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• We propose a new programmable self-folding sheet model and architecture.
• We describe and analyze algorithms for the automatic design of self-folding sheets.
• We describe and analyze algorithms for the synthesis of sticker placement.
• We build and experiment with devices of two different types of self-folding robots.
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a b s t r a c t

This paper considers a robot in the formof a self-folding sheet that is capable of origami-style autonomous
folding. The sheet is composed of triangular tiles, folding actuators and an integrated electronic substrate,
and is formed as an n×m box-pleated crease pattern. The design of the sheet is generated by an automated
sheet design algorithm. We control the sheet with a programming method including a hardware model
and supporting algorithms. In this paper we present the programming method. We describe and analyze
the algorithms that generate designs and programs for the sheet. We finally demonstrate and analyze
experiments with 4 × 4 and 8 × 8 self-folding sheet devices.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A self-folding sheet is a robotic sheet that autonomously trans-
forms its shape by folding into users’ desired shapes. Our vision
is to develop the hardware and software technology that will al-
low users to transform a self-folding sheet into desired shapes by
adding physical stickers to select and trigger a control sequence.
We imagine sheets capable of folding into a variety of objects, such
as a table, an airplane or a tent. Applications include digital fabrica-
tion, on-demand construction of objects in remote environments,
on-demand creation of tools, etc. Our aim is to automate the cre-
ation of origami objects.

We developed a novel device called the self-folding sheet
(Fig. 1). This device has an n × n box-pleated pattern (for n = 4
and n = 8). We associate a SMA (Shape Memory Alloy) actuator
with each edge of the sheet and embed supporting electronics.
The sheet can be viewed as a modular robot system, where each
tile in the system corresponds to a module. The sheet can fold
by following planning algorithms, such as those described in [1],
to achieve a three-dimensional shape. The planner provides the
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required sequence of origami folds, which can be executed using
the actuators embedded on the sheet.

Making three-dimensional shapes by folding has advantages
over achieving shape formation using modular self-reconfiguring
robot systems composed of individual independentmodules. Since
themodules are connected at all times, the self-folding sheet is less
prone to the type of connection anddisconnection errors that occur
in unit-modular systems. The planning system can be computed
in a centralized fashion and executed in a highly parallel fashion.
The folding operation is relatively easy to control. The challenge,
however, is in fabricating a self-folding sheet that is capable of
physically delivering self-folding actions, especially with multiple
folds on the same edge, and in the planning algorithm that will
synthesize the covert folding sequence.

In our prior work, we described the self-folding concept [2]
and a centralized planner for multi-origami folding from a single
sheet [1]. In this paper, we describe the fabrication process for self-
folding sheets (Fig. 1) with embedded electronics and actuation.
We also present the design and fabrication of a controller that
selects the control for one of the desired shapes associated with
the sheet, and the control sequence required to actuate that
shape. Our solution is called the sticker programming. In the sticker
programming, the control sequence is achieved by adding stickers,
which are small segments of conductivematerials, to key locations
on the sheet. The addition of the stickers completes a circuit that
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Fig. 1. Two self-folding sheets transform themselves into programmed objects. (a) Vertical folding. (b) Diagonal folding. (c) Space shuttle. (d) Hat.

triggers the function of an actuator. By adding/removing different
stickers connecting other locations, we select a control sequence
for achieving another described shape. Given the desired shapes,
we can automatically compute the number of stickers and their
placement on the sheet. Finally, we give experimental results
collected from using a 4 × 4 self-folding sheet and an 8 × 8 self-
folding sheet (Fig. 1). Our contributions in this paper are (1) a
self-folding sheet model and its architecture, (2) algorithms for
the design of self-folding sheets, (3) algorithms for the synthesis
of sticker placement and (4) experiments with two different self-
folding sheet devices.

1.1. Related works

In our previouswork [2],we introduced a sheet that folded itself
into two origami shapes. The mechanical parts of the sheet were
triangular glass-fiber tiles, silicon joints and folding actuators. The
sheet was formed as a 4 × 4 box-pleated crease pattern (Fig. 2).
Demaine et al. proved that an n × n box-pleated tiling has, as a
folded state, any polyhedral surface made up of O(n) unit cubes
on the cubic lattice [3]. They [4] showed that any folded state can
be reached by a continuous folding motion without the material
penetrating itself.

The multiple origami planner [1] generates a folding plan for
this sheet. Given multiple target origami shapes, the origami plan-
ner identifies the groups of the actuators that simultaneously fold
and the folding sequences of the groups for each target shape. For
example, if a shape is achieved by folding two lines sequentially,
the actuators on the first line are identified as the first group and
the actuators on the second line are the second group. When we
input this origami shape, the planner gives these two groups and
the folding sequence.

Although the planner automatically generated the folding plan,
we controlled the previous sheet [2] with a manually designed
circuit. We embedded electronic routes for each actuator group
and sent electronic current to the selected routes sequentially.
The sheet achieved two 4 × 4 origami shapes with this manually
designed circuit. This control method is however intractable for
bigger sheets or more complex origami objects. In this paper, we
describe a new control method, called the sticker programming, to
solve this control challenge. This conceptwas introduced in [5], but
the details of the hardwaremodel and the programming algorithm
were not described. The previous paper presented the old design
algorithm that only works for 2n

× 2n sheets. This paper includes
the detailed models for the sticker programming, the automated
sheet design algorithm for n×m sheets, and theoretical correctness
proofs and analyses of the designing and programming algorithms.
The paper also demonstrates and analyzes the experiments with
self-folding sheet devices.

Nagpal [6,7] introduced a biologically-inspired control method
for a multiagent system, including a programming language that
transforms into a language for the multiagents. She applied and
simulated this method for a self-folding system. In her simulation,
a sheet is composed of many cells (agents); each cell has simple
computation and communication ability and the cells on a line
can fold the structure. Some simulations ran with several thou-
sand cells. Our programmingmethod, in contrast, is for n×m box-
pleated sheets that are constructed by connecting the triangular
tiles with embedded electronic circuits and folding actuators.

The self-folding sheet autonomously transforms its 2D shape
into 3D shapes as a new family of self-reconfigurable systems.
Our group and other groups built the systems and the algorithms
[8–25]. [26] is a good review of this field.
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Fig. 2. A 1× 1 self-folding sheet (left) is a fundamental module of self-folding sheets. A 4× 4 self-folding sheet (middle), and with folding actuators (right). The 4× 4 sheet
is composed of 16 (=4 × 4) 1 × 1 self-folding sheets.

Our research involvesmechanical and electronic parts on a level
ofmicro-thickness. Themicro-thick folding actuators are builtwith
SMA sheets [27,28] and Polypyrrole (PPy) [29,30]. The stretchable
circuit is introduced in [31].

The origami folding is used for fabrication of micro objects.
Whitesides, et al. achieved micro 3D objects by folding a planar
object [32].

Balkcom and Mason [33–35] have built a robot that makes a
sequence of simple folds—folds along a single line at a time. The
robot folds a restrictive class of origami models. By contrast, our
folds are generallymore complicated, involving several simultane-
ous creases. Otherworks considered robots for automatic folding of
cartons and packaging [36,37]with external actuation. By contrast,
in our work, the actuation of the sheet is internal; the sheet itself
is a self-folding robot and the robot folds itself into target objects.

2. Technical approach

Given k desired 3D objects, our goal is to design and fabricate
a programmable self-folding sheet robot and to compute and pro-
gram a control sequence required to fold the 3D objects from the
sheet. The planning algorithm has been described in [1]. Here we
discuss how to go from the theoretical plan to an executable se-
quence.

To facilitate automatic designing and programming, we design
our sheets following the self-folding sheet architecture (Fig. 3).
The architecture has a hardware part (right) and an algorithm part
(left). Each part has several layers. The bottom layer of the hard-
ware part has the kinematic structure of self-folding sheets. The
next layer has actuators associated with each folding joint. The
third layer has the electronic infrastructure that controls actuation
systems (actuators) via sockets. The fourth layer is the program-
ming layer. It contains small components of conductive materials
that can be added to the self-folding sheet to connect and trigger
the action of actuators. Each small component is called a connec-
tor. A set of the connectors is called a sticker. By adding these con-
nectors at designated locations, we form a complete circuit that
triggers an entire execution sequence to achieve a 3D shape. The
sticker contains folding information of multiple origami shapes. A
sticker can be removed and replaced by a different sticker to fold
a different 3D object. The fourth layer also contains input signals
that have the triggering sequences to achieve a selected shape.

The algorithm part has two layers. The bottom layer has an au-
tomatic designing algorithm that generates optimized self-folding
sheet designs. The top layer has an automatic programming algo-
rithm that generates sticker programs.

In Section 3, we introduce the theoretical model of self-folding
sheets. In Sections 4–7, we describe and analyze the algorithms
generating self-folding sheet designs and sticker programs. In Sec-
tions 8–10, we present the implemented devices and the experi-
mental results. In Sections 11 and 12, we discuss and conclude our
method and devices.

