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Abstract 
This dissertation defines and explores Graspable User Interfaces, an evolution of the 
input mechanisms used in graphical user interfaces (GUIs). A Graspable UI design 
provides users concurrent access to multiple, specialized input devices which can 
serve as dedicated physical interface widgets, affording physical manipulation and 
spatial arrangements. Like conventional GUIs, physical devices function as 
“handles” or manual controllers for logical functions on widgets in the interface. 
However, the notion of the Graspable UI builds on current practice in a number of 
ways. With conventional GUIs, there is typically only one graphical input device, 
such as a mouse. Hence, the physical handle is necessarily “time-multiplexed,” 
being repeatedly attached and unattached to the various logical functions of the 
GUI. A significant aspect of the Graspable UI is that there can be more than one 
input device. Hence input control can then be “space-multiplexed.” That is, different 
devices can be attached to different functions, each independently (but possibly 
simultaneously) accessible. This, then affords the capability to take advantage of the 
shape, size and position of the physical controller to increase functionality and 
decrease complexity. It also means that the potential persistence of attachment of a 
device to a function can be increased. By using physical objects, we not only allow 
users to employ a larger expressive range of gestures and grasping behaviors but 
also to leverage off of a user's innate spatial reasoning skills and everyday 
knowledge of object manipulations. 

In this thesis the concept of Graspable user interfaces is defined. Support for the 
concept is provided from the psychological literature. Instantiations of the concept 
are found in existing user interfaces. A task analysis of an existing interface's input 
activities and how to convert these to Graspable user interface devices is presented. 
The possible uses and implementation difficulties of bricks, a specific Graspable user 
interface are investigated. Finally, the advantages of two of the Graspable UI 
properties over conventional time-multiplexed generic input devices is measured by 
two controlled experiments.  
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The bottleneck in improving the usefulness of interactive systems increasingly lies 
not in performing the processing task itself but in communicating requests and 
results between the system and its user. The best leverage for progress in this area 
therefore now lies at the user interface, rather than the system internals. Faster, 
more natural, and more convenient means for users and computers to exchange 
information are needed. On the user’s side, interactive system technology is 
constrained by the nature of human communication organs and abilities; on the 
computer side, it is constrained only by input/output devices and methods that we 
can invent. The challenge before us is to design new devices and types of dialogues 
that better fit and exploit the communication-relevant characteristics of humans. 

Faster, more natural — and particularly less sequential, more parallel — modes 
of user-computer communication will help remove this bottleneck [Jacob et al., 
1993]. 

 

 xi  





Chapter 1:  Introduction 

 

1.1 Motivation 

Direct manipulation [Hutchins et al., 1986] is a fundamental concept of human-
computer interaction. Surprisingly, it is a difficult concept to precisely define (as 
well as find standard metrics for measuring) the “directness” or the 
“manipulability” of a computer interface. Nevertheless, direct manipulation is often 
a primary goal for many interface designers. Shneiderman describes direct 
manipulation interfaces as having the following three properties: 

1. Continuous representation of the object of interest. 

2. Physical actions or labeled button presses instead of complex syntax. 

3. Rapid incremental reversible operations whose impact on the object of 
interest is immediately visible [Shneiderman, 1982, p. 251]. 

Conventional graphical user interfaces (GUIs) are based on the concept of direct 
manipulation. However, we argue that the level of directness and manipulation for 
GUIs have not evolved or changed much in the last ten years. We still use a 
keyboard and mouse, with icons and menus and our gestural vocabulary ranges 
from a small set of actions such as point, click and drag. Has the GUI reached its 
final evolution? 

We argue that improving the “directness” and the “manipulability” of the interface 
can be achieved by improving the input mechanisms for graphical user interfaces. 
Current graphical user interfaces (GUIs) [Hutchins et. al. 1986; Marcus 1990; Johnson 
et. al. 1983] are designed to operate with a minimal set of physical tools (i.e., a 
keyboard and mouse). As our computer tasks become more complex, intricate and 
demanding, we may benefit by having access to specialized physical tools and 
redefining how such tools interact with the underlying software. This is the topic 
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explored in this thesis. The user interface that results, we call the “Graspable User 
Interface.”  

In the simplest definition, a Graspable User Interface is a physical handle to a virtual 
function where the physical handle serves as a dedicated functional manipulator. 
The term Graspable UI refers to both the ability to physically grasp an object (i.e., 
placing a hand on an object) as well as conceptual grasping (i.e., to take hold of 
intellectually or to comprehend). At the very least, Graspable UIs can serve as 
physical embodiments and representations of common graphical user interface 
elements (such as file icons, windows, menus or push buttons). As well, Graspable 
UIs have the potential to aid users in manipulating abstract representations of 
objects or functions on a display. 

1.2 Basic concepts 

Graspable UIs provide users concurrent access to multiple, specialized input devices 
which can serve as dedicated physical interface widgets, affording physical 
manipulation and spatial arrangements. Like conventional graphical user interfaces 
(GUIs), physical devices function as “handles” or manual controllers for logical 
functions on widgets in the interface. However, the notion of the Graspable UI 
builds on current practice in a number of ways. With conventional GUIs, there is 
typically only one graphical input device, such as a mouse. Hence, the physical 
handle is necessarily “time-multiplexed,” being repeatedly attached and unattached 
to the various logical functions of the GUI. A significant aspect of the Graspable UI 
is that there can be more than one input device. Hence input control can then be 
“space-multiplexed.” That is, different devices can be attached to different functions, 
each independently (but possibly simultaneously) accessible. This then affords the 
capability to take advantage of the shape, size and position of the physical controller 
to increase functionality and decrease complexity. It also means that the potential 
persistence of attachment of a device to a function can be increased. 

1.2.1  Graspable functions not devices 
We are proposing a conceptual shift in thinking about physical input devices not as 
graspable devices but instead as graspable functions. In the traditional sense, almost 
all physical input devices are “graspable” in that one can physically touch and hold 
them. However, we are exploring the utility of designing the physical devices as 
graspable functions. That is, a graspable function consists of a specialized physical 
input device which is bound to a virtual function and can serve as a functional 

 2  



manipulator. The difference between a GUI and a Graspable UI which uses 
graspable functions is shown in Figure 1.1. With traditional GUIs there are often 
three phases of interaction: (1) acquire physical device, (2) acquire logical device 
(e.g., a UI widget such as a scrollbar or button) and (3) manipulate the virtual device. 
Alternatively, with Graspable UIs, we can often reduce the phases of interaction to: 
(1) acquire physical device and (2) manipulate the logical device directly. This is 
possible because the physical devices can be persistently attached to a logical device. 
Thus, the devices serve as dedicated graspable functions.  

