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Abstract The sphere Sn+1 contains a simple family of constant mean curvature
(CMC) hypersurfaces of the form Ct := Sp(cos t) × Sq(sin t) for p + q = n and
t ∈ (0, π2 ) called the generalized Clifford hypersurfaces. This paper demonstrates that
new, topologically non-trivial CMC hypersurfaces resembling a pair of neighbour-
ing generalized Clifford tori connected to each other by small catenoidal bridges at
a sufficiently symmetric configuration of points can be constructed by perturbative
PDE methods. That is, one can create an approximate solution by gluing a rescaled
catenoid into the neighbourhood of each point; and then one can show that a per-
turbation of this approximate hypersurface exists, which satisfies the CMC condition.
The results of this paper generalize those of the authors in [3].

Keywords Constant mean curvature hypersurfaces · CMC hypersurfaces ·
Gluing techniques · Geometric partial differential equations

1 Introduction and statement of results

CMC hypersurfaces. A constant mean curvature (CMC) hypersurface� contained in
an ambient Riemannian manifold X of dimension n+1 has the property that its mean
curvature with respect to the induced metric is constant. This property ensures that
the n-dimensional area of� is a critical value of the area functional for hypersurfaces
of X subject to an enclosed-volume constraint. Constant mean curvature hypersur-
faces have been objects of great interest since the beginnings of modern differential
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geometry. Classical examples of non-trivial CMC surfaces in three-dimensional
Euclidean space R

3 are the sphere, the cylinder and the Delaunay surfaces, and for a
long while these were the only known CMC surfaces. In fact, a result of Alexandrov [1]
states that the only compact, connected, embedded CMC surfaces in R

3 are spheres.
In recent decades, the theory of CMC surfaces in R

3 has progressed considerably.
However, the corresponding picture amongst CMC hypersurfaces of higher dimen-
sion or in other ambient manifolds is not nearly as rich, due in part to the absence
of the Weierstraß-type representation or the Lawson associated surface construction
that are available in R

3. There is a certain amount of literature on CMC hypersurfaces
in hyperbolic space [2,7,9,10]; but due to the non-compactness of hyperbolic space,
this theory can be considered not such a vast departure from the theory of CMC
hypersurfaces in R

n+1. Much less is known when the ambient space is the sphere. The
classically known examples in Sn+1 are the hyperspheres obtained from intersecting
Sn+1 with hyperplanes, and the so-called generalized Clifford tori, which are products
of lower-dimensional spheres of the form

Ct := Sp (cos t)× Sq (sin t)

for p + q = n and t ∈ (0, π2 ). These are embedded hypersurfaces in Sn+1 with con-
stant mean curvature equal to Ht := q cot t − p tan t. There are few other examples,
and no general methods for the construction of CMC surfaces in Sn+1. However, the
method of gluing, in which a CMC hypersurface is constructed by pasting together
simple building blocks, is a successful technique in the R

3 setting and can be attempted
in Sn+1. This is because many of the operations involved in a gluing construction—
such as forming connected sums using small bridging surfaces near a point of mutual
tangency—are all local and thus have straightforward generalizations to other ambient
manifolds.

When n = 2 and hence p = q = 1, Butscher and Pacard have proven in [3] that
in S3, it is possible to construct new examples of embedded, higher-genus CMC sur-
faces of S3, with small but non-zero mean curvature, by doubling the unique minimal
Clifford torus Cπ/4 in the family of Clifford tori of S3. That is, these new surfaces are
small perturbations of two parallel translates of Cπ/4, which are glued together at a
sub-lattice of points by means of small catenoidal bridging surfaces. The two parallel
translates are a distance ε apart and the mean curvature of the doubled surfaces is
given by H = cot( π2 + 2ε). When ε tends to zero, the doubled surface converges, away
from the points where the catenoids are glued, to two copies of Cπ/4. These surfaces
are in a certain sense compact analogues of the doubly periodic CMC surfaces in R

3

constructed by Ritoré [8] and Große-Brauckmann and Karcher [4,6].
The generalized doubling construction. This paper generalizes the Butscher–Pacard

construction to the sphere Sn. The family of generalized Clifford hypersurfaces Ct is
also a foliation a tubular neighbourhood of the minimal hypersurface Ct∗ , with

tan t∗ :=
√

q
p ,

having parallel leaves. Thus two parallel translates of Ct∗ , located on each side, can be
connected together at a symmetric configuration of points, called the gluing points, by
means of n-dimensional catenoidal bridges. The resulting hypersurface, henceforth
called S̃t, can be constructed with various kinds of non-trivial topology, depending
on the number of gluing points. Once again, S̃t is only approximately CMC and must
be perturbed to achieve constant mean curvature. This perturbation is in general
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obstructed due to the existence of non-trivial elements of the kernel of the linearized
mean curvature operator of the constituents of S̃t, called Jacobi fields, whose effect is
to prevent the linearized CMC equation from being bijective with bounded inverse.
As in the S3 case, the way to avoid the obstructions is to impose additional symmetries
on the approximate solution that are not possessed by the Jacobi fields. That is, if the
gluing points are chosen with sufficient symmetry and S̃t is perturbed in a way which
respects these symmetries, then one can show that the Jacobi fields are absent and the
CMC equation can be controllably inverted.

The most economical way of encoding the symmetries necessary for the construc-
tion outlined above is via finite subgroups of symmetries of Sn+1 that preserve Ct∗ .
The use of symmetry groups generalizes the sub-lattice of the torus S1 × S1 used in
the S3 case. The Sn+1 case requires a more sophisticated choice in part because at
least one of the spherical factors of Sp × Sq is itself of higher dimension, in which case
the analogue of a sub-lattice is not natural. The symmetry condition necessary for
the proof of the present theorem can be explained as follows. Note first that the full
group of symmetries preserving Ct is exactly O(p +1)×O(q +1) acting diagonally on
R

n+2 = R
p+1 × R

q+1. The finite subgroups that we are interested will be of the form

G ⊂ {(σp+1, σq+1) : σs ∈ O(s) for s = p + 1, q + 1}.
We will assume that G contains the element ρ := (ρp+1, ρq+1) where ρN ∈ O(N + 1)
is the reflection symmetry across the x1 = 0 axis, namely

ρN((x1, x2, . . . , xN+1)) = ((x1, −x2, . . . , −xN+1)).

Next, we define the point µ0 ∈ Ct∗ to be

µ0 :=
((√

p
n , 0, . . . , 0

)
,
(√

q
n , 0, . . . , 0

))

and the set � ⊂ Ct∗ to be the orbit of µ0 under G. We denote the cardinality of �
by m�.

Theorem 1 Assume that there are no numbers akl ∈ R (not all equal to 0) such that the
function

(x, y) ∈ R
p+1 × R

q+1 �−→
∑

k,l

akl xk yl

is G-invariant. Then for all t close enough to t∗, there exists a smooth, embedded, CMC
hypersurface St with the following properties.

1. The hypersurface St is invariant under the action of G.
2. The hypersurface St is topologically equal to the connected sum of two copies of

(Sp × Sq) at m� points.
3. The mean curvature of St is equal to Ht := q cot t − p tan t.
4. Away from a neighbourhood of �, the hypersurface St is a perturbation of two

hypersurfaces in the family Ct located on either side of Ct∗ .
5. In a neighbourhood of each point in �, the hypersurface St is a perturbation

of a truncated, rescaled n-dimensional catenoid whose ends are attached to the
hypersurfaces described in (4).

