

h

Fast Fluid Dynamics on the Single-chip Cloud

Computer

Marco Fais, Francesco Iorio

High-Performance Computing Group

Autodesk Research

Toronto, Canada

francesco.iorio@autodesk.com

Abstract—Fast simulation of incompressible fluid flows is

necessary for simulation-based design optimization. Traditional

Computational Fluid Dynamics techniques often don’t exhibit the

necessary performance when used to model large systems,

especially when used as the energy function in order to achieve

global optimization of the system under scrutiny. This paper

maps an implementation of the Stable Fluids solver for Fast

Fluid Dynamics to Intel’s Single-ship Cloud Computer (SCC)

platform to understand its data communication patterns on a

distributed system and to verify the effects of the on-die

communication network on the algorithm’s scalability traits.

Keywords: Fast Fluid Dynamics (FFD), Computational Fluid

Dynamics (CFD), Conjugate Gradient, Distributed Systems, Intel

Single-chip Cloud Computer .

I. INTRODUCTION

Simulation of incompressible fluids is often used in
conjunction with the design and analysis phases of engineering
and construction projects.

Fast Fluid Dynamics (FFD) is a technique originally
introduced by Foster and Metaxas [2] for computer graphics,
used to simulate incompressible fluid flows using a simple and
stable approach.

In recent years FFD has been applied to numerous
scenarios and its validity has been independently verified by
multiple groups [1]. While simulations results diverge from
experimental data, the accuracy of the prediction is often
sufficient to provide guidance when fast simulation turnaround
is required for design optimization and emergency planning
scenarios.

FFD techniques use a regular grid spatial partitioning
scheme. In order to simulate very large problems the amount of
memory a single system can support is often not sufficient.
Aggregating collections of systems is often used to simulate
large domains and this technique corresponds to employing
distributed-memory architecture. Even when memory on a
single system is sufficient, the number of computing cores
operating in single-image SMP architectures can exhaust the
total available memory bandwidth. The overall algorithms
scalability can thus suffer, regardless of the amount of
available parallelism the algorithms actually exhibit.

The goal of our work is to design and implement a variant
of the FFD method to evaluate its scalability traits on a system

that employs an on-die network and not to produce the fastest
possible implementation.

II. THE SCC ARCHITECTURE AND THE RCCE

COMMUNICATION LIBRARY

Intel’s Single Chip Cloud system is a novel microprocessor
system design based on computing “tiles” organized in a 2D
grid topology [5][6]. No hardware support for cache coherence
is provided, but hardware support for message passing,
message routing and synchronization primitives is available.

The main message communication library available on the
system is RCCE [7], and offers basic synchronous message
passing and synchronization facilities.

III. STABLE FLUIDS ALGORITHM

Stable Fluids was introduced by Stam [3][4] as a fast, stable
technique to solve incompressible fluid field motion; the fluid
domain is decomposed in a regular voxel grid. Each voxel
contains the density and the velocity at the corresponding
spatial location, thus defining a vector velocity field U and a
density scalar field D.

Figure 1. Regular voxel grid

To solve for a time step the simulator performs a series of
sequential phases that operate on the velocity field and the
density field:

Add velocity forces: compute contribution of external
forces on the velocity field.

Core 0 Core 1

Core 2 Core 3

Diffuse velocity: compute the diffusion effect of the
velocity field.

Advect velocity: compute the movement of velocity as
affected by the velocity field itself.

Project velocity: compute the effects of mass conservation
on the velocity field.

Add density sources: compute the contribution of external
density sources on the density field.

Diffuse density: compute the effects of diffusion on the
density field.

Advect density: compute the movement of the density field
as affected by the velocity field.

IV. SIMULATING FLUIDS ON THE SCC

Mapping the Stable Fluids solver on the SCC requires
decomposing the fluid field into multiple tiled subdomains and
assigning a core to each subdomain. A block partitioning
scheme is the most natural solution due to the network
topology the cores in the SCC architecture are organized into.