Acquire physical 
device

Acquire logical 
device

Manipulate 
logical device

Acquire physical 
device

Manipulate 
logical device

GUIs

Graspable 
UIs

(a)

(b)  
Figure 1.1.  Phases of interaction for (a) traditional GUIs and (b) Graspable UIs. 

Having a dedicated physical input device for every function can be costly and 
potentially inefficient. Figure 1.2 shows an example of two input configuration 
styles: the time-multiplexed mouse and the space-multiplexed audio mixing console.  

(a)

(b) Audio mixing console 
(space multiplexing)

Mouse 
(time multiplexing)

 

Figure 1.2.  Two extreme input configuration styles: (a) the mouse, a time-

multiplexed design and (b) an audio mixing console, a space-multiplexed design.  
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The mouse is a generic all-purpose pointing device which is constantly attached and 
detached to logical devices. In contrast, the audio mixing console has hundreds of 
physical transducers (e.g., sliders, dials, buttons) each assigned a function. Which 
input configuration is more desirable, more direct or more manipulable? We believe 
the ultimate benefits lie somewhere in between these two extremes. 

1.2.2  User interface characterization 
We now describe a user interface characterization of a Graspable UI to provide the 
feel and flavor of the concepts developed in the thesis. The Graspable UI consists of 
using generic physical handles, what we call Bricks [Fitzmaurice et. al. 1995], as 
handles to virtual objects. The bricks are approximately the size of LEGOª bricks. In 
the default configuration, multiple physical bricks sit and operate on a large 
horizontal computer display surface (the Active Desk). Thus, the physical input 
control space and virtual output display space are superimposed. The bricks act as 
input devices and are tracked by the host computer. From the computer’s 
perspective, the brick devices are tightly coupled to the host computer — capable of 
constantly receiving brick related information (e.g., position, orientation and 
selection information) which can be relayed to application programs and the 
operating system.  

The physical bricks allow for direct control of electronic objects by acting as tactile 
handles for control. These physical artifacts are essentially "graspable functions" — 
input devices which can be tightly coupled or “attached” to virtual objects for 
manipulation, or for expressing actions (e.g., to set parameters, or to initiate 
processes). Figure 1.3 shows an example of a simple graspable user interface 
configuration consisting of two components: (1) a physical object, what we call a 
“brick” and (2) a virtual object, (in this case a rectangle). 

Physical Handle 
(brick)

Virtual Object

 

Figure 1.3. A Graspable UI configuration. 
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One Handle 
In the simplest case, we can think of the bricks as handles similar to that of graphical 
handles in computer drawing programs such as MacDraw (see Figure 1.4). A 
physical handle (i.e., a brick) can be attached to an object to move or rotate it (see 
Figure 1.5). Note that the virtual object’s center of rotation is at the center of the 
brick.  

 

Figure 1.4. Traditional MacDraw-like application. Here electronic handles indicate 

that the square has been selected by the user. 

 

Figure 1.5. Move and rotate virtual object by manipulating physical brick which acts 

as a handle to virtual objects. Placing a brick on the square selects the object and 

dragging the brick causes the square to be moved (center of rotation is at the center 

of the brick). 

Grabbing a virtual object assumes that the user already has a brick in hand. One way 
a user can grab a virtual object is to place the brick directly on top of a virtual object 
(see Figure 1.6). That is, the brick will sense when it is “on” the desktop surface 
which will cause an “attachment” action to the virtual object. Sliding the brick on the 
surface will bring along any virtual objects currently attached to the brick. Raising 
the brick above the surface releases the virtual object from the physical handle (i.e., 
brick) and the two components are considered detached (see Figure 1.6).  
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.        
Figure 1.6. (a) Placing a brick on the display surface causes the virtual object 
beneath it to become attached. Lifting the brick off of the surface detaches the object. 
Figure 1.6 (b) shows a brick being grasped with natural grab points indicated by the 
curved brick sides. 

A simple example application may be a floor planner (see Figure 1.7). Each piece of 
furniture has a physical brick attached and the user can arrange the pieces, most 
likely in a rapid trial-and-error fashion. This design lends itself to two handed 
interaction and the forming of highly transient groupings by touching and moving 
multiple bricks at the same time.  

 
Figure 1.7. Simple floor planner application where electronic objects can have a 
physical brick handle to allow rapid moving and rotating within the workspace.   

Multiple Handles 
More sophisticated interaction techniques can be developed if we allow more than 
one handle (or brick) to be attached to a virtual object. For example, to stretch an 
electronic square, two physical bricks can be placed on an object. One brick acts like 
an anchor while the second brick is moved (see Figure 1.8). 
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Figure 1.8. To stretch the square, two physical bricks can be used. One brick acts 

like an anchor while the second brick is moved.  

Placing more than one brick on an electronic object gives the user multiple control 
points to manipulate the object. For example, a spline-curve can have bricks placed 
on its control points (see Figure 1.9). A more compelling example is using the 
position and orientation information of the bricks to deform the shape of an object. 
In Figure 1.10, the user starts off with a rectangle shaped object. By placing a brick at 
both ends and rotating them at the same time, the user specifies a bending 
transformation similar to what would happen in the real world if the object were 
made out of clay. It is difficult to imagine how this action or transformation could be 
expressed easily using a mouse.   

 

Figure 1.9. Many physical bricks can be used for specifying multiple control points. 

Here the bricks are used for creating a spline curve. 

An extension of this design could allow the physical bricks themselves to be 
reshaped for a given task. In Figure 1.11 we see two bricks which have been 
deformed into curved pieces and act like "guard rails." That is, their side surface is 
being used as a constraint to the electronic or virtual object. The two bricks at the 
ends are used as anchors (their bottom surfaces are used). 
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Figure 1.10. Moving and rotating both bricks at the same time causes the electronic 

object to be transformed as if it were being held in one's hand. 

One key idea that this example illustrates is that the bricks offer a significantly rich 
vocabulary of expression for input devices. Compared to most pointing devices (e.g., 
the mouse) which only offers an x-y location, the bricks offer multiple x-y locations 
and orientation information at the same instances in time. 

In this characterization, the bricks serve as graspable functions which can be 
persistently attached to virtual objects. In essence, the Graspable UIs outlined here 
are a blend of virtual and physical artifacts, each offering affordances in their 
respective instantiation. In many cases, we wish to offer a seamless blend between 
the physical and virtual worlds. Finally, the design takes advantage of a space-
multiplex instead of a time-multiplex input style.  

