”join” or ”branch” when they are in nodes
of a tree structure, or as ”nested” when the numeric value is
embedded in a larger shape.

is still missing two pieces of information. The Euler
Diagram (Figure 1i) is also missing two pieces of infor-
mation but shows 103 instead of 990.

Figure 13 summarizes which visualizations contain
which key pieces of information for the Mammogra-
phy Problem. The first five visualizations listed all
contain the complete set of information. Double-tree,
Flowchart, and Sankey all contain the numeric val-
ues directly embedded in the visualizations. The Fre-
quency Grid and Area-Proportional Euler, with fre-
quency icons, do not directly show the numeric values
but show a one-to-one mapping of the values to circular
icons. This makes it possible for a person using the visu-
alization to count all the icons of a specific set or subset
to obtain the numeric value. The one exception is that
the Frequency Grid visualization contains a ruler indi-
cating the size of the complete population (1000). As
discussed in Section 5, these two visualizations could
be extended with a legend containing the complete set of
numeric values, similar to the content of Table 1, so that
the visualizations are not testing the ability of the partic-
ipants to count icons and may be more fairly compared
to the other visualizations that meet the completeness of
information criteria. Finally, as shown in Figure 13, the
Double-tree, Flowchart, and Sankey all represent some
form of branching structures that contain numeric val-
ues but they may be further differentiated by describing
the branching or nesting property around the value. We
have labeled the values as “join”, “branch”, or “nested”
but other schemes could be used as well. This further
highlights the unique aspects and differences in these
visualizations even though they all contain the same
numeric information. That is, these properties capture
some of the information unique to each visualization.
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4.2. Consistency of Visual Encoding

Numeric data can be visually encoded into graphi-
cal elements (Cleveland, 1994). For example, a series
of values can be shown as a line graph, bar chart, or a
number of points or glyphs. When comparing two vi-
sualizations, it may be difficult to attribute differences
in performance to specific visual encodings. To reduce
this difficulty, visual encodings should be made as con-
sistent as possible between the visualizations so that any
difference in performance may be clearly attributed to
the small number of essential differences in visual en-
coding choices.

As shown in Figure 14, the visualization design
space can be arranged by methods of visual encoding.
For example, if we compare the Sankey Diagram and
the Double-tree, both represent branching graphically
and indicate nesting indirectly through the parent-child
property inherent in branching structures. However,
the Double-tree conveys frequency information numeri-
cally whereas the Sankey Diagram graphically indicates
scale by having larger sets consume more area than
smaller sets.

Figure 14: Methods of visual encoding used in several visual-
izations organized by visual technique. The dominant visual
encodings used by each visualization are shown on blue while
indirect representations of a visualization property is shown
on grey. Note hybrid visualizations combine two dominant
techniques (on blue), e.g. Sankey, Flowchart, and Icon Euler.

4.3. Consistency of Presentation

Given two visualizations, a valid comparison is only
possible if the visual presentation is consistent between
them. Graphical elements, including icons, glyphs, col-
ors, fonts, text sizes, and shapes, should be consis-
tent across visualizations to minimize graphical vari-
ability. For example, this can help control against
confounds arising from perception differences between
users. Moreover, the users environment when view-
ing visualizations may be quite varied, and should be
taken into account. For example, a layout displayed at
one screen resolution may require no scrolling, while
the same layout displayed at a different resolution may
require scrolling. Breslav et al. (2014) showed that

scrolling has a high cost in performance when answer-
ing the Mammography Problem. Efforts should be
made to minimize these variations. Our techniques to
better achieve consistency of presentation are described
in Section 6.

4.4. Summary

We propose that comparability criteria be used
throughout the study design process. We adopt this ap-
proach here to guide the visualization design choices
for the experimental conditions, to support hypothesis
generation to be based on the information content and
visual encodings used, and to assist with interpreting
experimental results by comparing differences in mea-
sures to differences noted in the designs. A comparabil-
ity analysis can also be used to eliminate candidate vi-
sualizations when they are inherently incomplete, such
as the Euler Diagram and the Tree, or to suggest the
need for new visualization designs to complete a design
space, as we do with the Flowchart and Sankey Dia-
gram.

5. Designing Comparable Visualizations

Using the comparability criteria defined above,
we identified candidate visualizations for our study
from the spectrum of set-based, frequency-based, and
branching-based visual representations. We ensured
consistency of information by adding missing informa-
tion where necessary. We increased the consistency
of visual encoding by including explicit legends when
counts were displayed non-numerically. We did not in-
clude legends in cases where counts were already rep-
resented numerically, as we consider these numbers to
be an integrated, or implicit legend. Finally, we ensured
consistency of presentation by using the same font fam-
ily and size, and selected a qualitative colour palette
from colorbrewer.org (Harrower and Brewer, 2003). In
addition to visualizations, we designed a comparable
non-visual representation of the complete set of infor-
mation needed, provided as a text-only legend (see Sec-
tion 5.2). The range of designs considered are summa-
rized in Section 3, and the details of each visualization
are discussed in the following sections.

5.1. Text-only

The text of the classic Mammography Problem, as
given in Section 2, consists of two paragraphs; a prob-
lem statement and the problem question. This text is
consistent between all of the experimental conditions
that we use.
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5.2. Text-legend

Notably, the text of the classic Mammography Prob-
lem does not actually meet our comparability criteria.
To address this problem, we include all of the informa-
tion contained in the Double-tree diagram as a set of
facts, similar to an unlabelled legend (see Figure 15).
This satisfies both the completeness of information cri-
teria and eliminates the need for any type of arithmetic
to be done by the participant.