3. Model of self-folding sheet

In this section, we explain the theoretical models of the self-
folding sheets for the algorithms and the hardware discussed
in this paper. The self-folding sheet model is 2-dimensional
rectangular-shaped and is composed of threemodels: a box-pleated
structure model, an actuator model and a sticker controller model.

3.1. Box-pleated structure model

Fig. 2 shows the simplified kinematic structure of self-folding
sheets. The structure is composed of rigid tiles and flexible joints
(hinges) and embeds an n × m box-pleated pattern.

Ann×m structure is composedofn×m square-shapedmodules.
Each module is composed of two triangular tiles and one diagonal
joint. For instance a 1 × 1 self-folding sheet contains one module
(Fig. 2 (left)), while a 4 × 4 sheet contains 16 (=4 × 4) modules
(Fig. 2 (middle)).

A folding angle is the supplement of the dihedral angle between
the two faces meeting at the joint (Fig. 4). The initial state of the
folding angle is 0°. The angle is in a range of +180° to −180°. The
sign of the fold angle determines the crease as either a valley fold
or a mountain fold (Fig. 4).

3.2. Actuation model

In our actuation model, an actuator is placed on each joint, as
shown in Fig. 2 (right), and folds its corresponding joint on demand
to a specified angle, such as 0°, +90°, −90°, +180°, and −180°.

A folding actuator is modeled as a finite state transducer
(Definition 1). Each actuator has n input ports and n ground ports.
Fig. 5 shows the diagram of an actuator.

Definition 1. An actuator is a 6-tuple A = (Q , Σ, Γ , δ, w, q0),
where:

Q , Σ , Γ are finite sets and
1. Q is the set of the states,
2. Σ is the set of the actuator codes (input signals):
Σ = {0n

}∪ {0p10q
| p+ q+1 = n, n is the length of each input

signal of A},
3. Γ is the set of the folding angles,
4. δ is the transition function: Q × Σ → Q ,
5. w is the output function: Q → Γ , and
6. q0 ∈ Q is the initial state.

When the actuator receives an input signal ain ∈ Σ , it folds its
edge into an angle aout ∈ Γ . While the actuator does not receive
any input signal (all 0s), it keeps its angle until it receives the next
input signal.
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Fig. 3. Self-folding sheet architecture.

Fig. 4. (Left) The folding angle at a crease is the supplement of the dihedral angle. (Right) A crease can be folded as either a mountain fold or a valley fold [1].

Fig. 5. An actuator model.

An input signal is a decoded binary code. Each code has only one
1 or is all 0s. We select this binary code model due to our origami
plan model [1] and the implemented folding actuators [2,27,28]
that work with the decoded binary codes.

For this paper, we built actuators with flat SMA (ShapeMemory
Alloy) sheets, which have micro-thickness and sub-centimeter
width [2,27,28]. [29,30] describe the Polypyrrole (PPy) micro
folding actuators.

We can classify the actuators by folding directions: unidirec-
tional actuators and bidirectional actuators. A unidirectional actu-
ator folds its joint into either a mountain fold or a valley fold. In
this paper and previous papers [2,27], the experiments were per-
formed with the unidirectional actuators A1 = (Q , Σ , Γ , δ, w, q0),
A2 = (Q , Σ , Γ ′, δ, w′, q0), where:

1. Q = {q0, q1},
2. Σ = {0, 1},
3. Γ = {0°, +180°},
4. Γ ′

= {0°, −180°},
5. δ(q, a) = q0 (if q = q0 and a = 0), q1 (otherwise),
6. w(q0) = 0°, w(q1) = +180°, and
7. w′(q0) = 0°, w′(q1) = −180°.

Fig. 6 shows the diagram of A1 (left) and A2 (right).
The bidirectional actuator folds the joint into both a mountain

fold and a valley fold. [28] demonstrates the implementation of a
bidirection actuator and Fig. 7 shows themodel of this bidirectional
actuator. The initial angle of the actuator is 0°. According to
the input signal this actuator can fold either +180° or −180°.
However, once the actuator folds into one angle, this actuator can
only fold back to 0°.

As shown in Fig. 8, each actuator has its address. (a) shows the
actuator addresses for a 1 × 1 self-folding sheet. The addresses of
the actuators on the left, diagonal, and bottom edges are l(1, 1),
d(1, 1), and b(1, 1), respectively.

For the 2 × 2 and 4 × 4 self-folding sheets ((b), (c)), although
the actuator addresses of the top-left module (in column 1 and
row 1) are the same as the addresses of the 1 × 1 sheet (a), since
the module in column 2 and row 1 is 90° rotated, the actuators
on the top, diagonal, and left edges are Al(1,2), Ad(1,2), and Ab(1,2),
respectively. The module in column 2 and row 2 is 180° rotated
while the module in column 1 and row 2 is 270° rotated. The
addresses of the actuators are as shown in Fig. 8.

3.3. Sticker controller model

The sticker controller contains the electronic substrate to fold
the self-folding sheet into users’ desired shapes. In this section,
we describe the controller model, including a wire only controller
model, a sticker controller unit model, a circuit model and various
sticker program models.

3.3.1. Wire only controller model
A wire is a conductive material, such as copper, that transports

electronic signals or power.We define the sticker controller model



Author's personal copy

980 B. An, D. Rus / Robotics and Autonomous Systems 62 (2014) 976–1001

Fig. 6. Two unidirectional actuator models.

Fig. 7. A bidirectional actuator model.

with only wires; the sticker controller does not contain any other
electronic parts, such as diodes, transistors or resistances. Since
a wire is the thinnest and simplest electronic part, this model
gives advantages to build thin devices with simple manufacturing

processes. For instance, if we implement this controller model as a
flexible electronic circuit, we only need amanufacturing process to
build a flexible PCB (Printed Circuit Board) while other controller
modelswith electronic parts, such as SMD (Surface-MountDevice),
require additional manufacturingmachines, such as SME (Surface-
Mount Equipment). In semiconductor manufacturing processes,
the electronic parts are on the scale of micro-thickness range.
However, the parts are still thicker thanwires; while the electronic
parts are made with multiple depositions, the wires are built only
with a couple of depositions.

Another advantage is flexibility for the implementation in vari-
ous other energy systems. This model is designed in the electronic
energy system; the signals and the power source are electronic en-
ergy. Since the wires for electronic energy can be replaced by wa-
ter channels for water pressure, themodel can thus be constructed
in a water pressure system. Hand-heat, oil pressure or air pres-
sure from exhalation can also be considered as alternative energy
sources.

A disadvantage of this model is that the circuit design for this
model is more complex than the other circuit designs, because
there is no electronic device controlling the electronic flow. How-
ever, we solve this disadvantage by building the automated circuit
design algorithm and the automated programming algorithm (Sec-
tion 4).

Fig. 8. Simplified models for 1 × 1, 2 × 2 and 4 × 4 sticker controllers. A 1 × 1 controller is composed of one module (a). A 2 × 2 controller is composed of four 1 × 1
controllers (b). A 4 × 4 controller is composed of four 2 × 2 controllers (c).
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Fig. 9. (a)(b)(c) represent a 1–1 sticker controller unit group with no sticker. (d)(e)(f) represent a 1–1 sticker controller unit group with a sticker set. We draw two sticker
controller unit groups in three different diagrams. Each model diagram shows the detailed information of the sticker controller unit (a)(d). The same information can be
abstracted to a 3-tuple of the actuator codes as a code diagram (b)(e). It is depicted in a sticker diagram as a graphic image (c)(f).

Fig. 10. (a) A 2–1 parallel sticker controller unit controls an actuator. The legs of the actuator are connected to the sockets of the unit. The sticker place Sb01 has a connector,
while the sticker place Sa01 has no connector. (b) A 2–2 parallel sticker controller unit controls an actuator. The legs of the actuator are connected to the sockets of the unit.
The sticker places Sa11 , Sb01 have connectors, while the sticker places Sa01 , Sb11 have no connector. In each (a) and (b) Ia , Ib on the left side are the input ports and Ia , Ib on the
right side are the bypass ports. Gs on both sides are the ground ports.

3.3.2. Sticker controller unit model
A sticker controller unit is a fundamental unit of the sticker con-

troller (Fig. 9). The sticker controller unit controls an actuator ac-
cording to input signals. It is composed of sticker places, input ports,
output ports, bypass ports and ground ports. The output ports are
connected to actuator legs via sockets. Because one module of a
self-folding sheet is controlled by three actuators, a group of three
sticker controller units controls one module.

A sticker controller unit is named by a k–r sticker controller
unit, where:

• k is the number of the input ports, and
• r is the number of the output ports.

When a sticker controller is composed of k–r sticker controller
units, we call it a k–r sticker controller.