 

Figure 1.11 Bricks can be reshaped. Two "curve" shaped bricks are shown and act 

as "guard rails." Their side surface is being used as additional constraints to reshape 

the electronic object.  
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1.3 Core defining properties 

We now more formally present five basic defining properties that embody the 
Graspable UI concept: 

1. Space-multiplex both input and output 

2. Allow for a high degree of inter-device concurrency  

3. Increase the use of strong specialized input devices 

4. Have spatially-aware computational devices 

5. Have high spatial reconfigurability of devices and device context 

1.3.1  Space-multiplexed input and output 
The primary principle behind Graspable UIs is to adopt a space-multiplexed input 
design. Input devices can be classified as being space-multiplexed or time-multiplexed. 
With space-multiplexed input, each function to be controlled has a dedicated 
transducer, each occupying its own space. For example, an automobile has a brake, 
clutch, throttle, steering wheel, and gear shift which are distinct, dedicated 
transducers controlling a single specific task.  

In contrast, time-multiplexing input uses one device to control different functions at 
different points in time. For instance, the mouse uses time-multiplexing as it controls 
functions as diverse as menu selection, navigation using the scroll widgets, pointing, 
and activating "buttons."  

Furthermore, the Graspable UI design provides for a concurrence between space-
multiplexed input and output. Traditional GUIs have an inherent dissonance in that 
the display output is often space-multiplexed (icons or control widgets occupy their 
own space and must be made visible to use) while the input is time-multiplexed (i.e., 
most of our actions are channeled through a single device, a mouse, over time). 
Therefore, only one user driven, graphical manipulation task can be performed at a 
time, as they all use the same transducer. The resulting interaction techniques are 
often sequential in nature and mutually exclusive. Graspable UIs attempt to 
overcome this.  

The space- versus time-multiplex input style classification can also be thought of in 
terms of algorithm designs which often have a time versus space efficiency tradeoff. 
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An algorithm that takes less time to execute often requires more space (i.e., memory) 
to perform the calculations. Conversely, an algorithm may take a much longer 
amount of time to complete but consumes smaller amounts of space. Graspable UIs 
shift interactions to a more space-multiplexed design.  

Adopting a space-multiplexed input scheme has a number of implications.  

Increased use of motor channel.  As the visual channel becomes taxed, the space-
multiplex input style may offload some of the visual demands onto the 
underutilized tactile or motor systems. Many sophisticated software packages make 
intense use of the visual channel to display user interface widgets, state information, 
and application data. Even more use of the visual channel is used for software 
packages that operate on 3D data. Here the idea is to transform some of the virtual 
UI widgets and functionality onto physical widgets. This process frees up some of 
the valuable screen space, reducing the need to display static UI widgets and instead 
display more application data. For example, a set of scroll bars are often attached to 
each GUI window. They are made small to minimize the consumption of screen real 
estate. However, this very thing makes them all the harder to acquire. Scroll bars are 
good candidates for transforming into physical widgets.  

This point is especially highlighted in applications such as animation and video 
which are visually demanding tasks. Using conventional GUIs, most user interface 
widgets, such as transport controls or scroll bars, for example, require the visual 
channel to operate. This results in contention for the channel between the 
application and control tasks. Having physical controls dedicated to the function in 
question potentially afford (but do not guarantee) eyes-free access to the control 
function, thereby leaving the visual channel free for the primary application task. As 
always, it is the quality of design of the user interface which first must be satisfied 
before this potential benefit is realized.  

Physical instantiation. Which user interface elements should take on a physical 
form to allow users to more readily manipulate and interact with them? Many times 
we think of input devices as physical objects that point to and act on virtual objects. 
Instead, we can think of the physical objects as a permanent part or feature of the 
virtual objects. In terms of design, the idea is to choose which features of the hybrid 
objects should be physical or virtual based on whichever medium is best suited for 
representing and carrying out the user's task.  
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In addition, the physical laws and constraints of everyday object interaction will 
govern the overall interaction behavior between the physical and virtual interface 
elements. For example, physical laws dictate that two objects cannot occupy the 
same space or that two marbles cannot easily be stacked on top of each other. 

Everyday skills and learned motor behaviors. Using more physical artifacts in the 
user interface implies that we can tap into our everyday skills of object manipulation 
and learned motor behaviors. The physical object manipulations are possible by 
knowledge we have learned through a lifetime of practice. We already know how to 
manipulate physical objects. Our innate motor abilities, sense of touch and texture 
discrimination, and our everyday skill in grasping, gesturing and manipulation will 
all contribute to the performance gains of Graspable UIs. The tradeoff is designing 
the proper Graspable UI objects and the learning time needed to understand the 
relationship between the physical manipulation and corresponding virtual action.  

Using the motor system has the advantage in that users can become skilled at 
issuing commands through learned motor behavior [Singer, 1980; Schmidt, 1988]. In 
our current GUIs, it is very difficult to tap into our spatial memory (or "muscle 
memory"). For example, it is almost impossible to select from "Save" and "Save As"  
(i.e., adjoining items) in a pull down menu using a mouse without visual feedback to 
discriminate between the menu items. Touch typing, in contrast, is a great example 
of how learned motor behaviors can be effectively used for efficient interaction 
without having a strong dependency on the visual channel for continuous feedback. 

Multiple devices. A space-multiplexed input design implies that there will be more 
than one input device for users to manipulate. At the extreme, each of these devices 
should be assigned a permanent graspable function. 

Multiple persistent selections. Having multiple devices allows interfaces to have 
multiple persistent selections. Graspable UIs make a distinction between 
"attachment" and "selection." In traditional graphical UIs, the selection paradigm 
dictates that there is typically only one active selection; selection N implicitly causes 
selection N-1 to be unselected. In contrast, when graspable input devices are 
attached to virtual objects the association persists across multiple interactions. 
Selections are then made by making physical contact with the devices (i.e., not 
having to grab the physical device and re-acquire the virtual object). Therefore, with 
Graspable UIs we can possibly eliminate many of the redundant selection actions 
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and make selections easier by replacing the act of precisely positioning a cursor over 
a small target with the act of grabbing a device.  

1.3.2  Concurrency 
Having multiple devices available, we can then consider interactions that allow for 
concurrent access and manipulation of interface components. Moreover, there are 
different categories of concurrency. For example, functional coupling has two or 
more devices operated simultaneously to achieve a desired goal. One instance is the 
mouse and the  shift modifier key on the keyboard. When the shift key is down 
during a mouse press, the selected item is added or removed from the current 
selection set. In contrast, a physical coupling could exist. That is, when one physical 
device is manipulated, one or more additional devices are physically affected as a 
byproduct of the original device manipulation. Both styles of concurrency apply for 
inter-device and intra-device interactions.  

Since we are adopting a space-multiplex design, we are able to develop interaction 
techniques that can use multiple devices at the same time. This is not possible with a 
system that has only one device being used in a time-multiplex design; a sequential 
instead of parallel manipulation style must be employed. 