While this can clearly help the participant in answer-
ing the question, the extra information and/or the way it
is presented may also confuse the participant.

Figure 15: Unlabelled legend shown in Text-legend condition
of our study to satisfy the completeness of information crite-
ria.

5.3. Area-Proportional Euler Diagram

To fulfil the completeness of information criteria us-
ing the area-proportional Euler diagram (Micallef et al.,
2012), we include the complete legend, as shown in Fig-
ure 15, but with icon tags to indicate set membership
(see Figure 16). This expands upon the short legend
(without numeric values) used in Micallef et al. (2012)
(see Figure 1g). This approach also explicitly defines
the sets so that in-place set labels are not needed. This
may be helpful since the set label placement did not ex-
plicitly define which group of icons were included, leav-
ing the meaning open to interpretation.

5.4. Frequency Grid

The Frequency Grid (Micallef et al., 2012) is simi-
lar to the Euler diagram with respect to the legend, and
so, the same legend can be used in this case (see Fig-
ure 17). Again, the legend labels define the meaning of
the sets. Note that the elements in the complete legend
are logically arranged into two groups of four with dis-
ease indicators together with the disease status and their
subcases. Again, while this design gives completeness
of information, the complexity of the legend may have
adverse effects on performance as well. Overall, this
follows the recommendations of Breslav et al. (2014) to

Figure 16: Area-proportional Euler diagram with complete
legend.

avoid participants from counting the icons to help an-
swer the question, which was a behaviour observed in
both Micallef et al. (2012) and Breslav et al. (2014).

Figure 17: Frequency Grid with complete legend.

5.5. Sankey Diagram
In considering the primary visual features used in

conditional probability problems, we found that the
Sankey diagram (Schmidt, 2008) could convey both
branching (as does the Double-tree) and frequency (with
one-dimensional proportional branch thickness similar
to the Pipes representation, see Figure 1c). As this dia-
gram type does not lend itself to frequency represented
as icons, labels are included together with frequency
values, obviating the need for a legend (see Figure 6).

Note that in reading the Sankey diagram in the En-
glish left-to-right convention, this representation also
conveys a temporal aspect where branches split or join
to update, or re-categorize, individuals. In fact, Bayes
theorem is typically described in temporal terms: up-
dating our beliefs when given new information. Specif-
ically, Bayes theorem expresses precisely how a prior
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probability becomes a revised probability (or the poste-
rior probability) when new evidence is considered. De-
spite the high compatibility of this visual representation
with Bayes theorem, the authors are not aware of any
previous studies using this diagram type.

As this is the initial evaluation of this diagram type,
there may be many variations worthy of testing beyond
its application to the Mammography problem at hand,
including Bayesian problems with different levels of
sensitivity, specificity, and prevalence.

5.6. Flowchart Hybrid
To explore the benefits of branching and nested-set

representation together, we developed a Flowchart style
hybrid diagram that explicitly shows the subsets for
the test outcomes, positive mammography and nega-
tive mammography, including the Double-tree crossings
(see Figure 12). This diagram supports the complete-
ness of information criteria with all of the information
implicitly embedded in the diagram. Also, some ex-
planatory text is included within the positive and neg-
ative mammography groups indicating the meaning of
the sub-cases as being false or true positives, or false
or true negatives. However, it does differ slightly from
the Double-tree diagram in that the joining of the bot-
tom two nodes (Have Breast Cancer and Does Not have
Breast Cancer) is omitted as it subjectively seemed to
indicate that there was a second group of 1000 Women.

5.7. Double-tree
In augmenting the Double-tree design to meet the

comparability criteria, we placed the legend labels and
values inside the nodes of the tree (see Figure 18). We
maintained the same colour scheme and, although fairly
subtle, we used the node outline colour to convey the
nested-set membership that is explicitly shown in the
Flowchart hybrid and in the Sankey diagram color tran-
sitions.

Figure 18: Double-tree emphasizing the problem structure.

6. Page Design

Crowdsourcing using Amazon Mechanical Turk
(MTurk) has previously been used to test visualiza-
tions of Bayesian reasoning (Micallef et al., 2012; Ot-
tley et al., 2012; Breslav et al., 2014). One advantage
of crowdsourcing is the ability to easily perform online
testing of design variations (Heer and Bostock, 2010).
However, performing a crowdsourcing experiment also
adds additional difficulty to meet our Consistency of
Presentation criterion, since we cannot directly con-
trol the users experimental environment. Breslav et al.
(2014) present a number of recommendations when
designing webpages for use in crowdsourcing experi-
ments. These recommendations consider the compli-
cations introduced by running an experiment remotely,
such as varying user contexts, browsers, window sizes
and screen resolutions. Below, we outline how we ad-
dressed each of these to meet our Consistency of Pre-
sentation criteria.

6.1. User Context and Browser

While we cannot control the users environment while
carrying out the experiment, we can take steps to en-
force base restrictions to maximize consistency. The
user context is inferred from the browser reported User
Agent, which contains information such as the platform
and browser.

First, we exclude participants on mobile platforms
from participating. This reduces the likelihood that par-
ticipation will occur while in a mobile context, where
attention may be less focused. Also, it reduces the vari-
ability of display resolution, which is addressed in a
later section.