6. As t tends to t∗ then St converges in C∞ topology to two copies of Ct∗ away from
the points of �.
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The proof of this theorem proceeds in a parallel fashion to the proof of the version
valid in S3 that is given in [3]. This begins by generalizing the initial construction of
[3], whereby two normal translates of Ct∗ separated by a small amount are first glued
together at the gluing points using small necks of height equal to the distance between
the translates. This is the approximate solution S̃t. It makes sense that such a construc-
tion is possible only if Ct∗ is the unique minimal generalized Clifford hypersurface
since then normal translates to either side of Ct∗ can be chosen, which have oppo-
site mean curvature. It will then be shown that S̃t can be perturbed to have exactly
constant mean curvature.

2 Examples

In this section we given examples of the application of Theorem 1. Basically, we give
examples of groups for which the main assumption of Theorem 1 is fulfilled. In what
follows, it is easiest to describe the elements of G through their action on R

n+2.

Example 1 In the lowest-dimensional case n = 2 and p = q = 1, considered by
Butscher and Pacard in [3], two normal translates of Cπ/4 are glued together at a
sub-lattice of points. We choose τj := (αj,βj) ∈ R

2 with j = 1, 2 so that the lattice
Z τ1 + Z τ2 contains the lattice 2π Z

2. Let Rα denote the rotation of angle α in R
2. We

consider the group G generated by the elements of O(4) whose actions are given by

σj(x1, x2, y1, y2) :=
(

Rαj(x1, x2), Rβj(y1, y2)
)

for j = 1, 2 and

ρ(x1, x2, y1, y2) := (x1, −x2, y1, −y2).

It is proven in [3] that the condition on τj that ensures that is the following: the lattice
Z τ1 + Z τ2 is not contained in {(α,β) ∈ R

2 : α − β ≡ 0 [2π]} or in {(α,β) ∈ R
2 :

α + β ≡ 0 [2π]}.

Example 2 The previous example extends verbatim to any dimension. We consider
the group G generated by the elements of O(n + 2) whose actions are given by

σj(x1, . . . , xp+1, y1, . . . , yq+1) :=
(

Rαj(x1, x2), x3, . . . , xp+1, Rβj(y1, y2), y3, . . . , yq+1

)

for j = 1, 2 and

ρ(x1, . . . , xp+1, y1, . . . , yq+1) := (
ρp+1(x), ρq+1(y)

)

as well as by the 2(p−1)(q−1) elements whose action is given by

ρ±,...,±(x1, . . . , xp+1, y1, . . . , yq+1) := (
x1, x2, ±x3, . . . , ±xp+1, y1, y2, ±y3, . . . , ±yq+1

)
.

In this case, the only function (x, y) ∈ R
p+1 × R

q+1 �−→ ∑
k,l akl xk yl that is invariant

under the action of ρ±,...,± is of the form f (x, y) = ∑
k,l∈{1,2} akl xk yl and checking that

this function is identically equal to 0 reduces to what is done in [3].
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Example 3 A third important class of examples is the one where the group G
contains the 2pq elements of O(n + 2) whose actions are given by

ρ̃±,...,±(x1, . . . , xp+1, y1, . . . , yq+1)

:= (
x1, ±x2, ±x3, . . . , ±xp+1, y1, ±y2, ±y3, . . . , ±yq+1

)

and the orbit of µ0 by G is not included in {±µ0}. In this case, the only function
(x, y) ∈ R

p+1 × R
q+1 �−→ ∑

k,l akl xk yl that is invariant under the action of the ρ̃±,...±
is of the form f (x, y) = a11 x1 y1 and hence has to be identically equal to 0 if the orbit
of µ0 by G contains more than ±µ0. This is because the value of f at µ0 is equal to
a11

√
p q
n on Ct, which is a value that is only achieved at ±µ0 if a11 	= 0.

3 The building blocks of the doubling construction

The purpose of this section is to carefully describe of the building blocks that will
be assembled to construct the approximate solution S̃t—the generalized Clifford hy-
persurfaces in Sn+1 and the generalized catenoid in R

n+1. Since the proof of the
Theorem 1 hinges on being able to rule out the existence of Jacobi fields on these
building blocks, careful attention will be paid to understand the Jacobi fields in each
case. Begin with the following characterization of the origin of the Jacobi fields.

3.1 The mean curvature operator and its Jacobi fields

Let � be a closed hypersurface in a Riemannian manifold X with mean curvature
H� , second fundamental form B� and unit normal vector field N� . The linearization
of the mean curvature operator on the space of normal graphs over � is given by

L� := DH�(0) = 
� + ‖B�‖2 + Ric(N� , N�)

where 
� is the Laplace operator of � and Ric is the Ricci tensor of X. Recall
that if Rt is a one-parameter family of isometries of X with deformation vector field

V = d
dt

∣∣∣
t=0

Rt, then one obtains a Jacobi field because the function 〈V, N�〉 is in the

kernel of L� . When� is a hypersurface in the ambient space X = Sn+1, the linearized
mean curvature reads

L� = 
� + ‖B�‖2 + n

and the isometries of Sn+1 are simply the SO(n + 2)-rotations of the ambient R
n+2.

Thus there is at most an (n+2)(n+1)/2-dimensional space of such ‘geometric’ Jacobi
fields of �.

3.2 Generalized Clifford hypersurfaces in Sn+1

Definition and basic properties. Let p, q and n ≥ 3 be fixed positive integers such that
p + q = n. The generalized Clifford hypersurfaces in Sn+1 are defined by

Ct :=
{
(x, y) ∈ R

p+1 × R
q+1 : ‖x‖ = cos t and ‖y‖ = sin t

}

for any t ∈ (0, π2 ).
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Each generalized Clifford hypersurface Ct is topologically equivalent to the
product Sp×Sq and is embedded in Sn+1. The following assertions about the geometry
of Ct are easy to verify. First, the induced metric of Ct is given by

gt = cos2 t gSp + sin2 t gSq

where gSp and gSq are the standard metrics on the unit spheres Sp ⊆ R
p+1 and

Sq ⊆ R
q+1, respectively. The unit normal vector field of Ct is chosen to be

Nt := sin t Px − cos t Py

where Px and Py are the position vector fields of R
p+1 × {0} ⊂ R

n+2 and {0} × R
q+1 ⊂

R
n+2 respectively. The second fundamental form of Ct is given by

Bt := cos t sin t (gSq − gSp) .

Observe that the mean curvature is equal to

Ht := q cot t − p tan t .

In particular, if t∗ ∈ (0, π2 ) is defined by tan2 t∗ = q
p , then Ct∗ has zero mean curvature.

Finally, the linearized mean curvature operator of Ct is given by

Lt := 1
cos2 t

(
Sp + p)+ 1

sin2 t
(
Sq + q)

where 
Sp and 
Sq are the Laplacians of gSp and gSq , respectively.

Analytic properties of the Jacobi operator. The following proposition gathers the
necessary information about the Jacobi fields of Ct∗ .