The domain decomposition operation is performed upon
starting the simulator. In the current implementation the
subdomains' locations and sizes do not change after
initialization. The partitions are implicit: system software
provides to each core its own network row and column index in
the grid, and the total number of cores present in each row and
column. Every core can therefore directly compute the size
(number of rows and columns) and the origin of its own
subdomain.

The effect of this partitioning scheme is that cores that are
physical neighbors in the mesh topology operate on adjacent
subdomains. This is important for optimizing overall
communication latencies, as a significant amount of data
dependencies refer to neighboring subdomains.

As a result, almost all communication happens between
cores that are direct neighbors in the SCC mesh network. Fig. 1
shows how a part of the domain is mapped onto cores at
indexes (0, 0), (0, 1), (1, 0), (1, 1) on the SCC.

Figure 2. Domain decomposition

For efficiency reasons the fluid domain data is organized in
memory in an Array of Structures layout. In this way it is
possible to maximize spatial and temporal coherence in the
different phases of the algorithm, and hopefully reduce
performance degradation due to stalls in the memory hierarchy.
Almost all data structures are evenly partitioned among the
cores involved in the execution of the solver, the only
exceptions are the structures containing details about the voxel
type of the other data grids: in the current implementation,
these data structures are replicated on each core, as they are
involved in handling internal and external boundary conditions.

We implemented the solver as a C++ class library, using
template constructs to facilitate changing of the basic data type
of the simulation; varying the data type between different
levels of precision obviously affects the overall simulation
precision, performance and memory usage.

In the next subsections we analyze the individual phases
that are performed in solving for a time step in the simulation.

A. Add forces/sources phase

Adding forces to the velocity field and the density field is a
trivially parallel operation that doesn't require any data
communication across subdomain boundaries; considering F as
a vector field of external forces and S an external scalar field of
density sources, this phase can be expressed as follows:

The formula for velocity is:

U i , j
n+1

=U i , j
n

+dt F i , j

The formula for density is:

Di , j
n+1

=Di , j
n

+dt Si , j

B. Diffusion phase

The diffusion phase computes the effect of diffusion on
velocity and density in the voxel grid, which involves solving a
system of linear equations. In this system h represents the size
of a voxel as shown in Figure 1. ν represents the fluid
viscosity constant, and κ represents the density diffusion
constant.

The formula for velocity is:

U i , j

n+1
–νdt

(U i−1, j

n+1
+U i+1, j

n+1
+U i , j−1

n+1
+U i , j+1

n+1
−4 U i , j

n+1
)

h
2

=U i , j

n

The formula for density is:

Di , j

n+1
–κ dt

(Di−1, j

n+1
+Di+1, j

n+1
+Di , j−1

n+1
+D i , j+1

n+1
−4 Di , j

n+1
)

h
2

=D i , j

n

Our implementation uses the Conjugate Gradient method to
solve the linear systems due to its ability to handle internal
boundaries. Solving the linear systems results in a strictly data-
parallel 5-point stencil data access pattern. Due to the
predictable nature of the data access the communication
requirements are all statically known. For this reason we can
perform all the required data exchanges concurrently at the
beginning of the phase then proceed to compute the voxels that
do not require subdomain boundary values. At the end, we

process the boundary voxels and as a result, completely overlap
the data communication of all the cores.

C. Advection phase

The purpose of the Advection phase is to move both
density and velocity along the velocity field.

Figure 3. Advection phase backtracking and interpolation

In this phase h represents the size of a voxel as shown in
Figure 1, Δ t represents the time step, Interp represents a 2D
linear interpolation function.

The formula for velocity is:

U i , j

n+1
=Interp (U i , j

n
,(

i
j)−

Δ t

h
U i , j

n
)

The formula for density is:

Di , j

n+1
=Interp(Di , j

n
,(

i
j)−

Δ t

h
U i , j

n
)

The data access pattern of the Advection phase is
unpredictable at compile time, since it is data dependent. In
fact, the access pattern depends on the evolution of the velocity
field. This model of computation is known as dynamic stencil
and its efficient parallelization is generally problematic.