Second, we restrict browsers to recent versions of
Chrome (≥ 14), Firefox (≥ 4), and Internet Explorer
(≥ 9). This simplifies addressing cross-browser script-
ing and layout compatibility issues. To test the success
of these restrictions and cross-browser visual consis-
tency, we use the BrowserStack.com web service which
renders screenshots of a webpage using different plat-
forms and browsers. While we have found some mi-
nor discrepancies in font sizes across browsers and plat-
forms, none of the issues were significant enough to
cause concern about the validity of the results.

6.2. Screen Resolution and Window Size

Screen resolution and window size vary tremen-
dously between MTurk participants. As discovered by
Breslav et al. (2014), the need for repeated scrolling can
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Figure 19: Two-column page layout of the experiment.

Figure 20: Instruction page of the survey for Full Screen mode.

dominate the participant input if the visualization dis-
played is too large or the web page design is not an ap-
propriate shape. Thus, it was very important to us that
we eliminate scrolling, minimizing split-attention as a
confounding factor to performance.

We first ran a pilot study on MTurk with 404 users to
sample the range of screen resolutions. The three most
common screen resolutions were 1366x768 (132/404,
33%), 1920x1080 (39/404, 10%), 1280x800 (37/404,
9%) pixels. We also binned the observations by canoni-

cal ranges of screen width to adjust for aspect ratio dif-
ferences. Only 2% (9/404) of respondents had a reso-
lution of less than 1024px in width. A vast majority,
87% (352/404) had resolutions between 1024 and 1680
pixels in width, inclusive. The remaining 11% (43/404)
of respondents had high-definitions displays of 1920px
in width or greater. The vast majority of respondents
used widescreen aspect ratios: 16:9 (243/404, 60%) and
16:10 (93/404, 23%). We did not observe any comput-
ers with portrait-oriented displays.
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Taking these observations into account, we specif-
ically design a page layout for landscape oriented
widescreen displays with a minimum width of 1024 pix-
els. We excluded participants with resolutions less than
1024px in width to avoid designing another layout for
2% of potential participants. Since the most aggressive
widescreen aspect ratio (16:9) can be displayed in less
extreme (16:10) and non-widescreen aspect ratios (4:3
or 5:4) without clipping, we designed our page layout
for an aspect ratio of 16:9.

Based on these observations, we designed a page lay-
out for our experiment that eliminates the need to scroll.
To ensure that windows were all the same size, and
to minimize distraction from other open windows, we
forced users to be in full-screen mode while participat-
ing in the experiment.

6.3. Page Layout
We used the Bootstrap (getbootstrap.com) front-end

framework to build the webpages. Bootstrap is designed
to automatically scale content appropriately given the
platform and size of a browser window. This follows
an ethos of responsive web design. Images can also be
automatically scaled in a similar manner. However, this
relies on the browser to resample images, and we have
found the quality to be unreliable: sometimes introduc-
ing resampling artefacts that render text in the image
illegible. Given the vast majority of resolutions in our
pilot study fall between 1024 and 1680 pixels in width,
we target two ranges of resolutions: small (< 1280px)
and large (≥ 1280px). As it is not possible to determine
the physical monitor size, our assumption is that larger
monitors will have larger resolutions. Therefore, when
also factoring in the widescreen aspect ratio, we used
a small layout at 1000x560 pixels and a large layout at
1200x675 pixels. Bootstrap handles switching font and
image sizes between page layouts based on the size of
the browser window. This ensures that the page content
will be legible and will likely be an appropriate size for
the physical scale of the users monitor.

We use a two column layout to fit the text and vi-
sualization of the question on the same page, avoiding
the need to scroll (see Figure 19). The problem state-
ment and visualization are displayed in the left column,
while the question and the input fields for the answer
are displayed in the right column. Given the prevalence
of widescreen displays seen in our pilot study, this lay-
out choice maximizes use of screen space, making it
possible to avoid scrolling. Our cross-browser Browser-
Stack.com tests showed that the page content fit within
the window without the need for scrollbars and that con-
tent is legible across the sizing policy.

6.4. Full Screen Mode

To be able to consistently rely of the full use of the
available screen space, Full Screen mode of the browser
was enforced. An additional important justification for
using Full Screen mode was to help participants to focus
on the task, reducing distraction, since everything else
is hidden. Note however that notifications (e.g., email
popups) may still appear above the browser window.

To implement Full Screen mode, a participant is re-
quired to press the F11 key on their keyboard, or al-
ternatively press a button on the initial test page (see
Figure 20) which calls the browser JavaScript API to
enter Full Screen mode. If the participant exits Full
Screen mode in subsequent pages of the survey, a modal
popup is shown, requiring the user to return back into
Full Screen mode.

In some browsers, submission of the form automati-
cally triggers the browser to exit Full Screen mode. To
maintain a more seamless flow from page to page of the
survey, we submit answers of each page using AJAX
requests, which does pose a requirement on our partici-
pants to have a modern browser that supports Javascript
and AJAX (Holzinger et al. (2010)). This approach
helps ensure that Full Screen mode is maintained, since
some browsers exit Full Screen mode on a browser re-
fresh. In fact, the submission of each page is separated
into two AJAX requests. We first synchronously sub-
mit just the answer to the question, validating the in-
put before letting the participant proceed to the next
page, and then asynchronously submitting all the de-
tailed user interaction data (e.g., mouse movements,
clicks, key presses) to a central database (Breslav et al.,
2014), while the participant proceeds and begins to in-
teract with the next page of the survey. This ensures
short loading times between each page and an efficient
use of participants time, since potentially large payloads
of mouse movements are being uploaded from the pre-
vious page.