Proposition 2 The non-trivial Jacobi fields of Ct∗ are generated by the pq-dimensional
subgroup of rotations of R

n+2 breaking the R
p+1×R

q+1 splitting. They are the restriction
to Ct∗ of functions of the form

(x, y) ∈ R
p+1 × R

q+1 �−→
∑

k,l

akl xk yl ∈ R.

where akl ∈ R.

Proof Recall that the eigenvalues of 
SN are given by −j (N − 1 + j) for j ∈ N. We
denote by EN the eigenfunctions of
SN associated to the eigenvalue −N. Recall that
the EN are the restriction to SN of linear functions.

Therefore, the eigenvalues of Lt∗ are given by

λij = − 1
cos2 t∗

(i2 + i (p − 1)− p)− 1

sin2 t∗
(j2 + j (q − 1)− q)

for i, j ∈ N. Obviously, λij < 0 when i, j ≥ 1 and (i, j) 	= (1, 1). Also λ11 = 0 and the
corresponding eigenspace is spanned by functions of the form Ep Eq. Finally

λi0 = − 1
cos2 t∗

(i2 + i (p − 1)− p)+ 1

sin2 t∗
q = − 1

sin2 t∗
(i2 + i (p − 1)− 2p)

since p
cos2 t∗

= q
sin2 t∗

and this quantity is never 0.
Similarly λ0j 	= 0 for all j ∈ N. �
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Most important for our purposes is the following simple consequence.

Corollary 3 Under the assumption of Theorem 1, there are no Jacobi fields on Ct∗ that
are invariant under the action of G.

3.3 The generalized catenoid in R
n+1

Definition and basic properties. In the lowest-dimensional case considered in [3], the
necks used to glue together two neighbouring Clifford tori were truncations of the
standard catenoid in R

3, re-scaled to a small size, and embedded in S3 at the gluing
points using canonical coordinate charts. The appropriate neck in the present higher-
dimensional case should then just be the higher-dimensional analogue of the standard
catenoid, namely the unique, cylindrically symmetric, minimal hypersurface in R

n+1.
The generalized catenoid in R

n+1 is the hypersurface K parameterized by

(s,�) ∈ R × Sn−1 �−→ (φ(s)�,ψ(s)) ∈ R
n+1

where

φ(s) := (cosh(n − 1)s)
1

n−1 and ψ(s) :=
∫ s

0
φ2−n(t)dt . (1)

The geometric features of the generalized catenoid that will be relevant later on are
as follows. The induced metric of K is

gK := φ2 (ds2 + gSn−1).

The unit normal vector field of K is chosen to be

NK := −φ1−n P� + ∂s logφ ∂xn+2 ,

where P� is the position vector field in R
n × {0} ⊂ R

n+1 evaluated at the point
� ∈ Sn−1. Then the second fundamental form of K is given by

BK := φ2−n ((1 − n)ds2 + gSn−1)

and its mean curvature vanishes. Finally, the Jacobi operator of K is given explicitely
by

LK := φ−n ∂s

(
φn−2∂s

)
+ φ−2
Sn−1 + n(n − 1) φ−2n.

Analytic properties of the Jacobi operator. Analytic obstructions for inverting the mean
curvature operator on a hypersurface consisting of several large pieces connected by
small necks also arise from the non-trivial Jacobi fields supported in the neck regions.
Thus it is just as important to understand the Jacobi fields on the generalized catenoid
in greater detail.

Proposition 4 Assume that δ < 0 is fixed. Then there is no non-trivial Jacobi field of
K that is bounded by a constant times (cosh s)δ and is invariant under the action of the
symmetry (s,�) �−→ (s, −�).
Proof We consider the eigenfunction decomposition of any Jacobi field

f (s, ·) =
∞∑

j=0

fj(s, ·)
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where
Sn−1 fj(s, ·) = −j(n−2+j) fj(s, ·). Since we have assumed that f (s, −�) = f (s,�)
many components are equal to 0 and in particular, we have f1 ≡ 0.

It follows from [5] that fj ≡ 0, for all j ≥ 2 since we have assumed that |f | ≤
C (cosh s)δ for some δ < 2. Let us briefly remind the reader how this result is proven.
First, the geometric Jacobi fields associated to horizontal translations show that the
function u = φ1−n is a solution of

φ−n ∂s

(
φn−2∂su

)
− φ−2 u + n(n − 1) φ−2nu = 0 .

Now consider fj(s, θ) that we decompose on a basis of the jth eigenspace of 
Sn−1 .
The coefficients u(�)j of this decomposition only depend on s and are solutions of

φ−n ∂s

(
φn−2∂su

(�)
j

)
− j(n − 2 + j) φ−2 u(�)j + n(n − 1) φ−2nu(�)j = 0 .

Inspection of the possible behaviours of u(�)j shows that, since j ≥ 2 and u(�)j is

bounded by a constant times (cosh s)δ for some δ < 2, then u(�)j is bounded by a con-

stant times (cosh s)2−n−j. Then, the function u, which does not change sign and decays
like (cosh s)1−n at ±∞, can be used as a barrier to prove that u(�)j ≡ 0.

The function f0 does not depend on θ and hence is a solution of some homoge-
neous second order ordinary differential equation. Two independent solutions of the
equations are known since they correspond to geometric Jacobi fields associated to
vertical translation and dilation. These are explicitly given by

f (1)0 (s) := ∂s logφ and f (2)0 (s) := ψ ∂s logφ − φ2−n

and one checks that no linear combination of these two functions decays exponentially
at both ±∞. This completes the proof of the result. �

4 The approximate solution

The previous section of this paper described the building blocks of the gluing con-
struction that will be deformed into a CMC hypersurface of Sn+1. This section shows
in technical detail how these building blocks will be assembled. We keep the notations
of the introduction. The gluing construction will consist of two generalized Clifford
hypersurfaces lying at a small distance on either side of Ct∗ and glued together at
the admissible collection of points�. The actual gluing will be made using truncated,
re-scaled, generalized catenoids embedded into a neighbourhood of each µ ∈ � by
means of canonical parameterization for a neighbourhood of each point µ ∈ �. We
begin by describing this parametrization.

4.1 Adapted local coordinates for Sn+1

We first introduce toroidal coordinates for a tubular neighbourhood of Ct∗ . The coordi-
nate embedding of these coordinates is defined via the inverse of the parameterization
� : Sp × Sq × (0, π2 ) → Sn+1 given by

�(z, v) =
(

cos v�(p), sin v�(q)
)

(2)
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for v ∈ (0, π2 ) and z := (�(p),�(q)) ∈ Sp × Sq. Thus� parameterizes a neighbourhood
of Ct∗ in Sn+1. The local geometry of Sn near Ct∗ can be completely expressed in the
toroidal coordinates. For instance, the metric is given by

�∗gSn+1 = dv2 + cos2 v gSp + sin2 v gSq . (3)

Henceforth, denote the metric �∗gSn+1 by g. Furthermore, the level sets of the coor-
dinate v correspond to generalized Clifford hypersurfaces Cv. The mean curvature of
the level set of the coordinate v is given by

Hv = q cot v − p tan v.

