

DreamSketch: Early Stage 3D Design Explorations with
Sketching and Generative Design

Rubaiat Habib Kazi, Tovi Grossman, Hyunmin Cheong, Ali Hashemi, George Fitzmaurice

Autodesk Research, Toronto, ON, Canada

Figure 1: We bring the power of generative design in the early stages of design exploration with freeform 3D sketches. (a) The user

defines a problem definition by roughly sketching a dragon-shaped lamp holder, the anchor to the wall, and a load value (red
arrow). (b) The user then defines a design variable (red) and a constraint (green) to specify a range of possible spatial

configurations. (c) The design space of the resulting problem definition is specified, with a range of possibilities. (d-e) Our system
then generates optimal solutions for the entire design space using topology optimization, along with their performance data. The

user navigates through the results by directly manipulating the objects.
ABSTRACT
We present DreamSketch, a novel 3D design interface that
combines the free-form and expressive qualities of sketching
with the computational power of generative design
algorithms. In DreamSketch, a user coarsely defines the
problem by sketching the design context. Then, a generative
design algorithm produces multiple solutions that are
augmented as 3D objects in the sketched context. The user
can interact with the scene to navigate through the generated
solutions. The combination of sketching and generative
algorithms enables designers to explore multiple ideas and
make better informed design decisions during the early
stages of design. Design study sessions with designers and
mechanical engineers demonstrate the expressive nature and
creative possibilities of DreamSketch.

Author Keywords
Sketching, 3D design, generative design, ambiguity, CAD.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI).

“If you want to get the most out of a sketch, you need to leave
big enough holes. Ambiguity creates the holes. The fact that
sketches leaves a lot out, or leaves a lot to the imagination,
is fundamental to the process” – Buxton [10]

INTRODUCTION
Product design processes, from the inception of an idea to its
realization, typically start with free-hand, rough 2D sketches,
and gradually move towards precise, detailed 3D CAD
modeling [10]. Within this continuum, the design process
stretches from implicit to explicit representations. In the
early stages, design tends to be ambiguous, incomplete, and
expressive with high levels of uncertainties and a range of
possibilities, with sketches used as the main representation.
On the other end of the continuum, CAD modeling is used
for detailed design, where representations are explicit, with
precise geometric models, dimensions, and specifications.
Such representations are necessary for analyzing, validating,
and finally fabricating the design. Traditionally, these two
processes occur independently one after another, hence the
representations used are disconnected.

Lately, the role of computers during the design process has
been changing. Recent advancements in parametric design,
artificial intelligence techniques, design simulation and
optimization have enabled computational tools to play an
active, participatory role in the design process. In general,
these tools allow designers to iterate through a greater
number of design possibilities compared to the traditional 3D
modeling process [4, 14, 20, 29, 36]. In particular, generative
design software uses the above mentioned technologies to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

UIST 2017, October 22–25, 2017, Quebec City, QC, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4981-9/17/10…$15.00
https://doi.org/10.1145/3126594.3126662

generate design solutions for a given problem specified by
the user [1, 8, 9, 35, 37]. However, the typical input mode
for problem definition is much alike traditional CAD tools,
mainly based on precisely defined 3D models and form-
based inputs. It does not support any implicit and free-form
input such as sketching.

Sketching enables more ambiguous, incomplete, and
expressive representation of potential designs. These traits of
sketching are considered central to the process of creative
and design thinking [10, 16]. Prior works in sketch-based
interfaces for modeling have mostly focused on translating
2D strokes into a 3D model [2, 5, 32, 38, 39], which
addresses the gap between the two representations. However,
not much work has looked at how sketching can be used as
an input paradigm for computational design, and how early-
stage sketched-based designs can act as a seed for generative
design algorithms.

How can we leverage the advantages of both sketching and
generative design to help designers explore solutions during
the early stage design? The primary challenge is to
accommodate the vague, ambiguous, and unfinished quality
of sketches within a CAD environment.

In this paper, we propose a hybrid 3D design paradigm that
combines the expressive and free-form nature of sketching
with the computational power of generative design
algorithms. This interaction paradigm still allows designers
to focus on creative exploration in their early stages, while
also getting a glimpse at a larger space of design variations
that will satisfy their problem.

We designed and developed DreamSketch, a sketch-based
interface to couple design sketches with generative design
technologies. In DreamSketch, the designer mainly uses
sketching to loosely define the design problem using
sketching, direct manipulation, and contextual tools (i.e., the
manikin). Our system then synthesizes multiple design
solutions for the problem using topology optimization [1, 9,
37]. The designer can navigate through these results by
directly manipulating the sketches in the canvas. In addition,
designers can examine the quantitative aspects (i.e., weight,
volume, stress) of the generated solutions, which are usually
not available in the early stages of the design process.
Therefore, DreamSketch fills a significant gap in the early
ideation stage of conceptual design by allowing designers to
explore multiple solutions, yet make better informed choices
before proceeding to more expensive 3D modeling and
prototyping.

One challenge of this approach is that generative design
methods are computationally expensive. As such,
DreamSketch is not yet capable of providing design solutions
in real-time. However, our work can be thought of exploring

1 Google Tiltbrush: https://www.tiltbrush.com/

the possibilities of such tools when they do become real-time
and interactive.

We conducted design sessions with designers and engineers
using DreamSketch to explore creative artifacts. These
sessions demonstrated the unique affordances, capabilities,
expressive nature of this tool. We discuss the potential,
implications, and limitations of such design method, and
discuss future directions.

RELATED WORK
Our work is inspired by prior research in sketch-based user
interfaces for modeling and conceptual design, generative
design methods, and design sketching. We review related
work in these areas.