7. Experiment

We conducted a controlled experiment to evaluate
user performance across five different visual represen-
tations, together with two textual representations, of the
Mammography Problem. All of the designs are de-
scribed in Section 5 and adhered to our proposed com-
parability criteria to help ensure that visual representa-
tions contain complete information and consistent vi-
sual encodings and presentation.

The experiment was carried out using MTurk, a
crowd-sourcing service. Each MTurk worker completed
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a single trial. In this trial, the participant was introduced
to the Mammography Problem, shown one of our visual
representations, asked to answer the question, and fi-
nally asked to rate their confidence in their answer. A fi-
nal page captured demographics information. After the
survey was completed, the participant received a code
to submit to the MTurk website indicating that the trial
had been completed and to receive credit for taking the
survey. Participants were compensated $1.00 USD for
their participation. The qualification requirement for the
study included a Human Intelligence Tasks (HIT) Ap-
proval Rate greater than or equal to 95% and Number
of HITs Approved greater than or equal to 50.

7.1. Design

Similar to previous work (Micallef et al., 2012;
Breslav et al., 2014; Brase, 2009) our study used a
between-subjects design. Each participant completed
a single trial to control against learning effects and fa-
tigue. The format and wording of the Mammography
Problem is similar to previous work, and can be found
in Section 2. As we were re-evaluating many com-
mon visualizations under novel conditions, we wanted
a large number of participants to resolve a clear out-
come. Therefore, we kept our survey active until at
least 100 participants per condition have completed the
survey. The survey was conducted for all seven con-
ditions as described in the seven subsections of Sec-
tion 4: Text-only, Text-legend, Area-proportional Eu-
ler Diagram (Euler), Frequency Grid, Sankey Diagram
(Sankey), Flowchart Hybrid (Flowchart), and Double-
tree. Each condition was run as a separate MTurk HIT.
MTurk workers were restricted to only one trial and only
one of the HITs. This was done by keeping track of all
worker IDs (which can be extracted from the URL using
javascript) that finish the survey and denying access to
workers who have completed any previous HITs. Since
Micallef et al. (2012) reported no effect of subject’s nu-
meracy and spatial abilities in answering various ques-
tions, we did not include any such tests (Ekstrom et al.
(1976)) in our survey.

7.2. Hypotheses

With the guidance of our design space organization
and our proposed comparability criteria, we hypothesize
that:

H1 The Text-only condition, which requires computa-
tion, will have lower accuracy than conditions that
do not require computation and only test compre-
hension of the problem.

H2 Visualizations with embedded numeric informa-
tion (Double tree, Sankey, Flowchart) will out-
perform visualizations with explicit legends (Text-
legend, Frequency grid, Euler) since embedding
minimizes a split-attention effect (Chandler and
Sweller, 1992).

H3 Hybrid visualizations (Sankey, Flowchart, Euler)
will outperform other visualizations because they
have two dominant visual encodings.

7.3. Variables
The two textual representations of the Mammogra-

phy Problem (Text-only and Text-legend) together with
the five visual representations (Euler, Frequency Grid,
Sankey, Flowchart, and Double-tree) were included in
the experiment. Thus, our independent variable is:

• Viz ∈ { Text-only, Text-legend, Frequency grid,
Euler, Double tree, Sankey, Flowchart }

Our dependent variables were:

• Exact ∈ {true, f alse}, when the numerator = 8 and
the denominator = 103.

• ExactN ∈ {true, f alse}, when the numerator = 8.

• ExactD ∈ {true, f alse}, when the denominator =

103.

• Bias, the difference between the subjects answer
and the exact answer, computed as a log ratio:
log10

(
entered answer
correct answer

)
(Micallef et al., 2012).

• Error, the absolute value of Bias (Micallef et al.,
2012).

• Time, the time taken to solve the problem.

• Conf ∈ [1..5], the subjects confidence in his/her
answer. (Brase, 2009).

As suggested by Micallef et al. (2012), Bias and Er-
ror was used as a more detailed metric of accuracy than
just an exact answer count Exact answer. The notion of
an exact answer is included as it is possible for both the
numerator and denominator to be incorrect but result in
a correct probability when they are combined through
division. A Bias of 0.0 indicates the correct answer, a
negative bias represents an underestimation of the an-
swer, and a positive bias represents an overestimation.
Error is calculated as the absolute value of the Bias and
provides an overall distance of the participants response
to the correct answer and gives a more detailed metric
of accuracy than just an exact answer count.
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We also captured the following information: amount
of training (prior experience with probabilistic prob-
lem solving on a 5-point Likert scale), the highest level
of education that the participant has completed, colour
blindness, and occupation (Standard Occupational Clas-
sification – Major Groups (U.S. Department of Labor,
2010) augmented with one additional group for “Stu-
dent, Trainee”). The experiment was instrumented us-
ing the Mimic system (Breslav et al., 2014), a toolkit for
capturing detailed interaction logs (e.g. mouse move-
ments, mouse clicks, key presses, etc.) from web-based
experiments. Specifically, in our analysis we used key
press events and mouse movement events.

