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Figure 1: We bring the power of generative design in the early stages of design exploration with freeform 3D sketches. (a) The user 

defines a problem definition by roughly sketching a dragon-shaped lamp holder, the anchor to the wall, and a load value (red 
arrow). (b) The user then defines a design variable (red) and a constraint (green) to specify a range of possible spatial 

configurations. (c) The design space of the resulting problem definition is specified, with a range of possibilities. (d-e) Our system 
then generates optimal solutions for the entire design space using topology optimization, along with their performance data. The 

user navigates through the results by directly manipulating the objects.  
ABSTRACT 
We present DreamSketch, a novel 3D design interface that 
combines the free-form and expressive qualities of sketching 
with the computational power of generative design 
algorithms. In DreamSketch, a user coarsely defines the 
problem by sketching the design context. Then, a generative 
design algorithm produces multiple solutions that are 
augmented as 3D objects in the sketched context. The user 
can interact with the scene to navigate through the generated 
solutions. The combination of sketching and generative 
algorithms enables designers to explore multiple ideas and 
make better informed design decisions during the early 
stages of design. Design study sessions with designers and 
mechanical engineers demonstrate the expressive nature and 
creative possibilities of DreamSketch. 
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“If you want to get the most out of a sketch, you need to leave 
big enough holes. Ambiguity creates the holes. The fact that 
sketches leaves a lot out, or leaves a lot to the imagination, 
is fundamental to the process” – Buxton [10] 

INTRODUCTION 
Product design processes, from the inception of an idea to its 
realization, typically start with free-hand, rough 2D sketches, 
and gradually move towards precise, detailed 3D CAD 
modeling [10]. Within this continuum, the design process 
stretches from implicit to explicit representations. In the 
early stages, design tends to be ambiguous, incomplete, and 
expressive with high levels of uncertainties and a range of 
possibilities, with sketches used as the main representation. 
On the other end of the continuum, CAD modeling is used 
for detailed design, where representations are explicit, with 
precise geometric models, dimensions, and specifications. 
Such representations are necessary for analyzing, validating, 
and finally fabricating the design. Traditionally, these two 
processes occur independently one after another, hence the 
representations used are disconnected.  

Lately, the role of computers during the design process has 
been changing. Recent advancements in parametric design, 
artificial intelligence techniques, design simulation and 
optimization have enabled computational tools to play an 
active, participatory role in the design process. In general, 
these tools allow designers to iterate through a greater 
number of design possibilities compared to the traditional 3D 
modeling process [4, 14, 20, 29, 36]. In particular, generative 
design software uses the above mentioned technologies to 
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generate design solutions for a given problem specified by 
the user [1, 8,  9, 35, 37]. However, the typical input mode 
for problem definition is much alike traditional CAD tools, 
mainly based on precisely defined 3D models and form-
based inputs. It does not support any implicit and free-form 
input such as sketching.  

Sketching enables more ambiguous, incomplete, and 
expressive representation of potential designs. These traits of 
sketching are considered central to the process of creative 
and design thinking [10, 16]. Prior works in sketch-based 
interfaces for modeling have mostly focused on translating 
2D strokes into a 3D model [2, 5, 32, 38, 39], which 
addresses the gap between the two representations. However, 
not much work has looked at how sketching can be used as 
an input paradigm for computational design, and how early-
stage sketched-based designs can act as a seed for generative 
design algorithms.   

How can we leverage the advantages of both sketching and 
generative design to help designers explore solutions during 
the early stage design? The primary challenge is to 
accommodate the vague, ambiguous, and unfinished quality 
of sketches within a CAD environment. 

In this paper, we propose a hybrid 3D design paradigm that 
combines the expressive and free-form nature of sketching 
with the computational power of generative design 
algorithms. This interaction paradigm still allows designers 
to focus on creative exploration in their early stages, while 
also getting a glimpse at a larger space of design variations 
that will satisfy their problem.  

We designed and developed DreamSketch, a sketch-based 
interface to couple design sketches with generative design 
technologies. In DreamSketch, the designer mainly uses 
sketching to loosely define the design problem using 
sketching, direct manipulation, and contextual tools (i.e., the 
manikin). Our system then synthesizes multiple design 
solutions for the problem using topology optimization [1, 9, 
37]. The designer can navigate through these results by 
directly manipulating the sketches in the canvas. In addition, 
designers can examine the quantitative aspects (i.e., weight, 
volume, stress) of the generated solutions, which are usually 
not available in the early stages of the design process. 
Therefore, DreamSketch fills a significant gap in the early 
ideation stage of conceptual design by allowing designers to 
explore multiple solutions, yet make better informed choices 
before proceeding to more expensive 3D modeling and 
prototyping.  

One challenge of this approach is that generative design 
methods are computationally expensive. As such, 
DreamSketch is not yet capable of providing design solutions 
in real-time. However, our work can be thought of exploring 

                                                           
1 Google Tiltbrush: https://www.tiltbrush.com/ 

the possibilities of such tools when they do become real-time 
and interactive. 