Fig. 9 shows two 1–1 sticker controller unit groups with no
sticker and with a sticker set. Each group is composed of three
sticker controller units. We select the outputs by adding conduc-
tive materials, which we call connectors, on the selected sticker
places. In Fig. 9(d), when input port Ia receives a signal, the units
send the signals to Oa1 and Oa2; Oa1 and Oa2 are connected to Sa11
and Sa21. This causes the actuators connected to Oa1 and Oa2 to be
activated. The input voltage of Ia and the output voltage of Oa1 and
Oa2 are the same. After the signal is used, the signal is passed to the
next sticker controller unit via bypass ports (arrow on each right
side of (a) and (d)).

A sticker controller unit can be represented with a three-tuple
(Fig. 9(b)(e)) or a simplified diagram (Fig. 9(c)(f)).
Parallel sticker controller unit model. In the parallel sticker controller
unit model, actuators are parallelly connected on the sticker

controller as shown in Fig. 10. The parallel sticker controller unit
contains k input ports (left side), k bypass ports (right side) and two
ground ports (left and right sides). All signals received from the k
input ports are passed to the k bypass ports. When a connector is
placed on a sticker place, such as Sb01 in Fig. 10(a), the controller
unit passes the signal to the output port connected to the socket,
and then the actuator on the socket folds the joint.

Fig. 10(b) shows a 2–2 parallel sticker controller unit. In this fig-
ure, an actuator is connected to both Ia and Ib. Since the controller
is in the wire only model, if Ia and Ib receive the signals together,
the actuator receives the wrong input signal; we defined that each
input signal has one 1 or is all 0s (Definition 1 in Section 3.2). How-
ever, this conflict does not occur because the origami planner com-
putes correct plans in which each edge in each folding step folds
to one angle [1], and the sticker programming algorithm compiles
this plan correctly into the sticker program (Section 7).
Serial sticker controller unit model. In the serial sticker controller unit
model, actuators are serially connected to the sticker controller. A
serial sticker controller unit contains k input ports, k bypass ports
and no ground port. The serial sticker controller unit model is used
for our devices (Section 8). Fig. 11(a) shows the 1–1 serial sticker
controller unit. The serial controller unit sends the input signal to
either the bypass port or the selected output port. When the serial
controller unit sends the signal to the actuator via the output port,
the actuator uses the signal and passes it to the bypass port.

When a serial sticker controller unit has more than one input
port, the controller unit has additional sticker places between
the actuator and the bypass ports (Figs. 12 and 13). By using the
additional sticker places, the signals used by the actuator are sent
to the right bypass port.
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Fig. 11. (a) A 1–1 serial sticker controller unit controls an actuator. The legs of the actuator are connected to the sockets. The sticker place Sa01 has a connector, while the
sticker place Sa00 has no connector. (b) A 1–2 serial sticker controller unit controls an actuator. The legs of the actuator are connected to the sockets of the unit. The sticker
places Sa11 , Sa00 have connectors, while the sticker places Sa10 , Sa01 have no connector. In each (a) and (b) Ia on the left side is the input port and Ia on the right side is the
bypass port.

Fig. 12. (a) A 2–1 serial sticker controller unit that controls an actuator. The legs of the actuator are connected to the sockets. The sticker places Sa01 , Sb00 have connectors,
while the sticker places Sa00 , Sb01 have no connector. (b) A 2–2 serial sticker controller unit that controls an actuator. The legs of the actuator are connected to the sockets of
the unit. The sticker places Sa10 , Sa01 , Sb11 , Sb00 have connectors, while the sticker places Sa11 , Sa00 , Sb10 , Sb01 have no connector. In each (a) and (b) Ia , Ib on the left side are the
input ports and Ia , Ib on the right side are the bypass ports.

The additional sticker places between the actuator and the by-
pass ports are synced with their related sticker places between the
input ports and the actuator. The synced sticker places have the
same address. If a sticker place has a connector, all other synced
sticker places must have connectors. For example, in Fig. 12(a),
sticker place Sa00 between the input ports and the actuator and
sticker place Sa00 between the actuator and the bypass ports are
synced; they have the same address. Figs. 12(b) and 13 show
other examples of serial sticker controller units and synced sticker
places.

The serial controller unit model requires fewer ports than the
parallel controller unit model. For k input ports, the parallel con-
troller unit model has 2(k + 1) ports due to the ground ports, and
the serial controller unit model has 2k ports.

More robust circuits can be built with the parallel controller
unit. In the parallel sticker controller unitmodel, when some of the
actuators or the actuator sockets break down and signals cannot
pass through them, all of the unbroken actuators continue towork.
However, in the serial sticker controller unit model, when one of
the actuators or the actuator sockets breaks down and cannot pass
the signal, all actuators stop working.
Sticker controller unit group model. Fig. 8 shows the sticker con-
troller unit group model that controls 1 × 1, 2 × 2, and 4 × 4 self-
folding sheets. Each sticker controller unit group SCUG(i,j) contains
three sticker controller units SCUl(i,j), SCUd(i,j), and SCUb(i,j) and con-
trols three actuators Al(i,j), Ad(i,j), and Ab(i,j) on a module (i, j).

3.3.3. Model of circuit
A circuit distributes the input signals, which a signal interface

receives, to all connected sticker controller unit groups SCUG1,
SCUG2, . . . , SCUGn. Where k is the number of the ports of the

Fig. 13. A 3–2 serial sticker controller unit that controls an actuator. The legs of the
actuator are connected to the sockets. The sticker places Sa10 , Sa01 , Sb11 , Sb00 , Sc10 ,
Sc00 have connectors, while the sticker places Sa11 , Sa00 , Sb10 , Sb01 , Sc11 , Sc01 have no
connector. Ia , Ib , Ic on the left side are the input ports and Ia , Ib , Ic on the right side
are the bypass ports.

signal interface, the circuit is composed of k independent networks.
Each independent network Ca is connected to each input port Ia of
SCUG1, SCUG2, . . . , SCUGn. The self-folding sheet design algorithm
draws the circuit design (Section 5).

Multiple layer circuit model. In the multiple layer circuit model, for
k input ports, this model has to contain O(k) layers (including
insulating layers). These layers increase not only the thickness of
the self-folding sheet, but also the number of manufacturing steps
to stack the layers.
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Single layer circuit model. In the single layer circuit model, a circuit
is designed on one layer as shown in Fig. 14. All independent
networks are on one layer.

3.3.4. Sticker program model
Given target origami shapes, the origami planning algorithm

generates an origami plan [1]. The origami plan has two parts
of folding information. The first part is the actuator group in-
formation; an actuator group Gi is a set of the actuators that
always fold simultaneously. The second part is the folding se-
quences, where a folding sequence is a list of actuator groups
(G1,G2, . . . ,Gi, . . . ,Gk) and Gi folds in the ith folding step.

A sticker program, which is a method to input an origami plan
into a sticker controller, is composed of a sticker and sequences of
input signals. The sticker programming algorithm embedding the
origami planner generates the graphic design of the sticker and the
sequences of the input signals (Section 7). The graphic design of the
sticker is called a sticker design and the set of the sequences of the
input signals is called an actuation sequence.

We defined a sticker as a set of conductive materials (connec-
tors) covered by awide adhesive tape.When the sticker is attached
on the top of the sticker controller, its conductive materials (con-
nectors) fill the selected sticker places of the sticker controller units
to trigger the selected actuators for the desired objects.

Since each input port Ia of all SCUs is connected on an indepen-
dent network of the circuit, a signal sent to this network is trans-
mitted to all Ia of the SCUs and the SCUs then trigger the selected
actuators.

3.4. Composition

We build the model to minimize the layers when the self-
folding sheet is manufactured. If the sheet has one input port, then
all parts of the sheet design can be placed in one layer because no
part of the sheet has to stack on the other parts, like the 1–1 and
1–2 serial sticker controller unit models (Fig. 11).

If the sheet has k input ports (k ≥ 2), then all parts including
the actuators can be placed in two layers because the legs of the
actuators must cross over the sticker controller units, like the 2–1,
2–2 and 3–2 serial sticker controller unit models (Figs. 12 and 13)
and all the parts of the sheet except the actuators can be placed in
one layer.

Our implemented 4 × 4 self-folding sheet (Section 9) is com-
posed of 9 layers; there are 3 layers for the box-pleated structure,
2 layers for the actuators on the top and bottom sides, 4 layers for
the sticker controllers including 2 layer sockets, and 2 layers shar-
ing the actuator layers for the sticker. Our 8 × 8 self-folding sheet
(Section 10) is also composed of 9 layers; there are 3 layers for the
box-pleated structure, 6 layers for the sticker controller, and 4 lay-
ers sharing the sticker controller layers for the actuators and the
sticker.

