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Fig. 1. Top: A subset of designs containing ground-truth CAD programs represented as construction sequences from the Fusion 360 Gallery reconstruction
dataset. Bottom: An example construction sequence using the sketch and extrude modeling operations with built-in Boolean operations.

Parametric computer-aided design (CAD) is a standard paradigm used to
design manufactured objects, where a 3D shape is represented as a program
supported by the CAD software. Despite the pervasiveness of parametric
CAD and a growing interest from the research community, currently there
does not exist a dataset of realistic CAD models in a concise programmatic
form. In this paper we present the Fusion 360 Gallery, consisting of a simple
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language with just the sketch and extrude modeling operations, and a dataset
of 8,625 human design sequences expressed in this language. We also present
an interactive environment called the Fusion 360 Gym, which exposes the
sequential construction of a CAD program as a Markov decision process,
making it amendable to machine learning approaches. As a use case for
our dataset and environment, we define the CAD reconstruction task of
recovering a CAD program from a target geometry. We report results of
applying state-of-the-art methods of program synthesis with neurally guided
search on this task.

CCS Concepts: • Computing methodologies → Parametric curve and
surface models.
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1 INTRODUCTION
The manufactured objects that surround us in everyday life are
represented programmatically in computer-aided design (CAD) soft-
ware as a sequence of 2D and 3D modeling operations. Parametric
CAD files contain programmatic information that is critical for doc-
umenting design intent, maintaining editablity, and compatibility
with downstream simulation and manufacturing. Embedded within
these designs is the knowledge of domain experts who precisely
define a sequence of modeling operations to form 3D shapes. We
believe having access to a real-world collection of human design
sequences, and the ability to execute them, is critical for future
advances in CAD that leverage learning-based approaches.

Learning-based approaches show great potential, both for solving
existing problems such as reverse engineering [Buonamici et al.
2018], and for providing entirely new kinds of functionality which
would be unimaginable using traditional techniques. Recent ad-
vances in neural networks have spurred new interest in data driven
approaches to generating CAD programs, tackling both the forward
problem of 3D shape generation [Jones et al. 2020; Li et al. 2020b;
Mo et al. 2019a] and the inverse problem of recovering CAD pro-
grams from a target geometry [Ellis et al. 2019; Kania et al. 2020;
Sharma et al. 2017; Tian et al. 2019]. However, progress has been
inhibited by the lack of a human designed dataset of ground-truth
CAD programs, written in a simple yet expressive Domain Specific
Language (DSL) and an environment to execute them.

We take a step towards this goal by introducing the first dataset
of human designed CAD geometries, paired with their ground-truth
CAD programs represented as construction sequences, along with
a supporting execution environment to make learning-based ap-
proaches amendable to real CAD construction tasks. Our dataset
contains 8,625 CAD programs represented entirely in a simple lan-
guage allowing sketches to be created and then extruded. With just
the sketch and extrude modeling operations, that also incorporate
Boolean operations, a highly expressive range of 3D designs can be
created (Figure 1). We provide an interactive environment called
the Fusion 360 Gym, which can interpret the language of sketch and
extrude, providing a geometric data structure as feedback after each
operation, simulating the iterative construction process of a human
designer.
As a use case for our dataset and environment, we standardize

the problem of programmatic CAD reconstruction from a target
geometry using a learning-based approach. We provide a bench-
mark, consisting of a training set of 6,900 designs and a test set
of 1,725 designs, and a set of evaluation criteria. We then develop
neurally guided search approaches for the CAD reconstruction task
on this benchmark. Our algorithm consists of first training a policy,
a message passing network (MPN) with a novel encoding of state
and action, using imitation learning on ground truth construction
sequences. At inference time the algorithm employs search, leverag-
ing the learned neural policy to repeatedly interact with the Fusion
360 Gym environment until a correct CAD program is discovered.
This approach is able to recover a correct CAD program for 67.5%
of designs in the test set with a budget of 100 interactions between
the agent and the Fusion 360 Gym, averaging < 20 sec solve time per
design. This paper makes the following contributions:

• We present the Fusion 360 Gallery reconstruction dataset,
containing 8,625 human designed CAD programs, expressed
in a simple yet expressive language of sketch and extrude.

• We introduce an environment called the Fusion 360 Gym,
capable of executing the language of sketch and extrude and
providing a geometric data structure as feedback after each
operation.

• We standardize the task of CAD reconstruction from input
geometry and use a learning-based approach with neurally
guided search to produce results on real world data for the
first time.

2 RELATED WORK
CAD Datasets. Existing 3D CAD datasets have largely focused on

providing mesh geometry [Chang et al. 2015; Kim et al. 2020; Mo
et al. 2019b; Wu et al. 2015; Zhou and Jacobson 2016]. However, the
de facto standard for parametric CAD is the boundary representa-
tion (B-Rep) format, containing valuable analytic representations
of surfaces and curves suitable for high level control of 3D shapes.
B-Reps are collections of trimmed parametric surfaces along with
topological information which describes adjacency relationships
between them [Weiler 1986]. B-Rep datasets have recently been
made available with both human designed [Koch et al. 2019] and
synthetic data [Jayaraman et al. 2020; Starly 2020; Zhang et al. 2018].
Missing from these datasets is programmatic construction sequence
information containing the knowledge of how each shape is defined
and created. Although the ABC dataset includes some additional
construction information in a proprietary format provided by the
Onshape CAD software, missing information can only be retrieved
by querying the OnShape API. Combined with sparse documenta-
tion, this makes it difficult to interpret the construction information.
We are unaware of any method that can be used to rebuild designs
in the ABC dataset from the provided construction information, a
key requirement for tasks related to CAD construction. We believe
it is critical to understand not only what is designed, but how that
design came about.
Parametric CAD programs contain valuable information on the

construction history of a design. Schulz et al. [2014] provide a stan-
dard collection of human designs with full parametric history, albeit
a limited set of 67 designs in a proprietary format. SketchGraphs
[Seff et al. 2020] narrows the broad area of parametric CAD by fo-
cusing on the underlying 2D engineering sketches, including sketch
construction sequences. Freehand 2D sketch datasets also tackle
the challenge of understanding design by looking at the sequence
of user actions [Eitz et al. 2012; Gryaditskaya et al. 2019; Sangkloy
et al. 2016]. In the absence of human designed sequential 3D data,
learning-based approaches have instead leveraged synthetic CAD
construction sequences [Ellis et al. 2019; Li et al. 2020b; Sharma et al.
2017; Tian et al. 2019]. The dataset presented in this paper is the
first to provide human designed 3D CAD construction sequence
information suitable for use with machine learning. Table 1 provides
a feature comparison of related CAD datasets.
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Sketch 1 Extrude 1 Sketch 2Extrude 2 Extrude 3
s1 = add_sketch('XZ')
add_line(.6, .8, .6, 2.4)
add_arc(.6, 2.4, .8, 2.4, 90)
add_line(.8, 2.6, 1, 2.6)
...
p1 = add_line(-1, 2, -1, .8)

add_extrude(
 sketch=s1,
 profile=p1[1],
 distance=.8,
 operation='NewBody')

add_extrude(
 sketch=s1,
 profile=p1[0::2],
 distance=5,
 operation='Join')

s2 = add_sketch('YZ')
add_line(.8, 2.8, 5.8, 2.8)
add_line(5.8, 2.8, 5.8, -2.8)
add_line(5.8, -2.8, .8, -2.8)
...
p2 = add_line(2, .2, 2.8, .2)

add_extrude(
 sketch=s2,
 profile=p2[0],
 distance=14,
 operation='Cut')

Fig. 2. An example design sequence from the dataset with associated CAD program. Sketch elements form profiles that are sequentially extruded to join
(Extrude 1, Extrude 2) or cut (Extrude 3) geometry using Boolean operations. The colored areas show the sketch profiles that partake in each extrusion.

Table 1. Comparison of related CAD datasets. For each dataset, we report
the number of designs (#), the design representation (B-Rep, Mesh, or
Sketch), whether it includes a construction sequence capable of rebuilding
the final design (Seq.), and whether it contains human annotated labels for
tasks such as shape classification (Label). The F360 Gallery row indicates
our dataset.

Dataset # B-Rep Mesh Sketch Seq. Label

ShapeNet 3M+ ✓ ✓
ABC 1M+ ✓ ✓
Thingi10k 10,000 ✓ ✓
SketchGraphs 15M+ ✓ ✓
F360 Gallery 8,625 ✓ ✓ ✓ ✓

3D Shape Generation. The forward problem of 3D shape genera-
tion has been explored extensively in recent years using learning-
based approaches. Neural network based generative models are
often used to enable previously challenging functionality such as
shape interpolation and synthesis. Notable approaches to this prob-
lem include leveraging knowledge of object structure [Gao et al.
2019; Li et al. 2020a; Mo et al. 2019a; Schor et al. 2019] or learning
from a sequence of events to generate 3D shapes [Jones et al. 2020;
Li et al. 2020b; Nash et al. 2020; Sung et al. 2017; Wu et al. 2020;
Zou et al. 2017]. Unique to our work is the challenge of learning
from real sequential human design data, requiring a state and action
representation suitable for the language of sketch and extrude.