Moreover, we make the distinction of foreground and background concurrency. 
With foreground concurrency, users are actively manipulating two or more input 
devices or actuators. Background concurrency deals with the remaining input 
devices and actuators that are immediately available to access. These devices which 
are nearby but not "in-hand" can be considered "in-use" as, at the very least, they 
remind the user as to what functionality is available. Note that users will switch 
between devices and modes of concurrency (devices in use are being pushed into 
the background while others are being brought into the foreground). 

Using multiple manual devices concurrently suggests that the interactions will 
involve the use of two hands. We use both of our hands while driving a car, cooking, 
drawing, sculpting or even playing a piano. With the GUI there have been a limited 
application of two handed interactions (e.g., keyboard typing). However, there is a 
rich gamut of two handed interactions that are possible (e.g., two handed discrete 
actions; one handed discrete with the other hand continuous; two handed 
continuous, etc.). As well, we can go beyond two handed interactions as driving an 
automobile involves two hands and sometimes two feet. 
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1.3.3  Strong specific devices.  
When considering a Graspable UI, we must consider the tradeoff of generality vs. 
specificity. Having a general, all purpose tool allows one to use it for solving many 
tasks with the tradeoff of not being very efficient; it is convenient, familiar and 
basically gets the job done. This is true for the mouse which is a very generalized 
pointing device. For Graspable UIs, we advocate moving in the direction of 
multiple, specialized physical objects (i.e., tools or physical widgets) for interacting 
with the computer. This offers more efficiency in that the physical objects are 
designed to be more specialized and tailored for working on a given task. Yet, the 
specialized tools lose some of their generality; it may be very difficult to use a tool 
for a task which it was not designed for. This apparent loss of generality, however, 
may be overcome by the task specific power a collection of physical tools (or input 
devices) provides. Stated differently, the value of the Graspable UI may lie mainly in 
specialized domains such as in animation or computer-aided design, rather than in 
general purpose computing.   

1.3.4  Spatially aware computational devices  
The interface elements that do take on a physical form should be spatially aware of 
their surroundings and be registered with a central processing unit. It is important 
to note that both position and orientation (possibly in 3 dimensions) are critical pieces 
of information to be sensed. Communication to a central processing unit or 
independent sensors on each device can also determine proximity information 
between devices. As computer tasks become more graphic intensive instead of 
alpha-numeric intensive, we argue for an increased benefit of having spatially-aware 
devices as graphical tasks are inherently spatial in nature.  

For example, physical devices can act as control points for manipulating a spline-
curve (as illustrated earlier in Figure 1.9). These devices are spatially-aware. That is, 
the devices know their position on a given surface (i.e., digitizing tablet) and the 
application can query the devices for this spatial information. More intense 
applications of spatially-aware devices can be defined. For example, the Chameleon 
system [Fitzmaurice and Buxton, 1994] envisions an application in which a spatially-
aware, hand-held computer can be used for diagnostic procedures for a rack of 
video equipment. Since the components occupy unique regions of space, there is a 
natural spatial mapping for placing the virtual diagnostic hotspots (i.e., directly over 
the corresponding physical components.) As the device is positioned over 
components of the video equipment, diagnostic information and current state 

 13  



information can be displayed on the hand-held unit. The Chameleon device is 
spatially-aware of its surroundings. 

1.3.5  Spatial reconfigurability of devices 
While the placement, orientation or proximity of spatially aware devices are 
important, these devices operate within a context or situation. That is, the 
surrounding environment (e.g., walls, everyday objects, people, day, time, etc.) all 
contribute to the meaning, purpose, and intent of the device. The contextual space a 
device occupies contributes to its overall function and use. Even when a device is 
not currently being used (i.e., not held in one’s hands) it is still very valuable in that 
it serves as an external cognitive aid (e.g., reminds the user of particular functions or 
data) operating within the current context or situation. The ability to rapidly 
reconfigure and rearrange a set of devices in a workspace is important in that it 
allows users to customize their space to facilitate task workflows and rapid task 
switching. Finally, note that the context is intended to be physical context but will 
undoubtedly include virtual context as well. 

Finally, we ask if all five properties are necessary in order to form a Graspable user 
interface. The first property (space-multiplex input) is essential. The remaining four 
properties are derived from the first property. Depending on the application and 
task, it may be possible to neglect some of the remaining four properties but at the 
risk of designing a weak, clumsy or inefficient user interface. 

These defining Graspable UI properties will be examined and discussed throughout 
this thesis. However, the core property that will be examined in depth is the space-
multiplexing for input devices.  

1.4 Weak instantiations of Graspable UIs 

Having defined what Graspable UIs are, it is valuable to describe a few input 
interfaces which either do not follow the Graspable UI designs or are weak 
instantiations of Graspable UIs. Voice input is a great example of not exhibiting 
Graspable UI properties; there is no physical instantiation (i.e., nothing to grasp), no 
spatial awareness (except perhaps sophisticated digital signal processing systems 
with multiple microphones which can detect the 3D location of a sound source) and 
no contextual awareness. Similarly, eye-tracking input devices do not match the 
profile of Graspable UIs. That is not to say that these techniques may not be able to 
work effectively in conjunction with Graspable UIs.   
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Before considering some more conventional haptic input devices, it is necessary to 
specify how the device is being used for a given task before we can judge it. For 
example a trackball could be considered a Graspable UI if our entire task only 
involved one function or action (i.e., “do it” now). That is, the trackball is acting as a 
dedicated physical manipulator. However, rarely, if ever, do we build applications 
that have only one function associated with the input device (the videogame 
PACman being one of them). Usually, the applications are bristling with 
functionality. In all of the following examples, we consider the input devices in the 
working context of applications that have hundreds of functions (e.g., graphics or 
animation software).  

The mouse pointing device in the context of a conventional GUI interface can be 
considered a weak instantiation of a Graspable UI. At the most basic level, it is a 
graspable object since it has a physical form. The mouse can be attached to virtual 
objects but typically at a very transient level (the attachment often persists only as 
long as a mouse button is held down). In terms of spatial awareness, it has the 
ability to track its relative position while in motion. This is a very basic spatial 
awareness. For example, it does not have the ability to detect whether it is operating 
to the left or right side of the keyboard (i.e., the user is left or right handed). That is, 
in terms of contextual awareness, there is no physical context registered but instead 
virtual context exists. The graphical cursor, which is the mouse's representation in 
the virtual scene, can change shape and color while it is over different UI widgets. 
As mentioned earlier, the mouse has been designed as a highly generalized pointing 
device, capable of performing well to adequate in many interaction situations but 
often lacks the efficiency of more specialized tools. Finally, in our current GUI, the 
mouse has a time-multiplexed design; only one task can be performed at a time, as 
they all use the same transducer. Nevertheless, the mouse serves as a valid case 
study of a primitive Graspable UI and our study can be viewed as an attempt to 
build on its strength, while avoiding its weakness. 