Next, we introduce canonical coordinates near the point�−1(µ0) = ((1, 0, . . . , 0, ),
(1, 0, . . . , 0), t∗) in the level set v = t∗. (We obtain canonical coordinates in the neigh-
bourhood of the other points of �−1(�) by symmetry.) On Sp × Sq, we consider
z̄ ∈ R

n �−→ (�(p)(z̄),�(q)(z̄)) ∈ Sp × Sq to be geodesic normal coordinates near the
point ((1, 0, . . . , 0), (1, 0, . . . , 0)) ∈ Sp × Sq when Sp × Sq is endowed with the metric
cos2 t∗ gSp + sin2 t∗ gSq . This metric being a product metric, the geodesic normal coor-
dinates can be defined in such a way that z̄ = (x̄, ȳ) where x̄ (resp. ȳ) are geodesic
normal coordinates close to (1, 0, . . . , 0) on Sp (resp. Sq) endowed with the metric
cos2 t∗ gSp (resp. sin2 t∗ gSq ).

4.2 Construction of the approximate solution

To begin the construction of the approximate solution, we first define the function ��
on Ct∗ that is the unique solution of the equation

Lt∗ �� = −cn

∑
µ∈�

δµ

invariant under the action of G. Here, δµ is the Dirac δ-mass at the point µ ∈ Ct∗ and
the constant cn is the Euclidean volume of Sn−1. The first step in our construction is to
perturb two generalized Clifford tori on either side of Ct∗ by a proper multiple of the
function �� and attach generalized catenoidal necks to the perturbed hypersurface.
This has the effect of reducing the size of error in the mean curvature. Observe that
in geodesic normal coordinates z̄, the function �� can be expanded near µ0 as

��(z̄) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
n − 2

|z̄|2−n + O(|z̄|4−n) when n ≥ 5

1
2

|z̄|−2 + O((log 1/|z̄|)) when n = 4

|z̄|−1 + γ� + O(|z̄|) when n = 3

where γ� ∈ R is a constant that depends on �. By symmetry, this expansion is the
same at all other points in�. For consistency in notation, we agree that γ� := 0 when
n ≥ 4.

Next, given t ∈ (t∗, π2 ) we define t− ∈ (0, t∗) via the relation

−Ht− = Ht := q cot t − p tan t .
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we also define t+ := t. Finally, define also the parameter εt > 0 for t close enough to
t∗ to be the unique positive solution of

t+ − t− = εt

∫ ∞

−∞
φ2−n(s)ds + 2 εn−1

t γ�.

where the function φ has been defined in (1). observe that t+ − t− = O(εt). Finally, set

rt := ε
n−1

n
t .

We now define the hypersurface C±
t to be the image of Ct∗ \ ⋃

µ∈� Brt (µ) under the
mapping

z �−→ �(z, t+ − εn−1
t ��(z))

and also C−
t to be the image of Ct∗ \ ⋃

µ∈� Brt (µ) under the mapping

z �−→ �(z, t− + εn−1
t ��(z)) .

This produces two hypersurfaces that are close to Ct∗\
⋃
µ∈� Brt (µ) and that have m�

boundaries.
We now insert the re-scaled catenoid εt K into Sn+1 by means of the adapted local

coordinates as follows. That is, we consider the image of {(s,�) ∈ R × Sn−1 : φ(s) ≤
ε
− 1

n
t } under the mapping

(s,�) �−→ �

(
z(εt φ(s)�),

1
2
(t+ + t−)+ εt ψ(s)

)
,

where z̄ �−→ z(z̄) are the geodesic normal coordinates introduced above, along with
the images of this hypersurface translated to neighbourhoods of the other points
µ ∈ � by the action of the elements of the group G. This process produces m�

hypersurfaces with boundaries, whose union will be denoted by Nt.
The union of the two hypersurfaces C±

t and Nt is not a smooth hypersurface; but
using cut-off functions we can interpolate between these hypersurfaces in a smooth
manner. This process can be explained as follows. Due to the invariance under the
action of G it is enough to explain how to form the interpolation in the neighbourhood
of the point µ0. For example when n ≥ 5, the graph of z̄ �−→ t+ − εn−1

t ��(z̄) can be
expanded near µ0 in geodesic normal coordinates as

t+ − εn−1
t ��(z̄) = t+ − 1

n−2 ε
n−1
t |z̄|2−n + O

(
εn−1

t |z̄|4−n
)

.

While, changing variables |z̄| = εt φ(s) with s > 0, we find with little work that

1
2
(t+ + t−)+ εt ψ(s(z̄)) = 1

2
(t+ + t−)+ εt

∫ ∞

0
φ2−n(v)dv

+ 1
n − 2

εn−1
t |z̄|2−n + O(ε3n−3

t |z̄|4−3n)

= t+ + 1
n − 2

εn−1
t |z̄|2−n + O(ε3n−3

t |z̄|4−3n).

Observe that, when |z̄| ∼ rt then both εn−1
t |z̄|4−n and ε3n−3

t |z̄|4−3n are O
(
ε

4(n−1)
n

t

)
.

This explains why the connected sum is performed when |z̄| ∼ rt since this precisely
minimizes the distance between the graphs of the different summands.
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To obtain a smooth hypersurface it is enough to interpolate between the two graph-
ing functions inside an annulus whose radii are 2 rt and rt/2. For example, to interpolate
smoothly between the graph of t+ − εn−1

t �� and the graph of 1
2 (t

+ + t−)+ εt ψ(s) we
define the function

Tt(z̄) := η(z̄/rt) (t+ − εn−1
t ��(z̄))+ (1 − η(z̄/rt))

(
1
2

(
t+ + t−

) + εt ψ (s(z̄))
)

where η is a cut-off function identically equal to 0 in B1/2(0) and identically equal to
1 in Rn\B2(0). A similar analysis can be performed for the lower end of the re-scaled
catenoid. The final step in the assembly of the different summands of the approximate
solution is to extend the above construction so that the resulting surface is invariant
under the action of the elements of G. We will denote the transition regions by Tt cor-
responding to the image of B̄2rt (0)\Brt/2(0) under the mapping z̄ �−→ �(z(z̄), Tt(z̄)).

This recipe produces a hypersurface that we will denote S̃t, which is a smooth,
embedded submanifold of Sn+1. It is equal to the connected sum of εt-re-scaled cate-
noids centered at the points of � and small perturbations of the generalized Clifford
tori Ct± . Recall that, by construction, these tori have mean curvature equal to Ht.
Finally, when t approaches t∗, then S̃t approaches two copies of the unique minimal
Clifford torus, punctured at the sub-lattice of points �.

The construction of S̃t in the two lower dimensions n = 3 and n = 4 is similar.

5 The analysis

5.1 Deformations of the approximate solution

The approximate solution S̃t constructed in the previous section is such that its mean
curvature is close to Ht everywhere except in a small neighbourhood of each gluing
point, and it will be shown that it is nevertheless controlled by precise estimates there.
The next task is to set up a means of finding a small deformation of S̃t whose mean
curvature is exactly the constant Ht.

To this end, let Ñt be a choice of unit normal vector field on S̃t compatible with
the orientation. If f ∈ C2,α(S̃t), then exp(f Ñt)(S̃t) is an embedded submanifold of
Sn+1. The question whether exp(f Ñt)(S̃t) has constant mean curvature now becomes
a matter of solving a partial differential equation. We define the deformation operator
to be the mapping �t : C2,α(S̃t) → C0,α(S̃t) by

�t(f ) := H
(

exp(f Ñt)(S̃t)
)

,

where H(·) is the mean curvature operator.
The deformation operator �t is a non-linear, partial differential operator on func-

tions f in C2,α(S̃t) with values in C0,α . The so-called approximate solution S̃t is an
approximation precisely because the estimates of the mean curvature of S̃t will ensure
that�t(0)−Ht is small (in a suitable norm defined in the next section). Thus it is hoped
that perturbation methods can be used to solve the equation �t(f ) = Ht. The exact
formulation of this method is encapsulated in the statement of the Inverse Function
Theorem.