CAD Reconstruction. The inverse task of CAD reconstruction in-
volves recovering a CAD program, represented as a sequence of
modeling operations, from input such as B-Reps, triangle meshes, or
point clouds. Despite extensive prior work [Shah et al. 2001], CAD
reconstruction remains a challenging problem as it requires deduc-
tions on both continuous parameters (e.g., extracting the dimensions
of primitives) and discrete operations (e.g., choosing a proper op-
eration for the next step), leading to a mixed combinatorial search
space. To recover the sequence of operations, traditional methods
typically run global search methods (e.g., evolutionary algorithms
as in Hamza and Saitou [2004], Weiss [2009], Friedrich et al. [2019],

and Fayolle and Pasko [2016]) with heuristic rules to prune the
search space [Buchele 2000; Buchele and Crawford 2003; Buchele
and Roles 2001; Shapiro and Vossler 1993]. Heuristic approaches are
also available in a number of commercial software tools, often as a
user-guided semi-automatic system [Autodesk 2012; Dassault 2019]
to aid with file conversion between CAD systems. These traditional
algorithms operate by removing faces from the B-rep body and reap-
plying them as parametric modeling operations. This strategy can
recover the later modeling operations, but fail to completely rebuild
the construction sequence from the first step. We instead tackle the
task of recovering the entire construction sequence from the first
extrusion. Another approach is using program synthesis [Du et al.
2018; Nandi et al. 2017, 2018, 2020] to infer CAD programs written
in DSLs from given shapes. CAD reconstruction is also related to
the inverse procedural modeling problem [Stava et al. 2014; Talton
et al. 2011; Vanegas et al. 2012], which attempts to reverse-engineer
procedures that can faithfully match a given target.
Compared to the rule-based or grammar-based methods above,

learning-based approaches can potentially learn the rules that are
typically hard-coded, automate scenarios that require user-input,
and generalize when confronted with unfamiliar geometry. One
early work is CSGNet [Sharma et al. 2017], which trains a neural
network to infer the sequence of Constructive Solid Geometry (CSG)
operations based on visual input. More recent works along this line
of research include [Chen et al. 2020; Ellis et al. 2019; Kania et al.
2020; Tian et al. 2019]. Typically associated with these methods are
a customized DSL, such as CSG, that parameterizes the space of ge-
ometry, some heuristic rules that limit the search space, and a neural
network generative model. Lin et al. [2020] reconstruct input shapes
with a dual action representation that first positions cuboids and
then edits edge-loops for refinement. Although editing edge-loops
of cuboids may be a suitable modeling operation in artistic design, it
is not as expressive or precise as the sketch and extrude operations
used in real mechanical components. Additionally, Lin et al. [2020]
choose to train and evaluate their network on synthetic data due to
the lack of a benchmark dataset of CAD construction sequences, a
space that our work aims to fill. Our approach is the first to apply a

ACM Trans. Graph., Vol. 40, No. 4, Article 54. Publication date: August 2021.



54:4 • Karl D.D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-Lezama, and Wojciech Matusik

Fig. 3. Modeling operations other than sketch and extrude are suppressed to
expand the data quantity. An example design before (left) and after (right)
the fillet modeling operation is suppressed.

learning-based method to reconstruction using common sketch and
extrude CAD modeling operations from real human designs.

3 FUSION 360 GALLERY DSL AND RECONSTRUCTION
DATASET

The Fusion 360 Gallery reconstruction dataset consists of 8,625 de-
signs produced by users of the CAD software Autodesk Fusion 360
and submitted to the publicly available Autodesk Online Gallery [Au-
todesk 2015]. The data and supporting code is publicly available via
GitHub1 with a license allowing non-commercial research similar
to the ImageNet [Deng et al. 2009] license. We created the dataset
from approximately 20,000 designs in the native Fusion 360 CAD file
format. We focus on the sketch and extrude modeling operations for
two main reasons: 1) sketch and extrude are the two most common
CAD modeling operations used in 84% and 79% of designs in the
original dataset respectively; >3x more common than operations
such as fillet and chamfer, and 2) we seek to balance design ex-
pressivity with a tractable problem for learning-based approaches;
restricting the modeling operations to sketch and extrude greatly
simplifies the descriptive complexity compared to the full range of
CAD modeling operations. We generate the as-designed sequence
of sketch and extrudemodeling operations by parsing the parametric
history of the Fusion 360 CAD files. Multi-component assemblies
are divided into separate designs representing the constituent parts,
e.g. the blade of a pocket knife. Modeling operations other than
sketch and extrude are suppressed to expand the data quantity. Fig-
ure 3 shows an example of suppressing a fillet operation, allowing
the resulting design to be included in the dataset. Figure 4 shows
a random sampling of the designs in the dataset grouped by the
number of extrude operations used.
Each design is represented as a program expressed in a DSL,

forming a simplified wrapper around the underlying Fusion 360
Python API [Autodesk 2014]. Each design consists of a sequence

1Dataset website: https://github.com/AutodeskAILab/Fusion360GalleryDataset

1 2 5

Number of Extrude Operations
10 15+

Fig. 4. A random sampling of designs from the Fusion 360 Gallery recon-
struction dataset, grouped by the number of extrude operations.
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Table 2. The grammar for the Fusion 360 Gallery domain-specific language.
A program consists of a sequence of sketch and extrude operations that
iteratively modify the current geometry.

𝑃 := 𝐺 ; [𝑋 ]
𝑋 := 𝑆 | 𝐸
𝑆 := add_sketch(𝐼 ); [𝐷]
𝐷 := 𝐿 | 𝐴 | 𝐶
𝐿 := add_line(𝑁, 𝑁, 𝑁, 𝑁 )
𝐴 := add_arc(𝑁, 𝑁, 𝑁, 𝑁, 𝑁 )
𝐶 := add_circle(𝑁, 𝑁, 𝑁 )
𝐸 := add_extrude( [𝐼 ], 𝑁 ,𝑂)
𝐼 := identifier
𝑁 := number
𝑂 := new body | join | cut | intersect

of sketch and extrude operations that iteratively modifies the cur-
rent geometry (Figure 2). We specify the core language here, and
provide information on additional constructs, such as sketching of
splines and double-sided extrudes, in Section A.1 of the appendix.
The Fusion 360 Gallery DSL is a stateful language consisting of a
single global variable 𝐺 , representing the current geometry under
construction, and a sequence of commands [𝑋 ] that iteratively mod-
ifies the current geometry 𝐺 . Each command can be either a sketch
𝑆 or an extrude 𝐸 operation. A grammar describing the core DSL is
shown in Table 2.

3.1 Current Geometry
The current geometry𝐺 is the single global state that is updated with
the sequence of commands [𝑋 ]. It is a data structure representing all
geometric information that would be available to a designer in the
construction process using Fusion 360: such as inspecting different
aspects of the geometry, and referencing its components for further
modifications.

Boundary Representation. B-Rep is the primary geometry format
provided in the dataset and the native format in which designs were
created, making it a natural representation for the current geometry.
𝐺 represents a collection of sketch or B-Rep entities, which can
be referenced from the construction sequence through identifier 𝐼 .
B-Rep bodies can be expressed as a face adjacency graph, as later
described in Section 4.1.

Execution. Crucially, the current geometry 𝐺 is iteratively up-
dated through the sequence of commands [𝑋 ]. After each command
𝑋 , the interpreter uses the underlying Fusion 360 Python API to
generate an updated geometry. After all the commands [𝑋 ] are
executed, we obtain the final geometry, 𝐺𝑡 .

Storage. In addition to the program 𝑃 , Fusion 360 Gym stores the
final geometry 𝐺𝑡 as a .smt file, the native B-Rep format used by
Fusion 360, and neutral .step files that can be used with other CAD
systems. B-Rep entities, such as bodies and faces, can be referenced
from the construction sequence back to entities in the .smt file. A
mesh representation of 𝐺𝑡 is stored in .obj format representing a
triangulated version of the B-Rep. Each B-Rep face is labeled as a

Line L Arc A Circle C

N1,2

N1,2

N1,2

N3,4 N3,4

N5

N3

Fig. 5. Sketch commands used to create a Line 𝐿, Arc 𝐴, and Circle𝐶 .

Start Body + Sketch

Cut

IntersectNew Body

Join

Fig. 6. Extrude operations include the ability to Boolean with other geome-
try. From the start body shown in the center, a sketch is extruded to form a
new body overlapping the start body, join with the start body, cut out of
the start body, or intersect with the start body.

group of triangles in the .obj file with the B-Rep face identifier as the
group name. This allows the triangles to be traced back to the B-Rep
face and associated extrude operation. Any intermediate geometry
𝐺 can also be exported in these file formats with the API.