We conducted design sessions with designers and engineers 
using DreamSketch to explore creative artifacts. These 
sessions demonstrated the unique affordances, capabilities, 
expressive nature of this tool. We discuss the potential, 
implications, and limitations of such design method, and 
discuss future directions.  

RELATED WORK 
Our work is inspired by prior research in sketch-based user 
interfaces for modeling and conceptual design, generative 
design methods, and design sketching. We review related 
work in these areas. 

Sketching for Design 
Sketch-Based Interfaces for Modeling (SBIM)  
The overarching goal of SBIM research is to allow sketching 
as a way of 3D design, from rough conception to fine detail 
construction [27]. Recovering a 3D model from 2D sketches 
is a fundamentally ill-defined problem, due to the lack of 
depth information of the strokes [31]. To this end, 
researchers simplified the 3D reconstruction problem by 
assuming geometric constraints in design drawings and 3D 
geometry, such as planarity, parallelism, orthogonality, 
cross-section lines [2, 32, 38, 39], polyhedral scaffolds [31], 
and axis-aligned planes [5]. However, due to the geometric 
assumptions, these techniques require relatively accurate 
drawings as input, which implies that the users need to have 
an accurate, precise model in their mind. In contrast, early 
design sketches are often ambiguous and incomplete. Such 
geometric assumption would burden the designer with 
precise inputs. Recently, sketch-based input has also been 
explored for procedural modeling for urban 3D buildings 
[26].  

While prior works have explored different aspects of 
sketching for 3D design, in this paper, we aim to explore a 
new dimension of sketching. We developed an end-to-end 
system that accommodates the early stage, freehand qualities 
of drawing with generative design for shape exploration and 
synthesis.  

Sketching for ideation and 3D conceptual designs  
Tools like Mental Canvas [13], Insitu [28], 3D6B [18], and 
more recently Tiltbrush1 facilitates the creation of concept 
drawings by organizing their strokes in 3D, without trying to 
infer precise 3D models and structures. While effective for 
design conception and visual thinking, these tools are not 
coupled with simulation & CAD tools like ours, and they do 
not explicitly address the ambiguous aspects of drawing to 
define a range of possibilities.   

Concept variations & ambiguous intentions  
In the HCI literature, GEM-NI [40] explored parallel 
creation, visualization, and exploration of alternative 2D 



 

generative graphic designs. Other works looked at aiding the 
user in drawing tasks by suggesting a set of alternatives [17] 
or shadow images [23]. In the context of design sketching, 
Sketchsoup [3] allows designers to explore a range of design 
concepts by embedding a set of rough, unstructured 2D 
sketches into a 2D interpolation space to generate novel 
designs. Perhaps, the closest work to ours is Gross and Do’s 
seminal Electronic Cocktail Napkin [16], that supports 
ambiguity by carrying alternative interpretations, and 
imprecision with constraints for 2D design diagrams. In 
similar spirit, Murugappan et al. developed FEAsy for 
structural analysis in early design [25]. Our work seeks 
inspiration from these works, but in the context of 3D design, 
and coupled with generative design algorithms. As such, our 
formulation and approach to ambiguity and abstraction is 
different from theirs. 

Generative Design 
Generative design tools take problem definition as input and 
produce feasible and/or optimal solutions for the given 
problem. In engineering, several generative design tools are 
commercially available, including Altair’s OptiStruct and 
solidThinking, Autodesk’s Nastran Shape Generator, and 
Siemen’s Frustum. The core to all these tools is topology 
optimization [1, 8, 9, 37], which is a mathematical method 
that optimizes a layout of material distribution within a given 
design domain. Typically, the objective of the problem is to 
minimize compliance, which can be described as the 
flexibility of an object under a load, as well as the total 
volume. In addition to rigidity, recent works also explored 
using desired appearance, defined by a user-specified 
exemplar pattern, as an objective in a joint optimization 
problem [24]. Our work aims to bring the capabilities of 
generative design in the early stages of design, while 
accommodating implicit problem definitions through 
sketching. This would make generative design more 
accessible to novice designers and artists, who may not be 
familiar with 3D CAD tools. 

SKETCH + CAD = A HYBRID DESIGN MEDIUM 
What are the unique attributes of early stage sketches? How 
do they contrast and complement the qualities of generative 
design? We now review some of the cardinal aspects of 
concept sketches based on existing literature, and motivate 
the necessity of a hybrid design medium to couple these 
qualities with post-ideation CAD tools.  

Properties of Sketching 

Sketches are ambiguous  
Design sketches are inherently ambiguous and explorative. 
In the early stages, designers typically draw a number of 
quick-and-dirty sketches capturing design inspirations, 
variations, and alternatives of a visual concept. This allow 
designers to their mental design space to others; often 
leaving regions of the design ambiguous and subject to 
interpretation. As Goel [15] suggests - “Ambiguity is 
important because one does not want to crystallize ideas too 
early and freeze design development”. Goel argues that 

sketching can provide a better match with such ambiguity 
than structured CAD systems [15]. 

 
Figure 2: Unique aspects of conceptual design sketches.         
(a) Ambiguous: concept sketches represent a range of 

possibilities in a design space. (b) Incomplete: Not enough 
information to construct precise 3D geometric representations. 
(c) Expressive: designers use variety of visual and conceptual 

notations to communicate design ideas & intentions. 

