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1. INTRODUCTION

Many of today’s programs have not hundreds, but thousands of commands for a user
to become aware of and learn [Hsi and Potts 2000]. In each release, more commands
might be added to provide new functionality, and without explicit effort on the part of
the user to learn about the new features, they are left untouched [Baecker et al. 2000].
For example, in Autodesk’s AutoCAD, the number of commands has being growing
linearly over time (Figure 1) with 45 new commands, all providing new features, added
in the most recent 2011 release. And even with the hundreds of commands available
in AutoCAD, 90% of users use less than 90 commands (Figure 2).

An inherent challenge with such systems is a user’s awareness of the functionality
which is relevant to their specific goals and needs [Findlater and McGrenere 2010;
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Fig. 1. Number of built-in commands in each AutoCAD yearly release.

Fig. 2. Histogram of the number of commands used by 4000 AutoCAD users in 6 months. The largest group
of users use only between 31 and 40 commands.

Grossman et al. 2009; Shneiderman 1983]. Awareness of functionality is important
not only for learning how to accomplish new tasks, but also for learning how to better
accomplish existing tasks. In a potential “best case scenario,” the user works with an
expert next to them, who can recommend commands when appropriate.

While previous HCI literature has looked at intelligent online agents, most of this
work is focused on predicting what current state a user is in, if they require assistance,
and how to overcome problems [Davison and Hirsh 1998; Dent et al. 1992; Hermens
and Schlimmer 1993; Horvitz 1999; Igarashi and Hughes 2001; Krzywicki et al. 2010;
Miller et al. 2003; Shneiderman 1983]. Existing software techniques for suggesting
commands, such as “tip-of-day” and “did you know,” can expose users to functionality,
but are often presenting irrelevant information to the user [Fischer 2001; Norman and
Draper 1986]. Linton’s OWL system [Linton and Schaefer 2000] recommended com-
mands to word processing users based on the common usage pattern of other users
and the areas where the target user differed from those patterns. This personalization
assumes that all users have similar optimal usage patterns and could be extended
to take into account the user’s current context of use. In addition, such working im-
plementations of command recommenders embedded within target applications have
never been evaluated during real usage situations. Thus, it is unknown how well such
recommendations will be received by end users, and what the important usability
issues are concerning their delivery.

Systems that recommend relevant content to users, known as “recommender sys-
tems” are very popular in other domains. Some of the most popular movie, shopping,
and music websites provide users with personalized recommendations [Linden et al.
2003; McNee et al. 2006; Resnick et al. 1994; Sarwar et al. 2000], and research in im-
proving the collaborative filtering algorithms that these systems use is an active field
of research [Adomavicius and Tuzhilin 2005]. This includes work which use contextual
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or short-term temporal information to improve recommendations [Nguyen and Ricci
2008; Schafer et al. 1999; Terveen et al. 2002].

In this article we introduce and investigate the application of such modern collab-
orative filtering algorithms to address the command awareness problem in software
applications. Our goal is to present to users within-application recommendations of
commands they are not currently familiar with that will help them use the software
more effectively. This article is divided into three main parts.

First, we describe the development and evaluation of collaborative filtering algo-
rithms that have been specifically designed for the domain of software command rec-
ommendations. The findings from this study validated the usage of such algorithms,
as they provided significantly improved recommendations in comparison to existing
approaches.

Second, we systematically investigate the design space of these algorithms, and ex-
tend them to support the delivery of short-term contextual recommendations in addi-
tion to traditional “long-term” global recommendations. An offline evaluation indicated
that this enhancement could further improve the recommendations.

Third, we describe our CommunityCommands system, developed as a plug-in for
AutoCAD. The plug-in applies our developed recommender system algorithms to gen-
erate personalized command recommendations displayed in a peripheral tool palette
within the user interface. Using this system, we conducted an online evaluation where
we deployed the plug-in to 32 full-time professional AutoCAD users for a 6-week user
study in their real working environments. We report and visualize the data collected
during this online evaluation, including metrics of usage patterns and adoption
rates, and discuss subjective feedback. Both the contextual and long-term algorithms
successfully exposed users to new commands as there was a significantly increase in
the number of unique commands issued, and a subjective user-preference towards
contextual recommendations was reported.

1.1. Summary of Contributions

The work that follows in this article makes to following contributions:

1. We adapt modern collaborative filtering algorithms to the domain of software com-
mand recommendations and provide a thorough discussion of the issues which need
to be considered, and possible variations.

2. We introduce a design space for such algorithms that considers methods for deliv-
ering both short-term (contextual) and long-term (global) recommendations.

3. We introduce a new offline evaluation algorithm for measuring the effectiveness of
such algorithms from existing usage data logs.

4. We perform an online evaluation of our new algorithms and show that they signif-
icantly improve the quality of recommendations compared to existing approaches.

5. We describe a new user interface design for delivering and updating command
recommendations in real time, within the actual application.

6. We deploy and evaluate our new interface component as a plug-in for AutoCAD in
a field study with 32 users.

7. We provide a thorough analysis of the results from our field study, which showed
that there was a significant increase in the number of unique commands issued
when our plug-in was activated.

2. RELATED WORK

To our knowledge, CommunityCommands is the first recommender system to use col-
laborative filtering technology to address the problem of learning software commands.
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However, our work is related to a number of previous research topics, both in the areas
of software usability and recommender systems.

2.1. Adaptive and Intelligent User Interfaces

Previous research has focused on adapting and optimizing the interface to the current
user and context [Claypool et al. 2001; Cutrell et al. 2000; Gajos et al. 2010], and
inferring possible operations based on the user’s behavior [Horvitz et al. 1998; Hudson
et al. 2003]. The domain knowledge base of such systems is often predesigned and self-
contained. With CommunityCommands, the knowledge base is acquired automatically
from a large scale user community and evolves with its users.

Intelligent user interfaces are designed to observe and learn from users’ actions, and
accomplish personalized tasks. Examples include predicting the user’s next command
[Davison and Hirsh 1998], automatically completing forms [Hermens and Schlimmer
1993], maintaining calendars and emails [Dent et al. 1992; Horvitz 1999; McCrickard
et al. 2003], assisting users in word processing tasks [Horvitz et al. 1998; Liu 2003], and
automatically generating user interfaces adapted to a person’s abilities and preferences
[Gajos et al. 2010]. Most personal assistance programs analyze repetitive user behav-
iors, and automate the repetitions; in contrast, our system suggests useful commands
that users have never used.

2.2. Notifications and Interuptability

Previous research [Bailey and Konstan 2006; Cutrell et al. 2001; Cutrell et al. 2000;
McGrenere et al. 2002] has demonstrated the harmful effects that notifications can
have on a user’s task performance. To compensate, there is a large body of work on
determining when and how to best interrupt a user [Hudson et al. 2003]. However, this
remains an open problem. CommunityCommands uses an ambient display [Wisneski
et al. 1998], where the user can get the information when they are ready, thus avoiding
the problems associated with interrupting the user’s work flow.

2.3. Recommender Systems

Recommender systems have become an important approach to help users deal with
information overload by providing personalized suggestions [Hill et al. 1995; Resnick
et al. 1994; Sarwar et al. 2000], and have been successfully applied in both industry and
academia. Recommender systems support users by identifying interesting products and
services when the number and diversity of choices outstrips the user’s ability to make
wise decisions. One of the most promising recommending technologies is collaborative
filtering [Hill et al. 1995; Sarwar et al. 2000]. Essentially, a nearest-neighbor method
is applied to find similar users and recommendations are based on how her likes and
dislikes relate to a large user community. Examples of such applications include rec-
ommending movies [Miller et al. 2003], news [Resnick et al. 1994], books [Linden et al.
2003; Sarwar et al. 2000], music [AppleComputers], research papers [McNee et al.
2006a], and school courses [Farzan and Brusilovsky 2006; Hsu 2008]. However, re-
search has shown that users may be reluctant to provide explicit ratings [Claypool et al.
2001], and so our research considers an implicit rating system for software commands.

2.4. Recommending Commands

Under the assumption that more functionality makes a system more useful and
marketable [Baecker et al. 2000] applications have continued to grow in both com-
mands and features, with some of the more complex systems containing thousands
of commands. This has resulted in software “bloat” [Baecker et al. 2000; Kaufman
and Weed 1998] which can overwhelm users and make it difficult to become aware
of which features are relevant to their personal needs [Baecker et al. 2000; Findlater
and McGrenere 2010]. While efforts have been made to reduce the feature space of
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applications through adaptive [Findlater and McGrenere 2010; Shneiderman 2003] or
multilayered [Carroll and Carrithers 1984; Findlater and McGrenere 2010; Shneider-
man 2003] user interfaces, our focus is instead on a command recommendation system
which helps users find relevant tools that they were not previously aware of. Little
research has been conducted to help users learn and explore a complicated software
package using a recommender system. Typical approaches to proactively introduce
functionality to a user include “Tip of the day,” and “Did you know” [Norman and
Draper 1986], but these suggestions are often irrelevant to the user and are presented
in a decontextualized way [Fischer 2001].