3.5. Alternative sticker models

We described the basic sticker model in Section 3.3.4. Our 4×4
self-folding sheet was built with the basic sticker model. In this
section, we discuss alternative sticker models.
Embedded sticker model. While a sticker in the basic sticker model
is placed on the controller of a sheet as a separated layer, in the
embedded sticker model a selected sticker and a controller are
combined as one circuit layer. The design of this circuit layer is
achieved by merging output images of the sticker programming
and sheet design algorithms (Section 4). Like a basic sticker, an
embedded sticker includes themultiple-step sequences of origami
objects, although the sheet cannot be reprogrammed by changing
its sticker.

This model has advantages of constructing micro 3D origami
structures, despite its inability to reprogram. It resolves the chal-
lenges on the micro scale, including adding/removing stickers and
maintaining the electronic connections between a sticker and a
controller.
Actuator sticker model. In the actuator sticker model, by placing
actuators or dummy metals, we select the actuating joints.

The SMA sheet actuator is one of the most expensive parts of
the sheet device due to not only its expensive price, but also its
complex building process. Since most origami shapes do not need
to fold all edges, by placing actuators on selected joints, we can
optimize the number of the actuators.

By replacing the actuators and the dummy metals, we can
input new programs on the sheet. Our 8 × 8 self-folding sheet is
implemented in this model (Section 10).
Electronic controllable sticker model. Although the thickness of the
sheet will increase, stickers can be replaced by transistors or
relays to reduce the reprogramming time. This model can be used
for interactive transformation with touch sensors on surfaces or
dynamic transformation with angle feedback sensors on joints.

3.6. Self-folding sheet design

A self-folding sheet design is a manufacturing-ready and
programming-ready design that is automatically drawn by the self-
folding sheet designing algorithm (Section 5).

The sheet design is composed of a box-pleated structure design,
a sticker controller design and a sticker place design. The box-pleated
structure design and the sticker controller design are composed of
the images representing each layer of the self-folding sheet, like
layered 2D CAD (computer-aided design) drawings.

The sticker place design contains an image of the sticker places
and their addresses. The sticker place design is one of the inputs
of the sticker linker (Section 7). We use Sl(i,j)abc to denote a sticker
placewhose address is l(i, j)abc , where the sticker place is on input
port a, output port b and signal c ∈ {0, 1} of SCUl(i,j) (Figs. 10–13).

4. Self-folding sheet programming algorithm

Given k target shapes, an actuator model, a 1 × 1 self-folding
sheet design and a combining circuit set, the self-folding sheet
programming algorithmbuilds a sticker program and a self-folding
sheet design. Fig. 15 shows an overview of the algorithm. The
algorithm is composed of the sticker programming algorithm and
the self-folding sheet designing algorithm.

Given k shapes and an actuator model, the sticker program-
ming algorithm generates a sticker program including a sticker de-
sign and an actuation sequence.While the algorithm generates the
sticker program, the origami planner generates an origami plan in-
cluding the size of the sheet for all input shapes. The self-folding
sheet designing algorithm uses this size as a target size.

Given a target size, a 1× 1 self-folding sheet design and a com-
bining circuit set, the self-folding sheet designing algorithm gen-
erates an n×m self-folding sheet design containing a box-pleated
structure design, a sticker controller design and a sticker place de-
sign. The box-pleated structure design and the sticker controller
design are manufacturing-ready designs. The sticker place design
is used by the sticker linker of the sticker programming algorithm.

The sticker linker generates a sticker program that is composed
of a sticker design and an actuation sequence. The sticker design is
also a manufacturing-ready design and the user can manufacture
the sticker from the sticker design. According to the element of the
actuation sequence, the user inputs the input signals into the self-
folding sheet.

In the next section, we describe the details of the self-folding
sheet designing algorithm. We describe the sticker programming
algorithm in Section 7.
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Fig. 14. Examples of the single layer circuit model having 3 independent networks. (a) 2 × 2 and (b) 4 × 4 single layer circuits. (c) 2 × 2 and (d) 4 × 4 single layer circuits
with sticker controller units.

Fig. 15. Visual overview of self-folding sheet programming algorithm.

5. Self-folding sheet designing algorithm

Given a target size (n,m), a 1 × 1 self-folding sheet design and
a combining circuit set, the self-folding sheet designing algorithm

builds an n × m self-folding sheet design (Fig. 16). Fig. 17 gives an
overview of the main steps of the algorithm.

n,m of the target size are base-k numbers (k ≥ 2). The 1×1 self-
folding sheet design is composed of a 1 × 1 box-pleated structure
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Fig. 16. Visual overview of self-folding sheet designing algorithm.

Fig. 17. Algorithmic overview of self-folding sheet designing algorithm.

design, a 1 × 1 sticker controller design and a 1 × 1 sticker
place design. The combining circuit set contains three combining
circuits. The pseudo-fractal combining circuit, the 1-to-1 combining
circuit and the 2-to-2 combining circuit are used for the pseudo-
fractal, 1-to-1, and 2-to-2 combiners, respectively (Section 6).

The first step of the algorithm is to build a 2 × 2 self-folding
sheet design, given the 1× 1 self-folding sheet design (Fig. 17 Step
1). By rotating the 1×1 sheet design to 0°, 90°, 180°, and 270°, the
algorithm has four modules (the four rotated 1 × 1 sheet designs)
for the 2× 2 sheet design. By assembling the rotated modules, the
algorithm constructs the 2 × 2 sheet design.

In the next step, by copying the 2×2 sheet design n
2 ×

m
2 times,

the algorithm constructs the n×m sheet design (Fig. 17 Step 2). If n
is an odd number, the algorithmplaces the top-left and bottom-left
modules of the 2×2 sheet design on the nth column. Ifm is an odd
number, the algorithm places the top-left and top-right modules
of the 2 × 2 sheet design on the mth row. In this step, the box-
pleated structure design is completed but the circuit design layer
is not completed; each independent network of the circuit layer is
not connected as one circuit yet. The circuit design is completed in
the fourth step by the circuit combining algorithm.

In the third step, the algorithm corrects the addresses of the
sticker place design (Fig. 17 Step 3). Because the algorithm builds
the n × m sticker place design with the given 1 × 1 sticker place
design in the first and second steps, all addresses of the sticker
controller unit groups of the sticker places are (1, 1). By changing

(1, 1) to (i, j) for the address of each column i and row j module,
each sticker place of the sticker place design has the correct ad-
dress. After this step, the sticker place design of the n × m sheet
design is complete.

Before the fourth step, if n orm is greater than or equal to 3, the
circuit of the n×m sticker controller design is not fully connected;
Fig. 19 shows an example of the designwhich is not fully connected
while Fig. 29 shows an example of a fully connected circuit.
In the fourth step, the circuit combining algorithm combines
the separated circuits into one connected circuit correctly. The
combining algorithm is run in O(k2) time and O(k) space, where
k is the input size of the combining algorithm. The details and
the correctness proof of the circuit combining algorithm are
described in Section 6. After this step, the sticker controller design
is complete. In the fifth step, the algorithm outputs the n×m self-
folding sheet design composed of the box-pleated structure design,
the sticker controller design and the sticker place design.

An advantage of the algorithm is that the algorithm generates
the sheet designwhose size is exponentially bigger than the size of
the input. Thus, we can generate a big sheet by giving a relatively
small input.Where r is the size of the 1×1 self-folding sheet design
and the combining circuit set, p and q are the sizes of m and n
of the target size, and m and n are in the base-k numeral system
(k ≥ 2), the size of the input is r + p+ q and the size of the output
design is O(r × k(p+q)). The algorithm runs in O(r2 × k(p+q)) time
and O(r × k(p+q)) space.
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Fig. 18. Algorithmic overview of circuit combining algorithm.

6. Circuit combining algorithm

Given a combining circuit set and an n × m circuit design com-
posed of separated circuits, the circuit combining algorithm com-
bines the separated circuits into one fully connected circuit. The
algorithm is composed of the three combiners: the pseudo-fractal
combiner, the 1-to-1 combiner and the 2-to-2 combiner. The com-
biners replace some parts of the input design with the combining
circuits in the combining circuit set. Fig. 18 shows an overview of
the combining algorithm.

Fig. 19 is an example of an input of the circuit combining
algorithm. All circuits on the ninth column or the seventh row are
open circuits and the other circuits are 2 × 2 closed circuits.

6.1. Pseudo-fractal combiner

Given a circuit design composed of closed 2 × 2 circuits and
a pseudo-fractal combining circuit, the pseudo-fractal combiner
combines the closed circuits. The pseudo-fractal combiner locally
transforms separated circuits into a fractal patterned circuit as
shown in Fig. 22. However, the combiner does not always trans-
form the whole circuits into a fractal patterned circuit; although
the combiner always transforms a 2n

×2n circuit into a fractal pat-
terned circuit where n ≥ 1 [5]. Fig. 20 describes an overview of the
pseudo-fractal combiner.

