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ABSTRACT
This paper describes a novel method for reconstructing urban environments based on 

individual occupant experience. The method relies on a low-cost off-the-shelf 360o camera 

to capture video and audio data from a natural walk through the city. It then uses a custom 

workflow based on an open-source Structure from Motion (SfM) library to reconstruct a 

dense point cloud from images extracted from the 360o video. The point cloud and audio 

data are then represented within a virtual reality (VR) model, creating a multisensory envi-

ronment that immerses the viewer into the subjective experience of the occupant.

This work questions the role of precision and fidelity in our experience and represen-

tation of a “real” physical environment. On the one hand, the resulting VR environment 

is less complete and has lower fidelity than digital environments created through tradi-

tional modeling and rendering workflows. On the other hand, because each point in the 

point cloud is literally sampled from the actual environment, the resulting model also 

captures more of the noise and imprecision that characterizes our world. The result is an 

uncanny immersive experience that is less precise than traditional digital environments, 

yet represents many more of the unique physical characteristics that define our urban 

experiences.
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INTRODUCTION
There is a long history of using data to better understand 

our cities. In 1916 New York City passed the first-ever land 

use zoning code, which created a comprehensive database 

of allowed uses, covering the full extent of the city’s land. 

More recently, ubiquitous information communication tech-

nologies (ICT) and the Internet of things (IoT) have allowed 

sensing and gathering of data about urban environments 

at a highly granular level (Cocchia 2014; Neirotti et al. 

2014). Several cities, including Rio de Janeiro, Brazil, and 

Songdo, South Korea, have leveraged these technologies 

to create comprehensive “Smart City” platforms to manage 

the acquisition, monitoring, and analysis of many forms 

of urban data (Mattern 2015). The data captured by these 

platforms can be used to generate new insights about a 

city’s performance in real time, allowing officials to make 

better decisions and enact better policies for the city.

Although these technologies have given us a more detailed 

understanding of the city, they are typically only focused 

on the physical aspects of the urban fabric and ignore the 

individual experiences of its occupants. Working from the 

late 1950s to the early 1970s, a movement of artists and 

theorists called the Situationist International proposed an 

alternate view of the city, which is based not on a single 

static physical reality, but on the combination of all the 

subjective experiences of its occupants. To demonstrate 

this concept, the movement’s members undertook a set of 

exercises they called “The Dérive,” in which they orches-

trated a set of walks within the city of Paris and later 

created diagrams, collages, and writings to describe the 

city from the point of view of their subjective experience 

(Debord [1958] 2006). In revisiting their work, our goal 

was to explore the use of emerging technologies including 

imaging, computation, and virtual reality to quantify these 

subjective experiences of the city—in effect creating a 

“Digital Dérive.” 

BACKGROUND
The relationship between the physical urban environment 

and an occupant’s emotional state and behavior is explored 

by the field of psychogeography, which has roots in the 

Situationist International movement led by Guy Debord. 

According to Debord ([1958] 2006), “[urban environments 

are] determined not only by geographical and economic 

factors, but also by the image that its inhabitants [...] have of 

it”. This highlights the importance of an individual’s percep-

tion and experience in the understanding of the urban 

system as a whole. Our work extends these early theories 

through the application of new technologies for capturing 

these subjective experiences and representing them in an 

immersive virtual environment.

A related method for quantifying urban experience is space 

syntax (Turner 2005), which uses computational methods 

such as isovists and graphs to represent aspects of the 

physical environment from the point of view of the occupant. 

However, these techniques tend to focus only on the phys-

ical aspects of spaces and disregard the experiences of 

actual human occupants (Ratti 2004). Our work addresses 

these limitations by capturing visual and audio data from a 

real occupant and using it to reconstruct the urban envi-

ronment based on their individual experience.

