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* Figure 1: Overview of the semantic motion design framework: It consists of four main building blocks-- (a) a dataset of 
parameterized expressive robot motions, (b) a crowdsourcing set-up for estimating the emotional perception of motions in the 
dataset, (c) regression analysis for establishing relationships between motion parameters and the emotional perception of the 
resultant motion, and (d) an intuitive design tool backed by these data-driven parameter-emotion relationships. 

 
ABSTRACT 
We present an interactive, data-driven system for designing 
expressive robot behaviors. The primary goal is to increase 
the accessibility of robot behavior design for a variety of 
applications ranging from art to entertainment. The system 
enables robot behavior design using high-level and semantic 
descriptions of behavior properties such as specifying the 
desired emotion expression. To achieve such designs, the 
system combines a physics-based simulation that captures 
the robot’s motion capabilities, and a crowd-powered 
framework that extracts relationships between the robot’s 
motion parameters and the desired semantic behavior. By 
leveraging these relationships for a mixed-initiative design, 
the system guides users to explore the space of possible robot 
motions. A user-study finds the system to be useful for more 
quickly developing desirable robot behaviors.  
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INTRODUCTION 
As robots become more prevalent in social environments, 
from factory floors to personal homes, enabling robots to 
express themselves can enhance and enrich our experience 
of interactions with them. The paradigm of enabling robots 
to express intent and emotions via movements is particularly 
powerful [12, 27, 30, 36]. Instead of relying on 
anthropomorphic features or morphology, this paradigm 
leverages the human ability to identify emotion and intent 
merely from behavior to establish meaningful 
communication during interactions [1, 15, 46]. For instance, 
a robotic manipulator arm that collaborates with fellow 
workers on a factory floor could communicate its confusion 
about a task, or appear tired when it detects wear and tear, by 
moving in a specific manner.  

However, creating such expressive movement behaviors for 
robots is highly challenging [5]. Similar to digital character 
animation, creating behaviors for robotic characters requires 
tremendous skill, and effort [10]. Apart from the inherent 
task complexity and domain knowledge requirements, robot 
behavior design also suffers from the lack of suitable design 
tools. Existing animation tools such as Blender [14] and 
Maya [52] enable design with absolute human control but 
offer limited options for integration with physical hardware. 
On the other hand, conventional robot control tools (e.g. 
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please see our static version of this PDF, which has been submitted as 
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ROS [53]) have extensive support for robot’s physical 
simulation and control, but do not allow for mixed-initiative 
expressive behavior design. In comparison, our goal is to 
facilitate easy and intuitive design of expressive movements 
for robotic systems over a wide variety of applications 
ranging from art to social interactions. 

Guided by feedback from a systematic survey of experts 
from animation, art, and robotics, we attempt to fill in this 
gap present in existing robot behavior design tools. We 
present Geppetto, a simulation driven robot motion design 
system that enables the design of expressive behaviors using 
high-level and semantic descriptions of behavior properties 
such as emotion conveyed by the behavior. Apart from 
physics-based motion simulation, Geppetto builds upon two 
recent advances in HCI and graphics research - Crowd-
powered Parameter Analysis [23] and Semantic Editing [50]. 
These techniques are combined into a novel data-driven 
framework for the domain of robot behavior design.  

Inspired by the work of Koyama et al. [23], crowdsourcing 
is used to obtain subjective scores pertaining to the 
perceptual quality of emotional expression for a generated 
dataset of parameterized robot motions. Using regression 
analysis, functional relationships are inferred between robot 
motion parameters and the corresponding emotional 
expressions. Using these relationships, a semantic interface 
is developed to enable gently guided intuitive editing, and 
visual exploration of the space of possible robot motions 
(Figure 1, right). A Mixed-initiative approach is used for 
handling the unique properties of our data, such as the noise 
from crowdsourcing, and the inherent subjectivity of 
emotional behaviours.  

To the best of our knowledge, this is the first system that 
enables casual users, without any domain knowledge of 
animation or robotics, to design semantically meaningful 
robotic behaviors. The system’s utility is shown with a user-
study, which indicated that users were able to create high-
quality expressive robot motions. The generalizability of the 
presented framework is demonstrated by using it for two 
distinct robotic systems: walking robots, and manipulator 
arms (Figure 2).  

 

Figure 2: Users can design expressive motions for two 
distinct types of robots: (a) a quadruped, and (b) a robotic 
arm, while exploring the space of possible motions. 

RELATED WORK 
This work is inspired and builds upon prior work on semantic 
editing, crowd-powered editing, and robot motion design. 

Semantic Editing and Design Space Exploration 
Editing using semantic or context-specific attributes has 
been explored for many complex design domains such as 3D 
models [6, 50], images [21, 24, 34], and fonts [32]. Each of 
these approaches extract relevant and human-understandable 
attributes for their design domain, and learn a mapping 
between the design parameters and these attributes. With this 
mapping, they enable intuitive, attribute based editing at 
design time. We wish to extend this methodology to the 
domain of robotics. Unlike the domain of 3D models and 
images, there is no existing large dataset of expressive robot 
motions. We therefore parameterize and synthesize a wide 
variety of such motions using a physics-based simulation. 