Sketching for Design
Sketch-Based Interfaces for Modeling (SBIM)
The overarching goal of SBIM research is to allow sketching
as a way of 3D design, from rough conception to fine detail
construction [27]. Recovering a 3D model from 2D sketches
is a fundamentally ill-defined problem, due to the lack of
depth information of the strokes [31]. To this end,
researchers simplified the 3D reconstruction problem by
assuming geometric constraints in design drawings and 3D
geometry, such as planarity, parallelism, orthogonality,
cross-section lines [2, 32, 38, 39], polyhedral scaffolds [31],
and axis-aligned planes [5]. However, due to the geometric
assumptions, these techniques require relatively accurate
drawings as input, which implies that the users need to have
an accurate, precise model in their mind. In contrast, early
design sketches are often ambiguous and incomplete. Such
geometric assumption would burden the designer with
precise inputs. Recently, sketch-based input has also been
explored for procedural modeling for urban 3D buildings
[26].

While prior works have explored different aspects of
sketching for 3D design, in this paper, we aim to explore a
new dimension of sketching. We developed an end-to-end
system that accommodates the early stage, freehand qualities
of drawing with generative design for shape exploration and
synthesis.

Sketching for ideation and 3D conceptual designs
Tools like Mental Canvas [13], Insitu [28], 3D6B [18], and
more recently Tiltbrush1 facilitates the creation of concept
drawings by organizing their strokes in 3D, without trying to
infer precise 3D models and structures. While effective for
design conception and visual thinking, these tools are not
coupled with simulation & CAD tools like ours, and they do
not explicitly address the ambiguous aspects of drawing to
define a range of possibilities.

Concept variations & ambiguous intentions
In the HCI literature, GEM-NI [40] explored parallel
creation, visualization, and exploration of alternative 2D

generative graphic designs. Other works looked at aiding the
user in drawing tasks by suggesting a set of alternatives [17]
or shadow images [23]. In the context of design sketching,
Sketchsoup [3] allows designers to explore a range of design
concepts by embedding a set of rough, unstructured 2D
sketches into a 2D interpolation space to generate novel
designs. Perhaps, the closest work to ours is Gross and Do’s
seminal Electronic Cocktail Napkin [16], that supports
ambiguity by carrying alternative interpretations, and
imprecision with constraints for 2D design diagrams. In
similar spirit, Murugappan et al. developed FEAsy for
structural analysis in early design [25]. Our work seeks
inspiration from these works, but in the context of 3D design,
and coupled with generative design algorithms. As such, our
formulation and approach to ambiguity and abstraction is
different from theirs.

Generative Design
Generative design tools take problem definition as input and
produce feasible and/or optimal solutions for the given
problem. In engineering, several generative design tools are
commercially available, including Altair’s OptiStruct and
solidThinking, Autodesk’s Nastran Shape Generator, and
Siemen’s Frustum. The core to all these tools is topology
optimization [1, 8, 9, 37], which is a mathematical method
that optimizes a layout of material distribution within a given
design domain. Typically, the objective of the problem is to
minimize compliance, which can be described as the
flexibility of an object under a load, as well as the total
volume. In addition to rigidity, recent works also explored
using desired appearance, defined by a user-specified
exemplar pattern, as an objective in a joint optimization
problem [24]. Our work aims to bring the capabilities of
generative design in the early stages of design, while
accommodating implicit problem definitions through
sketching. This would make generative design more
accessible to novice designers and artists, who may not be
familiar with 3D CAD tools.

SKETCH + CAD = A HYBRID DESIGN MEDIUM
What are the unique attributes of early stage sketches? How
do they contrast and complement the qualities of generative
design? We now review some of the cardinal aspects of
concept sketches based on existing literature, and motivate
the necessity of a hybrid design medium to couple these
qualities with post-ideation CAD tools.

Properties of Sketching

Sketches are ambiguous
Design sketches are inherently ambiguous and explorative.
In the early stages, designers typically draw a number of
quick-and-dirty sketches capturing design inspirations,
variations, and alternatives of a visual concept. This allow
designers to their mental design space to others; often
leaving regions of the design ambiguous and subject to
interpretation. As Goel [15] suggests - “Ambiguity is
important because one does not want to crystallize ideas too
early and freeze design development”. Goel argues that

sketching can provide a better match with such ambiguity
than structured CAD systems [15].

Figure 2: Unique aspects of conceptual design sketches.
(a) Ambiguous: concept sketches represent a range of

possibilities in a design space. (b) Incomplete: Not enough
information to construct precise 3D geometric representations.
(c) Expressive: designers use variety of visual and conceptual

notations to communicate design ideas & intentions.

Sketches are incomplete
The incomplete nature of sketches permits designers
postponing details for the later stage [7, 10]. This also allows
designers not to commit to solutions too early. Due to the
vague nature of sketches, often there is not enough
information to construct precise geometric representations or
structures of the intended design. However, CAD tools
require precise representations. As such, we need to coarsely
approximate the geometry of the sketches, without burdening
the designers with precise, detailed inputs.

Sketches express ideas
Perhaps, the most important aspect of sketching is to be able
to rapidly express and communicate ideas with peers, clients,
and self [10]. Prior works in cognition [11, 34] indicate that
designers deal with both visual (e.g., ‘what’, ‘where’) and
non-visual (e.g., ‘functional thoughts’, ‘knowledge’)
information. According to Baskinger & Bardel [7], one such
method of information gathering in design sketching is
“5W’s and H” -

• Who is the design for? (Characters, entities)
• Where will it be used? (Contextual information)
• When will it be used? (Sequence & time-frame)
• What is the activity, quantity, or object?
• How will it be used?

Collectively, these entities equip designers with powerful
visual thinking tools to schematize and express their ideas,
goals, and intentions. Therefore, our medium should
accommodate the expressive nature of design sketches to
capture context, activities, goals, entities, and other forms of
information.

Gross and Do [16] observed that designers prefer to use
paper and pencil as a natural input mode because of these

freehand drawing qualities, and underscored the necessity of
capturing these traits in computational design tools.