The use of virtual reality (VR) to transfer an experience 

from one person to another has been explored by several 

digital artists, including Chris Milk (2015). In a recent 

project called Palimpsest, a group of researchers including 

Haavard Tveito, John Russell Beaumont, and Takashi 

Torisutrio combined 3D scanning and VR to reconstruct 

specific urban spaces to allow others to experience how 

local communities might be affected by new develop-

ment (Naylor 2017). Relevant technologies for visualizing 

captured point clouds in a digital environment were also 

developed by Rachel Strickland (2018) for her project 

titled Walk-In Theater. Our work extends this research by 

creating a computational workflow that can create similar 

virtual reconstructions using cheaper off-the-shelf hard-

ware. By attaching the capture hardware directly to the 

occupant, we can also create reconstructions that more 

closely relate to their individual experience. In this regard 

our research builds on Steve Mann’s (2003) early work 

with wearable computing. 

From a technical perspective, much of our methodology 

is based on the reconstruction of point clouds from a set 

of image data. For this we rely on a set of functionalities 

from an existing open-source library called COLMAP. This 

library is based on the theoretical principles of Structure 

from Motion (SfM), which deals with the reconstruction of 

camera positions and generation of sparse 3D point clouds 

based on the discovery of similar features across a set of 

images. COLMAP also provides functions for generating 

dense point-cloud reconstructions using concepts of multi-

view stereo (MVS) reconstruction (Furukawa 2010). The 

technical details of the COLMAP library can be found in a 

set of associated papers referenced throughout this paper 

(Schönberger and Frahm 2016; Schönberger et al. 2016).

METHODOLOGY
Capture

The reconstruction process begins by capturing data using 

a 360˚ camera. Such cameras can capture the complete 

environment while allowing for natural walking behavior 

during use. In contrast, the use of a single-lens camera 
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would require deliberate orientation and placement to 

achieve similar results, making the capture of natural 

walking patterns and experiences impossible. For our 

experiments we chose the Garmin VIRB360 action camera, 

which records forward and rear video with a 201.8˚ fisheye 

lens as well as planar 4-channel ambisonic audio. This 

camera has several advantages, including its relatively low 

price ($800 at time of writing), many onboard sensors, and 

high shutter speed, which limits undesirable visual artifacts 

such as motion blur.

To capture the data, the camera is attached to the occu-

pant’s head using a bicycle helmet and camera mount 

(Figure 2). Head mounting the camera offers two primary 

benefits. First, it minimizes the appearance of the user 

across the sequence of images, which would both occlude 

features to be reconstructed and introduce reconstruc-

tion artifacts. Second, it provides an approximation of gaze 

tracking, as the center of the camera frame aligns with 

the orientation of the user’s head as they look around the 

environment.

Data Preprocessing

The raw output from the camera is a pair of fisheye videos 

(Figure 3). To make them usable for reconstruction, the 

videos are first stitched into a single equirectangular 360o 

video using VIRB Edit, a free software provided by the 

manufacturer of the camera. This software uses known 

calibration values for the camera model to undistort and 

stitch the videos into a single frame (Figure 4). The stitching 

process is controlled by a set of high-level parameters, 

including output resolution, compression, and target 

distance. The “far” stitch distance preset (optimized for 

distances greater than 5 meters) produced the best results 

for the outdoor environment. Artifacts and discontinuities 

generated by the stitching of nearby objects (those closer 

than 5 meters) produced no discernible issues in the recon-

struction process.

The VIRB Edit software also provides support for image 

stabilization using data from the on-board accelerometer, 

gyroscope, and magnetometer to apply affine transforma-

tion to the rendered image. Through experimentation we 

found that the vibration-reduction and horizon-stabilization 

presets produced more accurate camera pose estimation 

during reconstruction due to reduced camera rotation. 

An output resolution of 4K (3480 x 2160 pixels) at “high” 

compression quality offered a good compromise between 

reconstruction quality, file size, and processing time.

After the videos are stitched, they are split into three-

minute segments using the software library ffmpeg. 

Through experimentation, this length was found to offer a 

good tradeoff between containing enough frames to accu-

rately reconstruct the environment, while running relatively 

quickly on available computer hardware. The ffmpeg library 

was also used to extract the ambisonic audio track as a 

separate .AAC file for later use in the VR environment.