Theorem (IFT) Let � : B → B′ be a smooth map of Banach spaces, set �(0) = E
and denote the linearization of � at zero by L := D�(0). Suppose that L is bijective
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and the estimate ‖LX‖ ≥ C‖X‖ holds for all X ∈ B. Choose R so that if Y ∈ B
is such that ‖y‖ ≤ R, then ‖LX − D�(Y)X‖ ≤ 1

2 C‖X‖. If Z ∈ B′ is such that
‖Z − E‖ ≤ 1

2 CR, then there exists a unique X ∈ B with ‖X‖ ≤ R so that �(X) = Z.
Moreover, ‖X‖ ≤ 2

C ‖Z − E‖.

The first step in applying the IFT to the solution of the problem �t(f ) = Ht is to
determine the linearization of �t at 0. We have

D�t(0)u := d
ds

∣∣∣∣
s=0

�t(su) = 
S̃t
u + ‖B̃t‖2u + n u

where 
S̃t
is the Laplacian of S̃t and B̃t is its second fundamental form. Henceforth,

use the notation L̃t := D�t(0).
The remaining steps in applying the IFT to the solution of the problem�t(f ) = Ht

are the following. First, appropriate Banach subspaces of C2,α(S̃t) and C0,α(S̃t) must
be found so that the estimate of L̃t can be achieved. It must then be shown that L̃t
is surjective as a map between these spaces. Next, estimates in these norms of the
non-linear quantities—the size of E := �t(0) − Ht and the size of the parameter R
giving the variation of D�t—must be found. Note that all these quantities depend a
priori on t. Finally, it must be shown that as a result of these estimates, the quantity E
satisfies the inequality ‖E‖ ≤ 1

2 CR for all t sufficiently close to t∗. If this holds, then the
IFT asserts that a solution of the equation �t(f ) = Ht exists and that it is controlled
by the size of E .

5.2 Function spaces and norms

It does not seem possible to obtain a ‘good’ linear estimate of the form ‖L̃t u‖ ≥ C‖u‖
with any straightforward choice of Banach subspaces and norms, where ‘good’ in this
case means with a constant C independent of t. There are essentially three reasons
for this. The first is that the motion of S̃t under any isometry of Sn+1 fixes its mean
curvature and thus provides an element in the kernel of L̃t, also known as a Jacobi
field. Consequently, L̃t is not injective on C2,α(S̃t) due to the Jacobi fields that come
from the non-trivial SO(n + 1)-rotations of the ambient Sn+1. The second reason for
the absence of a good linear estimate is that it is possible to perform a motion of
S̃t, which consists of an SO(n + 1)-rotation of only one of the two halves of L̃t while
leaving the other half fixed. The deformation field associated to this motion is equal
to the Jacobi field associated to the SO(n + 1)-rotation on the first half of S̃t, is equal
to zero on the other half of S̃t and interpolates between these two values in the neck
regions of S̃t. This function approximates an element of one of the eigenspaces of Lt
with small eigenvalue. Thus L̃t possesses small eigenvalues (whose eigenfunctions are
called approximate Jacobi fields) so that even if one were to choose a Banach subspace
of functions transverse to the Jacobi fields coming from isometries of Sn+1, the con-
stant in the linear estimate would still depend on t in an undesirable manner. Finally,
another source of approximate Jacobi fields is the neck region itself. It is possible to
have a function on S̃t, which is equal to zero away from the neck region and is equal to
a Jacobi field of the generalized catenoid within each component of the neck region.
Such an approximate Jacobi field must ‘disappear’ as t → t∗ and the necks pinch off,
but so long as t 	= t∗, these functions contribute to the size of the constant C in the
linear estimate for L̃t.
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The three problems listed above will be dealt with here in two ways. First, the
symmetry group G of the approximate solution must be exploited. It turns out that
the Jacobi fields, both approximate and true, do not share these same symmetries; thus
working in a space of functions possessing these symmetries will rule out the existence
of small eigenvalues. Indeed, under the assumption of Theorem 1 and according to
the result of Corollary 3 there is no non-trivial solution of Lt∗ u = 0 that is invariant
under the action of G. This means that restricted to the set of G-invariant functions,
the operator Lt∗ : C2,α(Ct∗) −→ C0,α(Ct∗) is an isomorphism. Second, it is necessary
to use a somewhat non-standard norm to measure the ‘size’ of functions f ∈ C2,α(S̃t)

in order to properly determine the dependence on the parameter t of the various
estimates needed for the application of the Inverse Function Theorem. A weighted
Schauder norm will be used for this purpose, defined via a weight function. As usual,
one can say without loss of generality that the weight function is invariant with respect
to the symmetry group G.

First, let r < 1 be some fixed radius that is determined by the following two require-
ments: r is such that adapted local coordinates can be defined inside Br(µ) for each
µ ∈ �; and B2r(µ) and B2r(µ

′) are disjoint for all µ 	= µ′ ∈ �.

Definition 5 The weight function ζt : S̃t → R is defined by

ζt(z, v) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 �(z, v) ∈ C±
t \⋃

µ∈� B2r(µ)

Interpolation �(z, v) ∈ C±
t ∩ [

B̄2r(µ)\Br(µ)
]

for some µ ∈ �
|z̄| �(z(z̄), v) ∈ C±

t ∩ Br(µ) for some µ ∈ �
Interpolation �(z, v) ∈ Tt

εt cosh s �(z(εtφ(s)�), 1
2 (t

+ + t−)+ εtψ(s)) ∈ Nt .

Next, let T be any tensor on S̃t, and recall the notation

‖T‖0,S̃t
= sup

p∈S̃t

‖T(p)‖ and [T]
α,S̃t

= sup
p,p′∈S̃t

‖T(p)−�(T(p′))‖
dist(p, p′)α

,

where the norms and the distance function that appear are taken with respect to the
induced metric of S̃t, while � is the parallel transport operator from p to p′ with
respect to this metric. Now define

|f |
Ck,α
γ (S̃t)

:= |ζ−γ
t f |0,S̃t

+ ‖ζ−γ+1
t ∇f‖0,S̃t

+ · · · + ‖ζ−γ+k
t ∇kf‖0,S̃t

+[ζ−γ+k+α
t ∇kf ]

α,S̃t
. (4)

Again, the norms and derivatives which appear here are taken with respect to the
induced metric of S̃t. It is easy to check that the space of Ck,α functions on S̃t mea-
sured with respect to the norm (4) is a Banach space. Henceforth, denote this space
of functions by Ck,α

γ (S̃t).
A solution of the deformation problem will be found in a space of C2,α functions

on S̃t. To do so, it will be necessary to insist that the functions in this space inherit
the symmetries of S̃t since this will have the effect of ruling out the existence of the
Jacobi fields and the approximate Jacobi fields of S̃t which are the analytic obstructions
preventing the inversion of the deformation operator. The following space will meet
these needs.
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Definition 6 Let Bk,α
γ (S̃t) := {f ∈ Ck,α

γ (S̃t) : f ◦ σ = f for all σ ∈ G}.