Generative Design Workflows
The following workflow is used in typical generative design
tools such as Altair’s OptiStruct, Autodesk’s Shape
Generator, and Siemen’s Frustum. To set up a problem, a
user must import or create a reference 3D model that
represents an existing part to be redesigned. Then, various
constraints and properties are specified with respect to the
part using traditional UI interactions such as forms, context
menus, etc. Once a problem is properly defined, the user can
execute generation and a single optimal solution is returned
(Figure 3).

Figure 3: Shape Generator in Autodesk Inventor.

One could recognize that the above workflow is extension of
traditional CAD workflows, requiring precise 3D models,
calculations, and inputs, and hence used in the detailed
design stages (i.e., post-ideation). Also, only a single optimal
solution is returned at the end, resembling a convergent
process. These traits do not support the fluid, ambiguous, and
imprecise nature of the early stage design process and could
hinder the creativity of the designer. In addition, this typical
workflow does not support exploration of multiple solutions.

A Hybrid Approach
In this paper, we intend to bring the benefits of generative
design in the early stages of design conception so that
designers can start exploring the design space and make
better informed design decisions earlier. By doing so, we
intend to explore how generative design would play a more
active, participatory role in early stages of design, while
accommodating the unique attributes of freeform sketches.

DREAMSKETCH: USER INTERFACE
We designed and implemented DreamSketch, a 3D sketching
tool coupled with generative design algorithms for
conceptual 3D design and exploration. DreamSketch
capitalizes the ambiguous, incomplete, and expressive nature
of sketching for defining the problem. The UI supports
juxtaposition of planar strokes in 3D that are used for
problem definition, with a range of 3D meshes representing
alternative solutions generated. The interface contains a main
authoring canvas, a toolkit menu, and a GUI menu for
parameter controls (Figure 4).

Figure 4: The UI of DreamSketch consists of the (a) main

canvas, (b) toolkit menu (draw, select & record design variable,
drag variable, delete, generate, manikin, geometric attributes),

and (c) GUI menu for drawing canvas navigation in 3D,
drawing tools (i.e., color, extrusion, solid fill), visualization

(hide/show drawing plane, obstacles), and parameter controls
(e.g., manikin height, load values).

Workflow: Define problem, Navigate results, & Iterate
In DreamSketch, the user starts by defining a design problem
by specifying the design context, variables, constraints, and
load cases, all using a sketch-based interface. The design
context is specified by creating objects that the design must
interact with. The design variables and constraints are
created by specifying the possible positions and
configurations of the interacting objects. Load cases are then
defined on the objects to express the intended functionality
of the design. Proxy Objects such as a human manikin, can
also be used to guide and constrain the design process.

Given the problem definition, our system then procedurally
generates multiple solutions using topology optimization
that minimizes compliance and volume. This process is
currently executed offline, and the execution time can be
from several minutes to hours, depending on the problem
definition and algorithm parameters.

The resulting design alternatives are then presented back to
the user within the context of problem definition sketches,
along with the quantitative attributes for each solution. The
user can evaluate and navigate through the generated results
by directly manipulating the spatial arrangements of the
objects. The user can iteratively adjust the problem definition
and generate new results. Once the design space has been
explored to satisfaction, the designer can output the selected
design(s) to fabrication tools or export the resulting geometry
for further processing in other software tools. Figure 1
summarizes the overall workflow of the system.

Problem Definition in DreamSketch
We now discuss the UI tools used for problem definition in
DreamSketch.

3D Sketching and Navigation
The user can draw with a tablet pen or a mouse, and sets
down strokes directly on a planar 2D canvas. The canvas can
be positioned and rotated in 3D space, using the position and
rotate sliders on three coordinate axes. We overlay a
transparent grid on the canvas so that the user can easily see

their orientation onscreen, and use it for guidance. The user
can rotate, scale, and pan the camera view. By default, we
use perspective projection. But, the user can also switch to
orthographic projection for quick sketching in 2D, without
worrying about depth. By default, the strokes are
automatically mirrored with respect to the xy-plane to create
symmetric shapes.

Design Context via Objects
Objects are the primary 3D visual entities in DreamSketch to
express the design context. The intended design solution
must interact with these objects to fulfil its functionality. An
object consists of a set of user drawn strokes, and a 3D mesh
that coarsely define the geometric volume of the intended
shape. Constructing precise 3D geometry from rough
drawings is a challenging problem, requiring precise,
unambiguous user input. However, in the early stages,
designers do not have a precise, unambiguous geometry in
mind. Therefore, we allow users to coarsely approximate the
intended shape with proxy geometry [33], without requiring
detailed input.

To define a 3D shape, the user sketches a set of strokes on
the canvas, and then extrudes them to create a 3D mesh. We
used a simple heuristic for extrusion. Our system selects the
2D planar stroke with maximum arc length, and extrudes the
stroke in the normal direction of the canvas to create a mesh.
While not precise, this is a simple, yet effective approach to
approximate the 3D volume quickly and easily for typical
use cases. (Figure 5). The resulting mesh is then displayed
into the canvas in conjunction to the hand-drawn strokes. To
keep a user’s focus on ideation rather than surface quality
and continuity [6, 18, 30], the mesh is rendered with
wireframes in a sketchy style (Figure 5c). Overall, our goal
was to keep the workflow simple, yet expressive to
accommodate crucial characteristics of freehand design
drawings, including over-tracing, hatching, and shading

Figure 5: An object consists of a proxy geometry and freeform

strokes. (a) Strokes drawn in the drawing canvas. (b) The
extrude operation mirrors the strokes with respect to the
canvas. (c) The 3D geometry created from the extrusion

visualized in wireframe rendering. (d) The user continues
adding strokes to the object for more details and context.

In addition to manually designing objects, the user can
import existing 3D models as an object in the scene, and
select, edit, delete, or transform (translate or rotate) any
object using a free transform tool.