Since our reconstruction workflow requires still images 

for input, frames were extracted from the source video at 

a frequency of one hertz (1 frame per second). We found 

2 Data gathering with head-
mounted 360o camera

2
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3 Raw output of 360o camera: 
two videos from front and rear 
fisheye lenses

4 Sample frame from stitched 
360o video

3

4

that this interval provided a good distance between frames 

(which improves feature triangulation) while maintaining 

the fidelity of the reconstructed walking path. Oversampling 

(less than 1 Hz) produced negligible improvements in point-

cloud density while drastically increasing computation time, 

while undersampling (higher than 1 Hz) led to excessive 

smoothing of the reconstructed camera tracks and in some 

cases a lack of sufficient overlap between adjacent frames.

Although the chosen reconstruction library can work 

directly with the raw images produced by the camera, 

the extreme spherical distortion produced by the fisheye 

lenses causes problems for later stages of the process. 

To mitigate these issues, we instead chose to use a set of 

undistorted perspectival projections generated directly 

from the equirectangular frames of the stitched 360o video. 

These projections were computed by first converting the 

cartesian vector from the focal point of the camera to each 

pixel into spherical coordinates, and then sampling the 

corresponding equirectangular source pixels with bilinear 

color filtering. This process can extract arbitrary undis-

torted projections at a pixel resolution of 2160 x 1080 given 

a target field of view, horizontal orientation (–180 to 180 

degrees), and vertical tilt (–90 to 90 degrees).

Through experimentation we determined that using four 

cardinal directions (forward, backward, left, right) with 

no tilt produced the best result (Figure 5). We also found 

that this method produced better results than alternative 

projection methods, such as the generation of cubemaps. 

The wide FOV in the horizontal frames improved image 

match continuity through content overlap and resulted in 

greater camera pose accuracy. The elimination of upward 

and downward views reduced noise or misregistration 

caused by the reconstruction of clouds or the stationary 

helmet. With 180 time steps for each reconstruction (3 

minutes x 60 frames per minute) and 4 views for each 

time step, the resulting reconstructions use 720 individual 

images, which was found to perform reasonably well on 

available hardware (see Table 1).
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5 Four directional images (front, back, left, and right) extracted from stitched 360o video

Sparse reconstruction

To perform point-cloud reconstruction based on the 

extracted image frames we relied on COLMAP, an open-

source library that includes both a graphic UI as well as a 

command-line interface (CLI) for accessing specific lower-

level functions (Schönberger and Frahm 2016). This library 

was chosen over other open-source packages for its 

state-of-the-art reconstruction quality and for the degree 

of control over reconstruction parameters exposed to the 

user. Although COLMAP includes an “automatic reconstruc-

tion” process for basic use cases, our application required 

extensive tuning of low-level settings of individual parts 

of the process. Thus our method relies mostly on custom 

scripts that access individual functions and settings 

through the library’s CLI.

To run the reconstruction process in COLMAP, the user 

must specify the intrinsic properties of the camera used to 

capture the images. The software has support for several 

camera models, depending on the geometric complexity of 

the lens and the associated spherical distortions. Because 

our images were computed directly to contain no spherical 

distortions, we could use the “SIMPLE_PINHOLE” camera 

model, which has only three parameters: the focal distance 

and the x and y components of the principal point. Since 

our images were generated from a spherical projection, 

the principal point was always at the center of the image 

and could thus be calculated directly. However, since 

our images were not captured by a physical camera, the 

equivalent focal distance was not known a priori. Instead, 

we used a feature of COLMAP to automatically estimate 

the camera model intrinsics during the reconstruction of 

a small test set. As long as the image extraction process 

does not change, this estimated focal distance can be hard-

coded to increase the speed and efficiency of subsequent 

reconstructions.

The reconstruction process begins by identifying a set 

of unique features in each image (Figure 6) and then 

compares pairs of images to see which features they share 

(Figure 7). To speed up the matching process we relied 

on the built-in vocabulary tree method (Schönberger et 
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6

7

al. 2016), which offers a significant advantage in compu-

tation time over the default exhaustive method. While 

sequential-based matching is often used for reconstructing 

single-lens video data, our use of four separate image 

streams did not allow it to be used. 