Sketches are incomplete 
The incomplete nature of sketches permits designers 
postponing details for the later stage [7, 10]. This also allows 
designers not to commit to solutions too early. Due to the 
vague nature of sketches, often there is not enough 
information to construct precise geometric representations or 
structures of the intended design. However, CAD tools 
require precise representations. As such, we need to coarsely 
approximate the geometry of the sketches, without burdening 
the designers with precise, detailed inputs. 

Sketches express ideas 
Perhaps, the most important aspect of sketching is to be able 
to rapidly express and communicate ideas with peers, clients, 
and self [10]. Prior works in cognition [11, 34] indicate that 
designers deal with both visual (e.g., ‘what’, ‘where’) and 
non-visual (e.g., ‘functional thoughts’, ‘knowledge’) 
information. According to Baskinger & Bardel [7], one such 
method of information gathering in design sketching is 
“5W’s and H” - 

• Who is the design for? (Characters, entities) 
• Where will it be used? (Contextual information) 
• When will it be used? (Sequence & time-frame) 
• What is the activity, quantity, or object? 
• How will it be used?  

Collectively, these entities equip designers with powerful 
visual thinking tools to schematize and express their ideas, 
goals, and intentions. Therefore, our medium should 
accommodate the expressive nature of design sketches to 
capture context, activities, goals, entities, and other forms of 
information. 

Gross and Do [16] observed that designers prefer to use 
paper and pencil as a natural input mode because of these 



 

freehand drawing qualities, and underscored the necessity of 
capturing these traits in computational design tools.   

Generative Design Workflows 
The following workflow is used in typical generative design 
tools such as Altair’s OptiStruct, Autodesk’s Shape 
Generator, and Siemen’s Frustum.  To set up a problem, a 
user must import or create a reference 3D model that 
represents an existing part to be redesigned. Then, various 
constraints and properties are specified with respect to the 
part using traditional UI interactions such as forms, context 
menus, etc. Once a problem is properly defined, the user can 
execute generation and a single optimal solution is returned 
(Figure 3).  

 
Figure 3: Shape Generator in Autodesk Inventor. 

One could recognize that the above workflow is extension of 
traditional CAD workflows, requiring precise 3D models, 
calculations, and inputs, and hence used in the detailed 
design stages (i.e., post-ideation). Also, only a single optimal 
solution is returned at the end, resembling a convergent 
process. These traits do not support the fluid, ambiguous, and 
imprecise nature of the early stage design process and could 
hinder the creativity of the designer. In addition, this typical 
workflow does not support exploration of multiple solutions.  

A Hybrid Approach 
In this paper, we intend to bring the benefits of generative 
design in the early stages of design conception so that 
designers can start exploring the design space and make 
better informed design decisions earlier. By doing so, we 
intend to explore how generative design would play a more 
active, participatory role in early stages of design, while 
accommodating the unique attributes of freeform sketches. 

DREAMSKETCH: USER INTERFACE 
We designed and implemented DreamSketch, a 3D sketching 
tool coupled with generative design algorithms for 
conceptual 3D design and exploration. DreamSketch 
capitalizes the ambiguous, incomplete, and expressive nature 
of sketching for defining the problem. The UI supports 
juxtaposition of planar strokes in 3D that are used for 
problem definition, with a range of 3D meshes representing 
alternative solutions generated. The interface contains a main 
authoring canvas, a toolkit menu, and a GUI menu for 
parameter controls (Figure 4). 

 
Figure 4: The UI of DreamSketch consists of the (a) main 

canvas, (b) toolkit menu (draw, select & record design variable, 
drag variable, delete, generate, manikin, geometric attributes), 

and (c) GUI menu for drawing canvas navigation in 3D, 
drawing tools (i.e., color, extrusion, solid fill), visualization 

(hide/show drawing plane, obstacles), and parameter controls 
(e.g., manikin height, load values). 

Workflow: Define problem, Navigate results, & Iterate  
In DreamSketch, the user starts by defining a design problem 
by specifying the design context, variables, constraints, and 
load cases, all using a sketch-based interface. The design 
context is specified by creating objects that the design must 
interact with. The design variables and constraints are 
created by specifying the possible positions and 
configurations of the interacting objects. Load cases are then 
defined on the objects to express the intended functionality 
of the design. Proxy Objects such as a human manikin, can 
also be used to guide and constrain the design process. 

Given the problem definition, our system then procedurally 
generates multiple solutions using topology optimization 
that minimizes compliance and volume. This process is 
currently executed offline, and the execution time can be 
from several minutes to hours, depending on the problem 
definition and algorithm parameters. 

The resulting design alternatives are then presented back to 
the user within the context of problem definition sketches, 
along with the quantitative attributes for each solution. The 
user can evaluate and navigate through the generated results 
by directly manipulating the spatial arrangements of the 
objects. The user can iteratively adjust the problem definition 
and generate new results. Once the design space has been 
explored to satisfaction, the designer can output the selected 
design(s) to fabrication tools or export the resulting geometry 
for further processing in other software tools. Figure 1 
summarizes the overall workflow of the system. 