Object Types
Once created, the user specifies the type of an object as either
an interface object or an obstacle. Interface objects are used
to define load cases and also integrated as part of the solution
geometries. An obstacle defines an empty volume, which
forces the algorithm not to include that volume as part of the
solution geometries.

Figure 6: Object types. (a) The user loads the manikin, and

sketches the back wheel. (b) An object is created by extrusion,
and set as an obstacle to define an empty volume for the final
design. (c) The user then sketches the interface objects for the

bike handle, paddle, rear bracket, and seat post.

Design Variables
Design variables provide a means to define a design space,
accommodating and exploring a wide range of possibilities
for a design. To define a design variable, the user selects an
object, and moves it along the canvas to record a design
variable (Figure 7). The design variable is visually
represented with a polygon path in the 3D scene, and it
represents all possible positions of the associated object. The
user can remove or override an existing design variable by
simply tapping the object, or recording a new one
respectively. In our current implementation, a design
variable consists of a polygon path only.

Figure 7: Defining a design variable. (a) An obstacle object

sketch (blue). To generate variations, the user then specifies
all possible positions of the obstacle (b) and the bike handle (c)
by recording design variables with direct manipulation. Note

that the manikin hand is attached to its nearest object
(handle), and updates its pose accordingly (c).

Once an object is defined, it can be dragged along the
polygon path by enabling the drag tool. In our current
implementation, design variable movements are restricted to
xy-plane only. In theory, the user can have many design
variables in problem definition to express many possible
spatial configurations between the objects in a scene. Each
design variable represents a dimension in the design space;
n independent design variables creates an n-dimensional
design space. In practice, this exponentially increases the

possible solutions, making the generation process
computationally expensive and time consuming. As such, we
restrict each design solution to at most three variables.

Constraints
In DreamSketch, a design constraint refers to conditions
under which the geometric parameters of an object, such as
position, orientation, or scale is dependent upon the position
of another object. For instance, in Figure 8c, the wine bottle
orientation is constrained to the position of the bottle holder
bases. When the bases move to a new position, the wine
bottle geometry needs to rotate/re-position appropriately.

Figure 8: Examples of constraints. (a) A translation constraint
(green) ensures the rotors are symmetric with respect to the

rider, as the other rotors moves through design variable (red).
(b) By design, the scale of the bike wheels is dependent to the
position of the obstacle (blue) (c) As the position of the base

changes (red), the rotational constraint (green) re-orients the
bottle.

Figure 9: Defining a constraint. (a) The user sketches a
constraint from the source (handle) to the destination

(obstacle), and sets it as a translation constraint. (b) The
functional relationship curve defining the geometric constraint

(inset). (c) As the position of the handle (red) changes, the
position of the obstacle changes accordingly (green).

We used a fast and flexible method - functional relationship
[19] - to define constraints between the geometric
parameters of two objects. To define a constraint, the user
selects the constraint tool, and sketches an edge from the
source object to the constrained object (Figure 9a). This
creates a directed edge between them. The user can specify
the type of geometric parameter (i.e., scale, rotation,
position, assembly) for the functional mapping by selecting
the corresponding parameter in the top menu. When an
edge/constraint is created or selected, a function mapping
widget visualizes the functional correspondence (tp = F(sp))

between the geometric attributes of the parent sp (x-axis) and
the child tp (y-axis) (Figure 9b). By default, this function is
set to identity (sp = tp), which the user can overwrite by
directly sketching a new curve within the widget. The widget
is equipped with an exploration cursor [19] that the user can
drag within the mapping space to help identify relevant
mapping points.

Manikin
Kim and Bae explored the use of hand-tracking sensors to
aid designers with the sense of scale, context, and hand
posture information [22]. In similar spirit, DreamSketch
supports the use of a manikin into the scene to think and
express the design in a realistic environment. Additionally, it
enables the designer to define and validate design variables
and solutions. For instance, in Figure 7c, once the designer
specifies a design variable for the bike handle, our system
registers the hand (end-effector) of the manikin with the
nearest object (bike handle). As the position of the handle
changes, the manikin pose changes accordingly to reflect the
pose of the rider. This enables the designer to qualitatively
evaluate the validity of the design variables by looking at the
corresponding poses for different possible positions of the
handle. The user can also vary the height of the manikin
using a slider to evaluate the feasibility of a design
configuration for a range of heights (Figure 10). Such
functionalities enable the user to consider design ergonomics
in early stages of design to eliminate invalid explorations and
solutions, which is typically considered in the later stages of
design pipeline [41].

Figure 10: The user exploring the validity (comfort and reach)
of a solution for different manikin heights. The position of the
hand and waist are fixed for different height configurations.

Load Cases
Problem definition in DreamSketch requires a load case
defined on interface objects. A load case consists of 1) a set
of forces, applied on interface objects, that the resulting
design should be able to withstand and 2) an associated set
of fixed anchors, defined also on interface objects.
Essentially, one could think that design solutions are created
to propagate the forces applied on the receiving objects to the
anchor objects without failing. The user can specify a force
vector by sketching using the force tool (Figure 11a). The
length of the stroke is proportional to the force magnitude.
Once the user sketches a force vector, by default our system
marks all other interface objects (hence, not including
obstacles) as anchors for that force (Figure 11b). The default
heuristics work well for typical cases. However, for more
advanced use cases (such as the bike frame design), users can
toggle the fixed objects for that force (Figure 11c). Users can
also edit the force values using a slider.

Figure 11: Defining loads and anchors. (a) A user sketching a
force using the load tool. (b) The default anchor objects (blue)

for the selected load (orange). (c) The user can toggle an
anchor object by tapping the corresponding object.

Figure 12: Data-driven load conditions. (a) The user exports a
CSV file consisting of the values of each load for different load
conditions. (b) The user then drags each data column to bind it

to a corresponding load (orange). Our system iteratively
visualizes the forces for each load condition. (c) A load

condition for a user just sitting. (d) A force of a user pedaling.
(e) Forces due to bumps and friction.