Clearly, the operator �t is a well-defined map from B2,α
γ (S̃t) to B0,α

γ−2(S̃t) that is

smooth in the Banach space sense. The linearized operator L̃t : B2,α
γ (S̃t) → B0,α

γ−2(S̃t)

is bounded and satisfies

|L̃t u|C0,α
γ−2(S̃t)

≤ C |u|C2,α
γ (S̃t)

where C is independent of t, chosen close enough to t∗. Finally, for any γ ∈ R, there
exists another constant C independent of t so that L̃t satisfies the elliptic estimate

|u|C2,α
γ (S̃t)

≤ C
(

|L̃t u|C0,α
γ−2(S̃t)

+ |ζ−γ
t u|0,S̃t

)
. (5)

This follows at once from Schauder’s estimates applied on the different summands
constituting S̃t.

5.3 The linear estimate

The most important estimate needed to solve the equation �t(f ) = Ht by means of
the inverse function theorem is the estimate from below of the linearization L̃t by a
constant independent of t. The purpose of this section is to prove this estimate using
an argument by contradiction, in which it is assumed that such a lower bound does
not exist.

Proposition 7 Suppose 2 − n < γ < 0. Then the linearized operator L̃t : B2,α
γ (S̃t) →

B0,α
γ−2(S̃t) satisfies

|L̃t u|C0,α
γ−2(S̃t)

≥ C|u|C2,α
γ (S̃t)

where C is a constant independent of t close enough to t∗.

Proof Observe that Schauder’s elliptic estimates imply that it is enough to prove that

|ζ 2−γ
t L̃t u|L∞(S̃t)

≥ C|ζ−γ
t u|L∞(S̃t)

where C is a constant independent of t close enough to t∗.
We argue by contradiction. Suppose that ti → t∗ and that there is a sequence

of functions ui defined on S̃ti that are invariant under the action of G along with a
sequence of linearized operators L̃ti satisfying the following estimates:

lim
i→∞ |ζ 2−γ

ti L̃ti ui|L∞(S̃ti )
= 0 and |ζ−γ

ti ui|L∞(S̃ti )
= 1 .

Moreover, one can assume that S̃ti converges in a smooth enough sense to two copies of
the unique minimal generalized Clifford hypersurface with the gluing points removed
(denote this hypersurface by Ct∗ \�) and that the operators L̃ti converge to the Jacobi
operator on Ct∗ , which is simply Lt∗ . Let qi be a point where

(
ζti(qi)

)−γ |ui(qi)| = 1;
then up to a subsequence, either qi → q ∈ Ct∗\�, or else qi converges to a point
of �. These two scenarios will be ruled out in turn. In what follows, adapted local
coordinates will always be used in the neighbourhood of qi.
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Case 1 Suppose qi → q ∈ Ct∗\�.
In this case, one uses elliptic estimates together with Arzela–Ascoli’s theorem, to

prove that (up to a subsequence) ui → u∞ uniformly on compact subsets of Ct∗\�.
The limit function u∞ satisfies Lt∗ u∞ = 0 on Ct∗\� and

|(dist(·,�))−γ u∞|L∞(Ct∗ ) = 1. (6)

Finally, u∞ is invariant under the action of G. Since we have assumed that γ > 2 − n,
the singularities are removable and hence u∞ is smooth. But by assumption, no non-
trivial element of the kernel of Lt∗ is invariant under the action of G. This is clearly in
contradiction with (6) and hence rules out Case 1.

Case 2 Suppose without loss of generality that qi converges to the gluing point
µ0 ∈ �.

This second case divides into two subcases. First assume that (up to a subsequence)
qi belongs to Nti so that it can be written as

qi = �

(
z(εti φ(si)�i),

1
2
(t+i + t−i )+ εti ψ(si)

)
.

Further assume that the (up to a subsequence) the sequence si is bounded and even
converges to s∞. The use of elliptic estimates together with Arzela–Ascoli’s theorem
is enough to prove that (up to a subsequence) ui → u∞ uniformly on compact subsets
of K. The limit function u∞ satisfies LK u∞ = 0 on K and

|(cosh s)−γ u∞|L∞(K) = 1. (7)

Finally, since ui is invariant under the action of ρ ∈ G, the limit function u∞ is invari-
ant under the action of the symmetry with respect to the xn+1-axis. Since we have
assumed that γ < 0, then the result of Proposition 4 implies that u∞ = 0, which is
clearly in contradiction with (7). This rules out this first subcase.

Now it remains to consider the case that is not covered by the first subcase. This
time qj converges to µ0 but at a slower rate and the use of elliptic estimates together
with Arzela–Ascoli’s theorem is enough to prove that (up to a subsequence) ui → u∞
uniformly on compact subsets of R

p × R
q \ {0, 0}, where this space is endowed with

the metric g∗ := (cos t∗)2 g̊p + (sin t∗)2 g̊q, where g̊N denotes the Euclidean metric on
R

N . The limit function u∞ satisfies 
g∗ u∞ = 0 on R
p × R

q \ {0, 0} and
∣∣|z̄|−γ u∞

∣∣
L∞ = 1. (8)

Since we have assumed that 2 − n < γ < 0, then this clearly implies that u∞ = 0,
which is clearly in contradiction with (8). This rules out this second and last subcase.

Having ruled out all possible cases, the proof of the claim and hence the proof of
the result is complete. �

5.4 The estimate of the mean curvature of the approximate solution

As mentioned earlier, the proof of Theorem 1 requires two more estimates in addition
to the one from the previous section. The first of these is to show that �t(0) − Ht is
small in the C0,α

γ−2 norm. The following calculations are generalizations of those carried
out in [3].
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Proposition 8 The quantity �t(0), which is the mean curvature of S̃t, satisfies the fol-
lowing estimate. Assume that γ > 2 − n is fixed. If t is sufficiently close to t∗, then there
exists a constant C independent of t so that

∣∣�t(0)− Ht
∣∣
C0,α
γ−2(S̃t)

≤ C ε2−γ
t . (9)

Proof To estimate the mean curvature in the regions Tt and C±
t , we first compute

the mean curvature of the graph of a function u : Sp × Sq → R parameterized by
z �−→ �(z, u(z)) where � is the toroidal coordinate embedding into Sn+1. Hence-
forth we will use the notation that a comma denotes partial differentiation, such as
u,i = ∂zi u, and repeated indices are summed. The tangent vectors of this surface are
given by Tj := ∂zj + u,j ∂v and it is easy to check that the induced metric is given by

ḡ = du ⊗ du + cos2 u gSp + sin2 u gSq .