Problem Definition in DreamSketch 
We now discuss the UI tools used for problem definition in 
DreamSketch. 

3D Sketching and Navigation  
The user can draw with a tablet pen or a mouse, and sets 
down strokes directly on a planar 2D canvas. The canvas can 
be positioned and rotated in 3D space, using the position and 
rotate sliders on three coordinate axes. We overlay a 
transparent grid on the canvas so that the user can easily see 



 

their orientation onscreen, and use it for guidance. The user 
can rotate, scale, and pan the camera view. By default, we 
use perspective projection. But, the user can also switch to 
orthographic projection for quick sketching in 2D, without 
worrying about depth. By default, the strokes are 
automatically mirrored with respect to the xy-plane to create 
symmetric shapes. 

Design Context via Objects 
Objects are the primary 3D visual entities in DreamSketch to 
express the design context. The intended design solution 
must interact with these objects to fulfil its functionality. An 
object consists of a set of user drawn strokes, and a 3D mesh 
that coarsely define the geometric volume of the intended 
shape. Constructing precise 3D geometry from rough 
drawings is a challenging problem, requiring precise, 
unambiguous user input. However, in the early stages, 
designers do not have a precise, unambiguous geometry in 
mind. Therefore, we allow users to coarsely approximate the 
intended shape with proxy geometry [33], without requiring 
detailed input.  

To define a 3D shape, the user sketches a set of strokes on 
the canvas, and then extrudes them to create a 3D mesh. We 
used a simple heuristic for extrusion. Our system selects the 
2D planar stroke with maximum arc length, and extrudes the 
stroke in the normal direction of the canvas to create a mesh. 
While not precise, this is a simple, yet effective approach to 
approximate the 3D volume quickly and easily for typical 
use cases. (Figure 5).  The resulting mesh is then displayed 
into the canvas in conjunction to the hand-drawn strokes. To 
keep a user’s focus on ideation rather than surface quality 
and continuity [6, 18, 30], the mesh is rendered with 
wireframes in a sketchy style (Figure 5c). Overall, our goal 
was to keep the workflow simple, yet expressive to 
accommodate crucial characteristics of freehand design 
drawings, including over-tracing, hatching, and shading 

 
Figure 5: An object consists of a proxy geometry and freeform 

strokes. (a) Strokes drawn in the drawing canvas. (b) The 
extrude operation mirrors the strokes with respect to the 
canvas. (c) The 3D geometry created from the extrusion 

visualized in wireframe rendering. (d) The user continues 
adding strokes to the object for more details and context.  

In addition to manually designing objects, the user can 
import existing 3D models as an object in the scene, and 
select, edit, delete, or transform (translate or rotate) any 
object using a free transform tool.  

Object Types 
Once created, the user specifies the type of an object as either 
an interface object or an obstacle. Interface objects are used 
to define load cases and also integrated as part of the solution 
geometries. An obstacle defines an empty volume, which 
forces the algorithm not to include that volume as part of the 
solution geometries.  

 
Figure 6: Object types. (a) The user loads the manikin, and 

sketches the back wheel. (b) An object is created by extrusion, 
and set as an obstacle to define an empty volume for the final 
design. (c) The user then sketches the interface objects for the 

bike handle, paddle, rear bracket, and seat post. 

Design Variables 
Design variables provide a means to define a design space, 
accommodating and exploring a wide range of possibilities 
for a design. To define a design variable, the user selects an 
object, and moves it along the canvas to record a design 
variable (Figure 7). The design variable is visually 
represented with a polygon path in the 3D scene, and it 
represents all possible positions of the associated object. The 
user can remove or override an existing design variable by 
simply tapping the object, or recording a new one 
respectively. In our current implementation, a design 
variable consists of a polygon path only. 

 
Figure 7: Defining a design variable. (a) An obstacle object 

sketch (blue).  To generate variations, the user then specifies 
all possible positions of the obstacle (b) and the bike handle (c) 
by recording design variables with direct manipulation. Note 

that the manikin hand is attached to its nearest object 
(handle), and updates its pose accordingly (c). 

Once an object is defined, it can be dragged along the 
polygon path by enabling the drag tool. In our current 
implementation, design variable movements are restricted to 
xy-plane only. In theory, the user can have many design 
variables in problem definition to express many possible 
spatial configurations between the objects in a scene. Each 
design variable represents a dimension in the design space; 
n independent design variables creates an n-dimensional 
design space. In practice, this exponentially increases the 



 

possible solutions, making the generation process 
computationally expensive and time consuming. As such, we 
restrict each design solution to at most three variables.  

Constraints  
In DreamSketch, a design constraint refers to conditions 
under which the geometric parameters of an object, such as 
position, orientation, or scale is dependent upon the position 
of another object. For instance, in Figure 8c, the wine bottle 
orientation is constrained to the position of the bottle holder 
bases. When the bases move to a new position, the wine 
bottle geometry needs to rotate/re-position appropriately.   