In mechanical design, design objects often consist of
multiple load cases for advanced use cases. For instance, a
bicycle has multiple use cases (Figure 12). For each use case,
we have different set of forces applied, on a combination of
handles, seat, or pedals. A user can define multiple load
cases as part of problem definition.

Our system also enables users to export a data file (.CSV
format), and drag the force magnitudes to the corresponding
load vectors. This data-driven approach enable designers to
design complicated load cases easily. For simplicity, we
normalized the force value ranges to match with the
maximum dimension (600mm X 600mm X 600mm) of our
canvas. For instance, it is impractical to have a 1000kg load
for a 1000 mm3 object.

In DreamSketch, the minimum required input for a problem
definition is a single force and multiple interface objects (to
be synthesized by generative design algorithms). Obstacles,
constraints, design variables, and contextual sketches are
optional input requirements.

Geometry Generation and Navigation
Once the problem definition is specified, the user presses the
generate button, and our system generates the optimal
solution for different combinations of the design variables.
We discretize the domain of each design variable into a fixed
number of segments (four), and generate results for all
possible combinations of those variable segments.

Navigating Results
Users can navigate through the generated results by directly
dragging the objects through their design variables (Figure
13). Our system finds and displays the closest corresponding
solution for each configuration. The user can also set a
solution as ‘marked’, to be reviewed at the end of the design
session.

Quantitative Attributes
For each solution, we display a selection of its quantitative
attributes, including volume, weight, and stress. The
quantitative aspects of design allow designers to compare
different solutions and make informed decisions in the early
stages of design.

Iterative Refinements
Users can continue refining the design iteratively by
modifying the problem definition, either by modifying
variables, constraints, and load conditions, or by adding or
removing interface objects and obstacles. The key difference
of DreamSketch (or any other generative design tool)
compared to a traditional design process is that it allows
iterations by modifying problem definitions for a design
space and exploring the solutions generated by the computer.
We hypothesize that this approach enables designers to
explore a greater number of possibilities than iterating
through by only modifying the solutions.

Rendering
We used non-photorealistic rendering techniques to the
resulting solutions. The goal of DreamSketch is to inspire the
designers by showing the possibilities, inviting further
exploration, and changes. The visual rendering is coupled
with its intended purpose to keep the results suggestive.

IMPLEMENTATION
Our system runs in a web browser, and is implemented using
Javascript and the Three.JS library that uses WebGL for 3D
graphics rendering and animation. Once the user defines a
design problem, our system passes the problem definition
input files to the topology optimization module via a Python
API. The system then generates optimized geometries for all
design configurations specified in the problem definition,
along with quantitative attributes (i.e., weight, volume,
stress), and returns those results back to the DreamSketch
interface in the browser.

Figure 13: The user navigating through the resulting solutions by directly manipulating the bike handle (top). The execution time

took approximately 4 minutes for each solution (16 minutes in total). The corresponding 3D printed artifacts (bottom).

Problem Definition Input
We discretize each continuous design variable into a fixed
number of segments and create distinct problem definition
for each possible combination of the design variable
segments. If the designer specifies a design space consisting
of n independent design variables, and we discretize each
design variable into x segments, then our system generates
xn distinct problem definitions. In our current
implementation, x = 4. So, if we have a design space
consisting of three design variables, our system generates 43
(= 64) distinct problem definitions. The problem definitions
are saved as JSON files following the input data schema for
the topology optimization module, and the associated
problem definition objects are saved as mesh (.obj) in the
local hard drive, to be accessed by the module.

Topology Optimization
The full details of the specific topology optimization module
which we use is beyond the scope of this paper and its
contribution. The topology optimization module is based on
level-set shape optimization [1, 37]. For a given problem, the
objective function is set to minimize the compliance (the
inverse of stiffness, hence measures a degree of flexibility)
and the volume. The weights of these two objectives can be
controlled by a parameter, which is set dynamically based on
a proprietary heuristic. Alternative optimization methods [8,
9] could be substituted, and still preserve the overall user
experience which our work contributes. In general, topology
optimization methods also take material properties into
account. By default, we have set the material as aluminum
for all the examples in this paper.

Execution Time & Performance
In practice, topology optimization methods are
computationally expensive, and do not run in real-time. The
execution time is highly dependent on the problem
definition, and a number of other factors, including
resolution, load conditions, number of iterations, and PC
configuration. Higher resolution and iteration number

significantly increases the execution time, but the resulting
solution exhibits finer details and performance. As illustrated
in Figure 14, the generation of a single bike frame can range
from 30 seconds to 40 minutes depending on the desired
resolution and number of iterations which the algorithm runs.
We hypothesize that designers will gradually use finer
results, as they progress towards the final design.

Figure 14: Execution time (in seconds) for a single problem
definition of a bike frame. The dimension of the geometry is

226x172x57 for voxel size=1. The program was executed in an
Intel Xeon E5 2650 v3 @ 2.30GHz CPU, with 64.0GB memory

and NVIDIA Tesla K40c graphics card.

Inverse Kinematics
For the manikin movement, we implemented 2D inverse
kinematics using the cyclic coordinate descent [21] method.
In our current implementation, we fix the position of the
manikin waist. As the user interactively manipulate the
design variable attached to the hand (i.e., end effector), our
system interactively computes the position of the elbow and
neck, and update the manikin in the scene. Currently, the
hand movements are constrained to xy-plane.

DESIGN SESSIONS
We conducted informal, qualitative design sessions with
engineers and designers to gain insights about the overall
design workflow, capabilities, and potential applications,
and identify any limitations or opportunities for future
advancements. These sessions were also used to gather
feedback on how our system compares to existing
approaches, although we do not perform any sort of formal
comparison to existing commercial tools.