The OWL System [Linton and Schaefer 2000] is one of the few systems we have iden-
tified as going beyond these simple solutions. The system, which is meant to run within
an organization, compares a user’s command usage to the average usages across the
organization. The system then makes a recommendation if a command is being under-
utilized or overutilized by an individual in comparison to the group. This algorithm
produces recommendations based on the assumption that all users in the organization
should share the same command usage distribution. Accordingly, it may work well for
novice users engaged in common tasks—for instance, by informing a word process-
ing user that there is a delete word operation. The underlying assumption, that users
should exhibit similar application usage patterns, may break down as the users become
more specialized and have different tasks, goals, and preferences. The system which
Linton described is a useful first step, but could potentially be improved when combined
with more advanced recommender system technology. CommunityCommands uses col-
laborative filtering to recommend the most relevant commands for each individual user.

2.5. Recommendations Based on Long-Term and Session-Specific Preference

In addition to being personalized, recommendations could also be contextual. Schafer
et al. [1999] introduced the concept of degree of persistence in recommendations, which
depends on how the recommendations are based on data from previous customer ses-
sions with the system. This dimension ranges from completely ephemeral recommen-
dations, which are based on a single customer session, to persistent recommendations,
which are based on the system recognizing the customer and exploiting information
previously gathered about her over a longer period of time.

The length of a user’s rating history is an important factor to consider when creat-
ing a recommendation system. If the system includes the ability to track users across
multiple sessions then the set of recommendations can be based on a long-term un-
derstanding of the user’s preferences, for example, the movie recommender in Netflix.1
On the other hand, if profiles are derived from anonymous user sessions, then the
recommendations will be based on a short-term view of each user’s history, such as
in the CDNow2 music recommendation system. Nguyen and Ricci [2008] performed
offline evaluations showing prediction accuracy can be improved by combining both
long-term and session-specific preference. In our work we investigate the design space
of short-term and long-term command recommendations.

2.6. Recommender System Evaluations

Research on recommender systems is generally focused on improving their prediction
accuracy [Herlocker et al. 2004]. To do this, offline evaluation divides the user dataset
into a training dataset and a testing dataset. Some part of the user rating data in the
testing set is removed and those values are predicted using the training data and the
uncovered parts of the testing data [Basu et al. 1998; Herlocker et al. 2002; Herlocker
et al. 1999; Sarwar et al. 2000]. Offline evaluation can be an efficient way to evaluate

1www.Netflix.com
2www.CDNow.com
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recommenders when looking at accuracy metrics. However, accuracy metrics are not
able to evaluate the novelty or serendipity of recommendations [Herlocker et al. 2004;
McNee et al. 2006b]. Although much effort has gone into offline evaluation of recom-
mendation novelty [Celma and Herrera 2008; McNee et al. 2002; Weng et al. 2007;
Zhang et al. 2002], online evaluation, with real user participation, is still the most
accurate way to evaluate the novelty of recommendations [McNee et al. 2006b] and the
only way to evaluate actual recommendation usefulness, user confidence and decision
effort [Chen and Pu 2006]. To evaluate the strength of our proposed recommendation
algorithms, we use both online and offline evaluations [Matejka et al. 2009] and con-
sider both novelty and usefulness. We also study the change of overall new command
adoption rate with and without the recommenders.

2.7. New Command Adoption

The issue of experienced users learning new things within a software application is a
difficult problem [Bosser 1987; Linton and Schaefer 2000; Mack 1990]. Bosser [1987]
noted that people stop learning new things quickly. Mack [1990] observed that people
tend to stay with their established methods. Our hope is to design new algorithms to
generate useful recommendations, along with a simple and unobtrusive interface to
deliver those recommendations, to best encourage new feature learning and adoption.

3. SYSTEM OVERVIEW AND APPLICATION DOMAIN

Our work is implemented within AutoCAD, a widely used architecture and design
software application, made by Autodesk. We felt AutoCAD would be an excellent
software package to work with, since it not only has thousands of commands (including
both built-in commands, system variables, and customized commands), but also
numerous domains of usage. While our work is implemented within AutoCAD, the
concepts map to any software where command awareness may be an issue, and its
usage varies across users.

In AutoCAD, command usage histories are collected using a Customer Involvement
Program (CIP), which is a voluntary program that individual users can choose to opt
into. From this program, we obtained our data set, which is composed of 40 million
(User, Command, Time) tuples collected from 16,000 AutoCAD users over a period of
6 months. The CIP data does not contain any personal information, specific command
parameters, or document content, so a user’s confidentiality is respected.

The general idea for the CommunityCommands system is to first compare a target
user’s command usage to the entire user population. The system then generates per-
sonalized recommendations of commands to the target user, and presents a top-N list
of those recommendations within a palette in the application (Figure 3). In Sections 4
and 5 we focus on the algorithms used to generate the command recommendations. In
Section 6, we describe the design interface used to present those recommendations to
the user, and a study where we deployed the interface to real AutoCAD users to provide
in-application, real-time, command recommendations.

4. COLLABORATIVE FILTERING FOR COMMAND RECOMMENDATIONS3

As alluded to in our review of related work, there are a number of unique considerations
to address in developing a recommender system for software commands. Traditional

3The contents of Section 4 are based on the existing ACM UIST publication:

Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G. 2009. CommunityCommands: command recommen-
dations for software applications. In Proceedings of the 22nd Annual ACM Symposium on User interface
Software and Technology (Victoria, BC, Canada, October 04–07, 2009). UIST’09. ACM, New York, NY, 193–
202. DOI= http://doi.acm.org/10.1145/1622176.1622214.
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Fig. 3. CommunityCommands system overview.

Fig. 4. Map of Good, Poor, and Unnecessary Recommendations.

approaches to recommender system development must be rethought, such as how rat-
ings are defined and how collaborative filtering algorithms are chosen. In the following
section, we describe these considerations in more detail.

4.1. Algorithm Design Considerations

Our goal is to develop algorithms that will deliver recommendations that are both novel
and useful.

1. Novel Recommendations. The recommendations should be commands that the user
is unfamiliar with. This is in contrast to Linton’s work, where recommendations were
also made to increase or decrease existing command usages [Linton and Schaefer
2000].

2. Useful Recommendations. The recommended commands also need to be useful for
the user. This could mean that the command is useful immediately, or useful at some
point in the future given the type of work the user does.

The combination of novel and useful commands leads to a two-dimensional space of
command recommendation types (Figure 4).

We consider a good recommendation to be a command that is both useful and novel
to the user. A poor recommendation is a command that is not useful to the user. An
unnecessary recommendation is a command which is useful to the user, but the user
was already familiar with. Unnecessary recommendations can actually be helpful in
improving the user’s confidence in the system [McNee et al. 2006a], but this is very
dependent on the user’s expectations. If the expectation is that the system will be
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Fig. 5. Cumulative percentage of command counts for AutoCAD commands.

suggesting “new” commands which may be useful, commands with which the user is
already familiar may be seen as poor suggestions.

4.2. The “Ratings”

Typical recommender systems depend on a rating system for the items which it recom-
mends. For example, a recommender system for movies may base its recommendations
on the number of stars that users have assigned to various titles. These ratings can be
used to find similar users, identify similar items, and ultimately, make recommenda-
tions based on what it predicts would be highly rated by a user.

Unfortunately, in our domain, no such explicit rating system exists. Instead, we
implicitly base a user’s “rating” for any command on the frequency for which that com-
mand is used. Our collaborative filtering algorithm then predicts how the user would
“rate” the commands which they do not use. In other words, we take a user’s observed
command-frequency table as input, and produce an expected command-frequency table
as output.

A basic method is to define the rating rij of a command ci as the frequency for which
the user uj has used the command ci. A limitation of using this approach is that in
general, a small number of commands will be frequently used by almost everyone
[Lafreniere et al. 2010; Zipf 1949]. Thus, when comparing users, each pair of users will
tend to have high similarity because they will all share these popular high frequency
commands. This is certainly the case in AutoCAD. For example, in Figure 5, we see that
the top 10 commands make up 50% of all commands issued, and the top 100 commands
make up 93% of all commands issued.

We need to suppress the overriding influence of commands that are being used
frequently and by many users. Document retrieval algorithms face a similar challenge.
For example, an Internet search engine should not consider two Webpages similar
because they both share high frequencies of the words “a,” “to,” and “the.” Such systems
use a “term frequency inverse document frequency” (tf-idf) technique [Jones 1972] to
determine how important a word is to a particular document in a collection. For our
purposes, we adapt this technique into a command frequency, inverse user frequency
(cf–iuf) weighting function, by considering how important a command is to a particular
user within a community. To do so, we first take the command frequency (cf) to give a
measure of the importance of the command ci to the particular user uj .

c fij = nij∑
k nkj

,

where nij is the number of occurrences of the considered command of user uj , and the
denominator is the number of occurrences of all commands of user uj .
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The inverse user frequency (iuf), a measure of the general importance of the com-
mand, is based on the percentage of total users that use it:

iufi = log
|S|

|{uj : ci ∈ uj}| ,

where:
|S|: total number of users in the community
|{uj : ci ∈ uj}|: number of users who use ci.