Currently our solution involves using an implementation of
a request-response protocol that allows one core to request
another core for the voxel values of a specific grid. Each core
batches its requests into a queue for every other core involved.

The queue data structure is implemented as a collection of
fixed size arrays. The queue is initially composed of a single
array of requests per destination core. When the space in each
array is exhausted it is sent to the target core and a new array is
allocated, becoming the current requests storage array. We thus
use a data structure that can grow dynamically to accommodate
computation requirements. To optimize memory usage, a
garbage collection mechanism releases unused requests arrays
as required. At the end of the Advection phase, unused arrays
in each queue are deallocated in a single operation.

Take for example a queue composed of four arrays, where
the three extra arrays have been allocated during a previous
Advection phase. If the current Advection phase uses only two
arrays, the last two are deallocated at the end of the phase. This
strategy is based on the assumption that changes in the velocity
field are not abrupt between consecutive executions, thus
generating a similar amount of requests. Since we will likely
require similar sized sets for the next Advection phase, we
don’t release all the arrays at the end of the phase.

To compute the Advection phase on a 2D domain, then for
each voxel in its local subdomain, each core first computes the
global grid indices of its four neighbor voxels (eight in a 3D
environment), resulting from the backtracking operation. If all
the required voxels are local, the final voxel value is computed.
Otherwise a new request is added to the queue of the core
which owns the subdomain containing each remote voxel, and
the computation of the final voxel value is deferred.

In summary, since the request-response protocol introduces
some communication overhead, we use a batching strategy to
minimize overhead. Core specific requests are batched and sent
at the end of the local computation or when the current request
array is full. A communication thread running on each core
monitors incoming requests from other cores, then creates
messages containing the requested data and enqueues the
messages for transmission back to the requesting cores.

On each core when all the required remote data has been
successfully received, all the previously deferred voxels can
finally be computed.

This approach has proven to be quite efficient due to the
low communication latency on the SCC mesh network.
However it is important to underline that performance is highly
data dependent. For example, small velocities and small time
steps imply a small number of voxels with remote
dependencies, with the remote voxels likely being stored in the
memory of physically neighboring cores on the SCC mesh
network. This results in a limited amount of communication
between direct physical neighbors, minimizing both the
required bandwidth and message routing distance on the mesh,
in turn minimizing latency.

In a different scenario, large velocities and/or large time
steps introduce large amounts of voxels with remote
dependencies, which may involve communicating across larger
routing distances on the mesh. This implies additional hops in
the communication network, more message collisions/conflicts
and in general, higher communication latency.

The implementation of our request-response protocol on the
SCC required functionality not available in the RCCE library,
which only supports pure send-receive communications. Our
protocol requires both asynchronous message passing and data-
dependent message destinations. We then extend the RCCE
library with additional functions which will be discussed in
section V.

D. Projection phase

The Projection phase corrects the velocity field to ensure
conservation of mass, and involves computing the current flow
gradient field and solving the Poisson equation to force the
flow in and out of each voxel to be equivalent.

The current flow gradient field is easily obtained using the
current velocity field, and only requires statically known
communication of voxel values along borders of the
subdomains. The solver then proceeds to solve the following
linear system, where P represents the pressure field in the
Poisson equation:

P i+1, j+P i−1, j+Pi , j+1+P i , j−1−4P i , j=

(U i+1, j

x
−U i−1, j

x
+U i , j+1

y
−U i , j−1

y
)h

Solving the linear system is accomplished by re-using the
Conjugate Gradient method already applied during the
Diffusion phase. The data access pattern is the same and we
can easily overlap all data communication by using
asynchronous communication functions.

V. RCCE EXTENSION

Due to the data-dependent and unpredictable nature of the
data access pattern in the Advection phase, the basic RCCE
library provided by the SCC SDK is not suitable. The RCCE
API does not contain functionality to efficiently listen to
incoming messages which can arrive at any time from any
core. It also lacks support for asynchronous communication,
which is fundamental to implement our request-response
protocol.