The normal vector field N can be written as N := N̄/||N̄|| where N̄ := ∂t − aj Tj and
the coefficients aj are determined so that N̄ is normal to the surface. One finds the
explicit expressions aj = ḡjku,k and ||N̄||2 = 1 + ḡjku,ju,k. We now compute

2 g(∇Ti Tj, N̄) = −g(∇Ti N̄, Tj)− g(∇Tj N̄, Ti)

= −(g(∇Tj∂v, Ti)+ g(∇Ti∂v, Tj))+ (∂zi g(a
kTk, Tj)+ ∂zj g(a

kTk, Ti))

− 2 ak g(Tk, ∇Ti Tj)

= −(g(∇Tj∂v, Ti)+ g(∇Ti∂v, Tj))+ (∂zi g(∂v, Tj)+ ∂zj g(∂v, Ti))

− 2 ak g(Tk, ∇Ti Tj)

= −(g(∇Tj∂v, Ti)+ g(∇Ti∂v, Tj))+ 2 u,ij − 2�̄k
ij u,k

where �̄k
ij = 1

2 ḡlk (ḡjl,i + ḡil,j − ḡij,l) are the Christoffel symbols of ḡ. To evaluate the
first terms, we consider the parameterization of a neighbourhood of Ct∗ given by
�̃ : (z, ξ) �−→ �(z, u(z)+ ξ) so that ∂v = �̃∗∂ξ . Therefore, we can write

g(∇Tj∂v, Ti)+ g(∇Ti∂v, Tj) = ∂ξ g(Ti, Tj)
∣∣
ξ=0 = 2 cos u sin u

[
gSq − gSp

]
ij .

Collecting these, we obtain the second fundamental form

‖N̄‖ B̄ = cos u sin u (gSq − gSp)+
(

u,ij − �̄k
iju,k

)
dz̄i dz̄j .

Finally, we get the mean curvature by taking the trace of B̄ with respect to ḡ.
We now specialize this computation to the case where

u = ut := t+ − εn−1
t �� and dist(z,�) ≥ rt

so that we obtain the mean curvature of C+
t . We estimate the metric coefficients

Christoffel symbols as

ḡ = cos2 ut gSp + sin2 ut gSq + O(ε2n−2
t |z̄|2−2n)

�̄k
ij =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
cos2 ut

p

�k
ij +O(εn−1

t |z̄|1−n) if i, j and k refer to Sp terms

1

sin2 ut

q

�k
ij +O(εn−1

t |z̄|1−n) if i, j and k refer to Sq terms

O(εn−1
t |z̄|1−n) if i, j and k mix Sp with Sq terms
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where
p

�k
ij (resp.

q

�k
ij) are the Christoffel symbols of gSp (resp. gSq ). For example, when

i, j and k refer to Sp terms, we have

�̄k
ij = 1

cos2 ut

p

�k
ij +O(εn−1

t |z̄|1−n)+ O(ε2n−2
t |z̄|1−2n) .

But, since we are working in the range where dist(z,�) ≥ rt, we can use the fact that

ε2n−2
t |z̄|1−2n = O(εn−1

t |z̄|1−n)

so that the estimate simplifies into

�̄k
ij = 1

cos2 ut

p

�k
ij + O(εn−1

t |z̄|1−n) .

We conclude that for dist(z,�) ≥ rt,

‖N̄‖ B̄ = cos u sin u (gSq − gSp)+
(
∇∗

iju + O(ε2n−2
t |z̄|2−2n)

)
dz̄i dz̄j ,

where ∇∗
ij is the covariant derivative of Sp (resp. Sq) if i, j refer to Sp terms (resp. Sq

terms). Consequently,

‖N̄‖ H = 1
cos2 ut


Sp ut + 1

sin2 ut

Sq ut + (q cot ut − p tan ut)+ O(ε2n−2

t |z̄|2−2n)

= (q cot t+ − p tan t+)−
(

Ct+ +

(
p

cos2 t+
+ q

sin2 t+

))
εn−1

t ��

+ O(ε2n−2
t |z̄|2−2n)+ O(

= Ht − Lt(ε
n−1
t ��)+ O(ε2n−2

t |z̄|2−2n)

= Ht + O(εn
t |z̄|−n)+ O(ε2n−2

t |z̄|2−2n)

where 
Ct is the Laplace operator of Ct in which case we have used the fact that
Lt∗ �� = 0 away from the point µ0 as well as the fact that Lt∗ − Lt is a second order
differential operator whose coefficients are bounded by a constant times εt. We have
also used the various fall-off behaviours of �� and its derivatives to obtain the result
above. Observe that ε2n−2

t |z̄|2−2n = O(εn
t |z̄|−n) so that we finally get

H = Ht + O(εn
t |z̄|−n)

by taking the trace with respect to ḡ.
The corresponding estimates in C−

t and also in Tt are obtained using similar com-
putations. Observe that the cut-off functions used in Tt induce another discrepancy
that can be estimated by a constant times εn−1

t r2−n
t = O(εn

t r−n
t ) when n 	= 4 (and by

a constant times ε3
t r−2

t (log 1/rt) = O(ε4
t r−4

t ) in dimension n = 4). In any case |z̄| ∼ rt
in Tt and hence we still have H = Ht + O(εn

t |z̄|−n) in the transition region Tt.
It remains to compute the mean curvature of the neck region Nt. Since the centre

of the neck region is not a graph over the level sets of constant t, the previous calcu-
lation does not help us. Thus we compute directly the mean curvature of the surface
parameterized by

(s, ν) �−→ �
(

z(εtφ(s)�(ν)), 1
2 (t

+ + t−)+ εt ψ(s)
)

(10)
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where s ∈ R satisfies φ(s) ≤ ε
− 1

n
t and ν ∈ Sn−1 �−→ �(ν) ∈ R

n is a parametrization
of the unit (n − 1)-sphere. Since the embedding (10) is defined using geodesic normal
coordinates (z̄, v), the background metric is of the form

g = dv2 + cos2 v
cos2 t∗

p∑

i,j=1

(
δij + Qp

ij

)
dx̄i dx̄j

+ sin2 v

sin2 t∗

n∑

i,j=p+1

(
δij + Qq

ij

)
dȳi dȳj

where the components Qp
ij and Qq

ij satisfy

|Q| + |z̄| |DQ| + |z̄|2|D2Q| = O(|z̄|2).
Now we compute the tangent vectors, the induced metric and the normal vector of

the region Nt in these coordinates. Use Greek letters to refer to the components of ν,
such as�i

,α = ∂�i/∂να , and use a dot to indicate differentiation with respect to s. The
tangent vectors are given by

Tα := εt φ �
i
,α ∂z̄i and Ts := εt ∂sφ �

i ∂z̄i + εt φ
2−n ∂v.

The induced metric is then given by

ḡ = ε2
t φ

2 (
ds2 + gSn−1

) + Qds2 +
n−1∑
α=1

Qαdνα ds +
n−1∑
α,β=1

Qαβdνα dνβ

where this time the components Q, Qα , Qαβ satisfy the estimate

|Q| + |DQ| + |D2Q| = O(ε3
t cosh2 s)+ O(ε4

t cosh4 s).

The normal vector field N can be written as N := N̄/||N̄|| with N̄ := N0 −as Ts −aα Tα
where

N0 := −φ1−n�i ∂z̄i + ∂s logφ ∂v

and where the coefficients as, aα are determined so that N̄ is normal to the surface.

Using the fact that we are only interested in the region where φ(s) ≤ ε
− 1

n
t , one finds

the estimates

as = O(cosh−n s)+ O(εt cosh2−n s)

aα = O(cosh−n s)+ O(εt cosh2−n s)

||N̄||2 = 1 + O(εt cosh2−2n s)+ O(ε2
t cosh4−2n s) .