Figure 15: An user using Dreamsketch in a design session

Participants
We recruited seven participants (4 female, aged 24-40) for
our design sessions. Participants completed a questionnaire
about their background before the session began. Among
them, one participant is an architect (P2), one industrial
designer (P5) with 10+ years of experience, three mechanical
engineers (P1, P3, P6), and two graphic designers (P4, P7)
with no prior 3D design experience.

Procedure
Our design sessions for each participant lasted between 1.5-
2 hours. All the sessions took place in our research lab,
consisting of two steps. In the first step, each participant was
given a brief overview of the system and was shown some
resulting 3D designs made with our system. The instructor
walked the participant through a step-by-step tutorial to
familiarize the participant with the system, defining problem
definitions, navigating solutions, and iterating through the
design. In the second step, the participants designed a 3D
artifact using our system. Participants filled out a
questionnaire afterwards.

Discussion
In general, participants responded positively to the overall
workflow, capabilities, and approach to 3D design using
DreamSketch. Participants commented that the ability
generate 3D shapes with freeform sketches, without having
precise geometries, input, and calculations lowers the barrier
for 3D design, ideation, and exploration (P1, P3, P4, P7).

P1: “DreamSketch is quite different in the approach to generative
design/topology optimization tools. I would classify it as a tool
useful in the initial stage of the product development process. The
very quick creation (no need to open a CAD tool, calculate loads)
of meaningful geometry can help to kick-start the design process
and helps with the communication. To use an optimization software,

a set of ports have to be designed and imported and I have to think
about all the boundary conditions and loads. DreamSketch lifts that
burden, and I get to preliminary results much faster. The lack of
accuracy is, of course, a feature. But at a later stage, the accuracy
of position/ loads is of great importance.”

Our participants were intrigued by ability to define a design
space with design variables, and explore different
alternatives within that space with sketching and direct
manipulation (P1, P6, P7). Participants also felt that the
modeling capabilities of DreamSketch were sufficient to
rapidly express their ideas (P1, P3, P4, P6, P7).

Often, the resulting geometries were very different than what
the designer had anticipated, which inspired the designers to
think into new design dimensions and space.

P3: “The result was nothing I would have imagined. It ended up
looking “industrial”, and I never would have thought to go this
route. To me, it looks a bridge. I never thought to take architectural
influences into this design. However, now I am inspired to explore
this directly”.

P6: “It gives me revolutionary and radical designs with such simple
inputs that are almost impossible to come to a human mind. I
believe in this competitive market, one thing that could make a
difference between two functional designs is aesthetic aspects of a
design, and the shapes produced by DreamSketch due to their
resemblance to the shapes we see in nature somehow resonate with
our soul.”

This indicates that generative design algorithms played an
active and participatory role in the creative exploration and
conceptual stages of design.

However, it is worth noting that, this (i.e., problem
definition) is a relatively new form of thinking and approach
for our designers (P4, P7). It took some time to comprehend
the elements of problem definition – interface objects, load
cases, anchors etc., and understand the scope of design. The
instructor assisted them to specify their problem definition.
The nature of generative design requires comprehension and
understanding of the problem definition, constraints, and
load conditions. We believe that our tool reduces the barrier
of 3D designs, but some level of learning and familiarization
with the tool will still be required.

Our participants – designers and engineers – represent two
opposite sets of users with diverse backgrounds, goals, and
approach towards design. We observed that our participants
with engineering background (P1, P6, P7) were more
meticulous about the load values to match with the scale of
the design. These participants mentioned that DreamSketch
gives them the creative freedom for design and ideation,
which is missing in the existing tools for topology
optimization. While, our participants with design
background (P2, P4, P5, P7) acknowledged that having the
quantitative information and optimized solutions makes
them more aware and mindful about the functional aspects
of design in conceptual stages.

Resulting Artifacts
Our participants crafted a wide range of artifacts during the
design sessions (see Appendix). Due to longer execution
time, we restricted the participants to define only one design
variable. P1 designed a quad-copter to carry a human (Figure
16). He sketched several symmetric objects to specify the
rotors, an object (seat), and an obstacle to leave room for the
rider. A design variable was defined to experiment with
different positions of the rotors, and a constraint kept rotors
spatially symmetric. A load case specified the weight of the
rider. He then added more details to communicate his overall
design intent and usage. P3 and P5 designed tables, and
explored different variations for different positions of the
table lid(s) (Figure 17) and table legs (Figure 18). As for
Figure 17, the resulting artifacts vary quite significantly due
to the nature of the problem definition.

P4, with no 3D design experience, sketched a reading lamp
(Figure 20). She defined an obstacle to get arcade shaped
solution. P7, also with no prior 3D design experience,
designed a glider (Figure 19). She used a constraint, an
obstacle, and the manikin to define the problem definition.

P6 designed a bike rack to be attached at the rear end of a car
(Figure 21). He defined a design variable and two
constraints to experiment with different possible positions of
the bike rack handlers.

As evident in the resulting artifacts, all the participants could
effectively communicate their design ideas, goals, and
intentions. None of the participants used pen and paper for
planning the design, and started directly sketching in
DreamSketch. All the participants used constraints, design
variables, and obstacles, which indicates that they found
those features useful. Overall, the range of artifacts designed
by the first-time users of DreamSketch demonstrate the ease
of usage, expressiveness, and effectiveness of our tool.

LIMITATIONS & FUTURE WORK
Our participants also pointed out to some limitations that
warrants discussion and future explorations.

Simulation & Execution time
The execution time for our participants’ artifacts ranged from
30~60 minutes. As such, they were not able to iterate through
the designs during the sessions. Making generative design
tools faster and efficient is an important direction of future
work. For the current work, we did not take advantage of
parallel or cloud computing to simultaneously perform the
topology optimization jobs for a given problem. However,
such strategy can be used to cut down the generation time.
We also intend to integrate other forms of simulation tools
(i.e., fluid dynamics) to couple concept sketches with a wider
range of computational capabilities. Additionally, one can
potentially visualize the progression of a low-resolution
version of GD algorithms in the canvas, so that the designer
can iterate upon the problem definition during generation.
The visualization and exploration of numerous other sub-
optimal solutions is also worth exploring.