A keyboard does not exhibit enough properties to be considered a Graspable UI. 
While the keys are physical, they cannot be moved, rearranged or manipulated 
beyond being pressed downward. There is no corresponding spatial awareness in 
the virtual scene; the keyboard generates a stream of characters with no associated 
Euclidean coordinates. The keys are spatially arranged on the keyboard and thus 
have some physical context (i.e., the return key is to the right of the spacebar). The 
tasks are certainly space-multiplexed (compared to a single Morse-code telegraph 
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key which is time-multiplexed). In fact the persistent key layout allows users to 
develop learned motor behavior (i.e., touch typing). While the keyboard has the 
property of specialized function and persistence of attachment (i.e., space-
multiplexed input), the lack of spatial awareness and the lack of physical 
rearrangement prevents us from considering the keyboard as a Graspable UI.    

1.5 Thesis statement and overview 

The thesis is a presentation of a new set of interaction techniques involving input 
devices. It argues that considerable advantages can be obtained by developing input 
devices that are specific to the functions they are meant to perform. Although others 
have generated input devices that work in this fashion, the concept of the devices 
being function manipulators is new, as is the exploration of this concept. The thesis 
proposes the existence of a class of dialogue styles, demonstrating their generality, 
usefulness and application to spatial tasks. 

The thesis approaches this exploration via multiple avenues. It explores the 
literature on the advantages physical environments provide to problem solving and 
uses this to make a case for developing physically based input devices that are likely 
to give users the same advantages in interactions with computers (Chapter 2). Its 
second avenue explores the interface designs that include some instantiation of the 
Graspable user interface. It does this by listing a set of properties Graspable user 
interfaces need to possess (Chapter 3). Its third avenue walks the reader through the 
redesign of a commercial drawing interface showing how the multiple functions 
needed by the artist using the software can be mapped on to different forms of input 
devices to achieve a set of space-multiplexed input tools (Chapter 4). A second set of 
case studies is presented as the fourth avenue, which looks at potential uses of one 
particularly promising Graspable user interfaces, bricks. A variety of 
implementations is tried with bricks, all of which have some complications because 
of the difficulties of adapting existing software and systems to the Graspable user 
interface concept. This fourth avenue explores what is needed to make Graspable 
UIs a viable tool (Chapter 5). A fifth avenue examines the claims being made about 
the efficacy of the proposed new interaction style by two controlled experiments 
which look at the advantages of two of the five defining properties for Graspable 
user interfaces (Chapter 6). Finally, Chapter 7 summarizes this dissertation, its 
contributions and future research. 
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Chapter 2:  Theoretical foundations 

 
In this chapter we review some of the motor and cognitive psychology literature to 
provide the underlying theoretical support for workable Graspable user interfaces. 
One of the main themes of this work stems from a belief that we can offload some of 
our internal cognitive resources into the external world using (1) our motor actions, 
(2) a physical space and performing spatial arrangements, and (3) physical artifacts 
for externalizing and embedding rules and information for solving a task.  

We start by presenting some recent literature on cognition that gives evidence for 
the use of motor action specifically performed to reduce internal computation (called 
epistemic action) rather than to reach an end goal (pragmatic action). The existence 
of  epistemic action suggests that people can use physical objects and their 
environment to aid their cognition. Therefore, having a greater variety of 
manipulable objects and physical arrangements may further support the cognitive 
process while performing a task.  

Next we present how the physical space that we work in affects or aids our 
cognition. Specifically, spatial arrangements can (1) simplify choice, (2) simplify 
perception, and (3) simplify internal computation. Next, we show how physical 
artifacts can be used as external representations which can automatically constrain 
actions and interpretations for users.    

A requirement for workable Graspable UIs is understanding the range of ability a 
user has for grasping and manipulating physical objects. Appendix A gives an 
overview of the field known as prehension to serve as additional background 
material. In addition, because we want to develop natural, highly efficient, 
interaction techniques we wish to involve the use of both hands for our techniques. 
We briefly review some two handed literature for guiding the development of our 
designs and interaction techniques. 
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2.1 Epistemic and Pragmatic action 

There is growing evidence that motor activity can be classified as either epistemic or 
pragmatic action [Kirsh and Maglio, 1994]. Epistemic actions are performed to 
uncover information that is hidden or hard to compute mentally. The physical 
actions make internal cognitive computation easier, faster and more reliable. For 
example, we sometimes use our fingers when we count. Or, novice chess players 
may physically move a chess piece, temporarily, to its new position to assess the 
move and possible counter-moves by an opponent.   

The epistemic actions can improve cognition by:  

• reducing the memory involved in mental computation  (space complexity)  

• reducing the number of steps in mental computation (time complexity), or 

• reducing the probability of error of mental computation (unreliability).  

In contrast, pragmatic actions are physical actions whose primary function is to 
bring the user physically closer to the goal. The distinction of epistemic and 
pragmatic action may have also been discovered by Gibson [1962] who suggested 
that hand movements can be classified as “exploratory” and “performatory.”  

One may argue that all epistemic actions are inherently pragmatic actions as they 
involve aiding users in reaching their final goal. In the strictest sense this is true but 
misses an important distinction. If we view motor action from a purely efficiency 
point of view, users would think first, arrive at a decision and then perform the 
minimal motor action for making the external world match their internal state. In 
practice, this generally does not happen. As in the chess example just mentioned, 
many novice players move the physical pieces around on the board to candidate 
positions to assess the move and possible counter-moves by an opponent. From a 
motor perspective, this is very wasteful. However, from a cognitive perspective, this 
is quite beneficial. 

An experimental study on the game tetris (see Figure 2.1) showed more rigorously 
the distinction between epistemic and pragmatic actions [Kirsh and Maglio, 1994]. In 
this experiment, the authors found that subjects would rotate pieces physically by 
hitting a button (taking less than 150 ms) rather than compute the mental rotation 
(which they estimate takes much longer, 800 to 1200 ms to rotate a piece 90 degrees). 
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In addition, they learned that epistemic actions of rotation were used to: (1) reveal 
new information early in the game (i.e., before a piece is entirely visible on the 
screen), (2) save mental rotation effort, (3) facilitate retrieval of shapes of pieces from 
memory, (4) make it easier to identify a piece’s type, and (5) simplify the matching 
process of the falling piece with the contour below.   

500 ms

1200 ms

rotate

translate

drop

row about  
to  be filled  

Figure 2.1. Tetris game. The falling pieces enter from the top and are rapidly placed 

somewhere on the contour below. Users can translate the piece left or right or rotate 

the piece by 90 degrees. Epistemic rotations sometimes occur before a piece is 

completely visible to more quickly identify the piece.  