3.2 Sketch
A sketch operation, 𝑆 , is stated by specifying the plane on which
the sketch will be created using the add_sketch(𝐼 ) command. 𝐼
is a plane identifier, which allows for identification of the three
canonical planes 𝑋𝑌,𝑌𝑍,𝑋𝑍 along with other planar faces present
in the current geometry 𝐺 . Following the identification of a sketch
plane, one can add a sequence of sketch commands [𝐷], where each
command is either a line 𝐿, arc𝐴, or circle𝐶 (Figure 5). Line, arc, and
circle represent 95% of curves in the dataset. A line command 𝐿 is
specified by four numbers, representing the coordinates for the start
and end points. A circle command 𝐶 is specified by three numbers,
two representing the circle’s center and one representing its radius.
An arc command 𝐴 is specified by five numbers, representing the
start point, the arc’s center point, and the angle which the arc
subtends. The coordinates for the line 𝐿, arc 𝐴, and circle 𝐶 are
specified with respect to the coordinate system of the chosen sketch
plane 𝐼 in 𝐺 . Executing a sketch 𝑆 command creates a list of new
profiles in the current geometry𝐺 , consisting of enclosed regions
resulting from the sketch.
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Target GeometryCurrent Geometry

Fusion 360 Gym

Modeling Operation

ENVIRONMENT

ACTION

AGENT

STATE

REWARD

Fig. 7. The Fusion 360 Gym environment interacts with an agent in a se-
quential decision making scenario. The state contains the current and target
geometries. The agent outputs an action, in the form of amodeling operation,
that advances the current geometry towards the target.

3.3 Extrude
An extrude operation 𝐸 takes a list of identifiers, [𝐼 ], referencing a
list of profiles in the current geometry𝐺 , and extrudes them from 2D
into 3D. A signed distance parameter 𝑁 defines how far the profile
is extruded along the normal direction. The Boolean operation 𝑂

specifies whether the extruded 3D volume is added to, subtracted
from, or intersected with other 3D bodies in the design. Figure 6
shows a start body and sketch (center) that is extruded to form
two separate overlapping bodies, joined to form a single body, cut
through the start body to split it in two, or intersected with the start
body. Additional extrude options are available such as two-sided
extrude, symmetrical extrude, and tapered extrude (See Section A.1.6
of the appendix). Executing an extrude operation 𝐸 results in an
updated list of bodies in the current geometry 𝐺 . The combination
of expressive sketches and extrude operations with built in Boolean
capability enables a wide variety of designs to be constructed from
only two modeling operations (Figure 1).

4 FUSION 360 GYM
Together with the dataset we provide an open source environment,
called the Fusion 360 Gym, for standardizing the CAD reconstruction
task for learning-based approaches. The Fusion 360 Gym further
simplifies the Fusion 360 Gallery DSL and serves as the environment
that interacts with an intelligent agent for the task of CAD recon-
struction (Figure 7). Just as a designer can iteratively interact with a
CAD software system in a step-by-step fashion, comparing at each
step the target geometry to be recovered and the current geometry
they have created so-far, the Fusion 360 Gym provides the intelligent
agent with the same kind of interaction. Specifically, the Fusion 360
Gym formalizes the following Markov Decision Process:

• state: Contains the current geometry, and optionally, the
target geometry to be reconstructed. We use a B-Rep face-
adjacency graph as our state representation.

• action: A modeling operation that allows the agent to modify
the current geometry. We consider two action representations:
sketch extrusion and face extrusion.

Fig. 8. For state representation we use a face adjacency graph with B-Rep
faces as graph vertices and B-Rep edges as graph edges.

• transition: Fusion 360 Gym implements the transition func-
tion that applies the modeling operation to update the current
geometry.

• reward: The user can define custom reward functions de-
pending on the task. For instance, the agent might receive a
reward of 1 if the current geometry exactly matches the target
geometry.

4.1 State Representation
In order for an agent to successfully reconstruct the target geometry,
it is important that we have a suitable state representation. In the
Fusion 360 Gym, we use a similar encoding scheme to Jayaraman
et al. [2020] and represent the current and target geometry with a
B-Rep face-adjacency graph [Ansaldi et al. 1985], which contains
additional information amenable to a learning agent not present
in the language of the Fusion 360 Gallery DSL (Figure 8). Crucial
to this encoding are the geometric features of the elements, such
as point-locations, and topological features specifying how these
elements are connected to each other. Specifically, the vertices of the
face-adjacency graph represent B-Rep faces (trimmed parametric
surfaces) in the design, with graph vertex features representing
the size, orientation, and curvature of the faces. The edges of the
face-adjacency graph represent B-Rep edges in the design, that
connect the adjacent B-Rep faces to each other. Additional details
are provided in Section A.3.2 of the appendix.

4.2 Action Representation
In the Fusion 360 Gym we support two action representations en-
compassing different modeling operations: sketch extrusion and face
extrusion.

4.2.1 Sketch Extrusion. Sketch extrusion mirrors the Fusion 360
Gallery DSL closely. In this scheme, the agent must first select a
sketch plane, draw on this plane using a sequence of curve primi-
tives, such as lines and arcs, to form closed loop profiles. The agent
then selects a profile to extrude a given distance and direction (Fig-
ure 9, top). Using this representation it is possible to construct novel
geometries by generating the underlying sketch primitives and ex-
truding them by an arbitrary amount. Although all designs in the
Fusion 360 Gallery reconstruction dataset can be constructed using
sketch extrusion, in practice this is challenging. Benko et al. [2002]
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Face Extrude 1 Face Extrude 2

Fig. 9. Action representations supported by the Fusion 360 Gym include low-level sketch extrusion (top) and simplified face extrusion (bottom).

show that to generate sketches suitable for mechanical engineering
parts, the curve primitives often need to be constructed alongside
a set of constraints which enforce regularities and symmetries in
the design. Although the construction of constraint graphs is fea-
sible using techniques like the one shown by Liao et al. [2019],
enforcing the constraints requires a complex interaction between
the machine learning algorithm and a suitable geometric constraint
solver, greatly increasing the algorithm complexity. We alleviate this
problem by introducing a simplified action representation, called
face extrusion, that is well suited to learning-based approaches.

4.2.2 Face Extrusion. In face extrusion, a face from the target design
is used as the extrusion profile rather than a sketch profile (Figure 9,
bottom). This is possible because the target design is known in
advance during reconstruction. An action 𝑎 in this scheme is a triple
{face𝑠𝑡𝑎𝑟𝑡 , face𝑒𝑛𝑑 , op} where the start and end faces are parallel
faces referenced from the target geometry, and the operation type
is one of the following: new body, join, cut, intersect. The start face
defines the extrusion profile and the end face defines the distance
to be extruded and does not need to match the shape of the start
face. Target constrained reconstruction using face extrusion has the
benefit of narrowly scoping the prediction problem with shorter
action sequences and simpler actions. Conversely, not all geometries
can be reconstructed with this simplified strategy due to insufficient
information in the target, e.g., Extrude 3 in Figure 2 cuts across the
entire design without leaving a start or end face.

4.3 Synthetic Data Generation
The Fusion 360 Gym supports generation of synthetic designs for
data augmentation. In addition to procedurally generated synthetic
data, semi-synthetic data can be generated by taking existing designs
and modifying or recombining them. For instance, we can randomly
perturb the sketches and the extrusion distances, and even ‘graft’
sketches from one design onto another. We also support distribution
matching of parameters, such as the number of faces, to ensure that
synthetic designs match a human designed dataset distribution.
Learning-based systems can leverage semi-synthetic data to expand
the number of samples in the Fusion 360 Gallery reconstruction

dataset. In Section 6.2 we evaluate the performance of synthetic and
semi-synthetic data for the CAD reconstruction task. We provide
examples of synthetic data in Figure 15 and commands for the Fusion
360 Gym in Section A.2 of the appendix.

5 CAD RECONSTRUCTION TASK

5.1 Task Definition
The goal of CAD reconstruction is to recover a program, represented
as a sequence of modeling operations used to construct a CADmodel
with only the geometry as input. This task can be specified using
different input geometry representations, including B-Rep, mesh, or
point cloud, with progressively lower fidelity. Each representation
presents a realistic scenario where parametric CAD information is
absent and needs to be recovered. Given a target geometry 𝐺𝑡 , we
wish to find a sequence of CAD modeling operations (actions) A =

{𝑎0, 𝑎1, · · · } such that, once executed in a CAD software system,
results in a geometry 𝐺 where every point in space is in its interior,
if and only if, it is also in the interior of 𝐺𝑡 .