Along with semantic editing, visual design space exploration 
is another useful approach. Researchers have proposed 
intuitive low-dimensional control spaces for predictable 
editing, and design space exploration of complex design 
problems such as editing material appearance [38], or 3D 
models [28, 50]. Instead of finding a low-dimensional 
control space, we expose the current parameter space in a 
more visual, and meaningful manner.  

This work builds on Koyama et al. which enables intuitive 
editing of continuous parameters corresponding to digital 
content such as images, visually, using a crowd-powered 
framework [23]. Parameter sliders with heat-map 
visualizations are used to gently guide the users to a relevant 
region in the design space. Geppetto deals with design spaces 
that consist of both continuous and discrete parameters and 
is particularly suited to design spaces represented by low 
fidelity or noisy data. We leverage mixed-initiative design 
for scenarios where the available datasets capture the design 
space in a limited manner, or when the data is relatively 
noisy. This is achieved by providing relevant guidance in a 
transparent manner. Specifically, parameter sliders are 
annotated with curves that indicate both parameter-semantic 
attribute relationships, and the degrees of uncertainty within 
those relationships. Finally, unlike most crowd-powered 
systems, Geppetto provide user interface features that enable 
users to combine their individual preferences with crowd’s 
preferences at design time.  

Designing Expressive Robotic Motion 
Many data-driven, or model based approaches have been 
explored for motion synthesis. In particular, motion capture 
and video data have been extensively used for increasing the 
style and expressiveness of anthropomorphic characters [2, 
33, 39]. However, it is unclear how to obtain or use such data 
for more generic and non-anthropomorphic robots such as 
robotic arms. A complementary user-driven approach is to 
animate toy robots, or virtual characters using puppeteering 
[3, 8, 17, 40]. However, it is hard to pose highly articulated 
robots or characters to create natural looking and feasible 
motions using puppets. Therefore, most puppeteering based 
approaches are either limited to very simple characters or 
robots [3, 40], or they fail to account for physical feasibility 
[8, 17]. Finally, models that encode animation principles [45, 
48] have been leveraged to improve expressiveness of 
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robotic systems for enhanced human-robot interaction [36, 
42, 43]. Unfortunately, many of these principles are abstract 
and generic. They are therefore typically used either as add-
on primitives for pre-existing motions [42], or as high-level 
guides for manual design, similar to how animators would 
use them [36]. The principles do not provide any guidance 
about synthesizing distinct emotive motions from scratch. 
Instead, our system enables users to design motions by 
editing parameterized robot motions in simulation.  

Researchers have shown a strong relation between motion 
parameters and attribution of affect, for robots with different 
embodiments [18, 37]. In particular, speed and robot pose 
[18, 20, 44], acceleration, and motion path curvature [4, 20, 
37], and motion timing [20, 51] have been found to affect 
perceptions of motions. We therefore parameterize the 
walking robot’s motion using features such as pose, speed, 
and motion timing. The robot arm’s motion is parameterized 
in the task space1 instead of the joint space, inspired by how 
abstract trajectories could convey different emotions [4]. The 
system’s semantically-guided parameter editing approach 
complements recent research on optimization-guided and 
keyframe-based motion editing for animated characters [22]. 

Crowdsourcing in Robotics and Design 
Crowdsourcing is used to understand the coupled effect of 
various motion parameters on the overall emotional 
perception. Crowdsourcing enables the use of human 
expertise for tasks that are complex for computers, and has 
been widely used for a variety of tasks ranging from labeling, 
to gathering common-sense knowledge and opinions [49]. In 
robotics, crowdsourcing has been used to enable robots to 
recognize objects or actions [13, 41], as well as for robot 
control [7]. Our work is most closely related to the research 
on understanding visual perception, and enabling better 
design through crowdsourcing [11, 23, 31, 50]. We build on 
these approaches and use a crowd-powered pairwise 
comparison approach for evaluating motions. The 
crowdsourcing pipeline is customized to deal with the greater 
difficulty and cost associated with evaluating our motion 
designs, which results from the length of the animation 
needing to be judged, and uncertainty due to the high 
subjectivity of the task. Notably, we use a modified Swiss-
system tournament [9] approach with an added elimination 
step, and use TrueSkill [19] to efficiently compute the 
perceptual quality scores for the synthesized motions. 

CURRENT DESIGN APPROACHES 
To understand the current challenges of robotic motion 
design, a survey of experts who design expressive behaviors 
for applications ranging from art and entertainment to 
Human-Robot Interaction (HRI) was conducted. 

Survey Instrument 
HRI and robotics researchers, artists, and animators 
participated in a survey. In addition to background questions, 

                                                           
1 Task space is the lower-dimensional subspace of motion 
directly relevant for the task. 

the survey consisted of 5-point Likert-scale and free-form 
questions. The questions elicited information about the types 
of behaviors they designed, how and why they designed 
them, as well as the time taken and tools used in design. We 
also asked their opinion about the tools they used, in terms 
of ease of use, learnability, and suitability for various robot 
behavior design tasks.  