Input & sketching
The two participants (P4, P7) with no prior 3D design
experience commented that initially they were not too
comfortable with multi-view sketching in 3D, both
conceptually, as well as with 3D navigation tools. Single-
view [39] sketching techniques, or AR and VR tools might
alleviate some of these navigational and conceptual barriers.
Beyond polygon paths, we would like to accommodate more
parameters as design variables to fully realize the creative
opportunities of generative design.

Currently, designers can control the shape of the solution
geometries by defining obstacles, or negative spaces. One of
our future goals is to enable the GD algorithms to consider
aesthetics preferences as a joint optimization problem [24],
where the designer can specify preferred shape and style via
sketching. However, we do not always see the surprising
outcomes as a negative, as even designers with pre-existing
aesthetic goals may appreciate seeing alternative solutions.
Additionally, designers have some level of control over the
design freedom that the algorithm has. Designers can specify
more details to generate more predictable outputs.

There is a long-standing body of work in Sketch Based
Interfaces for Modeling (SBIM). Overall, our goal is to
explore and demonstrate how the qualities of freeform
sketching can be integrated in SBIM, and couple them with
the computational aspects of 3D design. Currently, our
design and implementation choices try to balance between
fluidity and fidelity, but fully preserving the merits of
sketching in such a system is a challenge.

Representation
An important aspect of our work is the juxtaposition of
sketches and 3D meshes, and we are motivated to blur the
boundaries between these two representations even more. In
the future, we want analyze the 3D strokes to better infer
contextual information and user intents. This would enable
us to provide knowledge-based tools to the designers [12]. It
would also be interesting to explore unified editing tools for
both sketches and 3D meshes.

CONCLUSION
DreamSketch offers a new design workflow that enables the
designer to design and explore a range of functional 3D
designs by sketching the design intentions. In this paradigm,
the designer expresses a design problem via sketching and
the computer helps the designer explore solution ideas that
may have not been considered by the designer. Our work
aims to accommodate the freeform qualities of traditional
media (pencil and paper) with generative design
technologies – by supporting ambiguities with design
variables, incompleteness with proxy geometries, and the
expressive aspects of drawings with juxtaposing strokes and
meshes in a hybrid medium. Our design study session
demonstrates that DreamSketch encourages engineers to
think more like designers, and designers to think more like
engineers. We hope such design tools would blur the
boundary between form and functional aspects of design.

REFERENCES
1. Allaire, G., Jouve, F., & Toader, A. M. (2002). A level-

set method for shape optimization. Comptes Rendus
Mathematique, 334(12), 1125-1130.

2. Andre, A., & Saito, S. (2011, August). Single-view
sketch based modeling. In Proceedings of the Eighth
Eurographics Symposium on Sketch-Based Interfaces
and Modeling (pp. 133-140). ACM.

3. Arora, R., Darolia, I., Namboodiri, V. P., Singh, K., &
Bousseau, A. (2016). SketchSoup: Exploratory
Ideation using Design Sketches.

4. Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier,
A., Glueck, M., & Khan, A. (2009). Physics-based
generative design.

5. Bae, S. H., Balakrishnan, R., & Singh, K. (2008,
October). ILoveSketch: as-natural-as-possible
sketching system for creating 3d curve models.
In Proceedings of the 21st annual ACM symposium on
User interface software and technology (pp. 151-160).
ACM.

6. Bae, S. H., Balakrishnan, R., & Singh, K. (2009,
October). EverybodyLovesSketch: 3D sketching for a
broader audience. In Proceedings of the 22nd annual
ACM symposium on User interface software and
technology (pp. 59-68). ACM.

7. Baskinger, M., & Bardel, W. (2013). Drawing Ideas: A
Hand-drawn Approach for Better Design. Watson-
Guptill.

8. Bendsøe, M. P. (1989). Optimal shape design as a
material distribution problem. Structural optimization,
1(4), 193-202.

9. Bendsoe, M. P., & Sigmund, O. (2013). Topology
optimization: theory, methods, and applications.
Springer Science & Business Media.

10. Buxton, B. (2010). Sketching user experiences: getting
the design right and the right design. Morgan
Kaufmann.

11. Dillon, M. R. (2010). Dynamic design: Cognitive
processes in design sketching. Indiana Undergraduate
Journal of Cognitive Science, 5, 28-43.

12. Do, E. Y. L. (2005). Design sketches and sketch design
tools. Knowledge-Based Systems, 18(8), 383-405.

13. Dorsey, J., Xu, S., Smedresman, G., Rushmeier, H., &
McMillan, L. (2007, October). The mental canvas: A
tool for conceptual architectural design and analysis.
In Computer Graphics and Applications, 2007. PG'07.
15th Pacific Conference on (pp. 201-210). IEEE.

14. Du, T., Schulz, A., Zhu, B., Bickel, B., & Matusik, W.
(2016). Computational multicopter design. ACM
Transactions on Graphics (TOG), 35(6), 227.

15. Goel, V. (1995). Sketches of thought. MIt Press.

16. Gross, M. D., & Do, E. Y. L. (1996, November).
Ambiguous intentions: a paper-like interface for
creative design. In Proceedings of the 9th annual ACM
symposium on User interface software and
technology (pp. 183-192). ACM.

17. Igarashi, T., & Hughes, J. F. (2001, November). A
suggestive interface for 3D drawing. In Proceedings of
the 14th annual ACM symposium on User interface
software and technology (pp. 173-181). ACM.

18. Kallio, K. (2005). 3D6B editor: projective 3D
sketching with line-based rendering.

19. Kazi, R. H., Chevalier, F., Grossman, T., &
Fitzmaurice, G. (2014, October). Kitty: sketching
dynamic and interactive illustrations. In Proceedings of
the 27th annual ACM symposium on User interface
software and technology (pp. 395-405). ACM.