5.2 Evaluation Metrics
We prescribe three evaluation metrics, IoU, exact reconstruction,
and conciseness. IoU measures the intersection over union of𝐺 and
𝐺𝑡 : iou(𝐺,𝐺𝑡 ) = |𝐺 ∩𝐺𝑡 |/|𝐺 ∪𝐺𝑡 |. Exact reconstruction measures
whether iou(𝐺,𝐺𝑡 ) = 1. As multiple correct sequences of CAD
modeling operations exist, a proposed reconstruction sequence A
need not match the ground truth sequence Â𝑡 provided an exact
reconstruction is found. To measure the quality of exact reconstruc-
tions we consider the conciseness of the construction sequence. Let
conciseness(A, Â𝑡 ) = |A|/|Â𝑡 |, where a score ≤ 1 indicates the
agent found an exact reconstruction with equal or fewer steps than
the ground truth, and a score > 1 indicates more inefficient exact
reconstructions.

5.3 Neurally Guided Search
We now present a method for CAD reconstruction using neurally-
guided search [Devlin et al. 2017; Ellis et al. 2019; Kalyan et al. 2018;
Tang et al. 2019] from B-Rep input using face extrusion modeling
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Fig. 10. Given a state comprising the target geometry𝐺𝑡 and current geometry𝐺𝑐 , both of which are represented as a graph, the agent uses message passing
networks (MPNs) to predict an action as a face extrusion modeling operation. The first MPN in the bottom branch produces a set of node embedding vectors
h0𝑐 · · · h3𝑐 , which are summed over to produce the hidden vector for the current geometry h𝑐 . Another MPN in the top branch produces a set of node embedding
vectors h0𝑡 · · · h5𝑡 , which are concatenated with h𝑐 to predict the action. We condition the end face prediction on the predicted start face. Colors in the figure
correspond to different graph nodes.

operations. The training phase consists of imitation learning, where
a policy is trained to imitate a known construction sequence from
a given geometry. The testing / inference phase leverages search,
where the search algorithm repeatedly samples the trained policy
for actions and applies these actions in the environment to generate
a set of candidate reconstruction sequences.

5.3.1 Imitation Learning. To perform imitation learning, we lever-
age the fact that we have the ground truth sequence of modeling
operations (actions) Â𝑡 = {𝑎𝑡,0 · · ·𝑎𝑡,𝑛−1} for each design 𝐺𝑡 in
the dataset. We feed the ground truth action sequence Â𝑡 into the
Fusion 360 Gym, starting from the empty geometry 𝐺0, and out-
put a sequence of partial constructions 𝐺𝑡,1 · · ·𝐺𝑡,𝑛 where 𝐺𝑡,𝑛 =

𝐺𝑡 . We then collect the supervised dataset D = {(𝐺0,𝐺𝑡 ) →
𝑎𝑡,0, (𝐺𝑡,1,𝐺𝑡 ) → 𝑎𝑡,1 · · · } and train a supervised agent 𝜋𝜃 that
takes the pair of current-target constructions (𝐺𝑐 ,𝐺𝑡 ) to a mod-
eling operation action 𝑎𝑐 , which would transform the current ge-
ometry closer to the target. Formally, we optimize the expected
log-likelihood of correct actions under the data distribution:

𝐸 (𝐺𝑐 ,𝐺𝑡 )∼D

[
log𝜋𝜃

(
𝑎𝑐 |

(
𝐺𝑐 ,𝐺𝑡

) )]
(1)

5.3.2 Agent. The agent (Figure 10) takes a pair of geometries (𝐺𝑐 ,𝐺𝑡 )
as state, and outputs the corresponding face-extrusion action 𝑎 =

{face𝑠𝑡𝑎𝑟𝑡 , face𝑒𝑛𝑑 , op}. The two geometries 𝐺𝑐 ,𝐺𝑡 are given using
a face-adjacency graph similar to Jayaraman et al. [2020], where
the graph vertexes represent the faces of the geometry, with vertex
features calculated from each face: 10×10 grid of 3D points, normals,
and trimming mask, in addition to the face surface type. The 3D
points are global xyz values sampled in UV parameter space of the
face. The edges define connectivity of adjacent faces. Inputs are
encoded using two separate message passing networks [Gilmer et al.
2017; Kipf et al. 2018; Kipf and Welling 2016] aggregating messages
along the edges of the graph. The encoded vectors representing
the current geometry are summed together (h𝑐 in Figure 10), and
concatenated with the encoded vertexes of the target geometry
(h0𝑡 · · · h5𝑡 in Figure 10). The concatenated vectors are used to output

the action using a multi-layer perceptron (MLP), with the end face
conditioned on the vertex embedding of the predicted start face.
We denote the learned vertex embedding vectors produced by

the two MPN branches as {h𝑖𝑐 } and {h𝑗𝑡 } for the current output and
target graphs, respectively. We estimate the probability of the 𝑘-th
operation type, and the 𝑗-th face being the start face or end face as:

𝑃𝑘𝑜𝑝 = 𝐹𝑜𝑝
(
h𝑐
)
, h𝑐 =

∑
𝑖

h𝑖𝑐 (2)

𝑃
𝑗
𝑠𝑡𝑎𝑟𝑡 = softmax

𝑗

(
𝐹𝑠𝑡𝑎𝑟𝑡

(
h𝑗𝑡 , h𝑐

) )
(3)

𝑃
𝑗

𝑒𝑛𝑑
= softmax

𝑗

(
𝐹𝑒𝑛𝑑

(
h𝑗𝑡 , h

𝑗
𝑡 , h𝑐

) )
, 𝑠 .𝑡 . 𝑗 = argmax

𝑗
𝑃
𝑗
𝑠𝑡𝑎𝑟𝑡 (4)

where 𝐹𝑜𝑝 , 𝐹𝑠𝑡𝑎𝑟𝑡 , and 𝐹𝑒𝑛𝑑 denote linear layers that take the con-
catenated vectors as input.

5.3.3 Search. Given a neural agent 𝜋𝜃 (𝑎 | (𝐺𝑐 ,𝐺𝑡 )) capable of fur-
thering a current geometry toward the target geometry, we can
amplify its performance at test time using search. This allows us to
explore multiple different reconstruction sequences at once, at the
expense of extended interactions with the environment. By lever-
aging search, one gets the benefit of scaling: the larger budget we
have to interact with the environment, the more likely we are going
to succeed in recovering a working reconstruction sequence. The
effectiveness of search is measured against a search budget, which in
our case, is the number of environment steps executed in the Fusion
360 Gym. We consider the following standard search procedures
from the neurally guided search literature:

• random rollouts: This search procedure uses the learned pol-
icy to sample a sequence of steps in the environment. Every
rollout consists of 𝑁 iterations; at each iteration an action is
chosen according to 𝜋𝜃 . This action is executed in the environ-
ment by taking an environment step and the updated current
geometry is presented back to the policy to sample the next
action. 𝑁 is capped to a fixed rollout length of max( 𝑓𝑝2 , 2),
where 𝑓𝑝 is the number of planar faces in 𝐺𝑡 . If the agent
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Table 3. Reconstruction results for IoU and exact reconstruction at 20 and
100 environment steps using random rollouts with different agents trained
on human designed data. The best result in each column is shown in bold.
Lower values are better for conciseness.

Agent IoU Exact Recon. % Concise.
20 Steps 100 Steps 20 Steps 100 Steps

gat 0.8742 0.9128 0.6191 0.6742 1.0206
gcn 0.8644 0.9042 0.6232 0.6754 1.0168
gin 0.8346 0.8761 0.5901 0.6301 1.0042
mlp 0.8274 0.8596 0.5658 0.5965 0.9763
rand 0.6840 0.8386 0.4157 0.5380 1.2824

fails to recover the target geometry in the current roll-out, we
restart with a new roll-out and repeat the process.

• beam search: We rollout in parallel the top-k (where k is the
beam width) candidate construction sequences for 𝑁 itera-
tions. Each sequence is ranked by the generation probability
under 𝜋𝜃 , 𝑃𝜃 (𝑎1 . . . 𝑎𝑟 ):

𝑃𝜃 (𝑎1 . . . 𝑎𝑟 ) =
∏

𝑖=1...𝑟
𝜋𝜃 (𝑎𝑖 |𝐺𝑖 ,𝐺𝑡)

At each iteration, we consider all possible extensions to the
top-k candidates by one action under 𝜋𝜃 , and re-rank the
extended candidate sequences under 𝑃𝜃 , keeping the top-k ex-
tended candidates. Then, for each of the 𝑘 extended sequences,
we execute a step in the environment to obtain the updated
current geometries. Each run of the beam search results in
𝑘𝑁 environment steps. If the current 𝑘 sequences reaches the
rollout length without recovering the target geometry, the
beam search restarts with the beam width doubled, allowing
it to search a wider range of candidates.

• best first search: This search procedure explores the search
space by maintaining a priority queue of candidate sequences,
where the priority is ordered by 𝑃𝜃 . At each iteration, we
dequeue the top candidate sequence and extend it by one
action under 𝜋𝜃 , and these extended sequences are added back
to the queue. An environment step is taken in a lazy fashion
when the top candidate sequence is dequeued, and not when
the extended sequences are added back to the queue. This
process continues until the dequeued top candidate recovers
the target geometry.