Responses 
Eight experts (4 HRI researchers, 4 artists/animators) with 
design experience ranging from 0.5 years – 27 years (average 
11.3 years) participated in the survey. The experience of 
these experts covered a diverse range of contexts such as 
2D/3D character behavior design, industrial and social robot 
design, and kinetic art sculpture.  

Despite the diversity in applications, a common motivation 
behind designing expressive robots was to improve the 
communication, involvement, and interaction of the 
technology they were developing (e.g., P3: “I want my robots 
to be more human-readable.”, P4: “[I want] to turn viewers 
into involved, emotionally invested participants”). Another 
common theme highlighted the effort required to design 
behaviours. Experts who designed short-length behaviors of 
less than a minute (50% of our participants) reported a design 
time of greater than one hour. Likewise, experts who 
designed longer behaviors (lasting multiple minutes or 
hours) spent several days and sometimes several weeks for 
their design. 

Another common theme was the lack of tools for designing 
robotic behaviors. Researchers as well as artists emphasized 
that the existing tools were not well suited for robot behavior 
design (with an average score of 4). Experts typically relied 
on animation tools or ended up developing their own 
software. Several experts reported on the difficulty of 
obtaining robot simulation models (P3: “Putting kinematic 
robot models into simulation takes a long time.”), pre-
visualization of robot capabilities (P4: “Pre-visualization 
can be quite difficult. One needs to have the actual robot 
working in a realistic setting in order to test it.”), and manual 
behavior editing (P2: “Manually creating gestures through 
motor positions is tedious, unintuitive”, P5: “My chief 
problem is the lack of software tools for authoring dynamic 
performances with shared autonomy; I end up having to 
write too much software.”).  Experts further reported that the 
tools they used were hard to learn and use (mean of 4.12). 
They also emphasized the consequential challenges faced by 
novices in such design applications (e.g., P1: “Having to 
learn lots of different, changing software and then figuring 
out how to connect them is difficult for people just starting 
out.”, P3: “The toolchain is complicated and tedious.”). 

To understand possibilities for assisting robotic designers, 
we asked why they design expressive robot behaviors. 
Experts replied with a variety of reasons such as increasing 
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communication and trust of robots (P3: “Being expressive is 
part of being communicative, which is critical for functional 
and fluent human-robot interactions. Emotion can be useful 
for communicating a robot's goal.”, P7: “I see a robot's 
bodily motion as a lower-level means of broadcasting 
complex information to surrounding people.”), to tell a story 
and develop relationships with users (P6: “Many engineering 
‘stories’ do not show realistic motion which allows the 
viewer to dismiss the concepts.”, P2: “To develop 
relationships with users through tangible actions.”).  

Overall, the survey validated the need for improved systems 
for the design of expressive robot behaviors. It revealed 
interesting use cases and current challenges, pointing to a 
need for new, more intuitive and efficient tools. 

GEPPETTO: SEMANTIC EDITING FOR ROBOTICS 
Inspired by the challenges and desires found through the 
survey and in the literature, Geppetto enables robot motion 
design with the help of a physics-based simulation. 
Parameters affecting the robot motion are presented to the 
user, and the system aims to reduce the domain knowledge 
required when modifying these parameters to create 
desirable motions. In particular, the system supports editing 
based on semantic user intent, such as designing a “happy-
looking” robot. The system currently supports such semantic 
design for six basic emotion categories – happy, sad, angry, 
scared, surprised, and disgusted, though it could be extended 
to other semantic attributes.  

Interface Design 
The UI (Figure 3) consists of three main elements – a 3D 
preview window, motion gallery, and guided-editing pane. 
The 3D preview window renders the main robot and 
animates its simulated motion in real-time. The sliders in the 
editing pane allow users to specify the robot’s motion 
parameters. The motion gallery displays various expressive 
motions of different styles for a user-specified emotion 
category. This gallery is populated using the emotion 
specific top-ranking motions from our dataset, obtained 
using sampling and crowdsourcing analysis.  

 

Figure 3: User interface overview. The 3D preview window 
renders the robot's motion.  The gallery and annotated sliders 
provide semantically relevant information at design time. 

Design Process Overview  
The design process for an emotive robot behavior begins 
with a user selecting a desired emotional expression (happy, 
sad, etc.) for the behavior from the editing pane. They can 

either start with a neutral “default motion”, or they can take 
advantage of the example motions in the gallery by browsing 
through the samples to get a sense of different motion 
alternatives, and then load a preferred example for further 
editing. Such an approach of using example-based 
inspiration has been found to support creativity in designers 
[26]. Gallery-based initialization is especially useful for 
novices who may not know what an expressive robot motion 
looks like. Once a motion is initialized, users can edit 
motion's expressiveness as desired using two guided editing 
modes – manual, and automatic. Each mode focuses on two 
different, and critical requirements of casual users – fast 
prototyping customization, and learning. The automatic 
mode enables users to quickly customize the robot's motion 
without worrying about low-level parameter editing. The 
manual mode, on the other hand,  exposes users to parameter 
level editing such that they develop an inherent 
understanding of which parameters create the necessary 
expressiveness, as well as how to edit them. With every user 
edit, the simulation updates the robot’s motion in the preview 
to reflect the corresponding change.  