Moreover, Kirsh [1995b] describes a complementary strategy as “any organizing 
activity which recruits external elements to reduce cognitive loads. Typical 
organizing activities include positioning, arranging the position and orientation of 
nearby objects, writing things down, manipulating counters, rulers or other artifacts 
that can encode the state of a process or simplify perception (p. 1).“ Kirsh has 
conducted a preliminary "coin-counting" experiment to test these concepts. He 
asked subjects to sum the value of a collection of coins drawn on a piece of paper. In 
one condition the subjects can only look at the paper and are prevented from using 
their hands. In the second condition, the subjects are allowed to use one hand which 
is often used to point at coins on the paper during the trials. He found improved 
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task completion times and reduced error rates for the condition which allow the use 
of hands (i.e., epistemic actions) [Kirsh, 1995b].  

This kind of behavior supports a tightly integrated human processing model in 
which information needed for each step in the process (e.g., iconic buffer, attention, 
generate, match) can be supplied either by internal cognitive resources or by 
physically modifying and then perceiving the external environment (see Figure 2.2). 
That is, internal modules can request motor activity intended to cause changes in the 
external environment which assist in cognition. The notion is that it takes less effort to 
physically modify and re-perceive the external world than it does to compute and retain the 
new information state internally. Thus, epistemic actions are specifically targeted at 
improving one’s performance.  

External WorldIconic 
Buffer

Attention

Generate

Match
Rotation to help match

Rotation to generate 
candidates

Early rotation used 
by decision-tree

Motor Control

 

Figure 2.2. Kirsh’s processing model [Kirsh and Maglio, 1994]. Here each step in the 

process can get information either from internal resources or from performing motor 

actions which affect the external environment and essentially serve as new input.  

Interfaces having key components manifested as manipulable physical artifacts may 
offer more opportunity for epistemic rather than pragmatic actions. This is due to 
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the potential affordances of the physical interface. We have the potential to rapidly 
manipulate physical artifacts. The question is does the UI provide us with the 
affordances to utilize this potential? Underlying all of this is the notion that the 
problem is hard, yet we handicap ourselves in addressing it by not enabling us to 
apply skills and strategies in our repertoire. 

Said differently, the key issue is the discord between our potential bandwidth 
(effector) to manipulate with the restricted bandwidth (receptor) of the input 
transducers. This mismatch is fundamental to the problem.   

One key to epistemic action is low-cost manipulation of the external world. There 
are several ways to reduce the cost of manipulation. One simple way is to increase 
the number of degrees of freedom of the input channel. However, caution must be 
used as increasing the degrees of freedom does not guarantee that costs will be 
decreased.  

The existence of epistemic action supports the shift towards Graspable UIs. By using 
physical objects, users are more able to manipulate and affect their environment. A 
greater variety of manipulable objects and physical arrangements may more readily 
support the cognitive process during a task. The amount of effort to use these objects 
and manipulate the environment must be minimal; this is an essential property in 
that the amount of effort and attention needed to manipulate the physical objects 
must be less than the internal cognitive computational effort to make it attractive to 
use.  

One could argue that virtual objects in the computer world (e.g., icons, buttons) can 
serve as external cognitive artifacts. While this is true, we must take note at the 
amount of effort needed to access and manipulate these objects. Again, if the 
amount of effort and attention needed to manipulate these virtual objects is high, it 
may outweigh the value of using them as external cognitive aids. Nevertheless, 
external cognitive artifacts can exist in virtual form (i.e., within the computer) or 
physical form and we argue for Graspable UIs that use physical artifacts. 

2.2 Intelligent use of space  

A great deal of literature has been written on a human’s ability to perform spatial 
reasoning tasks [Eilan, et al, 1993; Campbell 1993; Cooper and Munger 1993]. 
Moreover, “how we manage the spatial arrangement of items around us, is not an 
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afterthought; it is an integral part of the way we think, plan and behave [Kirsh, 
1995a, p. 31].” The intelligent use of space has been described by Kirsh [1995a] in 
which he classifies spatial arrangements that: (1) simplify choice, (2) simplify 
perception and (3) simplify internal computation.   

He states that “experts constantly re-arrange items to make it easy to: (1) track the 
state of the task, (2) figure out, remember, or notice the properties signaling what to 
do next, and (3) predict the effects of actions [p. 35].” For example, if a short order 
cook is making several dishes at the same time, he or she may cluster a collection of 
plates to match similar orders. The materials for the orders may be clustered 
together, placing knives, forks and other utensils near ingredients to be used next, 
essentially marking their place in the procedure. Garnishings may also be used to 
indicate special orders or variations in an order.  

We can exploit the resources of the world to improve execution or to simplify 
problem solving. Kirsh gives an excellent example of a classic AI planning problem 
(see Figure 2.3) in which a child is asked to build two block towers, one tower 
reading “SPACE” the other reading “MATTERS.” The blocks start out in a random 
placement and the following two rules apply: (1) only one block can be moved at a 
given time, (2) a block cannot be moved if another block is on top of it. Examining 
the problem, Kirsh observes that it is much easier to solve the problem if the goal 
towers are stacked horizontally instead of vertically. “On the ground, we can pick 
up and move a block regardless of whether it is sandwiched between blocks. And if 
we leave space between blocks we can insert a block without first shifting the others 
around. Hence, we can save many steps by solving the problem on the ground first 
(p. 34).”      

 

Figure 2.3. Classic AI planning problem in which one must build two towers that spell 
out SPACE MATTERS. In (a) the traditional approach of solving the problem using 
vertical stacks versus (b) which solves the problem horizontally. The horizontal 
approach allows for easy re-orderings without having to balance the blocks. 

Kirsh also states that experts do very little planning: “experts find sufficient cues in 
the situation to trigger a known rule without halting the activity in order to 
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consciously and analytically take stock of the situation and reason or deliberate 
about a situation. “(p. 37). In fact, experts often build environmental damping factors 
that serve to decrease the variability of an environment. Kirsh further explains that 
users “seed” an environment with attention-getting objects or structures. The objects 
are then used to reduce perceived choice as well as bias the order in which actions 
are taken.  

Affordances [Gibson, 1979] tell you how to use something. We often talk about 
affordances related to objects (e.g., the finger handles on a pair of scissors guide you 
how to hold and operate them). However, affordances are also applicable to 
situations. The perceived action set at any given moment in time is sensitive to the 
properties of the situation, specifically spatial arrangement. This action set can be 
biased by hiding affordances (constraining) or by highlighting affordances (cueing). 
Arrangements can also highlight the obvious things to do or the opportunistic things 
to do. For opportunistic possibility, it is desirable to leave around a certain amount 
of clutter to increase the chance of getting something for nothing. However, this 
comes at a potential cost of the clutter getting in the way of the primary task. Finally, 
space can be set up to provide a temporal order of action.   