6 EVALUATION
We proposed a general strategy consisting of neurally guided search,
powered by a neural-network trained via imitation on human de-
signed, synthetic, and augmented data. To justify this strategy, we
perform ablation studies, comparing our approach against a set of
baselines on the Fusion 360 Gallery reconstruction dataset. We seek
to answer the following:

• How do different neural representations, when used to repre-
sent the agent’s policy 𝜋𝜃 , perform on the CAD reconstruction
task?
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Fig. 11. Reconstruction IoU over 100 environment steps using random roll-
outs with different agents trained on human designed data.
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Fig. 12. Cumulative exact reconstructions over 100 environment steps using
random rollouts with different agents trained on human designed data. The
estimated upper limit of the face extrusion action representation is shown
at 0.8.

• How does training a neural policy under human designed,
synthetic, and augmented data affect CAD reconstruction
performance?

• How do different neurally guided search procedures from the
literature perform on the CAD reconstruction task?

For evaluation, we track the best IoU the agent has discovered so
far, and whether exact reconstruction is achieved as a function of
environment steps. We cap the total search budget to 100 steps to
reflect a real world scenario. For experiments using human design
data we train on the 59.2% of the training set that can be directly
converted to a face extrusion sequence. We evaluate on the full test
set in all cases. We estimate that approximately 80% of designs in our
dataset can be reconstructed by finding alternative face extrusion
sequences and note this when reporting exact reconstruction results.

ACM Trans. Graph., Vol. 40, No. 4, Article 54. Publication date: August 2021.



54:10 • Karl D.D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-Lezama, and Wojciech Matusik

6.1 Comparing Different Neural Representations
We evaluate five different kinds of neural network representations
for 𝜋𝜃 to understand how different networks perform on the CAD
reconstruction task. The rand agent uniformly samples from the
available actions to serve as a naive baseline without any learning.
mlp is a simple agent using a MLP that does not take advantage
of message passing via graph topology. gcn, gin, and gat are MPN
agents that use a Graph Convolution Network [Kipf and Welling
2016], Graph Isomorphism Network [Xu et al. 2018], and Graph
Attention Network [Veličković et al. 2017] respectively. We use two
MPN layers for all comparisons, with standard layer settings as
described in Section A.3.2 of the appendix.

We report the reconstruction IoU and exact reconstructions using
random rollout search for each agent as a function of the number
of environment steps in Figure 11 and 12 respectively. We detail the
exact results at step 20 and 100 in Table 3. Step 20 represents the
point where it is possible to perform exact reconstructions for all de-
signs in the test set. We also detail the conciseness of the recovered
sequence for exact reconstructions. We note that all neurally guided
agents outperform the random agent baseline. The topology infor-
mation available with a MPN is found to improve reconstruction
performance. The gat and gcn agents show the best performance
but fall well short of exact reconstruction on all designs in the test
set, demonstrating that the CAD reconstruction task is non-trivial
and an open problem for future research.

6.2 Comparing Human and Synthetic Data Performance
We evaluate four gcn agents trained on different data sources to
understand how synthetic data performs compared to human design
data. real is trained on the standard human design training set. syn
is trained on synthetic data from procedurally generated sketches of
rectangles and circles extruded randomly (Figure 15, top). Leverag-
ing basic primitives is a common method to generate synthetic data
for program synthesis [Ellis et al. 2019; Li et al. 2020b; Sharma et al.
2017], that typically results in less sophisticated designs compared
to human design data. semi-syn is trained on semi-synthetic de-
signs that use existing sketches in the training set with two or more
extrude operations to match the distribution of the number of faces
in the training set (Figure 15, bottom). This approach results in more
complex designs than the pure synthetic designs. We deliberately
use these two approaches for data generation to better compare
human design data to synthetic data in different distributions. aug
is trained on the human design training set mixed with additional
semi-synthetic data. We hold the training data quantity constant
across agents, with the exception of the aug agent that contains a
larger quantity from two sources. All agents are evaluated on the
standard human design test set.

Figure 13 and 14 show that training on human design data offers
a significant advantage over synthetic and semi-synthetic data for
reconstruction IoU and exact reconstructions respectively. For the
aug agent reconstruction performance is aided early on by data
augmentation. We attribute this early performance improvement
to semi-synthetic designs with 1 or 2 extrusions appearing similar
to human designs. Conversely, we observe that semi-synthetic de-
signs with multiple randomly applied extrusions appear less and

Table 4. Reconstruction results for IoU and exact reconstruction at 20 and
100 environment steps using random rollouts and gcn agents trained on hu-
man designed data (real), a mixture of human designed and semi-synthetic
data (aug), semi-synthetic data (semi-syn), and synthetic data (syn). The
best result in each column is shown in bold. Lower values are better for
conciseness.

Agent IoU Exact Recon. % Concise.
20 Steps 100 Steps 20 Steps 100 Steps

real 0.8644 0.9042 0.6232 0.6754 1.0168
aug 0.8707 0.8928 0.6452 0.6701 0.9706

semi-syn 0.8154 0.8473 0.5780 0.6104 1.0070
syn 0.6646 0.7211 0.4383 0.4835 1.0519
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Fig. 13. Reconstruction IoU over 100 environment steps using random roll-
outs and gcn agents trained on human designed data (real), a mixture of
human designed and semi-synthetic data (aug), semi-synthetic data (semi-
syn), and synthetic data (syn).
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Fig. 14. Cumulative exact reconstructions over 100 environment steps using
random rollouts and gcn agents trained on human designed data (real), a
mixture of human designed and semi-synthetic data (aug), semi-synthetic
data (semi-syn), and synthetic data (syn). The estimated upper limit of the
face extrusion action representation is shown at 0.8.

less similar to human design due to the random composition of
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Fig. 15. Top: example synthetic data created by extruding circles and rect-
angles. Bottom: example semi-synthetic data created by extruding human
designed sketches.

Table 5. Reconstruction results for IoU and exact reconstruction at 20 and
100 environment steps using gcn agents with best first search (best), random
rollout search (rand) and beam search (beam). The best result in each column
is shown in bold. Lower values are better for conciseness.

Agent IoU Exact Recon. % Concise.
20 Steps 100 Steps 20 Steps 100 Steps

best 0.8831 0.9186 0.5971 0.6348 0.9215
rand 0.8644 0.9042 0.6232 0.6754 1.0168
beam 0.8640 0.8982 0.5739 0.6122 0.9275

extrusions. This difference in distribution between human and syn-
thetic designs becomesmore prevalent as search progressess. Table 4
provides exact results at environment step 20 and 100.

6.3 Qualitative Results
Figure 18 shows a visualization of ground truth construction se-
quences compared with the reconstruction results from other agents
using random search. The rollout with the highest IoU is shownwith
the IoU score and total environment steps taken. Steps that don’t
change the geometry or occur after the highest IoU are omitted
from the visualization.

6.4 Comparing Search Procedures
We compare the effects of three different search procedures from
the neurally guided search literature. Here, rand is random rollout,
beam is beam search, and best is best-first search. For each search
algorithm we use the gcn agent described in Section 6.1 trained on
the standard human design training set. Figure 16, 17, and Table 5
show that all three search algorithms perform similarly for recon-
struction IoU, while rand performs best for exact reconstruction.
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Fig. 16. Reconstruction IoU over 100 environment steps using the gcn agent
with best first search (best), random rollout search (rand) and beam search
(beam).
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Fig. 17. Cumulative exact reconstructions over 100 environment steps using
the gcn agent with best first search (best), random rollout search (rand) and
beam search (beam). The estimated upper limit of the face extrusion action
representation is shown at 0.8.

The performance of rand for exact reconstruction can be explained
by the limited search budget of 100 environment steps: the rand algo-
rithm is more likely to sample distinct sequences for a small number
of samples, whereas beam will sample half its sequences identical
to the previous rounds before the doubling, and best might not be
sampled enough to explore a sequence long enough to contain the
correct program.
We expect beam and best to outperform rand as the number

of search budget increases, similar to Ellis et al. [2019]. However,
the limitation of the search budget is important, as each design in
our test set takes between 5-35 seconds to reconstruct on average.
The majority of evaluation time is spent inside the Fusion 360 Gym
executing modeling operations and graph generation, both com-
putationally expensive yet crucial operations that must be taken
during reconstruction.
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Fig. 18. Qualitative construction sequence results comparing the ground truth (gt) to reconstructions using different agents with random rollout search.

6.5 Discussion
For practical application of CAD reconstruction it is necessary to
have an exact reconstruction where all details of a design are recon-
structed in a concise way. It is notable that incorrect reconstructions
can score well with the IoUmetric, but omit important design details.
For example, the small holes in the USB connector in Figure 18b are
omitted from the gcn reconstruction. We suggest IoU should be a
secondary metric, with future work focusing on improving exact
reconstruction performance with concise construction sequences.