With those two metrics we can compute the cf-iuf as:

c f -iufij = c fij · iufij .

A high weight in c f -iuf is obtained when a command is used frequently by a particular
user, but is used by a relatively small portion of the overall population.

4.3. Generating Recommendations

Collaborative filtering approaches are classified as model-based or memory-based.
Model-based approaches use training data to generate a model which is able to pre-
dict the ratings for unrated items [Breese et al. 1998; Canny 2002; Hofmann 2004].
However, model-based approaches often need to tune a large number of parameters
and therefore they are hard to apply in practical systems. Memory-based approaches
generate recommendations based on all ratings stored into memory without learning
an abstract model. The advantages of the memory-based methods include: 1) fewer pa-
rameters have to be tuned; and 2) their recommendations are more intuitive for users to
understand. The disadvantage of a memory-based approach is that data scarcity stops
many memory-based methods from being practical. But in our application, a user’s
command data is usually less sparse as compared to data in current recommender
systems such as Netflix and Amazon. For example there are more than 8 million items
on Amazon’s Website compared to only two thousand commands in AutoCAD.

Based on above considerations, we choose to focus on memory-based collaborative
filtering techniques. The two most common such techniques are user-based [Resnick
et al. 1994] and item-based [Sarwar et al. 2001] algorithms, but it is not clear from prior
literature which of these two approaches will be best suited for our specific domain. As
such, we will investigate both algorithms in this section.

Both of these techniques have two inputs: the command history of each user in
the community, and the command history of the user for whom we are generating
a recommendation, called the active user. User-based collaborative filtering predicts
an active user’s interest in an item by looking at rating information from similar
user profiles. Item-based approaches apply the same idea, but use similarity between
items instead of users. User-based algorithms need to search for neighbors among a
large user population of potential neighbors. Item-based algorithms avoid this step
by exploring the relationships between items first. Recommendations are computed
by finding items that are similar to other items the active user has liked. Because
the relationships between items are relatively static, item-based algorithms typically
provide the same quality as the user-based algorithms with less online computation
time [Sarwar et al. 2001].

4.3.1. User-Based Collaborative Filtering. User-based collaborative filtering generates rec-
ommendations for an active user based on the group of individuals from the community
that he/she is most similar to (Figure 6). The algorithm averages this group’s command
frequencies, to generate an expected command-frequency table for the active user. The
algorithm details are described in the following.
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Fig. 6. The active user is in red, and her expected frequency table will be compiled from her most similar
neighbors (in yellow).

Fig. 7. Simplified example of user similarity. Alice and Bob are more similar than Bob and Cindy as the
angle between their command vectors is smaller.

Defining Command Vectors. For user-based collaborative filtering we require a
method to measure the similarity between two users. A common approach for do-
ing this is to first define a representative vector for each user, and then compare the
vectors. Our method is to define the command vector Vj such that each cell, Vj(i),
contains the cf-iuf value for each command ci, and use these vectors to compute user
similarity.

Finding Similar Users. As with many traditional recommender systems, we measure
the similarity between users by calculating the cosine of the angle between the users’
vectors [Witten et al. 1984]. In our case, we use the command vectors, as described
above. Considering two users uA and uB with command vectors VA and VB

similarity (uA, uB) = cos (θVA,VB) = VA · VB

‖VA‖ ∗ ‖VB‖ .

Thus, when similarity is near 0, the vectors VA and VB are substantially orthogonal
(and the users are determined to be not very similar) and when similarity is close to
1 they are nearly collinear (and the users are then determined to be quite similar). As
can be seen in Figure 7, using the cosine works nicely with our rating system based
on frequencies, since it does not take into account the total number of times a user
has used a command, but only its relative frequency. We compare the active user to
all other users in the community, to find the n most similar users, where n is another
tuning parameter.

Calculating Expected Frequencies. To calculate an expected frequency for each com-
mand, we take a weighted average of the command frequencies for the active user’s
n similar users. We used offline evaluations to tune n, size of neighbors, eventually
converging on a value of n = 200. We define the expected frequency, e fij , for command
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ci and user uj :

e fij =
n∑

k=1

w jkc fik,

where wi j = similarity(ui, uj) is and c fik is the frequency of command ci and user k.

Removing Previously Used Commands. Once we create a list of all the command fre-
quencies, we remove any command which the user has been observed to use, preventing
known commands from being suggested.

Returning the Top-N List. The final step is to sort the remaining commands by their
expected frequencies. The highest N commands will appear in the user’s recommenda-
tion list.

4.3.2. Item-Based Collaborative Filtering. Rather than matching users based on their com-
mand usage, our item-based collaborative filtering algorithm matches the active user’s
commands to similar commands. The steps of the algorithms are described below.

Defining User Vectors. We first define a vector Vi for each command ci in the n
dimensional user-space. Similar to user-based approach, each cell, Vi( j), contains the
cf-iuf value for each user uj .

Build a Command-to-Command Similarity Matrix. Next, we generate a command-
to-command similarity matrix, M. Mik is defined for each pair of commands i and k as:

Mik = cos(Vi, Vk).

Create an “Active List”. For the active user, uj , we create an “active list” L, which
contains all of the commands that the active user has used.

Lj = {ci|c fij > 0}.
Find Similar Unused Commands. Next, we define a similarity score, si, for each

command ci which is not in the active user’s active list:

si = average(Mik,∀ck ∈ L).

Generate Top-N List. The last step is to sort the unused commands by their similarity
scores si, and to provide the top N commands in the user’s recommendation list.

4.4. Domain-Specific Rules

These techniques work without any specific knowledge about the application. In an
initial pilot study, this was shown to lead to some poor recommendations which could
have been avoided. Thus, we created two types of rules to inject some basic domain
knowledge into the system.

Upgrades (A;B). An upgrade is a situation where if you use command A there is no
need for you to use command B. For example, if an AutoCAD user uses MouseWheelPan
we would not recommend the Pan command, since it is a less efficient mechanism to
activate the same function.

Equivalencies (A<B). We consider two commands to be “equivalent” when it makes
sense for a user to use one of the two commands, but not both. For example in AutoCAD
there are the HATCH and BHATCH commands. BHATCH is from earlier versions of
the product, but it does the same thing.

We generated domain specific rules by consulting with an AutoCAD domain expert
in a single, two-hour session. To generate the rules, we first explained to the domain
expert our goal and the two types of rules. The expert was then presented with a list of
the most frequently recommended commands from the pilot study as well as the most
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Fig. 8. k-Tail evaluation of a command sequence.

common commands from the CIP data. The expert inspected each command, one-at-a-
time, and determined if there was another command already examined, or that he was
aware of, for which one of the two rules applied. This process resulted in 21 specific
rules being identified. Four of these rules were Upgrades and 17 of the rules were
Equivalencies.

4.5. Offline Algorithm Evaluation

Here, we present an automated method to evaluate the recommender algorithms using
our existing CIP data. Using this data set we can try to simulate the behavior of users
that interact with a recommender system. Offline experiments are important because
they require no interaction with real users, and thus allow us to compare a wide range
of candidate algorithms at a low cost. Although offline evaluation cannot replace online
evaluation, it is a useful step to tune the algorithms and verify our design decisions
before the recommender system is deployed to real users.

The development of the algorithm was a challenging task since we required a metric
that would indicate if a recommended command, which had never been observed, would
be useful to a user. To accomplish this we developed a new k-tail evaluation where we
use the first part of a user’s command history as a training set, and the rest of the
history as a testing set.

4.5.1. Evaluation Method: k-Tail. Consider a user ui with a series of commands S. k-
tail evaluation divides this command sequence into a training sequence Strain and a
testing sequence Stest based on the number of unique commands, so that there are k
unique commands in Stest which are not in Strain. For example, the command sequence
in Figure 8 is a 2-tail series since there are two commands, SOLIDEDIT and 3D
ROTATE, which have never appeared in the training set. To evaluate an algorithm, we
find the average number of commands which are in both user i’s recommendation list
Ri, and their testing set Stest,i. We define a hit for a user, (hiti = 1, otherwise 0), when
|Ri ∩ STi| > 0. RecallkT ail returns the percentage of users for which a hit occurred:

RecallkT ail =
∑n

1 hiti
n

,

where n is the number of users. Thus, RecallkT ail returns the percentage of users whose
top-N recommendation list includes at least one out of k commands in the testing set.

In addition to testing our user-based and item-based collaborative filtering algo-
rithms, we also implemented and evaluated Linton’s algorithm [Linton and Schaefer
2000]. The algorithm suggests the top commands, as averaged across the whole user
population, that a user has not used.

