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Figure 1. Scatter plots for two data sets (left side and right side) with varying numbers of data points rendered. The top row shows 
the appearance with an individual point opacity of 100%, while the second and third rows show the crowd-sourced results for 
the opacity scaling task and the results of our technique respectively.  

ABSTRACT 
Scatterplots are an effective and commonly used technique 
to show the relationship between two variables. However, as 
the number of data points increases, the chart suffers from 
“over-plotting” which obscures data points and makes the 
underlying distribution of the data difficult to discern. 
Reducing the opacity of the data points is an effective way to 
address over-plotting, however, setting the individual point 
opacity is a manual task performed by the chart designer. We 
present a user-driven model of opacity scaling for scatter 
plots. We built our model based on crowd-sourced responses 
to opacity scaling tasks using several synthetic data 
distributions, and then test our model on a collection of real-
world data sets. 

INTRODUCTION 
Scatterplots are a common and effective method to visualize 
relationships between two-dimensional data and to quickly 
identify trends and outliers within a dataset [6]. However, 
scatter plots suffer from over-plotting as the ratio of data 
points to chart area increases. When over-plotting occurs, 
data points can be occluded and information may be lost. This 
can make it difficult or impossible to see the individual data 
points and lead to misinterpretation of the data, or the 
inability to perceive the data’s underlying distribution. 

The primary strategies to mitigate over-plotting are to: reduce 
the size of the data points, remove the color fill from the data 
points, change the shape of the data points, jitter the data 
position, make the glyphs semi-transparent, and reduce the 

amount of data [2]. The first four techniques can work in 
situations of moderate over-plotting. However, they are not 
applicable in situations with extreme over-plotting or when 
the data points are already represented by very small marks. 
It is often undesirable to reduce the amount of data, either 
through sampling or aggregation, which leaves the 
modification of the data point opacity as the most desirable 
option in many situations. Most graphing packages support 
manual modifications of the point opacity, however they 
default to 100% opacity, and do not provide any mechanism 
for automatically selecting a more appropriate opacity level. 

Making the individual data points semi-transparent does not 
modify or distort the underlying data and is applicable to a 
number of graphing scenarios. However, it is not obvious 
how to programmatically set the opacity value for a given 
graph, or in the more complicated case of a dynamic charting 
environment, how to modify the opacity level as the quantity 
and distribution of points changes. 

In this paper we present a user-driven model of opacity 
scaling for scatter plots. We built our model based on crowd-
sourced responses to opacity scaling tasks using several 
synthetic data distributions, and then test our model on a set 
of real-world data with several graph area/point area 
combinations.  

RELATED WORK 
Alternative methods of visualizing two-dimensional data 
include 2D histograms, hexbin plots, and contour plots. 
While each is useful for situations of high over-plotting, they 
aggregate data into groups, making them potentially less 
useful in situations with low over-plotting. We focus on 
scatter plots since they can provide a uniform and useful 
experience in scenarios with both low and high over-plotting. 
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Luboschik, Radloff and Schumann apply a weaving 
technique which allows observers to easily distinguish 
plotted groups via hue [5]. This technique is very promising 
for scatter plots with multiple subgroups, but does not have 
an effect for single-group data sets. Mayorga and Gleicher 
addressed the problem of over-plotting in multi-dimensional 
scenarios by creating a new chart type called a ‘splatterplot’ 
by finding contours for each of the data sets and using color 
blending [6].  

In contrast to previous approaches, we present a technique to 
automatically and dynamically select an appropriate data 
point opacity level for a given scatter plot. As modification 
of the opacity level is already supported in most charting 
packages, our algorithm can be directly and easily 
incorporated into existing plotting workflows. 

STUDY 1: USER DERIVED OPACITY CURVES 
We wanted to create a model for opacity scaling which aligns 
with the aesthetic and functional choices chart designers use 
when manually setting the opacity level of a scatter plot. So 
to begin, we collected users’ perceptual preferences by 
asking them to manually set the opacity level over a 
controlled set of charts.  

Participants 
Amazon’s Mechanical Turk service has been shown to be a 
useful method for conducting graphical perception studies 
[3]. We recruited 46 crowd workers from Mechanical Turk. 
As is common in crowd-sourced studies [4], 15 of the 
workers attempted to ‘game the system’ by clicking through 
the tasks quickly and randomly, leaving 31 valid participants 
with data for analysis. The workers were paid $2USD for the 
study which took an average of 10 minutes to complete, for 
an equivalent wage of $12/hour. 