In the first step, the combiner builds a 2 × 2 pseudo-
fractal combining patch composed of four rotated pseudo-fractal
combining circuits (Step 1 in Fig. 20). Fig. 21 shows an example
of a pseudo-fractal combining circuit and its 2 × 2 pseudo-fractal
patch.

In the second step, for each j = 1, 2, . . . ,m − 1 and each
i = 1, 2, . . . , n−1, the algorithmchecks the circuits of themodules
(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1). If the circuits are four
separated circuits, the algorithm replaces the modules with the
2 × 2 combining patch as shown in Fig. 22. The patch combines
the four circuits into a connected closed circuit (Theorem 1). If the
four circuits are not four separated circuits, the algorithm checks
the next four modules.

Theorem 1. Given a circuit design and its pseudo-fractal patch, iff the
circuits on modules (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1) are four
separated circuits, the patch combines the four circuits into one fully
connected closed circuit.

Proof. Weuse C(i,j) to denote a circuit crossing over amodule (i, j).
We use (i, j)′ to denote a module replaced with the module of a
patch.

Let B be a set {((i, j), (i+1, j)), ((i+1, j), (i+1, j+1)), ((i+1, j+
1), (i, j+ 1)), ((i, j+ 1), (i, j))}. If C(i,j), C(i+1,j), C(i,j+1), C(i+1,j+1) are
four separated circuits, after patching, Ca′ and Cb′ connect Ca and
Cb, where (a, b) ∈ B (Fig. 27). Then, C(i,j), C(i+1,j), C(i,j+1), C(i+1,j+1)
become one fully connected closed circuit.

Let (i, j) and (r, s) be two of four such modules. If C(i,j) and C(r,s)
are not separated circuits, the circuits on the modules (i, j) and
(r, s) are connected. After (i, j) is replaced by (i, j)′, the two ends
of C(i,j)′ are connected via C(r,s). However, after (r, s) is replaced
with (r, s)′, the circuit on the (r, s)′ disconnects C(i,j)′ and the two
ends of C(i,j)′ are disconnected. Thus, the patch does not combine
the circuits of the four modules. Theorem 1 is true. �

Fig. 23 shows an example of the algorithm. The blue dash–dot–
dot line rectangular area shows the input circuit design, which is
composed of 2 × 2 closed circuits only. The red dash line and the
purple dash–dot line squares are the patched circuits. Before the
algorithm runs, the input design is composed of 12 (=4× 3) 2× 2
closed circuits (Fig. 19). After the algorithmcombines the input, the
output is composed of 3 closed circuits (Fig. 23).

The algorithm runs inO(p×q) time andO(p+q) spacewhere p is
the size of the input circuit and q is the size of the input combining
circuit.

One of the fragile points of self-folding sheets is the wires that
cross over the joints. Although we can combine all circuits with
only the 1-to-1 and 2-to-2 combiners, we first run the pseudo-
fractal combiner tominimize the number of the crossingwires. The
pseudo-fractal patches do not have any additional crossing wires;
each patching area of an input circuit design (Fig. 22 left) and a
patch (Fig. 22 right) contains 4 crossingwires in the center. A 1-to-1
combining patch has one additional crossing wire (Fig. 26) while a
2-to-2 combining patch has two additional crossingwires (Fig. 28).

6.2. 1-to-1 combiner

The 1-to-1 combiner combines the circuits that are not 2 × 2
closed circuits. The blue dash–dot–dot line area in Fig. 24 is an
example input of this combiner. The red dash line triangle areas
are the patches.

The combiner uses two rotated patches for each side of the cir-
cuit as shown in Fig. 25. Each patch, called a 1-to-1 patch, combines
the circuits as shown in Fig. 26.

After 1-to-1 combining, the circuit connects to each sticker
controller unit with an actuator. In Fig. 26 (top-left), the patch
connects two separated circuits by connecting the wire on the
diagonal edge of the second module and the wire on the left
edge of the third module (top-right). Although the bottom sticker
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Fig. 19. Example of an input of the circuit combining algorithm. This 9 × 7 circuit design is generated by the designing algorithm (Fig. 17 Step 2).

Fig. 20. Algorithmic overview of the pseudo-fractal combiner.

Fig. 21. A pseudo-fractal combining circuit and a 2 × 2 pseudo-fractal combining patch.
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Fig. 22. Combining four separated circuits by a pseudo-fractal combining patch.

Fig. 23. Example of pseudo-fractal combining.

controller unit on the thirdmodule is disconnected from the circuit
after patching, the circuit stays connected to each unit with an
actuator, because the bottom edge is on the bottom outline of the
circuit design and no actuator is on this edge. For the same reason,
the circuit in Fig. 26 (bottom-right) also connects to each unit with
an actuator. The output circuit of the 1-to-1 combiner connects to
each unit with an actuator (Fig. 24).

The algorithm runs inO(p×q) time andO(p+q) spacewhere p is
the size of the input circuit and q is the size of the input combining
circuit.

6.3. 2-to-2 combiner

The 2-to-2 combiner combines two separated circuits. Fig. 27
shows a 2-to-2 combining circuit and2-to-2 horizontal and vertical
combining patches.

If two circuits on four modules face each other as shown in
Fig. 28, the circuits are separated, and one of the two circuits is
a closed circuit, then the patch can combine the two circuits into a

connected circuit (Theorem 2).We call the two such circuits 2-to-2
combinable circuits.

More precisely, 2-to-2 horizontal combinable circuits are the two
circuits on fourmodules (i, j), (i+1, j), (i, j+1), (i+1, j+1), where
the circuits on (i, j) and (i, j+ 1) are connected and the circuits on
(i + 1, j) and (i + 1, j + 1) are connected as shown in Fig. 28(a)
(left). 2-to-2 vertical combinable circuits are the two circuits of four
modules (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1), where the circuits
on (i, j) and (i + 1, j) are connected and the circuits on (i, j + 1)
and (i + 1, j + 1) are connected as shown in Fig. 28(b) (left).

For each group ofmodules (i, j), (i+1, j), (i, j+1), (i+1, j+1), if
the circuits on themodules are 2-to-2 combinable circuits, then the
combiner joins the circuit into one combined circuit (Theorem 2).

Fig. 29 shows an example of the 2-to-2 combining. The blue
dash–dot–dot line rectangular area is the input circuit design, and
the red dash line rhombuses are the patched circuits.

Theorem 2. Given a circuit design and its 2-to-2 combining patches,
iff the circuits on modules (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)
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Fig. 24. Example of 1-to-1 combining.

Fig. 25. A 1-to-1 combining circuit and two 1-to-1 rotated patches.

are 2-to-2 combinable circuits, then the patch combines the circuits
into one connected circuit.

Proof. Weuse C(i,j) to denote a circuit crossing over amodule (i, j).
We use (i, j)′ to denote a module combined with the module of a
patch.

If the circuits on modules (i, j), (i + 1, j), (i, j + 1), (i + 1, j +
1) are 2-to-2 horizontal combinable circuits, C(i,j) and C(i,j+1) are
connected and C(i+1,j) and C(i+1,j+1) are connected. After patching,
(i, j)′ and (i+1, j)′ are connected, and (i, j+1)′ and (i+1, j+1)′ are
connected. Because one of the circuits is closed, (i, j)′ and (i, j+1)′,
or (i + 1, j)′ and (i + 1, j + 1)′ are connected. Thus, C(i,j)′ , C(i+1,j)′ ,
C(i,j+1)′ , C(i+1,j+1)′ are a connected circuit.

For the same reason, if the circuits on modules (i, j), (i + 1, j),
(i, j+ 1), (i+ 1, j+ 1) are 2-to-2 vertical combinable circuits, they
become a connected circuit after patching.

If two circuits facing each other are not 2-to-2 combinable
circuits because they are one connected circuit, after patching, the
circuit becomes two separated circuits. Fig. 31 shows how one
connected circuit is separated by patching.

We use Ca and Cb to denote two circuits. Let a be two modules
including Ca. Let b be two modules including Cb. Let a′ be two
patched modules of a. Let b′ be two patched modules of b. After a
is patched by a′, the two ends of Ca′ are connected via Cb. However,

after b is replaced by b′, the two ends of Cb′ are disconnected. Thus
the ends of Ca′ must be disconnected.

If two circuits Ca, Cb facing each other are not 2-to-2 combinable
circuits because both circuits are opened, after patching, the
circuits become two separated circuits. Since Ca, Cb are opened,
after a, b are replaced by a′, b′, the two ends of Ca′ on a′ are
disconnected and the two ends of Cb′ on b′ are disconnected. There
is no way to connect the ends of Ca′ . Thus, the circuits are not one
connected circuit. Theorem 2 is true. �

Fig. 30 shows an overview of the 2-to-2 combiner. In the
first step, the algorithm generates two 2-to-2 patches. In the
second step, the algorithm combines 2-to-2 combinable circuits
until there is no 2-to-2 combinable circuit. In the third step, the
algorithm outputs the circuit design.