 

Figure 4: An example workflow designing an angry robot. 
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To design an angry robot, the user starts with the default 
motion, and proceeds to manually edit it using parameter 
sliders (Figure 4). To understand which parameters to change 
and how to change them, the user takes advantage of 
parameter-emotion perception relationship curves 
visualized on each slider (Figure 5b). Based on these curves, 
the user increases the speed and tilts the robot’s torso 
downwards to make it look angrier (Figure 4a). The user then 
leverages the example motions in the gallery for further 
editing. The user hovers over the preferred gallery motion to 
understand which parameters created it, with the help of 
parameter comparison cursors (Figure 5c). Inspired by the 
feet stomping of second gallery example, the user edits the 
current motion’s feet height to achieve the same (Figure 4b). 
Finally, to explore angrier motions with similar speed, feet 
stomping, and torso tilt, the user activates locking of these 
parameters, and drags the automatic editing slider (Figure 
4c).  In response, the system changes multiple parameters 
except the locked ones, to increase the motion’s 
expressiveness. 

Interface Editing Features 
As highlighted by the workflow, manual editing leads to user 
understanding of parameters, and is enabled by parameter-
emotion perception relationship curves and parameter 
comparison cursors. On the other hand, automatic editing 
allows quick updates of the user’s motion design, based on 
user’s high-level intent of increasing or decreasing the 
intensity of robot’s emotional expression. It is powered by 
automatic update slider and parameter locking feature. 

Parameter-emotion perception relationship curves  
These curves, which are accompanied with each slider, show 
the effect of changing the slider’s parameter on the robot’s 
resultant emotional expression. Since these relationships are 
extracted from subjective crowd-sourced data, the UI also 
shows the system’s confidence in these relationships 
visualized as non-linear error bands around the predicted 
score (see Figure 5b). This allows users to determine the 
extent to which they may want to follow the curves during 
parameter editing. The inclusion of these error bands brings 
transparency to the mixed-initiative editing process, 
allowing the user to better collaborate with the system to 
achieve their goals. 

Parameter comparison cursors with motion gallery  
Different sets of parameter values result in widely diverse 
motions; each corresponding to a different style or intensity 
of an emotion. To enable users in understanding how 
different parameter values result in motion diversity, we 
leverage the diverse examples in the motion gallery. Users 
can visualize parameter values corresponding to any motion 
in the gallery on the sliders, by hovering over that motion 
(Figure 4c). This enables the users to make parameter-level 
comparisons between the motions in the gallery and their 
design, and copy the preferred individual parameter values. 

Automatic update slider 
By dragging the automatic update slider, users can update 
multiple parameters simultaneously, rather than adjusting 

them individually. When the position of the slider is 
changed, the system automatically modifies multiple 
parameters to achieve the corresponding change in the 
robot’s emotional expression. This feature can be used in 
combination with parameter locking (below) to achieve the 
desired behavior.  

 

Figure 5: UI elements. (a) Parameter information is 
displayed as tooltips, and highlighted directly on the robot. 
(b) Parameter-emotion perception curve (in red) is 
visualized with an uncertainty band (shaded red) on each 
slider. The dotted line corresponds to current motion’s 
estimated emotional perception. (c) When a user hovers 
over a gallery motion, the gallery motion's parameter values 
are highlighted on the sliders (in light gray) alongside the 
current motion’s parameters (blue). 

Parameter locking 
As the automatic slider updates multiple parameters at a 
time, changing the automatic slider by a small amount may 
drastically modify the resulting motion. As a result, the 
nuanced features of the robot’s motion achieved by a user’s 
earlier edits may be lost when using the automatic slider.  To 
preserve the desirable features of their current motion during 
automatic editing, users can lock parameters. For instance, in 
the example scenario of angry motion design, the user may 
want to maintain the speed, torso tilt, and feet stomping 
achieved through manual editing, while exploring better limb 
poses. To achieve this, the user can lock all but the pose 
parameters through the editing panel, and then use the 
automatic update slider to obtain an angrier robot motion 
with similar speed, feet stomping, and torso tilt (Figure 5c). 
Note that this is much quicker than the alternative of 
manually editing 6 pose parameters. Parameter locking thus 
allows users to combine their design preferences with crowd-
powered guidance during automatic editing of designs. 

The gallery motions are also updated to show more relevant 
examples after parameters are locked. To update the gallery, 
we sort the motions in the dataset based on the similarity of 
parameters to the values locked by the user, and the quality 
of emotion expression. This gives users alternate motions 
satisfying the preferences indicated by the locked features.  

Our system supports various workflows for motion editing. 
An optimal workflow could combine both manual and 
automatic editing as needed. Our video shows such 
workflows in action. 
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IMPLEMENTATION 

Motion synthesis using physics simulation 
Our system currently supports two robotic platforms (Figure 
2), a quadruped walking robot, and an industrial robotic arm. 
Walking robots have been used in interactive settings such 
as in animatronics [54], and consumer products [55]. As a 
representative from this class of robotic systems, we use a 
small quadruped robot with three degrees of freedom (DOF) 
per leg. The robotic arm is an industrial, six DOF KUKA arm 
[56]. Similar robotic arms have been used for applications 
requiring expressive motions such as collaborative building 
[25], and interactive art [16]. We consider periodic walking 
motions for the quadruped, while for the robotic arm, we 
consider the task of moving towards a target point. 