Conciseness should always be considered alongside exact recon-
struction performance as naive approaches that only reconstruct
short sequences can achieve good conciseness scores.

7 CONCLUSION AND FUTURE DIRECTIONS
In this paper we presented the Fusion 360 Gallery reconstruction
dataset and environment for learning CAD reconstruction from se-
quential 3D CAD data. We outlined a standard CAD reconstruction
task, together with evaluation metrics, and presented results from a
neurally guided search approach.
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7.1 Limitations
Our dataset contains only designs created using sketch and extrude
rather than the full array of CAD modeling operations. Short con-
struction sequences make up a sizable portion of the data: 3267/8625
(38%) of designs have only a single extrude operation. From the
single extrude designs, some exhibit more complexity: 347 have >1
sketch profile resulting in ≥1 bodies from a single extrude opera-
tion, and 998 have ≥8 sketch curves. Other designs are washers,
pegs, and plates, common in mechanical CAD assemblies. We avoid
filtering simple designs to ensure the dataset is representative of
user-designed CAD. Spline curves represent 4% of curves in the
dataset and are not currently supported by our high-level DSL,
however they can be reconstructed via the reconstruct_curve()
command (Section A.2.1).

The success of the rand agent demonstrates that short construc-
tion sequences can be solved by a naive approach. This is due to
several factors: 1) our action representation that uses B-Rep faces,
2) our search procedure discarding invalid actions, and 3) designs
in the dataset with a low number of planar faces and extrude steps.
For example, a washer has four B-Rep faces (planar-top, cylinder-
inside, cylinder-outside, planar-bottom), giving the random agent
a 2/2 chance of success as either planar-top → planar-bottom, or
vice versa, are considered correct and extrusions from non-planar
faces are invalid. Although the random agent can achieve moderate
success with simple designs, the problem quickly becomes challeng-
ing for more complex designs. All agents struggle to achieve exact
reconstructions within the search budget for construction sequence
lengths ≥4.

7.2 Future Work
Future extensions of this work include sample efficient search strate-
gies to ensure successful recovery of construction sequences with
fewer interactions with the environment and leveraging constraints
present in the dataset to guide CADprogram synthesis. More broadly
we envision the dataset can aid the creation of 3D geometry using
the same CAD modeling operations as human designers, exploiting
the knowledge of domain experts on how shapes are defined and
leveraging the strengths of industrial CAD modeling software. By
learning to translate point cloud, image, or mesh data into a se-
quence of high level modeling operations [Ellis et al. 2018; Tian et al.
2019], watertight CAD models may be synthesized, providing an al-
ternative approach to the reverse engineering problem [Buonamici
et al. 2018]. A remaining challenge is to develop representations that
can be conditioned on the design geometry and topology created so
far, leveraging the sequential nature of the data for self-attention
[Vaswani et al. 2017]. Finally, beyond the simplified design space
of sketch and extrude lies the full breadth of rich sequential CAD
modeling operations.
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A APPENDIX

A.1 Fusion 360 Gallery Reconstruction Dataset
In this section we provide additional details on the Fusion 360 Gallery
reconstruction dataset.

A.1.1 Data Processing. To process the data we use the Fusion 360
Python API to parse the native Fusion 360 .f3d files. Figure 19 shows
an example assembly that is split up to produce multiple designs
with independent construction sequences. The rounded edges are
removed by suppressing fillets in the parametric CAD file. During
processing color and material information is also removed.

After each construction sequence has been extracted we perform
reconstruction and compare the reconstructed design to the original
to ensure data validity. Failure cases and any duplicate designs, are
not included in the dataset. We consider a design a duplicate when
there is an exact match in all of the following: body count, face
count, surface area to one decimal point, volume to one decimal
point, and for each extrude in the construction sequence: extrude
profile count, extrude body count, extrude face count, extrude side
face count, extrude end face count, and extrude start face count.
This process allows us to match designs that have been translated
or rotated, while considering designs unique if they have matching
geometry but different construction sequences. Duplicates account
for approximately 5,000 designs. Figure 20 shows a random sampling
of designs from the reconstruction dataset.

A.1.2 Geometry Data Format. As described in Section 3.1, we pro-
vide geometry in several data formats that we provided additional
details on in this section.

Boundary Representation. A B-Rep consists of faces, edges, loops,
coedges and vertices [Weiler 1986]. A face is a connected region
of the model’s surface. An edge defines the curve where two faces
meet and a vertex defines the point where edges meet. Faces have
an underlying parametric surface which is divided into visible and
hidden regions by a series of boundary loops. A set of connected
faces forms a body.

B-Rep data is provided as .smt files representing the ground truth
geometry and .step as an alternate neutral B-Rep file format. The
.smt file format is the native format used by Autodesk Shape Man-
ager, the CAD kernel within Fusion 360, and has the advantage of
minimizing conversion errors.

Fig. 19. An example multi-component assembly that is broken up into sepa-
rate designs (highlighted with color), each with an independent construction
sequence.

Mesh. Mesh data is provided in .obj format representing a tri-
angulated version of the B-Rep. Each B-Rep face is triangulated
separately and is therefore not manifold.

Other representations, such as point clouds or voxels, can be gen-
erated using existing data conversion routines and are not included
in the dataset. For convenience we include a thumbnail .png image
file together with each geometry.
Files are provided in a single directory, with a naming conven-

tion as follows: XXXXX_YYYYYYYY_ZZZZ[_1234].ext. Here XXXXX
represents the project, YYYYYYYY the file, ZZZZ the component, and
_1234 the extrude index. If _1234 is absent the file represents the
final design.

A.1.3 Design Complexity. A key goal of the reconstruction dataset
is to provide a suitably scoped baseline for learning-based approaches
to CAD reconstruction. Restricting the modeling operations to
sketch and extrude vastly narrows the design space and enables
simpler shape grammars for reconstruction. Each design represents
a component in Fusion 360 that can have multiple geometric bodies.
Figure 21 (left) illustrates that the vast majority of designs have a
single body. The number of B-Rep faces in each design gives a good
indication of the complexity of the dataset. Figure 21 (right) shows
the number of faces per design as a distribution, with the peak be-
ing between 5-10 faces per design. As we do not filter any of the
designs based on complexity, this distribution reflects real designs
where simple washers and flat plates are common components in
mechanical assemblies.

A.1.4 Construction Sequence. The construction sequence is the
series of sketch and extrude operations that are executed to pro-
duce the final geometry. We provide the construction sequence in a
JSON format text file. Each step in the construction sequence has
associated parameters that are stored in that entity. For example,
sketch entities will store the curves that make up the sketch. Each
construction sequence must have at least one sketch and one extrude
step, for a minimum of two steps. The average number of steps
is 4.74, the median 4, the mode 2, and the maximum 61. Figure 22
illustrates the distribution of construction sequence length and the
most frequent construction sequence combinations.
With access to the full parametric history, it is possible to ex-

tract numerous relationships from the dataset that can be used for
learning. Starting at a high level, we know the order of modeling
operations in the construction sequence. The sketch geometry, B-
Rep faces, and triangles derived from them, can be traced back to a
position in the construction sequence. The type of geometry created
by each modeling operation is also known. For example, sketches
create trimmed profiles where the curves intersect to form closed
loops; extrude operations produce B-Rep faces with information
such as which faces were on the side or ends of an extrusion. In
addition, the sequence of B-Rep models themselves contain valuable
topology information that can be leveraged, such as the connectivity
of B-Rep faces and edges. Finally geometric information like points
and normal vectors can be sampled from the parametric surfaces.
Feature diversity enables many different learning representations
and architectures to be leveraged and compared.
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Fig. 20. A random sampling of designs from the Fusion 360 Gallery reconstruction dataset.
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Fig. 21. Left: The number of bodies per design shown as a distribution. Right: The number of B-Rep faces per design shown as a distribution.
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Fig. 23. Sketch primitives.

A.1.5 Sketch. In this section we describe the sketch data in fur-
ther detail and present statistics illustrating the data distribution.
Figure 23 illustrates the geometric 2D primitives, described in sec-
tion 3.2, that make up a sketch. Sketches are represented as a series
of points (𝑝𝑡1...𝑝𝑡6), that create curves (𝑐1...𝑐5), that in turn cre-
ate profiles (𝑝𝑟1...𝑝𝑟3), illustrated with separate colors. Profiles can
have inner loops to create holes, 𝑐1 is the inner loop of 𝑝𝑟2 and
the outer loop of 𝑝𝑟3. Profiles also have a trimmed representation
that contains only closed loops without open curves. The trimmed
representation is shown in the lower right of Figure 23 where the
𝑐5 is trimmed and incorporated into 𝑝𝑟1 and 𝑝𝑟2.

Points. Each point is provided with a universally unique identifier
(UUID) key and a Point3D data structure with 𝑥 , 𝑦, and 𝑧. Sketch
primitives are drawn in a local 2D coordinate system and later
transformed into world coordinates. As such all sketch points have
a 𝑧 value of 0.