7.4. Participants

The participants consisted of 700 workers from the
MTurk service. The majority of participants were male
(429, 61%). Less than 3% of participants reported
colour blindness (13, 2%) or reported not knowing (6,
1%). The majority of participants had completed a col-
lege level or higher education: undergraduate degree
(358, 51%), graduate degree (69, 10%). The top five
reported occupations were “unemployed, retired, home-
maker” (133, 19%), “computer and mathematical occu-
pations” (68, 10%), “student, trainee” (64, 9%), “arts,
design, entertainment, sports, and media occupations”
(57, 8%), and “education, training, and library occupa-
tions” (55, 7%). A majority of participants (547, 78%)
reported little to no prior experience with probabilistic
reasoning: “very little or none” (346, 49%), “a little”
(201, 29%), “moderate” (117, 17%), “quite a bit”, (29,
4%), and “a lot” (7, 1%). We found that the small layout
was used by 8% (56) of participants.

7.5. Data Validation

Since the study used crowdsourcing, we implemented
rigorous data validation to ensure usable data was cap-
tured. We restricted input in answer fields to numeric
values. Likert scales were represented by radio button
fields. Prior to submitting the form, we checked that
no empty values were being submitted. Any violation
would result in a warning being presented to the user
to ensure valid data was supplied. Although we im-
plemented a number of data validation precautions, one
user in the Text-legend condition submitted an answer
of 0 for the denominator. Using the detailed input cap-
ture and review capabilities of Mimic (Breslav et al.,
2014), we can see that it was likely an error when at-
tempting to enter a denominator value of “1000” since
the user actually typed in three zeroes, not just one. This
record was excluded from the analysis, and so, the total

number of participants used in the following section is
N = 699.

8. Results

8.1. Answers

As can be seen in Figure 21, the top three answers for
the numerator were 8 (245 participants, 35%), 10 (239
participants, 34%), and 1 (52 participants, 7%). The
correct answer being 8 is the overall top choice. The top
three answers for the denominator are 1000 (311 partic-
ipants, 44%), 103 (120 participants, 17%), and 10 (113
participants, 16%). The correct answer being 103, ap-
pears significantly less frequently than a 1000.
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Figure 21: For the Numerator, most participants entered ei-
ther 8 or 10. For the Denominator, most entered 1000, 103, or
10. The resulting Combined probability is generally underes-
timated.

16



0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

Text−
O

nly
Legend O

nly
Icon A

rray
E

uler
F

low
chart

S
ankey

D
ouble Tree

0.0 0.5 1.0 1.5 2.0
Error

C
ou

nt

0
10
20
30
40

Count

Figure 22: Error distributions for all the conditions shown with Histogram plot.

8.2. Accuracy
Exact answers are summarized in Figure 23. We can

observe a significant difference between Text-only and
the other conditions, with Text-only achieving 4% Ex-
act answers, while others range from 10% to 20%. In
all cases, low denominator performance (ExactD) con-
sistently lowered all scores. The difference between
ExactD and Exact suggests that there were occasions
where participants correctly entered a denominator, but
not the numerator. We can see that the Double-tree and
the Frequency Grid achieved the highest Exact answer
count with 20% exact answers, and 22% correct denom-
inator. Flowchart and Text-Legend are not far behind
with 18% and 17% of Exact answers. Our Euler condi-
tion uses the visualization from previous work (Micallef
et al., 2012), who for a similar sample size (N=120 for
Micallef et al. (2012), and N=100 in our case) only
received 5% of Exact answers, likely due to the need
for scrolling, while in our case, 13% of participants an-
swered correctly in the Euler condition. However, Text-

only performed similarly to previous work, 4% in our
case, compared to 3.3% in Micallef et al. (2012). As the
answers are not normally distributed, we use Kruskal-
Wallis, a non-parametric one-way analysis of variance
(ANOVA) test, to calculate differences between groups.
There was a statistically significant difference between
Exact answers across the conditions (Kruskal-Wallis,
H(6) = 17.03, p < 0.01). Thus, we believe that the
Completeness of Information criterion had a large effect
on correct responses.
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Figure 23: Exact answers (Numerator, Denominator, and
cases where participants entered both the correct Numerator
and the correct Denominator) for all conditions (%).
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Figure 24: Error distributions for all the conditions shown
with Boxplot graph.

A more detailed metric for measure of accuracy than
just an exact answer count is the Error metric. As
can be seen from the histogram in Figure 22 and box-
plot in Figure 24, the median errors for all conditions
are quite high. The overall median Error is 0.89 (M
= 0.63, SD = 0.43) consistent with results in Micallef
et al. (2012). The standard deviation for Text-only is
low, 0.33 but is 0.45 for the other conditions. The dif-
ferences between the conditions are statistically signif-
icant (Kruskal-Wallis, H(6) = 19.16, p < .005). How-
ever, without the Text-only condition there is no statisti-
cally significant difference (Kruskal-Wallis, H(5) = 6.2,
p = 0.29). For further comparison of the Text-only
condition with all of the visualization conditions, we
also calculated effect size (Cohen’s d) for the Error
of each pair of conditions: Text-legend shows a small
effect (d = 0.36), Frequency Grid shows a medium
effect(d = 0.52), Euler shows a small effect (d = 0.35),
Flowchart shows a medium effect(d = 0.54), Sankey
shows a medium effect(d = 0.37), and Double-tree
shows a medium effect(d = 0.52). Comparing Legend-
only with other visualization conditions shows no effect
(Frequency Grid d = 0.13, Euler d = 0.03, Flowchart
d = 0.14, and Sankey d = 0.02). In summary, there
is a difference between the Text-only condition and

the other visualization conditions, but no difference be-
tween the Text-legend condition and the visualizations.