 
Figure 8: Examples of constraints. (a) A translation constraint 
(green) ensures the rotors are symmetric with respect to the 

rider, as the other rotors moves through design variable (red). 
(b) By design, the scale of the bike wheels is dependent to the 
position of the obstacle (blue) (c) As the position of the base 

changes (red), the rotational constraint (green) re-orients the 
bottle. 

 
Figure 9: Defining a constraint. (a) The user sketches a 
constraint from the source (handle) to the destination 

(obstacle), and sets it as a translation constraint. (b) The 
functional relationship curve defining the geometric constraint 

(inset). (c) As the position of the handle (red) changes, the 
position of the obstacle changes accordingly (green). 

We used a fast and flexible method - functional relationship 
[19] - to define constraints between the geometric 
parameters of two objects. To define a constraint, the user 
selects the constraint tool, and sketches an edge from the 
source object to the constrained object (Figure 9a). This 
creates a directed edge between them. The user can specify 
the type of geometric parameter (i.e., scale, rotation, 
position, assembly) for the functional mapping by selecting 
the corresponding parameter in the top menu. When an 
edge/constraint is created or selected, a function mapping 
widget visualizes the functional correspondence (tp = F(sp))  

between the geometric attributes of the parent sp (x-axis) and 
the child tp (y-axis) (Figure 9b). By default, this function is 
set to identity (sp = tp), which the user can overwrite by 
directly sketching a new curve within the widget. The widget 
is equipped with an exploration cursor [19] that the user can 
drag within the mapping space to help identify relevant 
mapping points. 

Manikin  
Kim and Bae explored the use of hand-tracking sensors to 
aid designers with the sense of scale, context, and hand 
posture information [22]. In similar spirit, DreamSketch 
supports the use of a manikin into the scene to think and 
express the design in a realistic environment. Additionally, it 
enables the designer to define and validate design variables 
and solutions. For instance, in Figure 7c, once the designer 
specifies a design variable for the bike handle, our system 
registers the hand (end-effector) of the manikin with the 
nearest object (bike handle). As the position of the handle 
changes, the manikin pose changes accordingly to reflect the 
pose of the rider. This enables the designer to qualitatively 
evaluate the validity of the design variables by looking at the 
corresponding poses for different possible positions of the 
handle. The user can also vary the height of the manikin 
using a slider to evaluate the feasibility of a design 
configuration for a range of heights (Figure 10). Such 
functionalities enable the user to consider design ergonomics 
in early stages of design to eliminate invalid explorations and 
solutions, which is typically considered in the later stages of 
design pipeline [41].  

 
Figure 10: The user exploring the validity (comfort and reach) 
of a solution for different manikin heights. The position of the 
hand and waist are fixed for different height configurations. 

Load Cases 
Problem definition in DreamSketch requires a load case 
defined on interface objects. A load case consists of 1) a set 
of forces, applied on interface objects, that the resulting 
design should be able to withstand and 2) an associated set 
of fixed anchors, defined also on interface objects. 
Essentially, one could think that design solutions are created 
to propagate the forces applied on the receiving objects to the 
anchor objects without failing. The user can specify a force 
vector by sketching using the force tool (Figure 11a). The 
length of the stroke is proportional to the force magnitude. 
Once the user sketches a force vector, by default our system 
marks all other interface objects (hence, not including 
obstacles) as anchors for that force (Figure 11b). The default 
heuristics work well for typical cases. However, for more 
advanced use cases (such as the bike frame design), users can 
toggle the fixed objects for that force (Figure 11c). Users can 
also edit the force values using a slider.  



 

 
Figure 11: Defining loads and anchors. (a) A user sketching a 
force using the load tool. (b) The default anchor objects (blue) 

for the selected load (orange). (c) The user can toggle an 
anchor object by tapping the corresponding object. 

 
Figure 12: Data-driven load conditions. (a) The user exports a 
CSV file consisting of the values of each load for different load 
conditions. (b) The user then drags each data column to bind it 

to a corresponding load (orange). Our system iteratively 
visualizes the forces for each load condition. (c) A load 

condition for a user just sitting. (d) A force of a user pedaling. 
(e) Forces due to bumps and friction. 

In mechanical design, design objects often consist of 
multiple load cases for advanced use cases. For instance, a 
bicycle has multiple use cases (Figure 12). For each use case, 
we have different set of forces applied, on a combination of 
handles, seat, or pedals.  A user can define multiple load 
cases as part of problem definition. 

Our system also enables users to export a data file (.CSV 
format), and drag the force magnitudes to the corresponding 
load vectors. This data-driven approach enable designers to 
design complicated load cases easily. For simplicity, we 
normalized the force value ranges to match with the 
maximum dimension (600mm X 600mm X 600mm) of our 
canvas. For instance, it is impractical to have a 1000kg load 
for a 1000 mm3 object. 

In DreamSketch, the minimum required input for a problem 
definition is a single force and multiple interface objects (to 
be synthesized by generative design algorithms). Obstacles, 
constraints, design variables, and contextual sketches are 
optional input requirements. 