Curves. Each curve has a UUID key and a SketchCurve that can
represent the curve types listed below. The parameters for each
curve type can be referenced via the Fusion 360 API documentation
linked below.

ACM Trans. Graph., Vol. 40, No. 4, Article 54. Publication date: August 2021.

http://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/Point3D.htm
https://help.autodesk.com/cloudhelp/ENU/Fusion-360-API/files/SketchCurve.htm


54:18 • Karl D.D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-Lezama, and Wojciech Matusik

0 10 20 30 40 50 60 70 80 90+
Number of Curves

0%

10%

20%

30%

40%

50%

To
ta

l %

Curve Count Per Design

0% 5% 10% 15% 20% 25%
Total %

Other

C S L

S L

A C S L

A L

L

C L

A C L

C

Curve Type Combination Frequency

Fig. 24. Left: The number of curves in each design, shown as a distribution. Right: Common curve combinations in each design, shown as a distribution. Each
curve type is abbreviated as follows: C - SketchCircle, A - SketchArc, L - SketchLine, S - SketchFittedSpline.

0% 10% 20% 30% 40% 50% 60% 70%
Total %

SketchConicCurve

SketchEllipticalArc

SketchFixedSpline

SketchEllipse

SketchFittedSpline

SketchArc

SketchCircle

SketchLine

Curve Type Distribution

Fig. 25. The distribution of curve types.

• SketchArc

• SketchCircle

• SketchConicCurve

• SketchEllipse

• SketchEllipticalArc

• SketchFittedSpline

• SketchFixedSpline

• SketchLine

Figure 24 illustrates the distribution of curve count per design and
the frequency that different curve combinations are used together in
a design. Figure 25 shows the overall distribution of curve types in
the dataset. It is notable that mechanical CAD sketches rely heavily
on lines, circles, and arcs rather than spline curves.

Profiles. Profiles represent a collection of curves that join together
to make a closed loop. In Fusion 360 profiles are automatically gener-
ated from arbitrary curves that don’t necessarily connect at the end
points. In Figure 23 two profiles (𝑝𝑟1 and 𝑝𝑟2) are generated when
the line crosses the triangle. We provide both the original curves
(Figure 23, top right) used to generate the profiles (Figure 23, bottom
left) and the trimmed profile information containing just the closed

profile loop (Figure 23, bottom right). Loops within profiles have a
flag that can be set to specify holes.

Dimensions. User specified sketch dimensions are used to define
set angles, diameters, distances etc. between sketch geometry to
constraint the sketch as it is edited. Each dimension has a UUID key
and a SketchDimension that can represent the dimension types
listed below. Each dimension references one or more curves by
UUID. The parameters for each dimension type can be referenced
via the Fusion 360 API documentation linked below.

• SketchAngularDimension

• SketchConcentricCircleDimension

• SketchDiameterDimension

• SketchEllipseMajorRadiusDimension

• SketchEllipseMinorRadiusDimension

• SketchLinearDimension

• SketchOffsetCurvesDimension

• SketchOffsetDimension

• SketchRadialDimension

Constraints. Constraints define geometric relationships between
sketch geometry. For example, a symmetry constraint enables the
user to have geometry mirrored, or a parallel constraint ensures
two lines are always parallel. Each constraint has a UUID key and
a GeometricConstraint that can represent the constraint types
listed below. Each constraint references one or more curves by
UUID. The parameters for each constraint type can be referenced
via the Fusion 360 API documentation linked below.

• CircularPatternConstraint

• CoincidentConstraint

• CollinearConstraint

• ConcentricConstraint

• EqualConstraint

• HorizontalConstraint

• HorizontalPointsConstraint
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Fig. 26. The distribution of constraint (left) and dimension (right) types.

• MidPointConstraint

• OffsetConstraint

• ParallelConstraint

• PerpendicularConstraint

• PolygonConstraint

• RectangularPatternConstraint

• SmoothConstraint

• SymmetryConstraint

• TangentConstraint

• VerticalConstraint

• VerticalPointsConstraint

Figure 26 illustrates the distribution of dimension and constraint
types in the dataset.

A.1.6 Extrude. In this section we describe the extrude data in fur-
ther detail and present statistics illustrating the data distribution.
Extrude operations have a number of parameters that are set by the
user while designing. Figure 27 shows how a sketch (left) can be ex-
truded a set distance on one side, symmetrically on two sides, with
different distances on each side, as well as tapered. The first extrude
operation of a construction sequence always creates a new body,
with subsequent extrudes interacting with that body via Boolean
operations.

Figure 28 outlines the distribution of different extrude types and
operations. Note that tapers can be applied in addition to any extrude
type, so the overall frequency of each is shown rather than a relative
percentage.

A.2 Fusion 360 Gym
In this section we provide additional information about the function-
ality available in the Fusion 360 Gym. The Fusion 360 Gym requires
the Autodesk Fusion 360 desktop CAD application, available on both
macOS andWindows for free to the academic community. Although
Fusion 360 is a cloud connected desktop application, the Fusion 360
Gym does all processing locally. The Fusion 360 Gym consists of a
server that runs inside of Fusion 360 and receives commands from
a client running externally. Multiple instances of the Fusion 360

One Side

Sketch

Symmetric Two Side

Taper

Fig. 27. An extrude can be expressed in several different ways: perpendicular
from a sketch for a set distance along one side, a symmetrical distance along
both sides, or separate distances along two sides. Additionally the extrude
can be tapered at an angle.

Gym server can be run in parallel. The remainder of this section
introduces the available commands from the client.

A.2.1 Reconstruction Commands. Reconstruction commands can
reconstruct the existing designs at different granularity levels from
json files providedwith the Fusion 360 Gallery reconstruction dataset.

• reconstruct(file): reconstruct an entire design from the provided
json file.

• reconstruct_sketch(sketch_data, sketch_plane, scale,
translate, rotate): reconstruct a sketch from the provided sketch
data. A sketch_plane can be either: (1) a string value representing a
construction plane: XY, XZ, or YZ; (2) a B-Rep planar face id; or (3) a
point3d on a planar face of a B-Rep.

• reconstruct_profile(sketch_data, sketch_name, profile_id,
scale, translate, rotate): reconstruct a single profile from the
provide sketch data, a sketch name, and a profile id.

• reconstruct_curve(sketch_data, sketch_name, curve_id,
scale, translate, rotate): reconstruct a single curve from the
provide sketch data, a sketch name, and a curve id.
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Fig. 28. The distribution of extrude types (left) and operations (right).

• reconstruct_curves(sketch_data, sketch_name, scale,
translate, rotate): reconstruct all curves from the provide sketch
data and a sketch name.

A.2.2 Target Reconstruction Commands. Target reconstruction com-
mands set the target design to be used with reconstruction.

• set_target(file): set the target to be reconstructed with a .step
or .smt file. The call returns a face adjacency graph representing the
B-Rep geometry/topology and a bounding_box of the target that can
be used for normalization.

• revert_to_target(): revert to the target design, removing all re-
construction geometry.

A.2.3 Sketch Extrusion Commands. Sketch extrusion commands
allows users to incrementally create new designs by generating the
underlying sketch primitives and extruding them by an arbitrary
amount.

• add_sketch(sketch_plane): add a sketch to the design.
A sketch_plane can be either: (1) a string value representing a con-
struction plane: XY, XZ, or YZ; (2) a B-Rep planar face id; or (3) a point3d
on a planar face of a B-Rep.

• add_point(sketch_name, p, transform): add a point to create
a new sequential line in the given sketch. p is either a point in
the 2D sketch space or a point in the 3D world coordinate space
if transform="world" is specified.

• add_line(sketch_name, p1, p2, transform): add a line to the
given sketch. p1 and p2 are the same as defined in add_point().

• add_arc(sketch_name, p1, p2, angle, transform): add an arc
to the given sketch. p1 is the start point of the arc and p2 is the center
point of the arc. Other properties of p1 and p2 are the same as defined
in add_point(). angle is the arc’s angle, measured in degrees.

• add_circle(sketch_name, p, radius, transform): add a circle
to the given sketch. p is the center point of the circle. Other properties
of p are the same as defined in add_point(). radius is the radius of
the circle.

• close_profile(sketch_name): close the current set of lines to cre-
ate one or more profiles by joining the first point to the last point.

• add_extrude(sketch_name, profile_id, distance, operation):
add an extrude to the design. Four operations are supported:

– JoinFeatureOperation

– CutFeatureOperation

– IntersectFeatureOperation

– NewBodyFeatureOperation

It returns a data structure with:

– extrude: B-Rep face information, including vertices, generated
from the extrusion.

– graph: face adjacency graph of the current design in "PerFace"
format.

– bounding_box: bounding box of the current design that can be
used for normalization.

– iou: intersection over union result if a target design has been set
with set_target().

A.2.4 Face Extrusion Commands. Face extrusion commands enable
a target design to be reconstructed using extrude operations from
face to face.