Motion synthesis for quadruped 
The quadruped robot's motion consists of periodic 
coordinated limb movements (gait cycle). We obtain such a 
motion through constrained trajectory optimization [29]. 

To enable the design and dataset generation of diverse 
motion styles, we expose eleven parameters of the 
optimization that affect the robot’s motion style. Various 
motion styles can be created by using different robot poses 
and gait patterns (e.g., galloping, trotting, walking etc.). Gait 
patterns are defined for a gait cycle, and are characterized by 
the order of limb movements, relative phase of limb swing, 
and stance. Pose is defined using relative joint angles of 
robot's limbs, as well as its global torso orientation angle 
defined relative to the ground plane. Pose consists of 7 
angular values -- torso angle, front and rear hip angles, front 
and rear knee angles, and front and rear ankle angles (Figure 
6a). Apart from speed (1DOF), pose (7DOF), gait time 
(1DOF) and pattern (1DOF), we also parameterize foot 
height (1DOF) to create the effect of feet “stomping”. The 
gait pattern corresponding to each gait style is discretely 
encoded using a graph (see Figure 6a), while all other 
parameters are continuous.  

Motion synthesis for robotic arm 
Expressiveness of robotic arms moving towards a goal can 
be affected by many features, such as the curvature of its path 
[4], the variability of its speed [51], and path smoothness. 
Instead of directly prescribing the robot arm’s path and 
speed, we use a Boids simulation to drive its motion – similar 
to the approach used in Mimus. [16].  

The Boids framework uses virtual agents called boids, and a 
set of simple interaction rules between them to create 
smooth, complex and natural emergent behaviors [16]. We 
define a flock of m number of boids in the 3D task space, and 
then use the resultant average path of the flock as the target 
path for the robotic arm's end-effector, to be achieved 
through Inverse Kinematics (IK). The resultant motion and 
the path of the flock depend upon the interaction rules that 
decide each boid’s movement, as a reaction to its nearby 
flock-mates within a small neighborhood around itself. 

We use five interaction rules -- three rules from the basic 
boids model [35]: separation, alignment, and cohesion; and 

two other custom rules: goal-seeking, and exploration. Each 
rule creates a unique steering force that moves and updates a 
boid’s position in the space as the simulation progresses (see 
Figure 6b). Separation steers a boid to avoid crowding with 
local flock-mates, while alignment steers it towards the 
average heading of the flock. Likewise, cohesion aims to 
move boids towards the average position of neighboring 
flock-mates. The seek rule complements these basic rules, by 
steering the boids to move towards a pre-defined goal in 
space (e.g., the blue goal point in Figure 6b). Finally, 
exploration encourages randomness in the flock by steering 
the boids towards a random goal intermittently. This rule is 
thus an extension of the seeking rule for random goals along 
the flock’s path.  

 

Figure 6: (a) The quadruped’s motion is parameterized 
using joint poses, walking speed, foot height, gait time, and 
gait pattern (shown in red). (b) The arm is driven by a Boids 
flocking simulation. The flock is driven by interaction rules 
such as separation, cohesion, alignment, etc. The arm 
follows the resultant emergent path of the flock. 

Diverse flocking behaviors can be generated by varying the 
strength of each interaction rule, flock speed, and the 
neighborhood of influence for boids. We control the 
strengths of various rules using corresponding weight 
parameters. The exploration rule is further parameterized by 
the sampling frequency and position of random goals. 
Finally, to achieve more diversity in motion generation, we 
also define a parameterized initialization procedure that 
initializes the flock to move in one of six specific directions 
for a certain period of time. In total, 11 parameters (10 
continuous, 1 discrete) define the motion of the arm.  

Semantic mapping framework 
The semantic information about the robot motions is 
obtained through our mapping framework that relates the 
robot’s motion parameter space to emotional expression 
space. Our framework leverages the simulation to generate a 
dataset of diverse motions, evaluates the emotional 
expression of the dataset motions using crowdsourcing, and 
then uses regression to obtain the mapping between motion 
parameters and emotional expression (Figure 1). 

Motion dataset generation  
We generate a dataset of diverse motions for the quadruped 
and the robotic arm using sampling of motion parameters. 
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The sampling process captures the design space of possible 
motion styles that can be created by changing various motion 
parameters. We empirically choose a sampling range for all 
the continuous variables to generate sufficient motion 
variations while ensuring physical feasibility. The discrete 
parameters such as gait pattern for the quadruped, and initial 
direction of boids motion for the robotic arm are uniformly 
sampled from a fixed set of possible values. For each 
sampled motion parameter set, we record an animation of the 
corresponding robot motion for crowdsourcing evaluation. 
For the quadruped, 2,000 motion parameter sets were 
sampled, resulting in 2,000 unique motions. 1,230 motions 
were physically infeasible due to collisions or instability, 
resulting in 670 motions for the final dataset. Similarly, 
1,000 motions were sampled for the robotic arm, all of which 
were physically feasible and retained. 