4.5.2. Offline Results. All three recommendation algorithms were evaluated using the
k-tail method and the offline CIP data. We only included users for which we had ob-
served at least 2000 commands (4033 total users). We used this cutoff because when
fewer commands have been logged, there is an increased chance that an unused com-
mand is familiar to the user and has simply not been recorded yet. The command
sequence of each CIP user is divided into a training set and a k-tail.

Figure 9 shows that when k = 1, the item-based algorithm predicts the next new
command correctly for 850 users, about 240 more than Linton’s. RecallkT ail returns the
percentage of users whose top-N recommendation list includes at least one out of k
commands in the testing set. When k > 1, it is more likely that at least one of those
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Fig. 9. Offline results showing RecallkT ail, the percentage of times the next new command was predicted in
a list of 10 by each algorithm.

new commands in the testing set (tail) is recommended. In the rest of this paper we
simply use k = 1, because it is the most difficult prediction based on our definition.

The downside of offline experiments is that they can answer a very narrow set of
questions, typically questions about the prediction power of an algorithm. To evaluate
this new collaborative filtering system in software learnability domain, a necessary
follow-up is to perform an online user study.

4.6. Online Algorithm Evaluation

We performed offline experiments using existing data sets to estimate recommender
performance measures such as prediction accuracy. While our offline evaluation showed
promise for our new techniques, the results may not be fully indicative of how our
algorithms would work in practice. As such, we conducted an online study with real
users. We collected data for a set of real users, generated personalized recommendations
for each of them, and had them evaluate their recommendations in a web-based survey.

4.6.1. Participants and Setup. We recruited 36 users (25 male, 11 female) of AutoCAD
2009 to participate in the study. To be considered for the study users were required to
use AutoCAD a minimum of 20 hours per week. Participants were aged 21 to 55 and
worked in varying fields including architecture, civil planning, and mechanical design,
across North America.

To capture the participants’ command usages, we instrumented their systems with
a custom written application to give us access to their full CIP data from the time it
was installed. Participants were asked to continue using AutoCAD as they normally
would. Command data was recorded from each user for approximately 10 weeks. After
collecting each user’s data, the recommendations were generated.

4.6.2. Generating Recommendations. We used a within-participant design. That is, each
participant was sent recommendations from each of the three algorithms. To do this,
we generated a top 8 list for each of the three algorithms. We then took the union
of these three lists, and randomized the order. Since the algorithms could produce
common commands, the final lists could range in size, and in the study, ranged from
14 to 22 items.

Each user was sent a survey with questions about each of the commands in their
customized recommendation list. For each recommended command participants were
given a short description of the functionality (for example “XLINE: creates an infinite
line”). Users were asked to familiarize themselves with the command as much as
possible before answering any questions about it.
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Participants were asked to rate the commands on the following 2 statements, using
a 5-point Likert scale:

Q1. I was familiar with this command.
Q2. I will use this command.

In an initial pilot study, we found that users sometimes claimed to use a command
frequently, when we could tell from their data that they did not. This was often due to
two different commands sounding similar. As such, in this study, we made it clear to
the participants that they had not used any of the listed commands.

During the course of the study we stopped receiving data from 12 of the participants
(they changed computers, lost their job, company inserted a new firewall, etc.) leaving
us with 24 viable participants. Three of these were used in a preliminary pilot study.
We sent out 21 surveys, with 4 participants not responding, leaving us with 17 users
completing the study.

4.6.3. Results.

4.6.3.1 Novelty and usefulness. Recall our main design consideration for the recom-
mender system was for it to produce useful and novel recommendations. We used re-
sponses to Q1 to measure novelty, and responses to Q2 to measure usefulness. Repeated
measure analysis of variance showed a significant difference in average usefulness for
technique (F2,32 = 13.340, p < .0001). The ratings were 2.82 for Linton, 3.18 for User-
Based, and 3.44 for Item-Based. Pairwise comparison using Bonferroni adjustment
showed there was a significant difference between Linton and Item-Based (p = .0001)
and User-Based and Item-Based (p = .038). The effect of technique on novelty ratings
did not reach significance. The ratings were 3.04 for Linton, 2.97 for User-Based, and
3.04 for Item-Based.

As discussed in the design considerations section we are interested in the quality of
the individual recommendations (Figure 2), particularly those falling into the “good” or
“poor” categories. As such we do not only want to look at usefulness ratings, but rather
judge the quality of the lists which the algorithms provide by assessing the number of
good and poor recommendations which each produces.

4.6.3.2 Good and poor recommendations. First, we consider good recommendations
to be those where the user was not previously familiar with the command, but after
seeing the suggestion, will use it. This corresponds to a response of strongly disagree,
somewhat disagree, or neither agree nor disagree to Q1, and a response of somewhat
agree, or strongly agree to Q2. We define the percentage of good recommendations as
the average number of recommendations produced which were good.

Repeated measure analysis of variance showed a main effect for the algorithm
(F2,32 = 12.301, p < .0001) on percentage of good recommendations. The overall per-
centages of good recommendations were 14.7% for Linton, 27.2% for User-Based, and
30.9% for Item-Based. Pairwise comparison using Bonferroni adjustment showed that
both User-Based (p = .006) and Item-Based (p = .001) had a significantly higher per-
centage of “good” suggestions than Linton’s approach, but the difference between Item-
Based and User-Based was not significant (Figure 10).

We defined poor recommendations as those where regardless of previous familiarity,
the user would not use the command, corresponding to a response of strongly disagree,
or somewhat disagree to Q2.

Repeated measure analysis of variance showed a main effect for the algorithm
(F2,32 = 11.486, p < .0001). The overall percentages of poor recommendations
were 41.9% for Linton, 32.4% for User-Based, and 22.1% for Item-Based. Pair wise
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Fig. 10. Percentage of “good” suggestions by technique. Error bars show standard error.

Fig. 11. Percentage of “poor” suggestions. Error bars show standard error.

comparison showed that Item-Based was significantly lower than both User-Based and
Linton (p < .05), but User-Based was not significantly different from Linton (Figure 11).

Overall, these results are very encouraging. Compared to Linton’s algorithm, the
item-based algorithm increased the number of good commands a user would receive by
110.2%, while reducing the number of poor commands by 47.3%, and in both cases the
difference was significant. The user-based algorithm also showed promise, increasing
good commands by 85.7%, and decreasing poor commands by 22.6%, although these
differences were not significant.

We analyzed how similar the recommendations produced by different algorithms
were. Each algorithm generated 8 commands for 17 users, or 136 commands in
total. There were 31.6% out of 136 commands recommended by all three algorithms.
Item-based and user-based recommended 75 of the same commands (55.1% overlap),
Linton and user-based recommended 70 of the same commands (51.4% overlap), and
item-based and Linton recommended 38 of the same commands (27.9% overlap). As a
special case of user-based approach, Linton’s method defines the neighbor of the active
user as all users instead of similar users. It explains why Linton’s and user-based
recommendations had the highest degree of overlap.

Overall the item-based approach provided a stronger set of recommendations in com-
parison to the user-based. We believe this is partially due to the fact that user-based
approach accumulates rating for each command from all neighbors. It is thus more
likely that commands with high popularity and frequency are recommended. Alterna-
tively, item-based approach builds item-by-item correlation only based on those users
who have used the same command pairs, in that way item-based recommendations are
more correlated with the active user’s command usage. For example, consider the case
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of two commands: a very popular command A and a less popular command B; both A
and B has not been used by the active user, but B is often used together with an active
user’s command C. For the user-based approach, A may be recommended because most
of the active user’s neighbors may have used A. For the item-based approach, B is more
likely to be recommended if the active user uses C frequently, because B has more
correlation with C. Although the cf-iuf rating partially solved this issue for user-based
approach, both offline and online study results confirmed that the user-based algorithm
still recommends more high frequency commands than the item-based algorithm.

4.7. Subjective Feedback

After we finished our study, we went on a workplace site visit to interview two of
the participants who had completed the study. The first participant is a manager
who trains new employees and serves as a gatekeeper for learning new features. The
second participant reports to the manager. We asked both participants to comment on
every item in their personalized recommendation list of commands from the survey.
In a few cases we found that a recommended command was known to the user but
not used as it had a known limitation for their needs and an alternative workflow
was used. We also found two cases where an upgrade rule could have been defined
to prevent a poor recommendation. Overall, these two participants felt that receiving
such recommendations could be a useful way to learn new features in the software. In
particular, the manager thought this could be a very effective way help new employees
learn features that they are expected to use in that particular office.

As further anecdotal evidence for recommendations to be potentially useful for learn-
ing, we received an unsolicited email from one of our participants three months after
the study, which read:

I just wanted to thank you because I have found myself using three of the recom-
mended commands fairly often these last few months and they’ve been quite helpful.
I’m really looking forward to seeing this feature in the future assuming you are still
working on it.