Geometry Generation and Navigation 
Once the problem definition is specified, the user presses the 
generate button, and our system generates the optimal 
solution for different combinations of the design variables. 
We discretize the domain of each design variable into a fixed 
number of segments (four), and generate results for all 
possible combinations of those variable segments.  

Navigating Results 
Users can navigate through the generated results by directly 
dragging the objects through their design variables (Figure 
13).  Our system finds and displays the closest corresponding 
solution for each configuration. The user can also set a 
solution as ‘marked’, to be reviewed at the end of the design 
session.  

Quantitative Attributes 
For each solution, we display a selection of its quantitative 
attributes, including volume, weight, and stress. The 
quantitative aspects of design allow designers to compare 
different solutions and make informed decisions in the early 
stages of design. 

Iterative Refinements 
Users can continue refining the design iteratively by 
modifying the problem definition, either by modifying 
variables, constraints, and load conditions, or by adding or 
removing interface objects and obstacles. The key difference 
of DreamSketch (or any other generative design tool) 
compared to a traditional design process is that it allows 
iterations by modifying problem definitions for a design 
space and exploring the solutions generated by the computer. 
We hypothesize that this approach enables designers to 
explore a greater number of possibilities than iterating 
through by only modifying the solutions. 

Rendering 
We used non-photorealistic rendering techniques to the 
resulting solutions. The goal of DreamSketch is to inspire the 
designers by showing the possibilities, inviting further 
exploration, and changes. The visual rendering is coupled 
with its intended purpose to keep the results suggestive. 

IMPLEMENTATION 
Our system runs in a web browser, and is implemented using 
Javascript and the Three.JS library that uses WebGL for 3D 
graphics rendering and animation. Once the user defines a 
design problem, our system passes the problem definition 
input files to the topology optimization module via a Python 
API. The system then generates optimized geometries for all 
design configurations specified in the problem definition, 
along with quantitative attributes (i.e., weight, volume, 
stress), and returns those results back to the DreamSketch 
interface in the browser.

 

 

 

 



 

 

 
Figure 13: The user navigating through the resulting solutions by directly manipulating the bike handle (top). The execution time 

took approximately 4 minutes for each solution (16 minutes in total). The corresponding 3D printed artifacts (bottom). 

Problem Definition Input 
We discretize each continuous design variable into a fixed 
number of segments and create distinct problem definition 
for each possible combination of the design variable 
segments.  If the designer specifies a design space consisting 
of n independent design variables, and we discretize each 
design variable into x segments, then our system generates 
xn distinct problem definitions. In our current 
implementation, x = 4. So, if we have a design space 
consisting of three design variables, our system generates 43 
(= 64) distinct problem definitions. The problem definitions 
are saved as JSON files following the input data schema for 
the topology optimization module, and the associated 
problem definition objects are saved as mesh (.obj) in the 
local hard drive, to be accessed by the module. 

Topology Optimization 
The full details of the specific topology optimization module 
which we use is beyond the scope of this paper and its 
contribution. The topology optimization module is based on 
level-set shape optimization [1, 37]. For a given problem, the 
objective function is set to minimize the compliance (the 
inverse of stiffness, hence measures a degree of flexibility) 
and the volume. The weights of these two objectives can be 
controlled by a parameter, which is set dynamically based on 
a proprietary heuristic. Alternative optimization methods [8, 
9] could be substituted, and still preserve the overall user 
experience which our work contributes. In general, topology 
optimization methods also take material properties into 
account. By default, we have set the material as aluminum 
for all the examples in this paper. 

Execution Time & Performance 
In practice, topology optimization methods are 
computationally expensive, and do not run in real-time. The 
execution time is highly dependent on the problem 
definition, and a number of other factors, including 
resolution, load conditions, number of iterations, and PC 
configuration. Higher resolution and iteration number 

significantly increases the execution time, but the resulting 
solution exhibits finer details and performance. As illustrated 
in Figure 14, the generation of a single bike frame can range 
from 30 seconds to 40 minutes depending on the desired 
resolution and number of iterations which the algorithm runs. 
We hypothesize that designers will gradually use finer 
results, as they progress towards the final design. 

 
Figure 14: Execution time (in seconds) for a single problem 
definition of a bike frame. The dimension of the geometry is 

226x172x57 for voxel size=1.  The program was executed in an 
Intel Xeon E5 2650 v3 @ 2.30GHz CPU, with 64.0GB memory 

and NVIDIA Tesla K40c graphics card. 

Inverse Kinematics 
For the manikin movement, we implemented 2D inverse 
kinematics using the cyclic coordinate descent [21] method. 
In our current implementation, we fix the position of the 
manikin waist. As the user interactively manipulate the 
design variable attached to the hand (i.e., end effector), our 
system interactively computes the position of the elbow and 
neck, and update the manikin in the scene. Currently, the 
hand movements are constrained to xy-plane. 



 

DESIGN SESSIONS 
We conducted informal, qualitative design sessions with 
engineers and designers to gain insights about the overall 
design workflow, capabilities, and potential applications, 
and identify any limitations or opportunities for future 
advancements.  These sessions were also used to gather 
feedback on how our system compares to existing 
approaches, although we do not perform any sort of formal 
comparison to existing commercial tools.  