We compute as above

2 ‖N̄‖ B(Ti, Tj) = −g(∇Ti N̄, Tj)− g(∇Tj N̄, Ti)

= −(g(∇Ti N0, Tj)+ g(∇Tj N0, Ti))+ (g(N0, Ti),j + g(N0, Tj),i)

−ak (ḡjk,i + ḡik,i − ḡij,k)

where i, j, k can be s or α. It is easy to check that

g(N0, Ti),j + g(N0, Tj),i = O(ε2
t cosh2−n s)+ O(ε3

t cosh4−n s)
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and also that

ak (ḡjk,i + ḡik,i − ḡij,k) = O(ε2
t cosh2−n s)+ O(ε3

t cosh4−n s).

We now compute the first terms. As above, our calculations are simplified by con-
sidering the local parameterization

�̂ : (s, ν, ξ) �−→ �

(
z

(
(εt φ(s)− ξ φ1−n(s))�(ν)

)
,

1
2
(t+ + t−)+ εtψ(s)+ ξ ∂s logφ(s)

)

so that N0 = �̂∗ ∂ξ and hence g(∇Ti N0, Tj)+g(∇Tj N0, Ti) = ∂ξg(Ti, Tj)
∣∣
ξ=0. We obtain

with little work

∂ξg(Ti, Tj)
∣∣
ξ=0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2εt (n − 1)φ2−n + 2 ε2
t (∂sφ)

2 (
cot t∗dȳ2 − tan t∗dx̄2) (�,�)

+ O(ε2
t cosh2−n s)+ O(ε3

t cosh4−n s)+ O(ε3
t cosh2 s) when i = j = s

2 ε2
t ∂sφ φ

(
cot t∗dȳ2 − tan t∗dx̄2) (�,�,α)

+ O(ε2
t cosh2−n s)+ O(ε3

t cosh4−n s)+ O(ε3
t cosh2 s) when i = s, j = α

−2εt φ
2−n

[
gSn−1 ]αβ + 2 ε2

t φ
2 (

cot t∗dȳ2 − tan t∗dx̄2) (�,α ,�,β)

+ O(ε2
t cosh2−n s)+ O(ε3

t cosh4−n s)+ O(ε3
t cosh2 s) when i = α, j = β

When we take the trace of the second fundamental form computed above, the leading-
order terms coming from ∂ξg(Ti, Tj)

∣∣
ξ=0 vanish because (s, ν) �−→ (φ(s)�(ν),ψ(s)) is

a minimal embedding into R
n+1. The next-leading-order terms also vanish because

Ct∗ is minimal in Sn+1. Thus only the remaining terms contribute to the estimate of
the mean curvature. Since Ht = O(εt), we conclude that

H − Ht = O(εt)+ O(cosh−n s)+ O(εt cosh2−n s) = O(cosh−n s) .

using the fact that φ ≤ ε
− 1

n
t .

It remains to collect the estimates in all the various regions of S̃t and perform the
estimate in the weighted Hölder norm. We get

|H(S̃t)− Ht|C0
γ−2(S̃t)

≤ sup
z∈S̃t

∣∣ζ 2−γ (z) · (H(z)− Ht)
∣∣

≤ |C (εn
t + ε

2−γ
t )

≤ C ε2−γ
t

for some constant C independent of t, close enough to t∗. Here we have used the fact
that γ > 2 − n. This completes the estimate of the mean curvature. The estimate of
its Hölder coefficient follows similarly. �

5.5 The non-linear estimate

The remaining estimate that is needed to invoke the inverse function theorem is to
show that D�t(f ) − L̃t can be made to have small operator norm if f is chosen suffi-
ciently small in the C2,α

γ (S̃t) norm. Once these estimates are given, it will be possible
to conclude the proof of Theorem 1 by invoking the inverse function theorem.
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Proposition 9 Given κ > 0, there exists Cκ > 0 such that, for all t close enough to t∗
and for all |f |C2,α

γ (S̃t)
≤ κ ε

2−γ
t then

∣∣D�t(f )u − L̃t u
∣∣
C0,α
γ−2(S̃t)

≤ Cκ εt |u|C2,α
γ (S̃t)

(11)

for any u ∈ C2,α
γ (S̃t).

Proof To begin with, we consider a hypersurface� embedded in a Riemannian man-
ifold and �f normal perturbation of it for some small function f . We assume that
|f |C2,α ≤ c where c is some small constant. It is clear that the difference between
the Jacobi operator about � and �f is a second order differential operator whose
coefficients are bounded in C0,α topology by a constant times |f |C2,α .

Now we consider a point p ∈ S̃t and a geodesic ball centered at p of radius r ∼ ζt(p).
We consider the normal graph over this geodesic ball for a function f whose C2,α

γ (S̃t)

norm is controlled by κ ε2−γ
t . If we blow up Sn+1 by a factor 1/ζt(p). We now have a

geodesic ball D of radius ∼1 on the dilated hypersurface in Sn+1(1/ζt(p)) and a normal
graph over this ball for a function whose C2,α norm is controlled by κ ε2−γ

t (ζt(p))γ−1.
The ball D depends on t but its geometry is controlled uniformly as t tends to 0, which
is a consequence of the definition of the weight function. We can apply the above
argument to check that the difference between the Jacobi operator about D and its
normal perturbation is a second order differential operator whose coefficients are
bounded in C0,α topology by a constant times κ ε2−γ

t (ζt(p))γ−1.
By performing the dilation backward, we obtain that the difference of the Jacobi

operators between S̃t and its normal perturbation. Observe that the backward dilation
multiplies the result by 1/(ζt(p))2 but this coefficient is absorbed by the fact that the
norm on the left hand side of (11) involves γ − 2 and not γ . Varying p along S̃t we
find that the worst estimate occurs precisely in the neck when ζt(p) ∼ εt. This implies
readily that

∣∣D�t(f )u − L̃t u
∣∣
C0,α
γ−2(S̃t)

≤ Cκ εt |u|C2,α
γ (S̃t)

as promised. �

5.6 The conclusion of the proof

The estimates for the proof of Theorem 1 are now all in place and the conclusion of
the theorem becomes a simple verification of the conditions of the inverse function
theorem. We choose γ ∈ (2 − n, 0). First, the linearization satisfies the estimate

|L̃t u|C0,α
γ−2(S̃t)

≥ C1 |u|C2,α
γ (S̃t)

,

by Proposition 7 where C1 > 0 is a constant independent of t when t is close enough
to t∗. Therefore by the inverse function theorem of Sect. 5.1 along with Proposition 9,
a solution of the deformation problem can be found if

∣∣�t(0)− Ht
∣∣
C0,α
γ−2(S̃t)

≤ 1
2 C1 R

where R = κ ε
2−γ
t and if

∣∣D�t(f )u − L̃t u
∣∣
C0,α
γ−2(S̃t)

≤ 1
2 C1 |u|C2,α

γ (S̃t)
.
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But the second non-linear estimate above shows that
∣∣D�t(f )u − L̃t u

∣∣
C0,α
γ−2(S̃t)

≤
Cκ εt |u|C2,α

γ (S̃t)
and Proposition 8 shows that

∣∣�t(0)−Ht
∣∣
C0,α
γ−2(S̃t)

≤ C0 ε
2−γ
t . Hence the

two conditions above can always be met if t is sufficiently close to t∗ and κ is large
enough to ensure κ C1 ≥ 2 C0. This concludes the proof of Theorem 1. �
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