4.8. Summary

In this section we described our implementation of two new collaborative filtering
algorithms used to provide software command recommendation algorithms. We also
discussed the difference between item-based and user-based approaches. The results
of our offline and online evaluations indicate that using such algorithms can signif-
icantly improve the nature of recommendation that a user receives, with item-based
recommendations performing best.

Based on this promising result, we are motivated to further our investigation into
the design space of such recommendation algorithms. In particular, the algorithms
described in this section provide long-term or global recommendations, based on a
user’s entire command usage history. Still open for exploration are algorithms that can
provide users with short-term recommendations, based on the user’s current context
of usage. We investigate this further in the next section.

5. DESIGN SPACE OF CONTEXTUAL COMMAND RECOMMENDATIONS

The algorithms described in Section 4 produce recommendations tailored to an individ-
ual. This was shown to have an added benefit over Linton’s OWL system; commands
which are not relevant to the individual’s workflow will be avoided. For example, among
AutoCAD users, there is often a distinction in jobs between 2D CAD drafters and 3D
designers. It is not useful for a recommender to suggest 3D rendering commands to
those 2D users. However, because a user’s context is taken into account, a user who
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Fig. 12. Design space of command recommendation systems.

uses both 2D and 3D tools may receive commands related to 3D tools even if they
are currently drafting in 2D. In this section, we explore the design space for generat-
ing dynamic recommendations, and describe our development and evaluation of both
contextual and transaction-based recommendation algorithms.

We explore two important dimensions related to contextual recommendations: the
scope of the active user’s command history for defining current context (current session
or entire history), and the granularity of the global command history for generating
command-by-command correlations (session-based, or user-based) resulting in the de-
sign space shown in Figure 12.

5.1. Input from Active User’s Command Log

In the first axis of the design space (horizontal axis in Figure 12), the duration of the
active user’s command history, used as input to the recommender, is considered. In this
dimension we define two discrete values: current session, and entire history.

5.1.1. Current Session (A and C). Current session command data represents the user’s
session-specific preferences which are transient and dependent on the current task flow.
For example, in an e-commerce recommender system, an item which was purchased
recently by a user should have a greater impact on the prediction of the user’s future
behavior than an item which was purchased many years ago. Similarly, a user’s pref-
erence may change when switching between different tasks or stages in the workflow;
or, when working on multiple projects each of which require different sets of function-
ality from the application. A sequence of commands that have recently been used by
a user should have a greater impact on predicting this user’s future action or needs
than commands from longer ago. In a command recommender, the user’s short-term
requirements may change in different sessions.

5.1.2. Entire History (B and D). Alternatively, we can look at the user’s entire command
history, allowing the system to infer some of the user’s stable preferences which
remain true throughout. Recommendations generated using long-term history are
more stable than recommendations based on session data, but this could mean the
recommendations which may be useful at some point in the future, may not be
very useful given the current user task. For example, when using AutoCAD a user’s
complete command stream may indicate interest in both the 3D Alignment and 2D
Alignment commands, even though the user is currently working in a 2D drafting
project when clearly the 2D command is more relevant to the current task. Using the
entire history also has the potential advantage of having more data on an individual
user to use when computing similarities.
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Fig. 13. Example user history of a typical user showing distinct sessions of activity with breaks in activity
in between. Red lines indicate the intensity of user activity (darker red means more activity) and the white
areas indicate lack of activity.

5.2. Organization of Community Database

The second axis of the design space (vertical axis in Figure 12) determines how we
generate command-by-command correlations. We split up the community database by
either sessions or users.

5.2.1. By sessions (A and B). Session-based correlation represents the similarity be-
tween two commands which have happened together in a relatively short time frame.
Commands are tightly correlated because they have usually happened in the same
stage of a user’s task flow. For example, command pairs COPY-PASTE and REDO-
UNDO are closely related in the session-based similarity matrix. Of course any com-
mand correlations which would be seen over time periods spanning more than one
session cannot be captured by using a session-based correlation method.

5.2.2. By users (C and D). In contrast, to capture correlations which can occur over
multiple sessions, an alternative is to generate a user-based similarity matrix based
on each user’s entire command history. User-based correlation generates a matrix
containing similarities over the long-term among the items. In Section 4, our global
models are generated based on each user’s full command history. The benefit of using
the user’s entire history is to identify similar commands which may be used across
different sessions.

5.3. Framework and Algorithms

To the best of our knowledge, there is no previous work exploring the above-described
design space of the command recommender domain. We explored four algorithms, each
designed to satisfy one of the four quadrants in Figure 12.

5.3.1. Defining a Command Session. One important element is the need to define a com-
mand session. When we look at the command inputs of a typical usage scenario we
notice that the commands are not distributed evenly over time. For example we can
see the activity of a typical user in Figure 13, which shows that even though the ap-
plication was open the entire time, there were three time periods of relatively heavy
activity with two distinct gaps between them which splits this user’s command history
into three “sessions.”

Our command dataset includes the time intervals between every pair of sequential
commands performed, resulting in 40 million command pair timings. This data shows
that 95% of the command intervals are shorter than one minute and 0.6% of the inter-
vals are longer than one hour. There is also a command set, Q, containing commands
such as QUIT, CLOSE, and QSAVE, which end a command sequence immediately.
Based on both the command interval and the sequence ending commands, we define a
command session:

s = {c1t1 . . . cn−1tn−1, cn},∀ : ti < T , ci �∈ Q,
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Fig. 14. The recommendation process with the two decision points of using user histories broken up into
sessions or users, and looking at the command data from the current session or the entire history of the
active user.

where ci is the ith command in the sequence and ti is the time interval between ci and
ci+1. T is the amount of time of inactivity between two commands where we consider a
new session to begin. We define T = 1 hour for the purposes of this work.

5.3.2. Algorithms. Based on the results from Section 4, we use the item-by-item col-
laborative filtering in this section, but the design concepts could be extended to any
collaborative filtering algorithm.

Let us assume that we have n users in U , l sessions in S, and a set of mcommands, C.
Let ua ∈ U , be referred to as the active user, ua who will have used (“implicitly rated”)
a set of commands Ca ∪ C in ua’s entire command history, and ua rates commands in C
using a rating function ra : C → [0, I], where I is the maximum rating value defined
by the system. Let Cs ∪ Ca refer to the set of commands used in ua’s last session.

We define rs : S × C → [0.I] as the rating function for session-based correlation
and ru : U × C → [0, I] as the rating function for user-based correlation. We have
two similarity matrixes: Ms where Ms(i, j) = cos(θ⇀rsci

,⇀rsc j
) and MU where MU (i, j) =

cos(θ⇀ruci
,⇀ruc j

) using session’s data and user’s data respectively.
A recommendation set R can then be generated for each of the four design quadrants

from Figure 12. We use commands in Cs or Ca as an “active list” for the active user; for
every unused command, we compute the mean of its similarity to all the commands
in the active list; then we generate the top N commands with the highest means to
produce the top-N recommendation list.

Figure 14 summarizes the recommendation process and the design space. Specifi-
cally, it shows the two decision points of how to treat the history files from the user
community (to create a command similarity matrix), and which command data to look
at for the active user (as input to the item-by-item collaborative filtering algorithm) to
generate command recommendations. These two decisions lead to the four quadrants
of the design space.

5.3.3. Offline Evaluation. We use the k-tail technique (with k = 1) to evaluate the rec-
ommendations generated from algorithms A through D. To evaluate contextual recom-
mendations based on current session data (A and C), we first divide the active user’s
commands into training and testing sets; we then further divide the training set into
two parts so that the second part only includes commands in the last session of the
training set. We consider the second part of the set as contextual information for the
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Fig. 15. Offline evaluation of 4 recommendation approaches described in Figure 12 (higher percentages are
better).

Fig. 16. CommunityCommands palette docked in the bottom right corner beside the command line.

active user. Used commands are filtered out based on the active user’s entire command
history. Figure 15 shows that a user’s more recent commands (A, C) seem to hold more
relevance than commands that a user used any time in their history (B, D). This result
could be explained by the fact that the user’s last session’s actions are more likely to
be related with the user’s action in the near future than those actions happened long
time ago.

In the dimension of organization of the community command database, algorithms
using user-based data (C and D), showed improvements in comparison to the algorithms
using session data (A and B). We believe this is because command pairs used by the
same user in separate sessions are not captured when only using session data.

This offline evaluation indicates the short-term contextual recommendations will
improve the quality of the commands recommended to the users. However, an online
evaluation is necessary to further validate this finding. To perform such an evaluation,
we first need to develop an interface that can provide contextual, real-time recommen-
dations to our target users. In the next section, we describe CommunityCommands,
the plug-in for AutoCAD that we developed to deliver the recommendations. We then
describe the online evaluation we conducted using this plug-in, to further investigate
the differences between short-term and long-term recommendations.