Some other communication libraries have been developed
since the SCC architecture has been released, iRCCE [11] and
RCKMPI [10] are the most popular. The former is an extension
to the RCCE library while the latter is an implementation of the
MPI standard for the SCC.

iRCCE is a promising library, as it adds non-blocking
point-to-point communication capabilities to RCCE and
introduces a new, smarter version of the “send/receive”
functions. This alternative communication scheme is referred
to as “pipelined”. It splits the Message Passing Buffer (MPB)
into two chunks, allowing both the sender and the receiver to
access the MPB at the same time, in parallel. While the new
features introduced by the iRCCE extension are useful in the
context of our work, they are still not sufficient for our
purposes. In particular it is not possible to efficiently receive a
message without knowing the sender in advance, and mixing of
non-blocking communication requests with blocking collective
operations is not supported.

In our computation we often need to compute the norm of a
vector partitioned among all the cores’ address spaces. Without
mixing point-to-point communication requests with collective
operations, we would require a barrier every time we need to
compute a norm. Moreover, the pushing mechanism used by
iRCCE to allow the communication to progress leads to a more
complicated and less portable application code. One of our
purposes is to write the algorithm in a way that minimizes the
effort required to port the code to different distributed memory
architectures, a cluster, for example. For this reason we decided
to isolate the architecture-dependent aspects of the
communications in a separate thread that emulates a
communication controller, for example a DMA engine, or a
hardware thread in a Simultaneous Multithreading system.

Using a dedicated thread for communication management
introduces a small amount of overhead due to the context
switches between the computation thread and the
communication thread. However this solution is more flexible,
because the communication management thread waking pattern
(and hence the context switch frequency) is configurable. An
additional advantage is that the application code is cleaner, as

the calls to the functions that allow communication progress is
not interleaved with the algorithm code.

RCKMPI is one of several implementations of the MPI
standard [8] developed for the SCC architecture, derived from
the MPICH2 implementation [9]. Its main advantage is that
many parallel applications programmers are familiar with MPI
and a parallel application written with RCKMPI only needs to
be recompiled with an MPI implementation to be ported to a
variety of distributed systems. However, RCKMPI is affected
by some of the issues already discussed: in particular the need
for a receiver to statically know the rank of the sender and the
size of the message.

For these reasons we implement our own extension of the
basic RCCE library, reusing most pre-existing data structures
to support asynchronous communication and a request-
response protocol. Our extension uses an interface similar to
the standard TCP/IP “select” function, and introduces a non-
blocking operation to quickly identify incoming messages and
operate on them.

Our “select” function takes an array of chars as input,
which will be filled with the ranks of the cores that are
requesting to initiate a communication. Upon completion, our
function returns the number of valid entries in the array. Our
“select” is based on custom variants of the low-level RCCE
“send_general” and “receive_general” primitives.

Our new “send” adds a header to the message containing
the type of the message and its size in bytes, so that the new
“receive” does not require the size of the message as a
parameter.

The type of the message is an additional one-byte field that
can be used by the sender program to mark the content of the
message, so that the receiver program can perform different
tasks according to this information.

We allocate two new sets of communication flags in the MPB,
that are used for signaling by all the new functions (“select”,
size-agnostic “send” and “receive”). This way we can handle
both point-to-point and collective communication requests
without signaling conflicts. The new flags allocated on the
MPB reduce the size of the largest data chunk transferable by
48 bytes (using flags of 1 byte), but we consider this trade-off
acceptable.

VI. RESULTS

We tested our solver on domains of different sizes. For
each experiment we incremented the size of the domain
proportionally to the number of cores involved, which provided
a good measure of the impact of communications on the overall
performance.

For each domain size, the domain partitions were assigned
to neighboring cores in the mesh network by using the logical
layout provided by the RCCE library. This ensured
neighboring logical domain partitions were assigned to
physically adjacent cores.

While our experiment provided a test of both the processor
cores and the on-chip mesh communication network, initially

we only used the default frequencies for the processor cores
and communication mesh.

The focus of the tests was not absolute performance but an
analysis of the scalability traits.