Once the matches are found, an iterative optimization 

process called bundle adjustment is used to place the 

images in the 3D environment. This produces a dataset that 

includes a sparse point cloud representing the successfully 

triangulated features and the pose information for each 

image that was successfully placed in the scene (Figure 8).

After the reconstruction process is complete, the model 

is rectified to cartesian world coordinates using a built-in 

COLMAP function that derives a global transforma-

tion matrix through an analysis of the source images 

for horizontal and vertical vanishing points. A final step 

extracts the sparse point cloud as a standard .PLY file and 

generates a tabulated .CSV file of camera positions and 

orientation vectors from the native binary data file. These 

files can be used to visually inspect the model to confirm 

the accuracy and completeness of the reconstruction. This 

inspection ensures that the dense reconstruction—the 

longest and most computationally intensive operation of the 

reconstruction process—won’t be executed on low-quality 

or incomplete models. The output .PLY sparse model and 

.CSV camera tracks also allowed for early exploration of the 

model in the real-time VR environment.

Dense Reconstruction

Once the pose information of each image is known, COLMAP 

can calculate the depth and normal information of each 

pixel based on the concept of multi-view stereo (MVS) 

reconstruction (Furukawa 2010) (Figures 9 and 10). For 

this process to work, the images must first be undistorted 

to remove any spherical distortions caused by the camera 

lens. During testing we discovered that the built-in undis-

tortion function tended to crop areas of the image with 

high distortions, causing a large loss of information in 

highly distorted images, such as those generated from the 

camera’s raw output. This provided a further advantage 

to using the generated perspective projections, which 

ensured that the resulting computed depth and normal 

maps retained full pixel information, thus producing higher 

quality and denser point clouds. 

Once the depth and normal information for each pixel is 

known, the pixels can be projected into physical space and 

fused into the final dense point cloud. The image undis-

tortion, MVS computation, and dense model fusion were 

generated using included functions and default settings in 

COLMAP. The resulting dense point cloud is output in .PLY 

format with matching coordinate alignment to the sparse 

6 Detection of features in single 
frame

7 Matching of features in multiple 
frames
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8 Sparse reconstruction model visualized in COLMAP GUI

Table 1: Average time requirements for processing steps

point-cloud model and camera tracks generated in the 

previous step.

All data processing described in the methodology above 

was performed on a single computer with an Intel Core 

i7-7700 3.6 GHz Quad-Core Processor, an NVidia GeForce 

GTX 1080 Ti Graphics Processing Unit (GPU) with 11 GB 

on-board memory, and 32 GB of RAM. Using this hardware, 

the time required for each processing step is described in 

Table 1.

Visual Experience

To create the interactive VR experience, we used the game 

engine Unity 3D (version 2017.3.1f1) in conjunction with the 

HTC Vive headset and controllers. To import the point-cloud 

data into Unity 3D we relied on PCX, an open-source Unity 

Process Time required (HH:MM)

Video stitching 0:15

Image extraction 0:10

Feature extraction 0:02

Image matching 0:08

Sparse reconstruction 0:20

Dense reconstruction 8:00

Total 9:00

3D plugin that supports the .PLY file format for directly 

importing and visualizing point-cloud data (Takahashi 2017). 

Once the point cloud was imported into Unity 3D, we added 

a proximity-based glow shader to enhance the visibility and 

perception of depth within the environment.

Audio Experience

To represent the audio component of the experience, we 

split each audio file into individual ten-second samples. 

These samples were brought into the Unity 3D model and 

associated with objects (visualized as glowing red spheres) 

placed at ten-second intervals along the reconstructed 

path. While each audio sample is set to loop continuously, 

the volume of each clip is set to be inversely proportional 

to the distance of the user from its associated object. The 

falloff of this effect is calibrated to produce a slight overlap 

between sequential clips. 

This process creates an interactive sound environment, 

allowing the user to experience not only the visual but also 

the audio elements of the experience. When the user is far 

away from the original path, no audio is heard, since no 

audio was gathered in that part of the environment. The 

closer the user follows the original path, the more they are 

engaged with the audio landscape experienced by the orig-

inal occupant. By following the path in real time, the user 

can fully reconstruct the entire audio experience.