6. DESIGN AND EVALUATION OF IN-APPLICATION RECOMMENDATIONS

We designed a working user interface to implement our recommender algorithms and
deliver the recommendations to the user (Figure 16). Using the plug-in, we are able to
conduct a field study with 32 real users, in their own working environments and within
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Fig. 17. Components of a suggestion button.

the target application. The study was counterbalanced with 16 users starting in the
short-term mode, and 16 starting with long-term.

6.1. User Interface Design Considerations

In the user interface design we adhered to the following guidelines.

1. Unobtrusive. The interface should stay out of the user’s way. We avoid a system that
pops up or forces the user to respond to the recommendation before continuing to
work, since this type of system could be frustrating [Hudson et al. 2003; Xiao et al.
2004].

2. In Context. The system should provide the recommendations within the application
[Knabe 1995]. This way a recommendation can be viewed and tested with minimal
switching cost.

3. Minimal Cost for Poor Suggestions. The interface should make the task of dealing
with poor suggestions, if they do occur, lightweight to minimize frustration, allowing
the user to spend more time looking at the good suggestions.

4. Self Paced. The user should be able to act on the recommendations when it is
convenient for them.

6.2. CommunityCommands Plug-In Design

The CommunityCommands interface was developed as an AutoCAD plug-in using the
ObjectArx API. The command recommendation window is contained within a docking
palette which can be docked to the side of the application window or left as a floating
window over the application. The position and size of the palette can be controlled by
the user.

Each of the command buttons contain the command’s name and icon, a bar repre-
senting the estimated relevance of the command to the user’s current context, and
a button to dismiss the recommendation to prevent it from appearing in the future
(Figure 17). We used the commands iconic representation from AutoCAD’s existing
menu and toolbar systems, to help users subsequently recognized and locate the com-
mands in the standard AutoCAD UI. A question mark icon was used for commands
without iconic representation. Hovering over the command button causes the stan-
dard AutoCAD tooltip to appear, and dwelling longer reveals an extended tooltip with
additional usage information. Clicking on the command button executes the command.

When commands are added or removed from the list, or the commands already in
the list are reordered, a 0.5 second animated transition is used, providing a subtle
cue to the user that their recommendation list is changing, and there might be new
commands of interest.

In order to generate the recommendations it is necessary to have a command usage
history for each user. The plug-in records this data locally to a text database. Besides
storing command history information, the plug-in also records when tooltips are acti-
vated on the command palette, and when the “close” button is clicked on a command.
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Fig. 18. User interface change between short-term and long-term modes.

The state changes of the recommendations list are recorded so we can see which com-
mands were in the recommendation list at any time, as well as see when the commands
in the list were reordered. When the plug-in is installed, the rating matrix, based on
the entire user community, is copied to their local machine, so that recommendations
can be generated in real-time, without a connection to the internet.

6.3. Online Evaluation

Using this plug-in, we can now evaluate the new short-term algorithms described in
Section 5, to see if such algorithms will outperform the long-term algorithms which we
evaluated in Section 4. Based on the results from our offline evaluations, we selected
the most promising short-term technique, C: Contextual based on all users, and the
most promising long-term technique, D: Global based on all users, and tested them
with real users in their real working environments. From here forward technique “C”
will be referred to as “short-term” and technique “D” as “long-term.”

6.3.1. Participants. We recruited 52 full time users of AutoCAD. To qualify, participants
were required to use AutoCAD for more than 20 hours/week. As is often the case with
longitudinal offsite studies, we lost some participants during the study due to job
changes, lay-offs, etc. and ended up with 32 users completing the 6 week study.

6.3.2. Procedure. For the first 4 weeks of the study a plug-in was installed to record
the commands being used by each participant. This plug-in contained no user interface
and ran in the background logging the commands used to a local file on the user’s
computer.

For the next 2 weeks of the study, the users installed a second plug-in which con-
tained the user interface component and the matrices and algorithms necessary to
generate the command recommendations. Users were given instructions on how to use
the palette, and advised to use it as if it were a normal part of their application. That
is, they could interact with the palette as they saw fit and they were not forced to use
it. For one week users were shown the short-term recommendations and for the other
week they were shown the long-term recommendations.

6.3.3. Design. The palette was designed such that it could not be resized below a size
of 160 × 140 pixels and at all times would show a list of exactly 5 recommendations.
Users were asked to place the palette in a position within their normal AutoCAD
workspace and in a location that was convenient for them. After the first week of using
the palette, the recommender changed modes accompanied by a corresponding change
in the appearance of the top of the interface which was the only visible difference
between two modes (Figure 18).

The study was counterbalanced with 16 users starting in the short term mode, and
16 starting with long term. Participants were asked to keep the palette visible for the
duration of the study. If the window was ever closed, it would reappear immediately.

6.3.4. Results

6.3.4.1 How often recommendations change. Command recommendations are com-
puted based on the active user’s “active list” (see Section 4.3.2). Compared to the
long-term mode, the short-term mode uses a more dynamic active list, and therefore
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Fig. 19. Visualization comparing short-term and-long term recommendations over a 48 hour time period.
In the short-term mode the list of commands is changing often to match the user’s context, while in the
long-term mode the list is more stable. Here we track the movement of the “COPY” command shown in red.

Fig. 20. Overview visualization showing the command recommendations and interactions of a single user
over a two week period.

the ordering of commands’ similarity score changes more frequently. To get an idea
of how those two recommendation modes work differently from the user’s perspective
we created a visualization to show the state of each type of recommendation list over
time (Figure 19). This figure shows the state of the recommendation list over a 48-hour
period from an example user. Each one of the 5 rows represents one of the 5 command
recommendations that are presented to the user. The COPY command is show in red,
and all other commands are shown in shades of grey.

We can see that in the short-term mode there is significantly more reordering of com-
mands, and new commands being introduced while in the long-term mode commands
stay positioned in the same spot in the list for a longer period of time. If we consider
a list “event” to be any time that a command is added, removed, or changes posi-
tion in the recommendation list, the short-term recommender averages approximately
120 events/hour where the long-term only generates 13 events/hour.

6.3.4.2 Usage patterns. To get a sense of how individual users were making use of
the recommendations, we created an overview visualization for each user (Figure 20).
These diagrams show the entire 2 week period of the study in one graphic. All of the
commands that ever appeared on the recommendation list are shown in the left hand
column. When a command appeared in the recommendation list, the bar to the right of
the command name is colored in with a brown bar to show appearing in the long-term
list and a blue bar showing the command appearing in the short-term list.

Interaction events with the command window are shown as colored circles: purple
circles indicate the tooltip for the command was activated, green circles mark times
when the command was used, and red circles show when the user clicked the “×” button
to dismiss the recommendation.

By looking at the lines for individual commands among different users, we are able
to see some common usage patterns. For example in Figure 21 we see that the user
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Fig. 21. Command graph showing a user looking at the “XLINE” tooltip several times and then using, and
continuing to use the tool.

Fig. 22. Command graph showing a user dismissing the “DDEDIT” after fist inspecting the tooltip.

Fig. 23. User history graph showing two “bursts” of interaction with the recommendation window.

had the “XLINE” command in the recommendation list for several days, and looked at
the tooltip a couple of times. Eventually the user tries out the command once, which
causes it to be removed from the recommendation list. But even after the command is
no longer in the list, the user continues to make use of the XLINE command.

In this instance we would say that the user has “adopted” the XLINE command. This
is a command they had not used in at least the previous month, and after we suggested
it to them, they not only tried it out once, but they continued to use it afterwards.

We also often see situations where a user looks at the tooltip for a command and then
dismisses it as in Figure 22. In these cases the user may have been previously aware
of the command, or, after looking at the tooltip, determined that it is not useful.

Another pattern we see with many users is “bursts” of activity with the palette such
as can be seen in Figure 23. During the two highlighted times the user closes or uses
many of the recommendations freeing slots in the list to allow new recommendations
to appear. A benefit of the ambient design of the interface is to allow users to interact
with the widget when it is convenient for them to do so. We interpret these bursts of
activity as evidence that during these two time periods this user had some time to
examine what the latest recommendations were and see if they would be useful. If we
had forced the suggestions on this user at a different time he may have been too busy
to investigate them and just dismissed them immediately.

6.3.4.3 Commands removed. When we look at how the 32 subjects interacted with
the interface, we see a wide range of individual differences. For example if we look at
how many recommendations each of the users dismissed by clicking on the “×” button
associated with a command, we can see that half of the users used the function rarely
or not at all, and others used it over 90 times (Figure 24). It appears that some users
are interested in manually helping to manage the recommendation list, and others
preferred not to intervene.

With this result in mind we think that for this system to be deployed to a large
user base it is important to have some type of recommendation “decay” function where
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Fig. 24. Number of commands dismissed by each user.

Fig. 25. Average number of previously unobserved commands used each day.

recommendations which have been in the list for an extended period of time are either
temporarily or permanently removed from the list. This will allow even users who are
averse to interacting with the recommendation list to see additional recommendations.