Design 
Each trial in the study consisted of showing the participant a 
scatter plot, and having them move a slider left and right to 
adjust the opacity level. The participants were instructed to 
set the opacity to what they thought provided the best overall 
legibility in both the light and dark areas of the chart. After 
making their opacity selection, the next trial would begin. 

To capture data for a range of values from charts with little 
or no over-plotting, to charts with a great deal of over-
plotting, we generated graphs with 27 unique number of 
points, ranging from 1 (13) to 19,683 (273) (Figure 2). The 
number of points is a component of the over-plotting factor 
which we define as: 

over‐plotting		factor	 ൌ 	
#	of	pts ൈ area	of	each	point

area	of	the	chart
 

For example, if a chart has an over-plotting factor of 4x, there 
are 4 times as many pixels needed to represent the data than 
are available in the chart, so over-plotting will be necessary. 
All plots in the first study were 80x80 pixels in size, and the 
data points were 2x2 pixel squares, resulting in over-plotting 

factors ranging from 0.0006x for the 1 point condition, and 
12.3x for the 19,683 points condition. 

 
Figure 2. The three distribution types used in the first study, 
with representative samples from the number of point range. 

We also believed that the distribution of the data points 
within the chart would affect the ideal opacity setting, so we 
used three distribution types: wide, medium, and narrow 
(Figure 2). All three data sets were Gaussian distributions 
centered at 0.5 and bound between 0 and 1 on each axis, with 
standard deviations of 0.7, 0.2, and 0.1 respectively.  

The study was divided into 3 blocks, with each user selecting 
an opacity value for each of the 81 distribution × number of 
points combinations presented in a random order within each 
block for a total of 243 trials per participant. 

Results 
The individual measurements as well as the averaged user-
medians from the 81 distribution/number of points 
conditions are shown in Figure 3. As expected, the 
distribution was a significant factor (F2,25 = 31.9, p < .0001) 
in the resulting opacity values, with the wide distribution 
having the highest opacity settings and the narrow 
distribution the lowest. 

 

Figure 3. Point opacity values from the first study. 

To model these user-generated opacity curves, we wanted to 
find a property of the resulting scatter plot which stayed 
relatively constant over a wide range of data point counts and 
was independent of the distribution type.  

We discovered a promising metric meeting these criteria by 
looking at the mean opacity of only the utilized pixels of the 
resulting graph. That is, the sum the final opacities of each 
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pixel in the entire plot, divided by the number of pixels which 
had an opacity greater than zero (Figure 4). 

 

Figure 4. Mean opacity of the utilized chart pixels from the 
charts produced by the users in Study One. 

We can see that, except where the over-plotting factor is very 
low, the Mean Opacity of Utilized Pixels (MOUP) stays 
relatively constant (around 40%) and does not seem to be 
impacted by the distribution type. It is this property, that 
users create scatter plots with a fixed MOUP of 40% in over-
plotting scenarios, which we use to derive our model. 

ALGORITHMIC MODEL 
To model the user-preference for scatter plot opacities found 
in the first study, we developed an algorithm which will 
produce a scatter plot with a MOUP of 40%. 

We do this by arranging all data points on the graph surface 
and for each pixel in the chart area, counting the number of 
overlapping data points which cover this pixel. Based on the 
standard color blending model [7] the final opacity (Of) of a 
pixel given a number of overlapping layers (l) at a given 
individual opacity level (α) can be calculated as follows: 

௙ܱሺ݈, ሻߙ ൌ ൜
ߙ ൅ ௙ܱሺ݈ െ 1, ሻߙ ∙ ,ߙ ݈ ൐ 1

,ߙ ݈ ൌ 1
 

Then, the MOUP of a given plot with a set of p pixels (P), 
with a specified number of layers (lp) and a particular 
individual point opacity level (α) can be calculated thusly: 

,ሺܷܱܲܲܯ ሻߙ ൌ
∑ ௙ܱሺ݈௣, ሻߙ
௣
௉

∑ 1,where	݈௣ ൐ 0௣
௉

 

The problem then becomes finding an optimal individual 
point opacity (αMOUP_0.4) which produces a MOUP of 40%: 

,ሺܷܱܲܲܯ ሻߙ ൌ 0.4,where	ߙ ൌ  ெை௎௉_଴.ସߙ

Looking at Figure 4, it appears that targeting an individual 
point opacity level which produces a MOUP of 0.4 should 
work in cases where the over-plotting factor is greater than 
around 0.5x, but for low over-plotting factors αMOUP_0.4 will 
produce a chart with a lower overall opacity than desired. The 
error between αMOUP_0.4 and αuser in these cases is fairly 
consistent across the distribution types and follows a 
logarithmic distribution. A Low Density Multiplier (LDM) 
term is defined for a given over-plotting factor (opf) to 
account for this gap in the low over-plotting scenarios:  