TABLE 1. EXECUTION TIMES FOR ONE TIME STEP OF SIMULATION

Domain Size Cores Time (seconds)

1024 X 1024 1 X 1 116.76

2048 X 2048 2 X 2 142.63

4096 X 4096 4 X 4 153.00

6144 X 6144 6 X 6 153.45

8192 X 6144 8 X 6 153.85

Figure 4. Scalability results

Table 1 reports the execution times for solving one
simulation time step using single precision floating point as the
basic data type. Fig. 1 represents the actual scalability of the
current implementation of the solver on the SCC and compares
it with the ideal scalability curve.

The reference single-core solver used for obtaining the
baseline timing does not contain any form of communication.
The multi-core distributed solver thus introduces a certain
amount of overhead even in its minimal 2x2 cores
implementation.

The results demonstrate that while communication indeed
introduces overhead, the overall scalability traits of the
algorithm are good. The overhead is constant beyond 4x4
cores. As a result the solver exhibits a constant execution time
for larger domains, up to the maximum size tested. The
memory used approached the upper limit of the SCC system
used for our tests.

VII. CONCLUSION AND FUTURE WORK

The approach chosen in our implementation exhibited fairly
good scalability, with the experimental results being quite
promising. We plan to continue the work with the introduction

of additional optimizations for performance, communication
and synchronization.

This paper focused on simulations performed on 2D
domains, but work is already underway on an extension of the
solver to 3D domains. The performance optimization work will
concentrate on the improvement of memory access, additional
exploitation of asynchronous data transfer, and better
exploitation of temporal coherence, especially in the Advection
phase.

Variations of the cores and mesh frequencies will also be
evaluated to understand their effects on power usage, and to
find the optimal frequencies that allow the fastest algorithm
performance while minimizing power usage. The chosen
domain partitioning layout is expected to benefit this
experiment by minimizing the average distance messages need
to travel on the mesh network.

ACKNOWLEDGMENT

The authors would like to acknowledge Dr. Jos Stam for
the precious collaboration and guidance on the algorithm
details, and Alex Tessier for his insightful comments.

REFERENCES

[1] W. Zuo and Q. Chen, “Validation of fast fluid dynamics for room
airflow ”, IBPSA Building Simulation 2007, Beijing, September 2007

[2] N. Foster and D. Metaxas, “Realistic animation of liquids”, Graphical
Models and Image Processing, volume 58, number 5, 1996, pp.471-483

[3] J. Stam, “Stable fluids”, In SIGGRAPH 99 Conference Proceedings,
Annual Conference Series, August 1999, pp.121-128

[4] J. Stam, “Real-time fluid dynamics for games”, Proceedings of the
Game Developer Corner, March 2003

[5] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D.
Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S.
Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,
G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-
Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, T. Mattson,
“A 48-Core IA-32 message-passing processor with DVFS in 45nm
CMOS”, Proceedings of the International Solid-State Circuits
Conference, Feb 2010

[6] T. G. Mattson, R. F. Van Der Wijngaart, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S.
Dighe, “The 48-core SCC Processor: the programmer's view”,
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, p.1-11,
November 13-19, 2010

[7] T. Mattson, R. Van Der Wijngaart, “RCCE: a small library for many-
more communication”, Intel Corporation, May 2010, Software 1.0-
release

[8] Message Passing Interface Forum, “MPI: a message passing interface
standard”, High-Performance Computing Center Stuttgart (HLRS),
September 2009, Version 2.2

[9] “MPICH2”, Internet: http://www.mcs.anl.gov/research/projects/mpich2,
[June 20, 2011]

[10] I. A. Comprés Urena, “RCKMPI user manual”, Internet:
http://communities.intel.com/docs/DOC-6628, January 2011

[11] C. Clauss, S. Lankes, J. Galowicz, T. Bemmerl, “iRCCE: a non-blocking
communication extension to the RCCE communication library for the
Intel Single-chip Cloud Computer”, Internet:
http://communities.intel.com/docs/DOC-6003, February 2011