6.3.4.4 New command exploration. Another metric of interest for the command rec-
ommendations is to see how the usage of the palette impacted a user’s exploration
and usage of commands that they had not previously used. An increase in the usage
of such commands would indicate that the plug-in was recommending commands that
were useful, or at least of interest to the user. Because we only had 1 month of a user’s
history, we could not be 100% confident that a previously unobserved command was
actually new to the user. However, as illustrated in Figure 25, we can see that the num-
ber of new commands issued on each successive day trends downwards. By definition,
every command on day 1 is “new,” with an average of 25 across all users, and by the
4th week, the users were issuing an average of about one new command per day. This
is the average over all users. An individual’s curve has more noise, as after some time
interval their task may change resulting in a sudden increase in new commands.

By comparing this data, to the data in the 5th and 6th weeks, we can get a sense of
the impact that command recommendations had on a user’s adoption and exploration
of previously unused commands. We first compared the number of new commands
used in the 2 weeks before the recommender (weeks 3 and 4) with the number of new
commands used in the two weeks with the recommender (weeks 5 and 6). Figure 26
illustrates this analysis by week.

Repeated measure analysis of variance showed a main effect for the week (F3,93 =
7.099, p < .0001) on number of new commands used. The average number of new
commands used was 9.06 and 7.81 for weeks 3 and 4 respectively, and 17.47 and 12.06
for weeks 5 and 6. Pairwise comparison using Bonferroni adjustment showed that
week 5 had significantly more new commands used that either week 3 (p = 0.009) or
week 4 (p = 0.002). The other week-to-week comparisons did not reach significance.
We repeated the analysis for new commands used at least twice (as opposed to once),
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Fig. 26. Average number of new commands used in the last two weeks without, and the first two weeks
with, the recommender system.

Fig. 27. Number of new commands actually used compared to the model.

and found the same significant differences. That is, there was a main effect for the
week (F3,93 = 8.23, p < .0001) and pair wise comparison using Bonferroni adjustment
showed that week 5 had significantly more new commands used twice than both week 3
(p = 0.003) and week 4 (p = 0.002).

Based on the trend illustrated in Figure 25, we can estimate the proportion of the new
commands used in weeks 5 and 6 that were due to the introduction of the recommender,
and the proportion of new commands that would have been used by chance (without
the recommender). The number of “new” commands issued can be predicted by using a
binomial or Zipfian distribution (see Appendix for derivation). In Figure 27, the dashed
lines show the mean of expected new commands issued in each week using binomial
distribution based curve fitting (Equation (3) in the Appendix) across the first four
weeks (R2 = 0.998).

This model predicts that 6.1 new commands would be used week 5 and 5.2 commands
would be used in week 6 without the recommender (Figure 27). However, with the
recommender, the average number of new commands were 17.5 (187% increase) and
12.1 (132% increase) respectively.

Upon further inspection, it was interesting to find that a subset of these new com-
mands had not actually appeared in the recommendation list. In weeks 5 and 6 respec-
tively, an average of 5.6 and 2.4 commands actually appeared in the recommender lists
before being used. This leaves 11.9 “extra” commands in week 5, and 9.7 extra com-
mands used in week 6. Because the sum of these recommended and extra commands
far exceeds the calculated expected values (Figure 28), we are led to believe that the
majority of these extra commands were discovered while investigating or trying out
the commands which were recommended. This shows an unintentional benefit of the
system: it not only promotes usage of explicitly recommended commands, it can also
promote exploration and discovery.

6.3.4.5 Short-term and long-term comparison. To compare the short-term and long-
term algorithms we look at the number of recommended commands that were used
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Fig. 28. Average number of new commands used in weeks 5 and 6 split into categories.

Fig. 29. Average number of recommended commands used once and used multiple times for the short-term
and long-term algorithms.

(Figure 29). On average subjects used 5.2 commands suggested by the short-term
algorithm, and 2.8 commands suggested by the long-term algorithm. Although the
difference did not reach significance (p = 0.113), the trend indicates that short-term
recommendations will be more welcomed by users. We repeated the analysis for recom-
mended commands used at least twice and we got the similar result that the short-term
recommendation is more preferred by users, but it is not significant. The relatively low
number of adopted command per week also shows that people tend to stay with their
established software usage skill.

Figure 26 and Figure 28 showed the ordering effects that participants used more
new commands in Week 5 than Week 6. In Figure 29, the adopted new commands are
broken down by weeks. We further investigated the difference between the two modes
through subjective feedback.

6.3.4.6 Subjective feedback. In the postexperiment survey participants were asked
which recommendation mode they preferred. 56% preferred the short-term recommen-
dations, while only 16% preferred the long-term (Figure 30). Generally those preferring
the short-term mode felt that they were able to see more commands in the list using
this mode, and the commands seemed to be more geared towards they work they were
currently doing. When asked if they found the interface distracting, only 9% of the
users claimed it was distracting due to the list reordering.

Besides introducing brand new commands, several users mentioned that the tool
“reminded” them of commands they used to use, but had neglected recently. In this way
the tool can be useful even for expert users who may at some point have been familiar
with most of the commands in a program, but could use some help in reminding them
about commands they have not recently used.

6.4. Summary

In this section, we described a field study, which allowed us to analyze how our in-
product command-recommender would be used in real working environments. We had
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Fig. 30. User preference for recommendation mode.

anticipated many challenges in getting users to adopt any of the recommended com-
mands, since previous research has shown that experienced software users tend to be
reluctant to learn new behaviors [Bosser 1987; Linton and Schaefer 2000; Mack 1990].
In particular:

1. Our subjects are all full-time users who use AutoCAD as the main function of their
job, many of whom have been doing so for 15 or more years.

2. They tend to be doing work they are familiar with most of the time, and may not
need, or feel the need, to learn new tools for that task.

3. Since we performed the study in their real work environments, they are often doing
deadline based tasks and may not have time to look at new commands.

4. Even if they do like a command, we do not show them where to access the command
in the standard UI.

5. Users were told that they did not need to use our plug-in if they did not want to.

Despite these challenges, our results indicated that the participants did in fact use
the tool to explore new commands in the system. In particular, we found a significant
increase in the number of new commands used when the plug-in was activated.

Because of the practical difficulties in recruiting professional users, we did not run
a control group that never received recommendations, in preference to collecting more
usage data from users actually using our tool. Instead, we developed a new model
(Appendix) that allowed us to predict the usage rates of such a control group, which
showed a high correlation to the observed usage rates from the first four weeks of
data.

Finally, a main metric from this study looked at the number of new commands
used, and not how many of the recommended commands were actually adopted; that
is, how many of these commands will become part of the user’s collection of tools
they repeatedly use, over an extended period of time. In the scope of a 6 week study,
measuring adoption would be difficult. If a recommended command was used many
times, we could probably safely say that the command may get adopted, but the question
is more complicated for commands which were only used once. A user could try out a
command once, find that it is not suitable for their work, and not use it in the future.
Alternatively, it may be a type of command that does not typically get used multiple
times in a session or even a week, in which case a single use could indicate that the
command will be adopted. However, in the absence of an adoption metric, we did repeat
our analysis for new commands used at least twice, and found similar trends.

7. DISCUSSION

Our studies have shown that our collaborative filtering command-recommendation
algorithms work well compared to previous research approaches, and the plug-in we
have developed could be an effective tool to make users aware of relevant commands
that they currently do not use. We have validated our work with a series of both offline
and online studies which offered promising results. In considering these results, there
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are a number of topics which should be discussed, with respect to our study findings,
and with respect to actual implementation issues.

7.1. Issues Related to Our Studies

In Section 4, we described “good” recommendations as those being both novel and useful
to the user. This metric was used as a basis for our evaluations. However, it may also be
important to have some of the recommendations on the list be unexpected items that
the user would not naturally progress to and may not be assessed as being useful, but
which expose a new or rare cluster of functionality [McNee et al. 2006b].

With respect to our offline evaluations, we measured the accuracy of different al-
gorithms’ ability to predict the next unobserved command based on the training set.
However, there is still a subtle difference between new command, which the user has
truly never used, and a used command, which has not been observed in the training
set. So as with typical recommender system algorithm research, the results of our of-
fline evaluations should be considered with a degree of caution [Herlocker et al. 2004].
However, in both Sections 4 and 6, we were able to validate the results with online
evaluations.

Another issue to consider from our results is how well they generalize. Our study
participants were professional users, and it would be interesting to understand how
our results would generalize to a less-experienced user group, potentially in a learning
environment. It is also important to consider how the plug-in would generalize to other
software applications and domains. While we do not feel anything would intrinsically
change, it might be necessary to reconsider the specifics of the algorithms used, and
potentially introduce new types of domain-specific rules.

7.2. Practical Issues Related to Actual Implementations

The work we have presented in this article provides the groundwork for deploying a real
tool, and we have in fact developed our research into a working plug-in for AutoCAD
that is available for download.4 However, some practical issues of our research need to
be discussed.