20. Kazi, R. H., Grossman, T., Mogk, C., Schmidt, R., &
Fitzmaurice, G. (2016, May). ChronoFab: Fabricating
Motion. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (pp. 908-
918). ACM.

21. Kenwright, B. (2012). Inverse kinematics–cyclic
coordinate descent (CCD). Journal of Graphics
Tools, 16(4), 177-217.

22. Kim, Y., & Bae, S. H. (2016, October).
SketchingWithHands: 3D Sketching Handheld
Products with First-Person Hand Posture.
In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (pp. 797-808).
ACM.

23. Lee, Y. J., Zitnick, C. L., & Cohen, M. F. (2011,
August). Shadowdraw: real-time user guidance for
freehand drawing. In ACM Transactions on Graphics
(TOG) (Vol. 30, No. 4, p. 27). ACM.

24. Martínez, J., Dumas, J., Lefebvre, S., & Wei, L. Y.
(2015). Structure and appearance optimization for
controllable shape design. ACM Transactions on
Graphics (TOG), 34(6), 229.

25. Murugappan, S., & Ramani, K. (2009, January). Feasy:
a sketch-based interface integrating structural analysis
in early design. In ASME 2009 International Design
Engineering Technical Conferences and Computers
and Information in Engineering Conference (pp. 743-
752). American Society of Mechanical Engineers.

26. Nishida, G., Garcia-Dorado, I., Aliaga, D. G., Benes,
B., & Bousseau, A. Interactive Sketching of Urban
Procedural Models. ACM Transactions on Graphics
(TOG), 35(4), 130.

27. Olsen, L., Samavati, F. F., Sousa, M. C., & Jorge, J. A.
(2009). Sketch-based modeling: A survey. Computers
& Graphics, 33(1), 85-103.

28. Paczkowski, P., Kim, M. H., Morvan, Y., Dorsey, J.,
Rushmeier, H. E., & O'Sullivan, C. (2011). Insitu:

sketching architectural designs in context. ACM Trans.
Graph., 30(6), 182.

29. Parish, Y. I., & Müller, P. (2001, August). Procedural
modeling of cities. In Proceedings of the 28th annual
conference on Computer graphics and interactive
techniques (pp. 301-308). ACM.

30. Piccolotto, M. A. (1998). Sketchpad+ architectural
modeling through perspective sketching on a pen-
based display (Doctoral dissertation, Cornell
University).

31. Schmidt, R., Khan, A., Kurtenbach, G., & Singh, K.
(2009, August). On expert performance in 3D curve-
drawing tasks. In Proceedings of the 6th eurographics
symposium on sketch-based interfaces and
modeling (pp. 133-140). ACM.

32. Shao, C., Bousseau, A., Sheffer, A., & Singh, K.
(2012). CrossShade: shading concept sketches using
cross-section curves. ACM Transactions on
Graphics, 31(4).

33. Shao, T., Li, W., Zhou, K., Xu, W., Guo, B., & Mitra,
N. J. (2013). Interpreting concept sketches. ACM
Transactions on Graphics (TOG), 32(4), 56.

34. Suwa, M., & Tversky, B. (1996, April). What
architects see in their sketches: Implications for design
tools. In Conference Companion on Human Factors in
Computing Systems (pp. 191-192). ACM.

35. Ulu, N.G, Kara, B.L., Generative interface structure
design for supporting existing objects. Journal of
Visual Languages and Computing (pp. 171-183).

36. Umetani, N., Igarashi, T., & Mitra, N. J. (2012).
Guided exploration of physically valid shapes for
furniture design. ACM Trans. Graph., 31(4), 86-1.

37. Wang, M. Y., Wang, X., & Guo, D. (2003). A level set
method for structural topology optimization. Computer
methods in applied mechanics and engineering, 192(1),
227-246.

38. Wang, Y., Chen, Y., Liu, J., & Tang, X. (2009, June).
3D reconstruction of curved objects from single 2D
line drawings. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference
on (pp. 1834-1841). IEEE.

39. Xu, B., Chang, W., Sheffer, A., Bousseau, A., McCrae,
J., & Singh, K. (2014). True2Form: 3D curve networks
from 2D sketches via selective regularization. ACM
Transactions on Graphics, 33(4).

40. Zaman, L., Stuerzlinger, W., Neugebauer, C.,
Woodbury, R., Elkhaldi, M., Shireen, N., & Terry, M.
(2015, April). Gem-ni: A system for creating and
managing alternatives in generative design.
In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (pp. 1201-
1210). ACM.

41. Zheng, Y., Liu, H., Dorsey, J., & Mitra, N. J. (2016).
Ergonomics-inspired reshaping and exploration of
collections of models. IEEE Transactions on
Visualization and Computer Graphics, 22(6), 1732-
1744.

APPENDIX: PARTICIPANT GENERATED EXAMPLES

Figure 16: A drone designed by P1. (a) The problem definition consists of a single load, a design variable (red), and a constraint

(green). The resulting solutions (b-d).

Figure 17: A table design by P2. (a) The problem definition. (b-d) The resulting solutions.

Figure 18: A table design by P5. The design variable and constraints defines the height and width variations (a). The resulting

solutions (b-d).

Figure 19: Glider design by P7. The manikin is used to define a design variable in the problem definition (a), and resulting solution

variations (b-c).

Figure 20: Reading lamp design by P4. The problem definition (a), and one of the resulting solutions (b). The designer initially

expecting a shape like (c). However, the generative design solution inspired her to think in new dimension, and modify the design to
bring more “industrial” look into the design.

Figure 21: Bike-rack design by P7. The problem definition consists of one design variable and two constraints (a). The resulting

solutions (b-d).

Figure 22: 3D printed artifacts designed by P1 and P2 using DreamSketch.