• add_extrude_by_target_face(start_face, end_face,
operation): add an extrude between two faces of the target. Four
operations are supported:

– JoinFeatureOperation

– CutFeatureOperation

– IntersectFeatureOperation

– NewBodyFeatureOperation

• add_extrudes_by_target_face(actions, revert): execute mul-
tiple extrude operations, between two faces of the target, in sequence.

A.2.5 Randomized Reconstruction Commands. Randomized reon-
struction commands allow users to sample designs, sketches, and
profiles from existing designs in the Fusion 360 Gallery and support
distribution matching of parameters, in support of generations of
semi-synthetic data. Figure 29 shows example designs created using
randomized reconstruction commands.

• get_distributions_from_dataset(data_dir, filter,
split_file): get a list of distributions from the provided dataset.
The command currently supports the following distributions:

– the starting sketch place
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Fig. 29. Example designs created using randomized reconstruction commands.
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– the number of faces

– the number of extrusions

– the length of sequences

– the number of curves

– the number of bodies

– the sketch areas

– the profile areas.

• get_distribution_from_json(json_file): return a list of distri-
butions saved in the given json file.

• distribution_sampling(distributions, parameters): sample
distribution matching parameters for one design from the distribu-
tions.

• sample_design(data_dir, filter, split_file): randomly sam-
ple a json file from the given dataset.

• sample_sketch(json_file, sampling_type,
area_distribution): sample one sketch from the provided design.
Three sampling types are provided:

– random, return a sketch randomly sampled from the provided de-
sign.

– deterministic, return the largest sketch in the design.
– distributive, return a sketch that its area is in the distribution

of the provided dataset.

• sample_profiles(sketch_name, max_number_profiles,
sampling_type, area_distribution): sample profiles from the
provided sketch. Three sampling types are provided:

– random, return profiles randomly sampled from the provided sketch.
– deterministic, return profiles that are larger than the average

area of the profiles in the sketch.
– distributive, return profiles that the areas are in the distribution

of the provided dataset.

A.2.6 Export Commands. Export commands enable the existing
designs to be exported in the following formats:

• mesh(file): retrieve a mesh in .obj or .stl format and write it to the
local file provided.

• brep(file): retrieve a brep in .step, .smt, or .f3d format and write it
to a local file provided.

• sketches(dir, format): retrieve each sketch in .png or .dxf format
and write them to a local directory provided.

• screenshot(file, width, height): retrieve a screenshot of the
current design as a png image and write it to a local file provided.

• graph(file, dir, format): retrieve a face adjacency graph in a
given format and write it in a local directory provided.

A.3 CAD Reconstruction
In this section we provide additional details of the experiments
performed on the CAD reconstruction task described in Section 5.

A.3.1 Data Preparation. The agents are trained on a subset of the
reconstruction dataset that has been converted into a face extrusion
sequence. Due to the simplified face extrusion representation, not
all designs from the dataset can be converted to a face extrusion
sequence. Figure 30 shows several common conversion limitations

A

B

C

Sketch Profile 1 Extrude 1 Extrude 2Sketch Profile 2

Fig. 30. Different construction sequences (A-C) for the same geometry. Dur-
ing conversion to a face extrusion sequence, the necessary face information
(highlighted in red) does not exist in the target, meaning B and C can not be
converted. Green arrows indicate new body/join extrude operations, while
red arrows indicate cut extrude operations.

where necessary face information (highlighted in red) is not present
in the target geometry. The intermediate top face in Figure 30 B
disappears when merged with the top face of Extrude 2. In Figure 30
C a hole cut through the geometry means the intermediate top face
of Extrude 1 is absent and there is no start or end face in the target
geometry to perform the cut operation used in Extrude 2. Although
it is possible to find alternate face extrusion sequences with heuristic
rules, we instead try to maintain the user designed sequence with
the exception of reversing the direction of the extrusion in some
scenarios, e.g. the end face becomes the start face.

A.3.2 Agent. All MPN agents employ a network architecture able
to exploit the graph structure of the data, consisting of two layers
passing messages along the edges of the graph. The vertex features
in the face-adjacency graph are as follows:

• Points: A 10×10 grid of 3D points sampled from the UV coordi-
nate space of the B-Rep face and normalized to the bounding
box of the target geometry.

• Normals: A 10×10 grid of 3D normal vectors sampled from
the UV coordinate space of the B-Rep face.

• Trimming Mask: A 10×10 grid of binary values represent-
ing samples that are inside/outside the B-Rep face trimming
boundary.

• Surface Type: A one-hot encoded flag indicating the type
of surface represented by the B-Rep face: Cone, Cylinder,
Elliptical, EllipticalCylinder, Nurbs, Plane, Sphere,
Torus.

Using the face extrusion sequence data, we train the agents in
an offline manner without interacting with the Fusion 360 Gym.
The mlp and gcn agents have a hidden dimension of 256 across
all layers. The gin agent has two 256-dimensional linear layers
within its graph convolution layer. The gat has 8 heads of 64 hidden
dimensions each. The agents are trained with a dropout rate of
0.1 and a learning rate of 0.0001 for 100 epochs with the model
saved at the lowest training loss. The learning rate is decreased by a
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factor of 0.1 upon plateau within 10 most recent epochs. Training is
performed on an NVIDIA Tesla V100 with an Adam optimizer and
takes approximately 6-8 hours.

A.3.3 Search. In all search algorithms we mask out the following
invalid actions so they are never taken:

• Start faces surface types that are non-planar
• End faces surface types that are non-planar
• Operation types other than new body when the current geom-
etry is empty

Other invalid actions that require geometric checks, such as spec-
ifying a start face and end face that are co-planar, are returned
as invalid from the Fusion 360 Gym and count against the search
budget.

A.3.4 Evaluation. We perform evaluation using the official test
set containing 1725 designs. Evaluation is performed in an online
manner using the Fusion 360 Gym. Figure 31 shows the average
reconstruction time for each design with combinations of agents
and search strategies. We set a hard time limit of 10 minutes per
design, after which we halt search, affecting between 0-14 designs
depending on the agent and search strategy. Between 0-15 designs
cause software crashes. 17 designs in the test set cannot be repre-
sented as graphs due to our data pipeline currently not supporting
edges with more than two adjacent faces. In all failure cases we use

the best seen IoU, or 0 if no IoU score is available, and consider the
design to fail at exact reconstruction.

A.3.5 Results. Table 6 details the full set of results for all agents and
search strategies in the extended baseline comparison experiment
from Section 6.1. We also include the number of parameters used
by each agent.

A.4 Tasks
The ground-truth sequence of the dataset, along with the gym envi-
ronment, can be used to automatically derive a range of labels for
tasks other than CAD reconstruction, such as, program synthesis,
sequence modeling, generative models, and geometric deep learning.
Example tasks include:

• Classification of designs by construction sequence length.
• Segmentation of B-Rep faces by extrude operation order or by
start/side/end face of an extrude operation.

• Modeling operation order prediction to recover the correct order
of construction from raw geometry.

• Sketch synthesis to recover the original sketch, including con-
straints and dimensions, from the 3D geometry.

• Predicting next action in the design sequence for ‘CAD auto-
complete’.

• Generative models that are aware of the design sequence and
constraints.
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Fig. 31. Average reconstruction time per design for combinations of agents and search strategies.

Table 6. Reconstruction results for multiple agent and search combinations trained on human designed data. IoU and exact reconstruction are shown at
20 and 100 search steps. The best result in each column is shown in bold. Lower values are better for conciseness. # Parameters indicated the number of
parameters used by each agent.

Agent Search IoU Exact Reconstruction. % Conciseness # Parameters.
20 Steps 100 Steps 20 Steps 100 Steps

gcn rand 0.8644 0.9042 0.6232 0.6754 1.0168 3.02M
gcn beam 0.8640 0.8982 0.5739 0.6122 0.9275 3.02M
gcn best 0.8831 0.9186 0.5971 0.6348 0.9215 3.02M
mlp rand 0.8274 0.8596 0.5658 0.5965 0.9763 2.24M
mlp beam 0.8619 0.8995 0.5525 0.5884 0.9271 2.24M
mlp best 0.8712 0.8991 0.5675 0.5977 0.9305 2.24M
gat rand 0.8742 0.9128 0.6191 0.6742 1.0206 3.03M
gat beam 0.8691 0.9016 0.5791 0.6133 0.9261 3.03M
gat best 0.8895 0.9139 0.5994 0.6354 0.9290 3.03M
gin rand 0.8346 0.8761 0.5901 0.6301 1.0042 3.62M
gin beam 0.8500 0.8913 0.5594 0.5983 0.9299 3.62M
gin best 0.8693 0.9007 0.5803 0.6122 0.9340 3.62M
rand rand 0.6840 0.8386 0.4157 0.5380 1.2824 -
rand beam 0.4785 0.6277 0.2812 0.3896 0.9118 -
rand best 0.6334 0.7994 0.3693 0.4887 0.8979 -
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