௢௣௙ܯܦܮ ൌ 	min ൜1, 1 െ 0.15 ൈ log ൬
݂݌݋
0.75

൰ൠ 

The LDM term only affects the calculation for charts with an 
over-plotting factor < 0.8x, otherwise the LDM term 
evaluates to 1. Incorporating the LDM term onto αMOUP_0.4 
gives us an optimal individual point opacity (αoptimal) of: 

௢௣௧௜௠௔௟ߙ ൌ ௢௣௙ܯܦܮ ൈ  ெை௎௉_଴.ସߙ

Our un-optimized implementation solves for ߙ௢௣௧௜௠௔௟ using 
a binary search over the opacity space to a precision of three 
decimal places, and can compute at 30fps for graphs up to 
250×250 pixels in size. 

The individual point opacities generated by our algorithm as 
compared to the user-generated levels are shown in Figure 5.  
A Pearson’s r test shows the overall correlation of R2=.9904. 

 

Figure 5. Graph of the algorithmic model results overlaid 
on the user-generated results. 

The correlations for each of the distributions are all very 
high, as shown in Figure 5, and the effect of the LDM can be 
seen by observing the difference between the solid and 
dashed model result lines. 

STUDY 2: REAL-WORLD DATA 
Knowing that our model fits well for a set of procedurally 
generated scatter plots with very smooth distribution curves, 
we conducted a second study to see if those results would 
extend to real-world data sets. 

Participants and Design 
As in the first study, participants were recruited from 
Amazon’s Mechanical Turk and paid similarly. 55 workers 
signed up to the task, and after removing 12 for attempting 
to game the system, we were left with 43 valid participants.   

 
Figure 6. Distributions of data used for the validation study. 
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The study task was similar to that in Study 1, participants 
were presented a scatter plot and were instructed to set the 
individual point opacity using a slider. 

Rather than the Gaussian distributions used in the first study, 
the second study used four distributions (D1-D4) derived 
from the physical properties of baseball pitching data [1] 
(Figure 6). We also wanted to verify that our method applies 
to various graph and dot sizes, so three configurations were 
used: C1 is the same configuration as was used in the first 
study, while C2 and C3 are considerably larger at 250x250 
pixels, and C3 uses a larger dot size (Figure 7). 

 

Figure 7. Grid/Dot configurations used for Study Two. 

Finally, a set of five number of point levels were used: 250, 
1000, 4000, 16000, and 48000. These point counts resulted 
in different over-plotting factors for each of the grid/dot size 
configurations, ranging from a minimum of 0.038x in the 250 
dot/C2 condition, up to 30x in the 48000 dot/C1 condition. 
Overall, there are 4 blocks of 5x4x3=60 conditions, resulting 
in each participant completing 240 trials. 

Results 
Comparing to the mean of the user-aggregated medians to 
the opacity level predicted by our model for each of the 60 
conditions through a Pearson’s r test shows our model has a 
high correlation to the user data (R2=0.9899), and in all cases 
the predicted value falls within the interquartile range of the 
user data. The results for each of the conditions is shown in 
Figure 8 along with the R2 correlation value for each 
configuration/distribution combination. Examples of the 
user-generated scatter plots and the output of our algorithm 
can be seen in the bottom two rows of Figure 1. 

DISCUSSION AND FUTURE WORK 
As a simplifying measure, we looked exclusively at scatter 
plots with a white background and square or circular points. 
Initial tests indicate that the opacity values produced by our 
algorithm work well for plots with different colored points, 
but it would be interesting to validate the model with 
different backgrounds and data-point shapes. 

Our approach was to calculate an optimal opacity value for 
each specific scatter plot. In cases where those calculations 
are not feasible to do in real time (for extremely large graphs, 
or on a mobile device for instance), a ‘generic’ opacity curve 
could be pre-calculated, perhaps using the medium 
distribution from Study One. While not tuned precisely to the 
underlying data, using this generic opacity curve would still 
be better than the default 100% opacity setting. 

 
Figure 8. The results of the second study, by configuration 
and distribution type. 

CONCLUSIONS 
We have presented a model of opacity-scaling for over-
plotted scatter plots derived from the aesthetic and functional 
choices made by users when asked to manually choose an 
opacity value. The output from our model can be easily 
integrated into existing scatter plot implementations, making 
them more useful under a variety of over-plotting scenarios. 
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