The algorithm runs inO(p×q) time andO(p+q) spacewhere p is
the size of the input circuit and q is the size of the input combining
circuit.

The algorithm always constructs the correct design because
there is at most one open circuit (from the 1-to-1 combiner), all
other circuits are closed circuits (from the 2-to-2 combiner), all the
separated circuits facing each other are 2-to-2 combinable circuits
(Theorem 2) and the separation of the two circuits can be detected
by the PATH algorithm.
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Fig. 26. Combining two separated circuits by 1-to-1 patching.

Fig. 27. A 2-to-2 combining circuit and 2-to-2 horizontal and vertical patches.

7. Sticker programming algorithm

Given k target shapes, an actuator model and a sticker place
design, the sticker programming algorithm generates a sticker
program; a sticker program is composed of a sticker design and an
actuation sequence of the target shapes. Fig. 32 shows an overview
of the sticker programming algorithm.

7.1. Origami planner

Given multiple target shapes, the origami planner generates an
optimized origami plan for the target shapes. For each shape, the
planner determines the sequence of folds required to achieve the

shape. Fig. 33 shows an example of an origami plan for a space
shuttle shape and a hat shape. Details about the origami planner
are presented in [1].

7.2. Sticker compiler

Given the group information of an origami plan and an actuator
model, the sticker compiler generates a sticker object and an
actuation sequence. Fig. 34 shows the five step process overview.

7.2.1. Generating sticker object
The first step (Step 1 in Fig. 34) is to convert all angles of the plan

to their corresponding actuator codes (Section 3.3.2). For example,
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Fig. 28. Combining two separated circuits by 2-to-2 patching.

Fig. 29. Example of 2-to-2 combining.

Fig. 30. Algorithmic overview of the 2-to-2 combiner.
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Fig. 31. Placing the 2-to-2 patch on the already connected circuit (left). The circuit becomes two circuits: inside and outside circuits (right).

Fig. 32. Visual overview of sticker programming algorithm.

Fig. 33. (Left) Input target shapes for the 8 × 8 sheet. (Right) Origami plan generated by the origami planner. According to Shape Information, Group 1 ∪ 2 is space shuttle
shape and Group 1 ∪ 3 is hat shape.
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Fig. 34. Algorithmic overview of the sticker compiler.

Fig. 35. Details of Step 3 of the sticker compiler (Fig. 34).

in Fig. 33 for the top-left modules (1, 1) of groups 1, 2 and 3, each
diagonal edge of group 1 and 2 is angle 0° and the diagonal edge of
group 3 is angle +180°. If the actuating model is A(00) → 0° and
A(01) → +180°, the algorithm converts the angle 0° of groups 1
and 2 to a code 00 and the angle +180° of group 3 to a code 01.

The second step is to combine all actuator codes of each edge
into the combined actuator codes for the sheet. For example, if the
diagonal joints of the top-left module (1, 1) of the groups 1, 2, 3
contain codes 00, 00, 01, respectively, after the second step, the
diagonal edge of the combined group contains a code 000001; the
combiner simply attaches the three codes 00, 00, 01.

The third step is to construct a sticker object by collecting the
combined actuator codes of the edges. After the second step, each
edge contains a combined code. As we explained in Section 3 and
Fig. 8, each module includes a sticker controller unit group. The
group is composed of three sticker controller units that control
the actuators on the left, diagonal, and bottom edges. The algo-
rithm collects the codes on the edges and completes the sticker
object which is an n × m matrix. Each element of the sticker ob-
ject is a three-tuple. Each three-tuple contains three elements for
the three sticker controller units of eachmodule. For instance, after
the second step, the left, diagonal, and bottom edges of the mod-
ule (1, 1) contain codes 000000, 000001 and 000100, respectively.
The algorithm collects the left edge code to the first element of the
three-tuple, the diagonal edge code to the second element and the
bottom edge code to the third element. Then, the element (1, 1)
of the matrix, which the compiler generates, is (000000, 000001,
000100). The details of this step are in Fig. 35.

7.2.2. Generating actuation sequence
In the fourth step, the sticker compiler converts the shape

information of an origami plan into an actuation sequence by
replacing the group names by binary codes.

An actuation sequence is a set of pairs (shape name, input
signal vector). Each pair represents a shape. Each vector contains
k elements where the sheet transforms into the shape in k steps.
Each element of the vector is a binary code that is the input signal
of self-folding sheets.

Each bit of the binary code represents each group. For example,
when an origami plan having 5 actuator groups is achieved by the
actuators of groups 1 and 3, the algorithm generates a 5-bit code
(10100) as an actuation sequence.When another shape is achieved
by the actuators of groups 1 and 3, followed by the actuators of
groups 4 and 5, the algorithm generates a vector with two 5-bit
codes (10100, 00011).

Fig. 33 shows an origami plan for two shapes. If we input
the shape information of the plan into the compiler, the output
is {(shape1, (110)), (shape2, (101))}. Since the plan has three
groups, each code of the actuation sequence is three bits. The
actuators of groups 1 and 2 simultaneously fold for shape 1 while
the actuators of groups 1 and 3 fold for shape 2. The compiler
generates vectors (110) and (101) for shape 1 and 2, respectively,
and constructs the output.

Because each bit of an actuation sequence represents each
group of each phase of each shape of an origami plan, the algorithm
correctly transforms the shape information of the origami plan into
the actuation sequence. The sticker controller generates a sticker
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Table 1
Overview of 4 × 4 and 8 × 8 self-folding sheets.

4 × 4 sheet 8 × 8 sheet

Crease pattern 4 × 4 box-pleated 8 × 8 box-pleated
Size 96 mm × 96 mm 192 mm × 192 mm
# of edges 40 176
# of actuators 40 36
Current 1.5 A 5.0 A
Average folding
time

21.6 s 5.0 s

Sticker controller
model

Sticker controller model Socket controller model

Reprogramming Very easy Easy
Actuator Y-type actuator Y-type actuator
Programming By sticker programming

algorithm
By sticker programming
algorithm

object and an actuation sequence in O(N2) time and O(N) space,
where N is the size of the input.

7.3. Sticker linker

Given a sticker object and a sticker place design, the sticker
linker generates a sticker design. Fig. 36 shows an overview of the
sticker linker algorithm.

Sticker objects, generated by the sticker compiler, contain the
abstracted information of sticker designs. With the abstracted
information, they can transform into the sticker designs for various
manufactured self-folding sheets.

As each sticker place of a sticker place design has an address
(Section 3.6), each alphabet (bit) of a sticker object has an address.
The address of the alphabet w is a 4-tuple (sid, a, b, c), where
sid ∈ {l(i, j), d(i, j), b(i, j)} is the address of the sticker controller
unit, a is the input port, b is the output port, and c ∈ {0, 1} is the
value of w. The address of the alphabet contains its value in the
fourth element. This address format is the same as the format for
the sticker place design (Fig. 37).

The sticker linker generates a sticker design by copying the
selected sticker places of the sticker place design. For each bit, if
the address of the bit and the address of the sticker place (graphic
image) are the same, the linker copies the selected sticker place
to the generating sticker design. Fig. 37 shows an example of the
linking process. The second element of the top-right tuple of the
input sticker object (1) contains 01 and each bit has the address (a),
(b). Since the address (b) matches the address of the sticker place
(d), the linker copies the sticker place (d) to the sticker design (f).
However, since the address (a) does not match any sticker place
of the sticker place design (2), the sticker linker keeps the sticker
place of the sticker place design (3) as an empty place (e); (a) and
(c) are different due to the fourth element of each address. By
copying the matched sticker place to the sticker design, the linker
constructs the sticker design (3).

Let p be the size of the sticker object and let q be the size of
the sticker place design. For each address of the sticker object,
if a sticker place having the same address exists, the algorithm
finds and copies it in O(q) time. If no sticker place having the
same address exists, the algorithm knows it in O(q) time. Thus, the
linking algorithm runs in O(p × q) time and O(p + q) space.

8. Physical self-folding devices

We built the 4 × 4 and 8 × 8 self-folding sheets. Table 1 shows
the overview of the sheets. The 4 × 4 sheet was used to evaluate
the low-level self-folding control using straight-line folding and
diagonal folding. The 8 × 8 sheet was used to evaluate the self-
folding control using two complex shapes: a space shuttle and a
hat.

Self-folding sheets are composed of four parts: a box-pleated
structure, actuators, a sticker controller, and a sticker program.
Since one of our visions is for the self-reconfiguration sheet to
be used in various environments including space shuttles, offices,
and houses, we selected most of the materials that are commonly
available. Our current sheets are built with lamination film tiles,
paper joints, and copper sheets, while our previous self-folding
sheet [2] was built with glass-fiber tiles, silicon compound joints,
and copper–kapton films. The actuators for the current sheets and
our previous sheet are built with SMA sheets.