Spatial arrangements that involve clustering and structuring can simplify perception 
which can make it easier to (1) keep track of where things are, (2) notice the relevant 
affordances (3) recognize the availability of actions and (4) monitor the current state. 
Gestalt theory specifies that there are other factors besides proximity that trigger 
clustering such as: “how similar the items are (similarity), whether the items move 
together (common fate), whether they fit into a smooth, continuous line (good 
continuity), whether they can be seen as a closed form, and whether they stand out 
together against a background (surroundedness) [Kirsh, p. 57].”  

Creative activity makes heavy use of external representations because “in the 
discovery phase, one wants to note as many possible extensions and variations to 
one’s ideas as possible. This is easier if the representations are externalized (p. 64).” 
Furthermore, because internal computation involves the generate-and-test phases, 
the use of physical space and externalized actions may be well suited for this type of 
exploration.   

There are a variety of strategies for the spatial arrangement of control devices in the 
workspace [Sanders and McCormick, 1987]. Such arrangements include: 
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• importance - arrange items based on the degree at which the activity of using 
the item is essential to the overall goals of the user. This is very much a 
subjective determination. 

• frequency-of-use - arrange items which are more commonly used together 
near each other. For example, place a stapler near a photocopying machine. 

• functional - group items based on their functional use (i.e., group all 
animation controls together or group all file operations together). 

• sequence-of-use - arrange items based on the pattern of usage such that users 
can take advantage of these patterns (e.g., place a sequence of items in a 
row). 

Fowler et. al [1968] conducted a study using these 4 styles of arrangements. They 
designed multiple control and display panel layouts for each of the 4 spatial 
arrangement strategies. The "sequence of use" layout strategy showed significantly 
better task completion times for tasks compared to the other three strategies. 
Layouts based by “function” performed slightly better than both the “importance” 
and “frequency” layout styles.   

We are constantly making intelligent uses of space to aid our cognitive processes. 
Many of these phenomena are so common to us that they seem obvious or trivial. 
Yet, these are highly tuned skills that we can take advantage of in human-computer 
interactions, specifically, for Graspable UIs.  

2.3 Things that make us smart 

Everyday knowledge, our environment, and the physical characteristics of artifacts 
can affect the way in which we solve tasks. This is best described in Don Norman’s 
recent book “Things that Make Us Smart” [Norman, 1993]. Specifically, he describes 
a study conducted by Zhang [1994]. The study was a variation on the classic 
“Tower’s of Hanoi” puzzle. In the study there are three similar puzzles with 
identical rules but each makes use of different artifacts to solve the puzzle. The first 
puzzle uses three pegs and three rings, with an initial arrangement as shown in 
Figure 2.4a. The goal is to reach a final state as shown in Figure 2.4b in which there 
is one ring per peg and the rings are in descending order by size. 
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The second and third puzzles are very similar except they use different artifacts 
(oranges with bowls and coffee cups with plates). For the second puzzle, three 
different sized oranges are used along with three bowls. The third puzzle uses three 
plates and three different sized coffee cups. The cups are designed such that the 
smaller ones fit inside the larger ones. The rules for each move in the three puzzles 
are as follows: 

(b) (f)

(c)

(d)

(a) (e)

 

Figure 2.4. Modified Tower of Hanoi puzzles designed by Zhang. Three 

configurations: rings, oranges and coffee cups. Initial arrangement (a, c, e) and final 

end state (b, d, f) . 

Rule 1:  Only one {ring, orange, cup} can be transferred at a time. 

Rule 2: A {ring, orange, cup} can only be transferred to a {peg, bowl, plate} on 
which it will be the largest. 

Rule 3: Only the largest {ring, orange, cup} on a {peg, bowl, plate} can be 
transferred to another {peg, bowl, plate}. 

Examining the first puzzle using the rings and pegs, we find that the third rule is 
redundant for this condition. That is, because the rings are stacked on pegs, the pegs 
offer physical constraints and force compliance with Rule 3 automatically, assuming 
the first two rules are followed. So, what happens if we vary the artifacts for the 
puzzle? 

All three puzzles are essentially the same but some are significantly more difficult 
than others to solve. It was observed that the oranges puzzle took almost 2.5 times as 
long as the coffee cups puzzle. The oranges puzzle incurred twice as many moves 
and six times as many errors. These differences are due to the variations in the 
physical constraints provided in each condition. In the coffee cup condition, Rules 2 
and 3 are not necessary since only one cup can fit onto a plate at a given time and 
the smaller cups cannot be placed on top of larger ones without spilling coffee. 
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These physical constraints and everyday knowledge aid in solving the problem. The 
oranges puzzle was more difficult because there were no physical constraints to 
force compliance with the rules. 

External representations add power because the physical structures 
automatically constrain the actions and interpretations, even though all 
three rules apply to all the puzzles. Someone programming a computer to 
solve the task would find all three puzzles to be of equal difficulty and 
would use the same algorithm to solve all of them. This is because the 
computer would be unable to take advantage of the physical structures. 
(Norman, p. 89) 

Norman further states that “the more information present in the environment, the 
less information needs to be maintained within the mind (p. 90).” While conducting 
the study, he claims that many subjects did not realize that the three puzzles were 
the same problem.  The study “serve as powerful demonstrations of how external 
representations not only aid in memory and computation but can dramatically affect 
the way a problem is viewed and the ease with which it can be solved. (Norman, p. 
90)” 
 
Norman also generalizes these ideas and explains: 

The point is that in the real world, the natural laws of physics allow only 
the appropriate things to happen. There is no need to compute whether 
you are walking through a wall: You simply can’t do it. In the artificial 
world of computer simulation, much of the computational effort goes into 
the part that results from the artificiality of the situation. (p. 150) 

The views of Norman are not new, and in fact are embodied in affordance theory 
(described by Gibson and others) and a new field called Ecological Interface Design. 

Ecological Interface Design [Vicente and Rasmussen, 1992] is a relatively new 
discipline which serves as the intersection of cognitive engineering (dealing with 
problems of measurement and control) and the field of ecological psychology (dealing 
with problems of perception and action). The discipline is based partially on 
Gibson’s affordance theory and visual perception theory [Gibson 1950; 1979]. Three 
fundamental principles of ecological interface design are:  
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• Reciprocity of Organism and Environment. We cannot study just the person 
alone but need to analyze the person and the environment. 

• Primacy of Perception. We are much better at perception-action than 
thinking. Perception is underutilized. 

• Start with Analyzing Environment. Identify "what" is going on before "how." 

In addition, two applied principles of ecological design are to (1) externalize the 
constraints that govern a system and (2) support direct perception at the level of the 
user's discretionary choice.  