8.3. Bias

Systematic Bias in the answers reveal misunderstand-
ings or mistakes that are commonly made. Figure 26
shows a histogram of the distribution of the Bias for
each condition of the overall answer ratio. We can ob-
serve that the biases are not normally distributed. Also,
we can see a stronger negative bias, indicating underes-
timation of the overall probability. This systematic er-
ror is consistent with previous findings (Micallef et al.,
2012; Breslav et al., 2014). The median biases were -
0.8903 (M = -0.35, SD = 0.77) for Text-only and -0.6
(M = -0.36, SD = 0.63) for Frequency Grid, while for
other conditions medians are at zero. See Figure 25 for
a Boxplot of the bias. The means were: Text-only (M
= -0.35, SD= 0.77), Text-legend (M = -0.2, SD = 0.76),
Frequency Grid (M = -0.22, SD = 0.7), Euler (M = -
0.08, SD = 0.77), Flowchart (M = -0.36, SD = 0.63),
Sankey (M = -0.19, SD = 0.74), Double-tree (M = -
0.27, SD = 0.68). Similar to Breslav et al. (2014), there
is no statistically significant difference between these
biases across the different conditions (Kruskal-Wallis,
H(6) = 10.5, p = 0.1). Looking at the effect sizes of
Bias of the Text-only and other conditions, tells a sim-
ilar story, finding only small effect sizes (Text-legend
d = 0.18, Frequency Grid d = 0.17, Euler d = 0.36,
Flowchart d = 0.01, Sankey d = 0.21, and Double-tree
d = 0.11).
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Figure 25: Bias boxplot indicating an overall answer underes-
timation.

8.4. Effect of Visualization Types

The H1 hypothesis, that the Text-only condition will
result in the least accurate answers, was confirmed by
statistically significant differences and medium effect
sizes in the Error metric, but was not confirmed by
the Bias metric, which exhibited no statistically sig-
nificant difference between conditions. Both H2 and
H3 were not confirmed. The H2 hypothesis, that vi-
sualizations with embedded numeric information would
outperform visualizations with explicit legend was not
confirmed and there was no statistically significant dif-
ference between error of these groups (Kruskal-Wallis,
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Figure 26: Histogram of the biases in the overall answer for each condition.

H(1) = 0.9841, p = 0.3212). The H3 hypotheses,
that the hybrid visualizations (Flowchart, Sankey, Eu-
ler) would be the best performers, was also not con-
firmed. In terms of exact answers, the Frequency Grid
and Double-tree designs were tied as the best visualiza-
tions. However, it should be noted that they were only
marginally better than the Text-Legend condition.

8.5. Confidence
The median for the Conf was 4 on a 5-point Lik-

ert scale (M = 3.54, SD = 1.07) indicating an over-
all high confidence in the answer. There is no sta-
tistically significant differences in reported confidence
across the conditions (Kruskal-Wallis, H(6) = 10.08,
p = 0.12), consistent with previous work (Brase, 2009).
To find correlation between dependent variables, we
calculate Spearman’s rank correlation coefficient, a non-
parametric measure of statistical dependence between
two variables commonly used with ordinal data. There
was no strong correlation between confidence and error

(Spearmans rank, rs = −0.09, p = 0.02), but a weak cor-
relation between confidence and bias was noted (Spear-
mans rank, rs = −0.11, p < 0.005).

8.6. Time
The median completion time for the main mammog-

raphy question was 83.94 seconds (M = 100.4, SD =

68.64) significantly lower than previous work (Micallef
et al., 2012), where the median was 123 seconds. We
did find some low correlation between time and error
(Spearmans rank, rs = −0.15, p < 0.001) and some cor-
relation between Time and Exact answer (Spearmans
rank, rs = 0.24, p < 0.001). No significant differ-
ences between conditions were found (Kruskal-Wallis,
H(6) = 12.4, p = 0.05). As seen in Figure 27, Fre-
quency Grid and Euler took a bit longer than the other
conditions, but not much. There was a statistically
significant difference between legend types, (Kruskal-
Wallis, H(2) = 10.07, p < 0.01), as can be seen in
Figure 27b, where visualizations with implicit legend,
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meaning numeric data was embedded in the visualiza-
tion (Flowchart, Sankey,Double-tree), took less time.

Double−tree
Sankey

Flowchart
Euler

Frequency Grid
Text−legend

Text−only

0 100 200 300 400 500

(a) Per Condition.

Implicit
Explicit

None

0 100 200 300 400 500

(b) Per legend type.
Figure 27: Time spent on mammography question (seconds).

8.7. Training
Brase (2009) collected data about prior training in

statistics as yes/no answers and excluded participants
who reported that they had training. We collected more
detail about training with a 5-point Likert scale. We did
not exclude any participants from the analysis based on
the prior training as there was no correlation between
Error and Training (Spearmans rank, rs = −0.06, p =

0.11) and a only weak correlation between Exact answer
and training (Spearman’s rank, rs = 0.107, p < 0.005).
However, we found that training is correlated to confi-
dence (Spearman’s rank, rs = 0.22, p < 0.0001). Train-
ing also did not seem to relate to Time taken to answer
the question (Spearmans rank, rs = −0.06, p = 0.132).