8.1. Box-pleated structure

The box-pleated structure is the kinematic structure of self-
folding sheets (Fig. 40). The structure is composed of three layers:
a lamination film, paper, and a lamination film. Its materials are
lamination films (Heatseal, 0.7 mil), an anti-aging paper (Staples,
32 lb, 633213), andmicro bolts and nuts (Scale Hardware, 0.5mm)
and they are cut by Versalaser Cutting System. To attach the layers,
we stack them and put them into a laminator (GBC, HeatSeal H425
Laminator). We use the micro bolts and nuts to align the layers
(Fig. 40).

8.2. Actuators

The actuators of both self-folding sheets are Y-shape SMA actu-
ators (Fig. 41), which are developed by modifying Z-type actuators
in [27].

When current passes through the actuator, the actuator is
heated and transforms into its annealed shape. This motion gen-
erates the folding force and the actuators fold the joints of the self-
folding sheet. We unfold the actuators manually to set them back
to their initial state.

8.3. Sticker controller

The sticker controller is composed of a circuit, sockets, a sticker
(a set of connectors) and a signal interface (Fig. 38).

8.3.1. Circuit
The circuit is manufactured in the single layer circuit model

(Section 3.3.3) and its material is copper tape (McMaster-Carr,
76555A716). The sockets and the stickers are also made of this
copper tape.

To generate two circuit designs, we followed each step of the
self-folding sheet designing algorithm (Section 5). Each circuit
design has a fractal pattern, which is an output of the pseudo-
fractal combiner for a 2k

× 2k sheet.

8.3.2. Socket
A socket connects a circuit and an actuator as shown in Figs. 41

and 38. The socket of our device is made of copper tape and is
connected with the circuit; the circuit and the sockets are one
metal piece. The socket is peanut shaped and is composed of two
circles which cover the top and bottom sides of the leg of an
actuator. We use 0.5 mm bolts and nuts to attach the actuators.

8.3.3. Sticker
In themodel, a sticker is a rectangular adhesive tape embedding

a set of connectors (Section 3). By covering a sticker upon a self-
folding sheet, the connectors of the sticker fill selected sticker
places on the sheet. The sticker programming algorithm constructs
the design of the sticker. For our experiments, we added and
removed the connectors according to the sticker design. Each
connector is a 2 mm × 5.6 mm copper tape piece. The enabling
and disabling sticker places are as shown in Figs. 41, 39 and 38.

The origami planning softwarewehave implemented [1] gener-
ates the origami plans. We convert the plans to the sticker designs
by following the steps of the sticker compiler and linker (Section 7).



Author's personal copy

B. An, D. Rus / Robotics and Autonomous Systems 62 (2014) 976–1001 995

Fig. 36. Algorithmic overview of the sticker linker.

Fig. 37. Example of sticker linking.

Fig. 38. 4 × 4 sticker controller with no sticker.
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Fig. 39. 4 × 4 sticker controller with a sticker (vertical folding program).

Fig. 40. Box-pleated structure.

Fig. 41. Y-type actuator and two sticker places.



Author's personal copy

B. An, D. Rus / Robotics and Autonomous Systems 62 (2014) 976–1001 997

Table 2
Origami planning time for vertical and diagonal folding.

Analysis time for vertical 3.6 s (3600 ms)
Building time for vertical 17 ms

Analysis time for diagonal 4.2 s (4200 ms)
Building time for diagonal 16 ms

CPU Intel core 2 quad 2.83 GHz (Q9550)
Storage 3 GB RAM, Seagate 750 GB 300 MBps 7200 rpm HDD
Graphics NVIDIA quadro FX 1700

Table 3
Actuators (ac.) of 4 × 4 sheet.

Folding
ac.

Total
ac.

Total
edges

Folding
ac./total ac.

Total ac./total edges

Vertical 12 40 40 30.0% 100.0%
Diagonal 8 40 40 20.0% 100.0%

Total 20 40 40 50.0% 100.0%

Table 4
Folding time and current of 4 × 4 sheet.

# of runs Current (A) Average folding
time (Standard
deviation)

Vertical 14 1.5 21.0 s (2.8 s)
Diagonal 13 1.5 22.4 s (4.7 s)

Total 27 1.5 21.6 s (3.7 s)

8.3.4. Signal interface
A sticker controller receives input signals through its signal

interface (Section 7). The 4 × 4 sheet device controls one actuator
group and its input interface has one input port (Fig. 39). The input
interface of the 8 × 8 sheet device has three input ports.

9. Experiment with the 4 × 4 self-folding sheet

This experiment is performed to understand the programmabil-
ity and the fundamental folding ability of a self-folding sheet with
the sticker programming. We ran the 4 × 4 sheet device with the
sticker programs for two basic folding motions, vertical and diago-
nal (Fig. 42 andMovie S1). This experimentwas executed according
to the following steps:

1. construct two sticker designs for the vertical folding motion
and the diagonal folding motion;

2. attach a set of connectors (a sticker) on the sheet according
to the sticker design for the vertical folding motion;

3. run the sticker program on the sheet;
4. remove all connectors;
5. attach the connectors according to the sticker design for the

diagonal folding motion;
6. run the sticker program on the sheet.

9.1. Results and discussions

The sticker programming algorithm generates two sticker
designs (Section 7). Table 2 shows the planning times.

In our sticker controllermodel, each edge contains one actuator.
Since each edge of the 4× 4 sheet contains one actuator, the sheet
has 40 edges and 40 actuators. 50.0% of the actuators were used
(Table 3).

We executed the vertical folding program on the 4 × 4 self-
folding sheet 14 times and we then executed the diagonal folding
program 13 times. The 4 × 4 sheet achieved the vertical and
diagonal folding reliably (Fig. 42). We set the current at 1.5 A and
the average folding time of the shapes was 21.6 s (Table 4).

Table 5
Folding angle and folding achievement of 4 × 4 sheet.

Average folding
angles (Standard
deviation)

Target
angles

Folding achievement (folding
angle/target angle)

Vertical 141.6°(10.1°) 180.0° 78.7%
Diagonal 126.4°(19.7°) 180.0° 70.2%

Total 134.0°(16.3°) 180.0° 74.5%

Table 6
Failure of 4 × 4 sheet.

# of runs # of failures Average failure

Vertical 14 1 (of 14 runs) 0.7 (of 10 runs)
Diagonal 13 2 (of 13 runs) 1.5 (of 10 runs)

Total 27 3 (of 27 runs) 1.1 (of 10 runs)

Table 7
Disabled actuators (ac.) of 4 × 4 sheet.

Average # of disabled
ac.

Folding
ac.

Disabled
ac./folding ac.

Disabled
ac./total ac.

Vertical 0.77 12 6.4% 1.9%
Diagonal 1.36 8 17.0% 3.4%

Total 1.04 10 10.4% 2.6%

While each actuator in the model folds its joint into 180°, the
actuators on the real device achieved 134.0°, which is 74.5% of the
target angle 180.0° (Table 5); we measured the folding angle of
the edges on the center line of each shape. The individual actuator,
which was not on the sheet, achieved 180° folding and each edge
without an embedded actuator was folded into 180°. However,
the actuator on the edge could not achieve 180° folding because
it could not generate enough force to fold the edge into 180°.

Each center line of both diagonal and vertical folding shapes
was folded by 4 actuators.While the diagonal center linewas 41.4%
longer than the vertical center line, the angle of the diagonal center
line was 10.7% smaller than the angle of the vertical center line.

We ran the sticker programs 27 times. We defined a success
round as when the sticker controller delivered the signals to
the selected actuators and a failure round as when the sticker
controller did not deliver the signals. The average folding angle of
the success rounds was 134.0° (Table 5).

Although the 4th round of the vertical folding and the 1st and
9th rounds of the diagonal folding were failure rounds (Table 6),
we were able to continue the experiment by disabling actuators.
The main reason for the failures was weak connections between
the socket and the SMA actuator. The SMA is a material that
is hard to solder. We thus made the electronic connection with
conductive micro bolts and nuts. However, while the sheet folded
several times, the electronic connection became weak, which
made the socket difficult to recover. In this case, we fixed the
device by disabling (removing) the broken actuators; we also
changed the position of the connector to pass the signals. For
each failure, we disabled one actuator and the sheet continued its
transformation reliably. The average number of disabled actuators
was 1.04 (Table 7).

Most of the results of the two basic shapes on the 4 × 4 sheet
were similar except their resistances. The resistance was 19.1 �

for the vertical folding while the resistance was 28.9 � for the
diagonal folding. Even though the number of selected actuators for
the diagonal folding is 1.5 times smaller than the number for the
vertical folding, the resistance of the sheet increased 1.51 times
(Table 8).
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Fig. 42. Snapshots from programming and controlling 4 × 4 self-folding sheet for diagonal folding (a) and vertical folding (b).

Fig. 43. Snapshots of the 8 × 8 self-folding sheet for the space shuttle shape (a) and the hat shape (b).