One issue to consider is the addition of new commands to the software applica-
tion; this typically happens with new releases. Software vendors may want to “push”
commands into the recommendation list since essentially these commands are experi-
encing a “cold start” as no users have used the commands yet. Entry points could be
determined by product designers or by using the limited beta-customer testing usage
patterns that typically precedes a release.

There is also a “cold start” after the user installs the recommender. In this phase,
the log of commands is short, and the recommender does not have enough knowledge
about the user. One approach for solving this issue is adding a training phase before the
recommender starts making recommendations. Ideally, by collecting enough of a user’s
data over time, the recommender will have enough confidence to tell the difference
between the user not knowing a command, and simply not observing the command
being used.

Finally, a limitation of the current design is that when a command is used once, it
is never recommended again. This could be problematic if a command is accidentally
selected. Here we could modify the algorithm to reintroduce the command after looking
at how frequently and long ago it was used. Similarly, the user interface could also allow
users to choose to dismiss a recommended command temporarily or permanently.

4Available from: http://labs.autodesk.com/utilities/acad community commands/.
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8. FUTURE WORK

There are a number of ways our work could be extended, which we hope to explore
in the future. Most of these areas of future work relate to the algorithms which were
employed, but we also discuss considerations related to the UI presentation.

A primary area of interest is considering other forms of information to guide rec-
ommendations, in addition to a user’s command history. For example, we could add
additional information related to the user’s context, such as the type of data in the
working file, which type of object is selected, which UI panels are open, or which ribbon
tab is active. We could improve the diversity of the recommendations by applying meth-
ods discussed by Ziegler et al. [2005]. Also, a potential method of improving accuracy
is to apply a weighted combination of multiple algorithms or different preferences.

In addition, the recommendation algorithm could also be modified to be more adap-
tive. The recommendation algorithm could look at the adoption rate of commands being
suggested. This specific information could be fed back into the recommender, where
we could overweight the commands that are more commonly adopted by other users.
Tracking adoption metrics could also be used to vary the recommendations based on a
user’s individual skill level, if such information could be distilled. In addition, as often
found in other recommender-based systems, we could allow users to provide explicit
feedback on the quality of the individual recommendations and feed this into the
algorithm.

Alternative recommender algorithms could also be considered. We use collabora-
tive filtering to generate our recommendations; however there are other techniques
which could be explored including N-grams and stochastic sequential models. These
techniques with additional domain knowledge could be used to more directly model the
user’s preference and provide more dynamic recommendations. Using the data collected
from clicking the “close” button we can extend the system to incorporate critique-based
recommendation technique [Faltings et al. 2004]. For example, the plug-in could ask
users for their specific reason of dismissing that command, and their feedback will be
used to generate new constrains for improving the quality of recommendation.

Another issue which warrants future research is the creation of domain specific
rules. We created 21 recommendation filtering rules with a domain expert, which was
a relatively straightforward process, lasting approximately 2 hours. However, it may
be interesting to try applying modern data mining techniques, to investigate ways to
identify these rules automatically from command usage data.

From a broader perspective, our studies involved large bodies of historic usage data,
and also rich traces user activity over shorter periods of time. Both of these sources of
data present interesting opportunities to aid long term learning goals. In our work we
have explored how such data could be used to promote awareness of unused commands,
but other opportunities exist, such as profiling user’s expertise levels, personalizing
learning resources, adapting system features and components, and identifying key,
teachable moments.

As one example, future research could investigate recommending higher-level task
flows to the user, instead of individual commands. These task flows would contain a col-
lection of commands and sequences of workflows. Similarly, future improvements could
inspect short sequences of commands and recommend a single advanced command that
could replace the sequence or even an alternative workflow strategy.

Another line of future work is to investigate solutions to the cold start problem,
as described in the Discussion section. In e-commerce situations, when new products
or services emerge, the interest of customers and the temporal feature of ratings in
collaborative filtering may change. To model this concept drifting effect on the dataset
of user’s ratings, previous work [Ding and Li 2005; Ding et al. 2006; Koren 2009]
has used a time-weighted item-by-item correlation to track concept drifting. It would
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be interesting to apply this same idea to help introduce the new commands in each
release of a software package to the users and allow the newer and presumably better
commands to be recommended.

The actual interface we designed also warrants further investigation. The goal of
our UI design was to promote the awareness of new commands, while minimizing
distraction. However, 9% of users did find the plug-in distracting. One alternative
design could be adding a button to ask for an update to the recommendations. Or, the
command list could remain static until new contextual information the system acquires
about the user reaches a certain significance level. Alternatively, users could manually
scroll through recommendations if they wanted to.

Another enhancement to the interface is instead of recommending commands by
presenting the command name, we could present images of the effect the command has
on the user’s application data [Terry and Mynatt 2002]. This may give users a better
sense of what the unfamiliar command does.

Finally, we hope to perform a longitudinal study using the CommunityCommands
UI and recommendation algorithm. Our hope is that the plug-in we have recently
released will allow us to analyze such metrics in the future. This would be useful to
measure long-term command adoption patterns. In particular, this would allow us to
provide richer quantitative data on how receiving recommendations will impact users
overall learning experience with a complex software application, and validate some of
the initial findings reported in this article.

9. SUMMARY AND CONCLUSION

We have adapted modern recommender collaborative filtering algorithms together with
rule-based domain knowledge to promote command awareness and discovery in com-
plex software applications. To test the algorithms offline we developed the k-tail eval-
uation methodology and then conducted a comprehensive user survey by generating
personalized recommendations for a group of real users. Results showed a 2.1 times
improvement in the number of good recommendations over previous research.

We further extended this work by exploring the design space of short-term and con-
textual recommendations, and described a set of algorithms to generate such recom-
mendations. An ambient user interface was designed to present those recommendations
to the user, while satisfying our outlined design considerations.

We then conducted a field study of the CommunityCommands plug-in. We deployed
and evaluated both long-term and short-term algorithms. Metrics of usage are visu-
alized and discussed, revealing a number of interesting observations. This included a
significant increase in the number of unique commands being used after the recom-
mendations were enabled, in the last 2 weeks of the study. It is particularly important
to note that these results were obtained while the users were doing production work
in their real working environments.

We believe the overall results of our work, in addition to the subjective feedback re-
ceived, indicate that the integration of our work into software applications is a promis-
ing way to improve user’s awareness of relevant commands and functionality.

APPENDIX

Here, we model the expected number of new commands which we would expect to
observe each week within a single user’s command history.

First, we define Lk as the total number of commands executed in week k and n as
the number of unique commands. Let Pr(Ci, Lk) represent the probability of command
Ci is used at least once in week k. For each individual user, the expected total number
of unique new commands used in the first week, ECountW1 is equal to the sum of the
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probabilities that each of the n commands in the application would occur at least once:

ECountW1 =
n∑

i=1

Pr(Ci, L1).

The expected total number of unique new commands used in first two weeks can be
calculated as the sum of the probabilities that each command would occur in either the
first or second week:

ECountW1+W2 =
n∑

i=1

1 − (1 − Pr(Ci, L1))(1 − Pr(Ci, L2))

=
n∑

i=1

(Pr(Ci, L1) + Pr(Ci, L2) − Pr(Ci, L1)Pr(Ci, L2)).

The expected total number of new commands used only in the second week (and not in
the first) is:

ECountW2 = ECountW1+W2 − ECountW1 =
n∑

i=1

(Pr(Ci, L2) − Pr(Ci, L1)Pr(Ci, L2)).

Generalizing this to any week, k, we have Equation (1):

ECountWk =
n∑

i=1

⎛
⎝1 −

k∏
j=1

(1 − Pr(Ci, Lj))

⎞
⎠ −

n∑
i=1

⎛
⎝1 −

k−1∏
j=1

(1 − Pr(Ci, Lj))

⎞
⎠

=
n∑

i=1

⎛
⎝Pr(Ci, Lk)

k−1∏
j=1

(1 − Pr(Ci, Lj))

⎞
⎠ (1)

To solve for ECountWk, we need to calculate Pr(Ci, Lk). We calculate this using the
binomial probability formula, based on pi, command Ci’s overall frequency across the
entire user community5:

Pr(Ci, Lk) = B(Lk, pi)

=
Lk∑

j=0

(
Lk

j

)
pj

i (1 − pi)Lk− j (2)

Based on (1) and (2), we have equation (3)

ECountWk = α

n∑
i=1

⎛
⎝B(Lk, pi)

k−1∏
j=1

(1 − B(Lj, pi))

⎞
⎠ (3)

This formula assumes that each command occurrence can be any of the n commands
in the application. However, users will only know a subset of these commands. Thus,
we introduced a single parameter, α, which is an empirically determined constant. We
apply this model to the data in Figure 27 by setting α such that ECountT1 is equal to
the observed number of new commands used in week 1, and setting Lk to the number
of commands used across all participants for each week k.

5In our work we know the values of pi from our CIP database of command logs. If these values were unknown
they could be estimated using a Zipfian distribution [Zipf 1949].
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