Digital Dérive Nagy, Stoddart, Villaggi, Burger, Benjamin
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Interaction Design

The VR experience is provisioned with a simple user inter-

face designed to help the user navigate the reconstructed 

environment. While wearing the headset, the user can navi-

gate the model through two main view modes, which can 

be toggled with the top controller buttons (Figure 11, left). 

The model mode displays the point cloud at a reduced scale, 

allowing the user the see the extents of the data (Figure 

11, right). In this mode, the user can manipulate the model 

using the controllers with typical zoom-in, zoom-out, orbit, 

and panning functions (Figure 12). Additionally, a drop-

down menu allows the user to select the dataset they want 

to explore. Audio information is disabled in this mode since 

the focus is not to create an immersive experience.

The second view is the first-person mode, which teleports 

the user to ground level for a human-scale experience 

of the model (Figure 13). In this mode the user has two 

navigation options. In the first they can wander freely by 

either physically moving within the bounded “game area” of 

the HTC Vive setup or using a teleport function triggered 

through the controllers. In this mode the audio is enabled 

and behaves as previously described. In the second naviga-

tion option the user can snap to the reconstructed path to 

enter the same journey taken by the original data gatherer. 

In this case the camera’s position is controlled by the loca-

tion and speed of the original walk, while the orientation is 

controlled by the user’s head movement. In this mode the 

audio is played in real time, but because it is ambisonic it 

remains responsive to the motion of the user’s head. While 

relatively simple, these view modes give the user a range of 

experiences with the data, from a top-down holistic view to 

a fully immersive experience that lets them almost literally 

walk in someone else’s shoes.

CONCLUSION
This paper presented a novel process for reconstructing 

urban environments based on individual human expe-

riences. While the method described relies on a clear 

technical workflow, the experience it creates for the user 

raises important questions regarding our understanding 

and experience of digital and physical environments, and 

9 Video frame with color repre-
senting computed depth of each 
pixel from camera frame

10 Video frame with color repre-
senting computed normal vector 
of each pixel
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12

13

11 Stills from VR experience 
showing “model mode” and asso-
ciated UI elements. Left: closeup 
of controller with view mode 
selection. Right: (a) neighbor-
hood selection dropdown; (b) left 
controller; (c) right controller.

12 User orbiting and exploring the 
model: (a, b) zooming in and out; 
(c, d) panning and rotating.

13 Still image of VR experience 
showing “first-person mode” 
and associated UI elements: a) 
teleport arc; b) audio source orb; 
c) 2D key map.

the role that precision and fidelity play in our under-

standing of what is real.

As can be seen in Figure 1, the world reconstructed through 

this method is not as complete or perfect as what we are 

used to with rendered digital environments. Since the 

reconstruction process is based entirely on images sampled 

from  a camera worn on the user’s head, only points seen 

from this point of view can be represented. This creates 

large areas of “shadow” in the model where no features are 

represented. While these shadows create an incomplete 

representation of the environment, they also accentuate the 

uniqueness of the reconstruction to the individual experi-

ence of the person who gathered the data. Furthermore, 

since the points in the point cloud are sampled directly from 

the physical environment, the experience captures some of 

the imprecision and noise that we associate with the phys-

ical world. This creates a somewhat uncanny experience 

that in many ways feels more “real” than typical rendered 

artificial VR environments. Although such physical detail can 

Digital Dérive Nagy, Stoddart, Villaggi, Burger, Benjamin
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be captured with greater fidelity by more expensive equip-

ment such as laser scanners, our method more directly 

conveys the individual experience by only showing what was 

seen by the original occupant of the space. 

While the scope of this project was limited to creating an 

immersive interactive experience, the method can also be 

utilized for many applications in architectural design where 

3D-scanning technology is already used. For example, it 

can be used during the design process to understand the 

existing conditions of a building site and after construction 

to understand how closely the completed building matches 

the original design. With this work and continuing research 

we hope to show how emerging technologies can help us 

not only better understand our buildings and cities, but do 

so through the points of view of their individual occupants.
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