 

Figure 7: Interface crowd-workers used to judge emotion. 

Crowdsourcing evaluation of perceived emotion  
By crowdsourcing emotion perception, the system can give 
a relative scoring to each motion, per emotion, such that a 
higher score reflects a better expression of an emotion. 

While there is often consensus about the particular emotion 
that is expressed by a motion, the degree of expressiveness 
is highly subjective and its perception varies between 
individuals. Given this, we model the score as a Gaussian 
distribution N(µ, σ) with mean µ, and uncertainty (σ). To 
compute the score, we create a modified Swiss-system style 
tournament [9] where each motion sample in the dataset is 
treated as competitor, and competes with others to obtain the 
highest score per emotion category. We use the TrueSkill 
rating system [19] to convert the results of the tournament 
into Gaussian score estimates for individual samples.  

To efficiently compute emotion ratings of motion samples 
using TrueSkill, we use an elimination-based tournament set-
up instead of exhaustively competing each sample against 
every other. This enables us to efficiently deal with a large 
number of samples, and the inherent subjectivity in the data, 
to get the ‘top’ designs for each emotion. After one round of 
comparisons, wherein each sample is compared five times 
(against 5 different designs, by 5 different people), the 
designs ranked in the bottom half are eliminated. This 
process is repeated over three rounds (with five, five, and ten 
comparisons), until we obtain the top motion samples for a 
given emotion. Elimination of ambiguous, low-ranking 

samples in earlier rounds allows expressive, high-ranking 
samples to have a higher number of comparisons against 
other highly-ranked designs, which improves the quality of 
their score estimate (reducing the corresponding uncertainty 
σ of the estimate). This strategy provides more accuracy for 
the high-ranking samples, while minimizing resources spent 
on ambiguous or low-ranking samples. For the quadruped 
motion dataset there were a total of 3,355 comparisons to 
arrive at quality rankings for the top 25% of the samples. A 
more naïve approach of a pure round-robin without 
elimination would require twice the number of comparisons 
(6,700), and the quality of the comparisons would be lower 
as there would be more comparisons to low-ranking designs.  

To conduct the tournament, crowd workers on Amazon 
Mechanical Turk serve as judges for each comparison 
between motion samples. For each comparison, a worker is 
shown a pair of robot motion videos, and asked “Please 
identify which of the two robot motions seems __, or, if they 
are equivalent”, where __ is one of: happier, sadder, 
angrier, more surprised, more scared, or more disgusted. 
(Figure 7). Such a pairwise comparison approach has been 
preferred in the literature over asking the workers to provide 
an absolute score for individual samples [50]. 

Mapping parameters to emotion 
After data is collected, a mapping between movement and 
perceived emotion is computed. Specifically, given an n-
dimensional motion parameter set φn, and a corresponding 
real-valued perception score µ, our goal is to learn a function 
f : φn→µ, that predicts the score for any seen or unseen 
motion represented by its parameter set. Obtaining such a 
function f that can estimate the perceptual quality of any 
emotion for a motion allows us to (a) gauge the perceptual 
quality of user’s motion design at a given time, on the fly, 
and (b) help the user understand which parameters to edit, 
and how to edit to achieve the desired effect. The predictor 
function (f) thus powers our parameter-perception curves for 
manual editing, as well as our automatic update slider. 

To generate the parameter emotion curves rendered on the 
sliders, regression was used to construct the relationship 
between parameter and emotion. Both linear regression and 
Artificial Neural Networks were explored to provide this 
mapping, however, linear regression provided a similar fit 
and was much faster to execute. For the quadruped, the best-
fitted emotion (happy) had R2 score of 0.50, and the worst-
fitted (surprise) had R2 = 0.12 (Figure 8). The variation in the 
fit quality for different emotion categories is an indication of 
the subjective nature of emotion ratings, and the inherent 
difficulty in expressing nuanced emotions in a parameterized 
quadruped walking robot motion. Detailed results for all 
emotion categories with ANN as well as linear regression 
can be found in the supplementary material. 

Design using Predictor Functions  
Given a motion parameter set φ, a predictor function f for an 
emotion outputs the corresponding perception score.  Let the 
motion parameter set corresponding to current robot motion 
be φn, such that it consists of n parameters pi -- φn = {p1, …, 
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pn}. To compute the parameter-perception curve for the 
slider corresponding to p1, we vary p1 linearly over the 
displayed range, without changing the values of other 
parameters p2,…,pn . The corresponding values of f are then 
visualized as a curve on the slider. With every manual (or 
automatic) user-initiated operation that changes the current 
motion parameter set φn, we dynamically update all the slider 
curves. The slider curves also get updated when users change 
the target emotion for their motion design. Since the 
predictor functions are obtained from noisy data, we 
compute and plot the 95% confidence interval (CI) for the 
predicted score at each point along the curve.  