8.8. Diagram Use
To convey a sense of the participants use of the visual-

izations, we used mouse movement data. For example,
see Figure 28 and Figure 29 for the Euler condition with
a Heat Map visualization of the mouse movements from
all the participants (Figure 28) and the mouse move-
ments from participants who answered the question cor-
rectly (Figure 29). To get a more quantitative compari-
son of the diagram use for different visualizations, we
counted the number of mouse events (see Figure 30)
that occurred within the HTML <div> containing the
visualization. We have observed that the Sankey Dia-
gram stands out as being used less than other visual-
izations, however the difference is not statistically sig-
nificant (Kruskal-Wallis, H(5) = 9.371, p = 0.095).
In general, there was a weak correlation between dia-
gram use and having a correct answer (Spearman’s rank,
rs = 0.11, p < 0.01).

On the qualitative side of the analysis, examining the
heat-maps confirms that the page design successfully

prevented excessive scrolling, as most of the mouse
movements are centered on the document. Also, the
heat-maps reveal that people are counting elements in
the visualizations, for example in the Figure 29 you can
see a cluster of mouse movements around some groups
of the Euler diagram. Another observation drawn from
Figure 29 is that participants who got the question cor-
rect spent more time examining the correct numbers in
the legend of the diagram.

Figure 28: Heat Map Visualization of the Area-proportional
Euler condition. All answers.

Figure 29: Heat Map Visualization of the Euler-proportional
condition. Correct answers.

Double−tree

Sankey

Flowchart

Euler

Frequency Grid

Text−legend

0 200 400 600 800 1000
Figure 30: Diagram Use Boxplot (Mouse Move Events).
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8.9. Comments

On the last page of the survey, participants were asked
to “Please provide any comments or concerns.” These
comments were coded by one of the authors to iden-
tify general themes of responses. See the supplemen-
tary material for a full list of comments and tags added,
a summary of which can be seen in the Tag Cloud in
Figure 31. The most common tags used during the codi-
fication process were “none” (57, 23%), “cognitive pro-
cess” (37, 15%), “thank you” (27, 11%), “praise” (21,
8%), “confused” (21, 8%), “graph” (20, 8%), “ques-
tion” (9, 4%), “personal” (7, 3%), “interesting” (7, 3%),
and “easy” (7, 3%). A number of people reported us-
ing the visualization within which a few commented on
the experience (e.g. “This chart was incredibly confus-
ing,” referring to the Sankey Diagram). Since areas of
confusion were of interest, co-occurrence of other tags
with the tag “confused” was counted. We found that
five comments with the tag “confused” did not specify
a reason, nine comments specified the reason to be the
question, five comments attributed their confusion to the
graph, and two suggested that the medical terms caused
confusion.

none
cognitive process

thank you
praise

confused

graphquestion

personal
interesting

easy

apology

hard

asked question

unsure
short
medical terms

guessed

good luck

exact question
education detail

answer was given

trick question

need more info  

full screen

correct

confidence

comprehension

bad grammar

Figure 31: Tags used during codification of the participant’s
comments. The size and color intensity corresponds to fre-
quency of the tag.

8.10. Effect Size

Several of our conditions (Text-only, Frequency Grid,
Euler) are similar to those in the experiments of Micallef
et al. (2012) Thus, it makes sense to compare the effects
of visualization that we see to those that Micallef et al.
(2012) saw. Hornbæ k et al. (2014) also recommended
effect size comparisons as a way to make comparisons
across replications more content rich. To compare the
effect sizes, we first calculated an effect size of the ma-
nipulations in Micallef et al. (2012) from the available
log files, finding a small effect d = 0.11 for the fre-
quency grid (condition V3 in Micallef et al. (2012) ex-
periment 1) and a small effect d = 0.1 for the Euler ar-
ray (condition V4 in Micallef et al. (2012) experiment 2)
over the text only condition (Micallef et al. (2012) V0).

In our study, we find a medium effect size of d = 0.5
(frequency grid vs. text-only) and a small effect of Eu-
ler (d = 0.33) over the text-only condition. Both effects
are much higher than the earlier study.

9. Discussion

The most interesting effect is the difference in per-
formance in text-only and text-legend conditions. This
highlights that it is not the representation of the problem
as a visualization or as plain-text, but rather the infor-
mation contained therein that has the largest effect on
performance. This speaks to the information complete-
ness criteria which, in our study, obviated the need for
estimation or calculation.

We speculate the poor performance of participants
in the text-only condition reflects that participants had
difficulty extrapolating all of the necessary information
to correctly answer the problem. This is similar to the
text-only performance reported in Micallef et al. (2012)
Participants performed markedly better using our visu-
alizations designed with the information completeness
criteria.

Surprisingly, performance with the text-legend con-
dition did not significantly differ from any of the visu-
alizations. In addition, the underlying representation of
the visualization also had little effect on performance.
This suggests to us that differences in structure alone
do not help participants better understand the informa-
tion provided. Our top performing conditions included
explicit and implicit legends, and employed styles in-
cluding frequency, branching, branching + nested-sets,
and none. This suggests that no single stylistic approach
provides a clear benefit.