Table 8
Resistance of 4 × 4 sheet.

Average resistance (�)

Vertical 19.1
Diagonal 28.9

Total 23.6

10. Experiment with the 8 × 8 self-folding sheet

Wedesigned the experimentwith the 8×8 sheet to evaluate the
programmability and the scalability of the sticker programming as
a new control method. In order to focus more on programming
challenges than on mechanical challenges, we selected a space
shuttle shape and a hat shape (Fig. 43 and Movie S1). The shapes
require no double folded edges, three actuator groups and an 8×8
box-pleated crease pattern. The 8 × 8 pattern contains 4.4 times
more edges than the 4 × 4 pattern.

The 8 × 8 sheet includes a socket controller (Table 1, Fig. 45),
which is the implementation of an alternative sticker model
(Section 3.5).

We executed the experiment according to the following steps:

1. generate a sticker design containing the space shuttle and hat
shapes;

2. optimize the sticker design for the socket type sticker con-
troller;

3. place actuators according to the sticker design;
4. run the sticker program for the space shuttle shape;
5. run the sticker program for the hat shape.

10.1. Results and discussions

We generated the sticker design for the two shapes with the
sticker programming algorithm (Section 7). The sticker program-
ming algorithm planned the folding of the two target shapes with
the origami planner (Fig. 33), and the sticker compiler and the
linker then transformed the plan into the sticker program (Fig. 44).
In the actuator sticker model, the number of connectors was equal
to the number of actuators (Section 3.5). By minimizing the num-
ber of actuators involved in the passive folding, we optimized the
sticker design (Fig. 46). Table 9 shows the planning times.

Since we built the 8 × 8 sheet in the socket controller model
(Section 3.5), the 8 × 8 sheet ran with the relatively small number
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(a) Sticker design. (b) Actuation sequence.

Fig. 44. Result of the sticker programming algorithm for the 8 × 8 sheet. The input target shapes are the space shuttle and hat shapes (Fig. 33 (left)).

Fig. 45. 8 × 8 self-folding sheet without a sticker. For the controller of this sheet, a sticker is a set of actuators.

Fig. 46. Sticker design optimized for the socket controller of the 8 × 8 sheet. The
actuation sequence for this design is shown in Fig. 44(b). The original sticker design
is shown in Fig. 44(a). The target shapes are the space shuttle and hat shapes (Fig. 33
(left)).

of actuators (only 20.5% of edges have the actuators). The 8 × 8
sheet has 18.2% less actuators than the 4×4 sheet, while the edges
of the 8 × 8 sheet are 4.4 times more than the edges of the 4 × 4

Table 9
Multiple origami planning time.

Analysis time for space shuttle 5.3 s (5300 ms)
Building time for space shuttle 19 ms
Analysis time for hat 4.9 s (4900 ms)
Building time for hat 17 ms

Building time for multiple origami plan 25 ms

Total time 10.3 s (10261 ms)

Table 10
Actuators (ac.) of 8 × 8 sheet.

Folding
ac.

Total
ac.

Total
edges

Folding
ac./total ac.

Total ac./total
edges

S. shuttle 20 36 176 55.6% 20.5%
Hat 24 36 176 66.7% 20.5%

Total 36 36 176 100.0% 20.5%

sheet (Tables 1 and 3). While the 8 × 8 sheet transformed into the
shapes, 61.1% of the actuators were used (Table 10).

We executed the space shuttle shape folding (shape 1) 14
times and the hat shape folding (shape 2) 12 times. The 8 × 8
sheet achieved the shapes reliably with the optimized number of
actuators (Fig. 43). We set the current at 5.0 A and the average
folding time was 5.0 s (Table 11).
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Table 11
Folding time and current of 8 × 8 sheet.

# of runs Current (A) Average folding
time (Standard
deviation)

Space shuttle 14 5.0 5.9 s (0.6 s)
Hat 12 5.0 4.5 s (0.7 s)

Total 26 5.0 5.0 s (1.5 s)

Table 12
Failure of 8 × 8 sheet.

# of runs # of failures Average failure

Space shuttle 14 3 (of 14 runs) 2.1 (of 10 runs)
Hat 12 2 (of 12 runs) 1.6 (of 10 runs)

Total 26 5 (of 26 runs) 1.9 (of 10 runs)

Table 13
Disabled actuators (ac.) of 8 × 8 sheet.

Average # of
disabled ac.

Folding
ac.

Disabled ac.
/folding ac.

Disabled
ac./total ac.

Space shuttle 0.82 20 4.1% 2.3%
Hat 0.80 24 3.3% 2.2%

Total 0.81 22 3.7% 2.2%

For this experiment, there were 5 failures; we defined success
and failure rounds in Section 9. The transformation failed in the
3rd, 10th and 14th rounds for shape 1 and the 3rd and 12th rounds
for shape 2.

The 3rd round for shape 1 and the 3rd round for shape 2
failed because the actuators broke. By replacing these actuators
with metal pieces, we disabled the actuators. The edges with the
disabled actuators folded passively, which allowed us to continue
the experiments. In each 3rd round, one actuator broke. Since the
broken actuator for shape 1 was in actuator group 2, the disabled
actuator did not affect the folding for shape 2.

The 10th and 14th rounds for shape 1 and the 12th round for
shape 2 failed due to the weak connections between the actuator
sockets and the actuators. The structure of the sheet was built
with lamination tiles and paper joints. Micro bolts were used to
attach the actuators. While we ran the sheet around 10 times
for each shape, these connections were too weak to continue
the experiments. In the 10th and 14th rounds for shape 1, by
tightening the bolts on the broken sockets, we could continue the
experiments. In the 12th round of shape 2, however, we could not
continue the experiment because while we tightened the bolts on
the sockets to fix the connections, the connections of the other
sockets became too weak to continue the experiment.

We found a couple of broken connections on the joints in the
14th rounds for shape 1 and the 12th round for shape 2. We
fixed the connections by patching the metal pieces on the joints
(Table 12).

The average number of disabled actuators was 0.81. The
disabled actuators were 3.7% of the folding actuators and 2.2% of
the total actuators (Table 13).

The resistance for shape 1 was 17.4 k� and the resistance for
shape 2 was 80.15�. While we executed shape 1, the resistance of
group 3 was 1.71 M�. However, because group 3 was not used for
shape 1, the sheet achieved the shape (Table 14).

11. Discussions

In this paper, we introduced a new control method for self-
folding sheets. We discussed the details of the model and the
algorithms that correctly design and control the self-folding sheet

Table 14
Resistance of 8 × 8 sheet.

Average resistance
Group1, Group2, Group3

Average resistance of folding
groups

Space
shuttle

44.8 �, 34.8 k�, 1.71 M� 17.4 k� (Group1 + Group2)/2

Hat 109.3 �, 14.7 k�, 51.0 � 80.15 � (Group1 + Group3)/2

within polynomial time and space. We also implemented the 4×4
and 8 × 8 self-folding sheet devices. We designed the sheets with
the automated sheet design algorithm and generated the sticker
programs with the automated sticker programming algorithm.
The sticker controller for each sheet successfully controlled the
actuators and achieved our target origami shapes.

There are however gaps between the model and the physical
devices. Although actuation does not fail to transform the model,
the device can fail to transform; the 4 × 4 sheet failed 11% of the
total runs and the 8×8 sheet failed 19% of the total runs. Themain
reason was weak connections between the actuator sockets and
the actuators. The devices also had other disconnection issues, such
as broken actuators or disconnected wires at the joints.

In the model, the folding speed is not a concern, but all shapes
for the physical devices required time to complete the shapes. In
our experiment, the folding speed is not a factor because the time
is relatively short (4–25 s) and the shapes are simple enough to
be folded in one step. However, for more complex shapes with
many folding steps, we need a method which notices the ending
time of each step. Adding an electronic route to collect the output
of all folding feedback sensors can be a possible solution to this
challenge.

The passive edges are not clearly defined for the alternative
stickermodel. Since the 4×4 sheet is in the basic sticker controller
model, the sheet contains one actuator for each edge. On the other
hand, the 8×8 sheet in the alternative stickermodel contains some
edges that are passively folded. While we experimented with the
space shuttle shape, a couple of the edges at the end of the left
wing were not folded in a few rounds. Wemarked them as success
rounds because all actuatorsworked correctly; the definition of the
success round is described in Section 10.

12. Conclusions and future works

This paper contains the hardware model and the algorithms
for n × m self-folding sheets transforming into origami shapes.
We presented and analyzed the model and the algorithms. We
demonstrated and analyzed two sheet devices builtwith themodel
and the algorithms.

We believe this method can be applied for bigger sheets trans-
forming into complex shapeswithmany steps. To achieve this goal,
we are implementing the algorithms as a development tool for self-
folding sheets. We are developing solutions to simplify the sticker
attachment process and to manufacture sheet devices containing
better mechanical features.
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