The predictor functions not only predict the perceptual 
quality of an emotion for a motion parameter set, but also 
provide information about regions in the parameter space 
that correspond to better emotional expression. Starting from 
a point in the parameter space φ, such regions can be reached 
by moving along the direction of predictor function f’s 
gradient (df/dφ). The automatic update slider leverages this 
to update the robot motion. Unfortunately, since φ consists 
of both discrete and continuous parameters, we cannot 
compute the gradient df/dφ with respect to all parameters. 
Consequently, when the automatic slider is used, we update 
the discrete and continuous parameters one by one. We first 
update the discrete parameter to achieve the user requested 
change as best as possible. Given the discrete parameter’s 
value, we then change the continuous parameters using the 
gradient-based update. Specifically, for a given motion 
parameter set φ with continuous parameters set φc, the 
updated parameter set φc’ is φc'= φc+ δ df/dφc, where δ is the 
step-size along the gradient. The step-size is proportional to 
the change in the slider cursor position (Δ), which 
consequently reflects the desired change in robot’s emotional 
expression (Δf). The step-size δ required to achieve the 
desired Δf is computed using backtracking line-search [47]. 
δ is positive if the user moves the automatic slider to increase 
the emotional expression, and is negative otherwise. 

 

Figure 8: Comparison of predicted emotion values (orange) 
with their crowdsourced values (gray) for the test samples 
of the quadruped motion dataset. The best (happy) and 
worst (surprised) fitting emotion categories are displayed. 

EVALUATION 
To evaluate Geppetto’s efficacy and features, we conducted 
a user-study with participants who had no prior experience 
in character animation, or HRI.  

Participants 
12 participants (9 males, 20-35 years of age) were recruited. 
Participants were reimbursed $25 USD for their time.  

Study Design  
The study had a within subject design, with participants 
creating expressive motions for the quadruped using two 
versions of the system (Figure 8). The parameter control UI 
allowed editing robot motion parameters with sliders but did 
not provide informative curves, automatic sliders, or the 
gallery. The semantic control UI was the full interface as 
described above. Since the quality of guidance provided by 
the semantic control UI depends upon the predictor function 
accuracy for an emotion, the emotion categories with highest 
(happy, sad), and the lowest (surprised) predictor function 
accuracy were used. The order of the UI conditions and 
emotions were counterbalanced. 

 
Figure 8: Interfaces used in the study two conditions, 
parameter (left) and semantic (right). 

Procedure 
The study began with an overview of the design task for 5 
minutes, followed by participant training and motion design 
sessions for 50 minutes, concluding with a 5-minute survey. 
For each condition, the participants were given a demo of the 
system, and could to train for up to 5 minutes. Post training, 
participants were given up to 5 minutes each for designing 
happy, sad, and surprised robot motions. Thus, each 
participant designed 6 robot motions in total. Participants’ 
motion designs were automatically saved every 30 seconds 
as well as when they indicated they were complete. 

Results 

Quantitative results 
We compare the parameter control and semantic control UI 
using two quantitative measures – design time, and design 
quality. The perceptual quality of emotional expression in 
the user-created motion designs are evaluated using 
crowdsourcing, with the top and bottom 5 synthesized 
designs for each category included in the tournament. The 
resultant scores show that users were able to create better 
expressive motions on average using the semantic UI, across 
all emotions (Figure 9).  
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Figure 9: Mean emotion perception scores of the top 5 
designs from the original dataset (Synthesized) with those 
created by the study participants. Bars show 95% CIs. 

We also find that the designs created using the semantic UI 
outperform the best motions from our original dataset in 
expression of various emotions (Figure 9, Semantic vs. 
Synthesized). This points towards both the strengths and 
drawbacks of our system. The dataset synthesized using 
sparse random sampling may not be capturing the design 
space with high fidelity. Subjective crowdsourcing analysis 
of the dataset adds further ambiguity and noise to the data. 
Despite this, Geppetto allows users to explore beyond the 
synthesized dataset, by enabling and leveraging their 
intuition of parameters at design time, guided by the emotion 
predictor functions.  

 

Figure 10: Individual and average design times are shown 
using dots and lines respectively, for both of our UIs. 
Shaded regions represent 95% CI.  

The semantic UI was more efficient, as participants tended 
to take less time on average using the semantic UI, despite 
ending up with more emotive final outcomes (Figure 10). 
Overall, the semantic UI enables users to start with better 
designs and to explore higher quality designs during their 
session (Figure 11). 

 

Figure 11: The evolution of the quality of user-designs (bars 
represent 95% CIs at each time step). The dotted lines 
represent the linear fit of mean scores over all emotions and 
participants, and the bands are a 95% CI around the fit.  

Qualitative Feedback and Observations 
The survey provided further insights about designing with 
our system. All participants preferred semantic control UI to 
parameter control UI overall (4.67 average score on 5-pt 
Likert scale; 5 is the highest). Participants believed that they 
could create relatively better designs (4.67 average), in less 
time with the semantic control UI (4.83 average). This 
feedback further corroborates the quantitative results. 
Participants’ design satisfaction varied across emotions, and 
was a function of the quality of semantic information 
provided. Consequently, 11 of 12 participants were satisfied 
with their happy design, while only 2 of 12 participants were 
satisfied with their surprised design. 