The majority of prior work in Bayesian visualization
has focussed on evaluating different underlying repre-
sentations. Based on the results of the current work,
we believe this structure plays less of a role than pro-
viding sufficient information to the user. Nevertheless,
future work is still needed to explore the effect of differ-
ent visualization properties. For example, one interest-
ing property of visualizations such as the Euler Diagram
or the Frequency Grid is that they do not emphasize a
particular direction of reasoning, while the Flowchart
or Sankey Diagram are meant to be read top-to-bottom
or left-to-right. To examine such effects, future studies
could try asking multiple Bayesian questions for a given
visualization, requiring participants to find multiple dif-
ferent probabilities, such as P(A|B) and P(B|A). A study
employing eye-tracking could also indicate how visual-
izations are read and if visualization orientation may re-
late to performance. Also, further work could explore
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whether the addition of an explicit legend would benefit
visualizations that already have implicit legend infor-
mation.

Further, we suggest future research focus on methods
of helping users to interactively navigate the space of
possible solutions, thereby supporting users directly in
understanding how the data values interact and which
values are relevant to the problem question. For ex-
ample, participants showed great difficulty in answer-
ing the denominator correctly which suggests that they
were unable to select an appropriate subset of the popu-
lation. While such interactivity and animation is a very
promising direction for this work, many new factors of
difficulty could be introduced by the extension of the
static graphs, (Tversky et al., 2002), and so should be
considered carefully.

Overall, 20% is still a very low score and further re-
search is needed to determine why 80% of people fail
to find the correct answer for the Mammography Prob-
lem. We found that recording the micro-interactions of
all the trials to be extremely helpful to us. In watch-
ing many hours of playback of the user sessions, we
feel that participants were genuinely trying to answer
the question but are missing several insights. First, as
can be seen in Figure 23, approximately half of the par-
ticipants who achieved the correct numerator failed to
select the correct denominator, instead, often choosing
the entire population (1000 women). While this may be
an indication of base-rate neglect, as has been proposed
by others, by looking directly at the answers, we believe
the denominator issue may indicate ambiguity as the is-
sue. That is, the question ”out of” may be interpreted
as asking for the superset, namely the total number of
people in the population. If the question was interpreted
in this way, then many of the participants who answered
“1000” believed that they answered correctly, not that
they misunderstood the question or neglected the base
rate. Fixing this issue would still only bring us to 40%
indicating that a significantly different approach is still
needed. We believe that experiential learning is needed
through interactivity to help the majority of people to be
able to correctly answer the Mammography Problem.

10. Conclusion

Bayesian inference is an important yet difficult part of
critical decision making. Visualizations may help peo-
ple to apply Bayesian inference to solve problems in-
volving uncertainty but previous work has not revealed
insights into why some visualizations are more or less
helpful than others. We propose that they have not
closely examined the relation between the structure and

information content of Bayesian problems and the vi-
sual encoding and information available in the graphical
representations used.

We proposed comparability criteria to help organize
a Bayesian problem visualization design space as a
methodology to develop specific visualizations that rep-
resent the key features of Bayesian problems, that is,
frequency, nested-set relations, and branching. After re-
viewing a broad set of existing visualizations that have
been studied for Bayesian problems, we proposed that
hybrid visualizations, that convey two of the three key
features, may be more effective than primary visualiza-
tions that only convey one key feature.

To complete the visualization design space, we pro-
posed two additional hybrid visualizations: the Sankey
Diagram and a novel Flowchart design. We ran a crowd-
sourcing experiment with 700 people testing primary
and hybrid visualizations as well as text-only condi-
tions with and without complete information. Going
beyond aggregate statistics, we recorded detailed micro-
interactions from all participants. This revealed new in-
sights based on examining the numerator and denomi-
nator separately, specifically that the textual formulation
of the request for an answer in a generic frequency for-
mat (e.g., “X out of Y”) may be too ambiguous leading
to a superset answer for the denominator. This indica-
tion differs from the results interpretation in previous
work where base-rate neglect was blamed as the cause
of poor performance of participants. The most sur-
prising outcome was that controlling for the complete-
ness of information, that is, by ensuring that all infor-
mation was directly available in all conditions (except
text-only), did not lead to greatly higher performance.
Moreover, three visualizations performed slightly better
than this baseline while two hybrid visualizations were
worse. As our analysis of the interaction data reveals
that a good degree of attention was paid to the visualiza-
tions presented, the need for some further investigation
of visual complexity and cognitive load may be indi-
cated.

In summary, we improved the overall performance in
solving the Mammography Problem using Mechanical
Turk compared to previous work but not by a large mar-
gin. By providing complete information in each condi-
tion, and by designing the page layout to avoid scrolling,
significant improvements in accuracy were measured.
Furthermore, by adhering to our proposed complete-
ness of information criteria, we avoided the need for ei-
ther estimation or calculation to answer the question, in
all conditions (except Text-only). These methodologi-
cal and design improvements also significantly reduced
the time taken to answer. Having tested a full design
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space, it is surprising that significantly different visu-
alization designs did not perform very differently from
each other. While these considerations and criteria were
developed for our specific study, we believe they apply
more broadly to crowdsourcing experiments and visual-
ization comparison in general.

Given the critical use of Bayesian reasoning in both
personal and professional decision making under un-
certainty, improvement in performance is still needed.
However, our results suggest that major improvements
will not come from better static visualizations. We
therefore look to problem expression and animated vi-
sualizations for performance improvements in future
work.
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