 
Figure 15: An user using Dreamsketch in a design session 

Participants 
We recruited seven participants (4 female, aged 24-40) for 
our design sessions. Participants completed a questionnaire 
about their background before the session began. Among 
them, one participant is an architect (P2), one industrial 
designer (P5) with 10+ years of experience, three mechanical 
engineers (P1, P3, P6), and two graphic designers (P4, P7) 
with no prior 3D design experience. 

Procedure 
Our design sessions for each participant lasted between 1.5-
2 hours. All the sessions took place in our research lab, 
consisting of two steps. In the first step, each participant was 
given a brief overview of the system and was shown some 
resulting 3D designs made with our system. The instructor 
walked the participant through a step-by-step tutorial to 
familiarize the participant with the system, defining problem 
definitions, navigating solutions, and iterating through the 
design. In the second step, the participants designed a 3D 
artifact using our system. Participants filled out a 
questionnaire afterwards. 

Discussion 
In general, participants responded positively to the overall 
workflow, capabilities, and approach to 3D design using 
DreamSketch. Participants commented that the ability 
generate 3D shapes with freeform sketches, without having 
precise geometries, input, and calculations lowers the barrier 
for 3D design, ideation, and exploration (P1, P3, P4, P7).  

P1: “DreamSketch is quite different in the approach to generative 
design/topology optimization tools. I would classify it as a tool 
useful in the initial stage of the product development process. The 
very quick creation (no need to open a CAD tool, calculate loads) 
of meaningful geometry can help to kick-start the design process 
and helps with the communication. To use an optimization software, 

a set of ports have to be designed and imported and I have to think 
about all the boundary conditions and loads. DreamSketch lifts that 
burden, and I get to preliminary results much faster. The lack of 
accuracy is, of course, a feature. But at a later stage, the accuracy 
of position/ loads is of great importance.” 

Our participants were intrigued by ability to define a design 
space with design variables, and explore different 
alternatives within that space with sketching and direct 
manipulation (P1, P6, P7). Participants also felt that the 
modeling capabilities of DreamSketch were sufficient to 
rapidly express their ideas (P1, P3, P4, P6, P7). 

Often, the resulting geometries were very different than what 
the designer had anticipated, which inspired the designers to 
think into new design dimensions and space.  

P3: “The result was nothing I would have imagined. It ended up 
looking “industrial”, and I never would have thought to go this 
route. To me, it looks a bridge. I never thought to take architectural 
influences into this design. However, now I am inspired to explore 
this directly”. 

P6: “It gives me revolutionary and radical designs with such simple 
inputs that are almost impossible to come to a human mind. I 
believe in this competitive market, one thing that could make a 
difference between two functional designs is aesthetic aspects of a 
design, and the shapes produced by DreamSketch due to their 
resemblance to the shapes we see in nature somehow resonate with 
our soul.” 

This indicates that generative design algorithms played an 
active and participatory role in the creative exploration and 
conceptual stages of design. 

However, it is worth noting that, this (i.e., problem 
definition) is a relatively new form of thinking and approach 
for our designers (P4, P7). It took some time to comprehend 
the elements of problem definition – interface objects, load 
cases, anchors etc., and understand the scope of design. The 
instructor assisted them to specify their problem definition. 
The nature of generative design requires comprehension and 
understanding of the problem definition, constraints, and 
load conditions. We believe that our tool reduces the barrier 
of 3D designs, but some level of learning and familiarization 
with the tool will still be required. 

Our participants – designers and engineers – represent two 
opposite sets of users with diverse backgrounds, goals, and 
approach towards design. We observed that our participants 
with engineering background (P1, P6, P7) were more 
meticulous about the load values to match with the scale of 
the design. These participants mentioned that DreamSketch 
gives them the creative freedom for design and ideation, 
which is missing in the existing tools for topology 
optimization. While, our participants with design 
background (P2, P4, P5, P7) acknowledged that having the 
quantitative information and optimized solutions makes 
them more aware and mindful about the functional aspects 
of design in conceptual stages.  



 

Resulting Artifacts 
Our participants crafted a wide range of artifacts during the 
design sessions (see Appendix). Due to longer execution 
time, we restricted the participants to define only one design 
variable. P1 designed a quad-copter to carry a human (Figure 
16). He sketched several symmetric objects to specify the 
rotors, an object (seat), and an obstacle to leave room for the 
rider. A design variable was defined to experiment with 
different positions of the rotors, and a constraint kept rotors 
spatially symmetric. A load case specified the weight of the 
rider. He then added more details to communicate his overall 
design intent and usage. P3 and P5 designed tables, and 
explored different variations for different positions of the 
table lid(s) (Figure 17) and table legs (Figure 18). As for 
Figure 17, the resulting artifacts vary quite significantly due 
to the nature of the problem definition.  

P4, with no 3D design experience, sketched a reading lamp 
(Figure 20). She defined an obstacle to get arcade shaped 
solution. P7, also with no prior 3D design experience, 
designed a glider (Figure 19). She used a constraint, an 
obstacle, and the manikin to define the problem definition. 