We also asked the participants for feedback on individual UI 
features using Likert-scale questions. 10 participants found 
the motion gallery and slider curves to be extremely or very 
useful. The parameter-comparison cursors and automatic 
update slider were also found to be extremely or very useful 
by 6 participants. The gallery catered to participants who 
were unclear about how to express an emotion, as well as to 
participants who had crude ideas about their desired design 
by providing them with design alternatives. Uncertainty 
information on slider plots was also found useful. 
Specifically, two participants commented that since the 
surprised emotion parameter-emotion perception curves had 
high uncertainty (surprise is our worst-fitted emotion), they 
trusted the curves less, and explored editing on their own. 
Parameter locking was only found to be very useful by 3 
participants. Only the participants who had a clearer idea of 
what they wanted used parameter locking. Overall, the 
participants explored more while designing with semantic 
control UI owing to the availability of more features and 
design alternatives. 

The feedback and usage patterns points to the diversity of 
interactions and workflows that emerged during the study. 
Participants combined manual and automatic editing features 
fluidly. The feature usage also varied across participants. For 
instance, some subjects only used the motion gallery for 
design initialization, while some others leveraged it, with the 
help of parameter comparison cursors, to better learn and 
understand how specific body poses and other subtle motion 
features could be achieved. The automatic update slider was 
also used in multiple ways; some used it to fine-tune their 
manually edited motions, while others used it to obtain a 
good starting point especially when they were dissatisfied 
with the gallery examples. This highlights the dependence of 
workflows on the noise in the data and accuracy of semantic 
information. Since surprise was not well captured by our 
dataset or individual predictor functions, participants used 
the automatic slider the most for this emotion. 

The participants also provided feedback about the limitations 
of our design system. Some participants found the automatic 
slider to be very aggressive since it made major changes in 
the motion, resulting in the loss of nuanced features of the 
motion. While parameter locking helps with capturing user 
intent about desired improvement and preserving nuances, it 
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needs more understanding of the parameters and desired 
motion characteristics for effective use. The majority of 
participants requested an ‘edit history’ and better navigation 
of their design trajectory. Some participants also requested 
the ability to edit robot structure and aesthetics for more 
expressiveness. Finally, participants echoed the need of 
capturing and enabling motion design with additional 
semantic information. Many participants thought about 
expressive motions in the space of actions and wanted to 
understand the mapping between parameters and space of 
possible and meaningful actions, so as to combine these 
actions into a behavior. For instance, a participant wanted to 
edit the parameters to make the robot drag its feet for 
appearing sad, while another participant wanted the robot to 
jump in place to express excitement. While our gallery 
enables users to map parameters to these desirable actions 
indirectly, users may or may not find the action they are 
looking for in the gallery owing to the sparse sampling of the 
dataset that powers the gallery. 

DISCUSSION AND FUTURE WORK 
Currently, our system allows design space exploration and 
editing given a single high-level semantic goal. Enabling 
concurrent design for multiple semantic design goals such as 
to express a mixture of emotions will provide the users with 
greater flexibility of design. Further, we will also explore if 
the user-design experience can be improved by capturing 
user-intent in more detail. Instead of using only high-level 
semantics to capture user-intent, high-level semantics could 
be further coupled with mid-level semantics relevant to the 
task. For instance, mid-level semantics corresponding to 
emotionally expressive motion design may correspond to 
actions such as dragging feet, jumping, or appearing 
crouched. Such a representation could also enable a more 
users to gain a better understanding of the design space. 

Our system will also benefit from better dataset generation 
techniques. In particular, adaptive sampling which focuses 
on regions with better designs would allow the system to 
capture the design space with more fidelity. Additionally, on-
demand sampling and dataset generation during user-design 
may further enable the system to provide guidance based on 
user-preferences. Re-using semantic information extracted 
from a particular robot’s dataset to enable the design for a 
different robot will also be essential for scalability of our 
system. 

Finally, a simulation-driven design system like ours can only 
be as good as the underlying simulation. Our current motion 
parameterization and simulation doesn't produce motions 
suitable for conveying subtle emotions such as disgust and 
surprise. Parameterizing and synthesizing emotionally 
expressive robotic behaviors is an exciting future area of 
research. We also currently limit ourselves to the creation of 
robotic expressions and personality through motions only. 
However, aesthetics and physical structure are equally 
important for visual appeal. Parameterization and intuitive 
editing of aesthetics is thus an interesting open problem. In 
particular, we envision a semantic design system that 

exposes the coupling of structure and motion towards 
creating appealing robots. Such a system will not only 
support the design of next generation of social and 
collaborative robots, but will be equally valuable for 
consumer robotics.  

CONCLUSION 
Towards increasing the accessibility of robot behavior 
design, we presented a simulation-driven and crowd-
powered system that enabled semantic design of robot 
motions. Despite the subjectivity of the task, the system 
succeeded at enabling desirable design experience with the 
help of data-driven guidance and design space exploration, 
as demonstrated by our user study. We hope that our work 
will lead to the development of additional tools that catered 
to the task of allowing both novices and experts to create 
desirable robot motions. 
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