P6 designed a bike rack to be attached at the rear end of a car 
(Figure 21). He defined a design variable and two 
constraints to experiment with different possible positions of 
the bike rack handlers. 

As evident in the resulting artifacts, all the participants could 
effectively communicate their design ideas, goals, and 
intentions. None of the participants used pen and paper for 
planning the design, and started directly sketching in 
DreamSketch. All the participants used constraints, design 
variables, and obstacles, which indicates that they found 
those features useful. Overall, the range of artifacts designed 
by the first-time users of DreamSketch demonstrate the ease 
of usage, expressiveness, and effectiveness of our tool. 

LIMITATIONS & FUTURE WORK 
Our participants also pointed out to some limitations that 
warrants discussion and future explorations. 

Simulation & Execution time 
The execution time for our participants’ artifacts ranged from 
30~60 minutes. As such, they were not able to iterate through 
the designs during the sessions. Making generative design 
tools faster and efficient is an important direction of future 
work. For the current work, we did not take advantage of 
parallel or cloud computing to simultaneously perform the 
topology optimization jobs for a given problem. However, 
such strategy can be used to cut down the generation time. 
We also intend to integrate other forms of simulation tools 
(i.e., fluid dynamics) to couple concept sketches with a wider 
range of computational capabilities. Additionally, one can 
potentially visualize the progression of a low-resolution 
version of GD algorithms in the canvas, so that the designer 
can iterate upon the problem definition during generation. 
The visualization and exploration of numerous other sub-
optimal solutions is also worth exploring. 

Input & sketching 
The two participants (P4, P7) with no prior 3D design 
experience commented that initially they were not too 
comfortable with multi-view sketching in 3D, both 
conceptually, as well as with 3D navigation tools. Single-
view [39] sketching techniques, or AR and VR tools might 
alleviate some of these navigational and conceptual barriers. 
Beyond polygon paths, we would like to accommodate more 
parameters as design variables to fully realize the creative 
opportunities of generative design.   

Currently, designers can control the shape of the solution 
geometries by defining obstacles, or negative spaces. One of 
our future goals is to enable the GD algorithms to consider 
aesthetics preferences as a joint optimization problem [24], 
where the designer can specify preferred shape and style via 
sketching. However, we do not always see the surprising 
outcomes as a negative, as even designers with pre-existing 
aesthetic goals may appreciate seeing alternative solutions. 
Additionally, designers have some level of control over the 
design freedom that the algorithm has. Designers can specify 
more details to generate more predictable outputs. 

There is a long-standing body of work in Sketch Based 
Interfaces for Modeling (SBIM). Overall, our goal is to 
explore and demonstrate how the qualities of freeform 
sketching can be integrated in SBIM, and couple them with 
the computational aspects of 3D design. Currently, our 
design and implementation choices try to balance between 
fluidity and fidelity, but fully preserving the merits of 
sketching in such a system is a challenge.  

Representation 
An important aspect of our work is the juxtaposition of 
sketches and 3D meshes, and we are motivated to blur the 
boundaries between these two representations even more. In 
the future, we want analyze the 3D strokes to better infer 
contextual information and user intents. This would enable 
us to provide knowledge-based tools to the designers [12]. It 
would also be interesting to explore unified editing tools for 
both sketches and 3D meshes.  

CONCLUSION 
DreamSketch offers a new design workflow that enables the 
designer to design and explore a range of functional 3D 
designs by sketching the design intentions. In this paradigm, 
the designer expresses a design problem via sketching and 
the computer helps the designer explore solution ideas that 
may have not been considered by the designer. Our work 
aims to accommodate the freeform qualities of traditional 
media (pencil and paper) with generative design 
technologies – by supporting ambiguities with design 
variables, incompleteness with proxy geometries, and the 
expressive aspects of drawings with juxtaposing strokes and 
meshes in a hybrid medium. Our design study session 
demonstrates that DreamSketch encourages engineers to 
think more like designers, and designers to think more like 
engineers. We hope such design tools would blur the 
boundary between form and functional aspects of design.  
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APPENDIX: PARTICIPANT GENERATED EXAMPLES 
 

 
Figure 16: A drone designed by P1. (a) The problem definition consists of a single load, a design variable (red), and a constraint 

(green). The resulting solutions (b-d). 

 
Figure 17: A table design by P2. (a) The problem definition. (b-d) The resulting solutions. 

 
Figure 18: A table design by P5. The design variable and constraints defines the height and width variations (a). The resulting 

solutions (b-d). 

 
Figure 19: Glider design by P7. The manikin is used to define a design variable in the problem definition (a), and resulting solution 

variations (b-c). 

 
Figure 20: Reading lamp design by P4. The problem definition (a), and one of the resulting solutions (b). The designer initially 

expecting a shape like (c). However, the generative design solution inspired her to think in new dimension, and modify the design to 
bring more “industrial” look into the design. 



 

 
Figure 21: Bike-rack design by P7. The problem definition consists of one design variable and two constraints (a). The resulting 

solutions (b-d). 

   
Figure 22: 3D printed artifacts designed by P1 and P2 using DreamSketch. 

 