2.4 Notations that make us smart 

We can expand upon Norman’s ideas by considering a common concept that 
“notation is a tool of thought.” That is, “thought begat language” and “language 
begat thought.” Notation is tightly intertwined with thought. For example, Figure 
2.5 contrasts two long division tasks, one using roman numerals and the other using 
common decimal notation. Which one is easier to compute? 

 (a)     (b)   

Figure 2.5. Notation as a tool for thought: (a) roman numerals and (b) decimal notation. 

As with language, we can argue that input devices are a notation (i.e., external 
representation) or language. Gestures are part of a larger “body language.” Thus, 
body language is a tool of thought and input devices establish through affordances 
the vocabulary and syntax of that language. Said differently, the use of specific input 
devices and interaction techniques can regulate, govern or guide the manner in 
which we use gestures to solve tasks. While developing a gestural vocabulary or 
input device notation syntax is beyond the scope of this thesis, it is worth of deeper 
study.  

2.5 Sensorimotor integration 

Developing visuomotor control requires experience with both the visual and motor 
systems working together [Brewer, 1993; Schmidt, 1988; Kandel et al., 1993; Warren 
and Rossano, 1991]. Numerous studies have shown that suppressing the visual 
system decreases the ability of the motor system [MacKenzie and Iberall, 1994]. One 
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critical aspect of the control system is an alignment between the visual map and the 
proprioceptive map. When this mapping cannot occur, performance can degrade.   

2.6 Two handed interactions 

Having multiple, graspable objects encourages two handed interaction (in Chapter 5 
we describe some exploratory studies we conducted which verifies this). We are 
therefore interested in understanding some theory as to how our two hands interact. 
Buxton and  Myers [1986] as well as others [Bolt and Herranz, 1992] have explored 
the use of two hands in computer interfaces. More sophisticated two handed 
interfaces are beginning to emerge such as the Toolglass and Magic lens interface 
[Bier, et al, 1993]. However, studies have shown that designers must take care in 
developing interaction techniques that use two hands as poorly designed two 
handed techniques can be very cumbersome to use [Kabbash, et al, 1994]. 

Guiard [1987] proposes an interesting framework for bimanual action. He claims 
that there are three principles that govern the asymmetric behavior of bimanual 
gestures: 

• The non-dominant hand serves as a frame of reference for the dominant 
hand (e.g., sewing or embroidery, one hand holds the material while the 
other hand uses a needle).  

• The dominant hand is capable of producing finer movements than the non-
dominant hand which is capable of coarser movements. 

• The non-dominant hand often acts first and is followed by the dominant 
hand (e.g., the non-dominant hand holds and positions a nail while the 
dominant hand swings a hammer). 

These principles can be applied to designing two handed human-computer 
interactions. Specifically, we wish to use these principles when developing 
Graspable UIs when our interactions involve more than one physical object.  

2.7 Summary 

This chapter has reviewed some of the motor and cognitive psychology literature to 
provide the underlying theoretical support for workable Graspable user interfaces. 
First we presented the concept of epistemic motor actions which are specifically 
performed to reduce internal computation rather than pure pragmatic actions which 
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are performed only to reach an end goal. The existence of epistemic action suggests 
that people can use physical objects (i.e., Graspable UIs) and their environment to 
aid their cognition. Beyond motor activity, people make intelligent use of space in 
which spatial arrangements of objects serve to simplify choice, perception and 
internal computation.  

The Tower's of Hanoi puzzle presented by Norman and Zhang illustrates the fact 
that information and rules can be embedded into physical artifacts. Altering the 
physical artifacts may effect performance and the way in which people solve tasks. 
Thus, Graspable UIs need to be sensitive to physical form factors. Indeed, input 
devices can be considered a notation or language where the vocabulary and syntax 
of the language are established through the affordances of the transducers. 

We next review some related research systems and prototypes in Chapter 3. The 
systems further motivate Graspable UIs as well as exhibit early characteristics and 
technology in support of Graspable UIs.    
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Chapter 3: Related research and systems  
We now present a collection of research systems, projects and prototypes that 
exhibit some properties of Graspable UIs. First we summarize the five Graspable UI 
properties defined in Chapter 1 and present a rating scheme to characterize the 
related research and systems. Two main research areas of study are then surveyed: 
computer augmented reality and physical manipulation interfaces.  

3.1 Summary of Graspable UI Properties  

Figure 3.1 shows the 5 Graspable UI properties as columns while the rows show a 
level of intensity ranging from low to high.  

 

Figure 3.1. Graspable UI defining properties. 
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The generic scale to the left of the table (consisting of circles or moons and half-
moons) is used to classify the systems. Note that three of the properties (space-
multiplex input, concurrency, and spatial reconfigurability) can be defined along a 
continuous dimension but we have instead defined five discrete units to unify and 
simplify our comparisons. The remaining two properties (physical form and spatial-
awareness) have been defined as binary choices. Many of the dimensions for the five 
properties can be further refined (i.e., using 10 instead of 5 discrete units). However, 
the current granularity is sufficient for our initial classification purpose. Further 
dimension refinement is left as future research.  

Given these five Graspable UI properties, we can characterize some common 
computer interfaces (see Figure 3.2). For the mouse, joystick, and touchscreen 
devices we assume that they are being used as pointing devices in a standard 
graphical user interface such as the Macintosh finder or in a specific graphical editor 
application. The keyboard is mainly used in the context of text entry and issuing 
hotkey commands. It is interesting to notice that the voice and eye-tracking devices 
do not exhibit any of the Graspable UI properties.  

 

Figure 3.2. Interface systems with Graspable UI design property ratings. 

The mouse vs. a fader bank  
From Figure 3.2 we notice that the mouse and audio mixing console have quite 
different Graspable UI property ratings. Consider a detailed example of a sound 

 32  



graphical equalization application with two different input configurations. The first 
uses a mouse as an input device the second uses a dedicated linear fader console 
having a bank of faders or sliders (see Figure 3.3). A typical task may be to adjust the 
various recording levels for multiple tracks of audio (e.g., percussion, voice, and 
base tracks) which are merged onto one master track. Both input configurations will 
ultimately allow the user to solve the tasks at hand but have different affordances.  

    

Figure 3.3. Sound graphical equalization application with two input configurations: a 

mouse and a dedicated linear fader console.  

The mouse works as a time-multiplexed input device while the linear fader console 
is a space-multiplexed device. That is, the mouse is a general purpose pointing device 
which is constantly being attached and detached to logical devices. For the mouse to 
emulate the linear fader console device, there has to be virtual, graphical interface 
widgets that corresponded with each of the physical controllers. Moreover, these 
widgets must be visible in order to be manipulable. In contrast, a linear fader or 
audio mixing console may have hundreds of physical transducers (e.g., sliders, dials, 
buttons) each having a permanently assigned function. The transducers are, in essence, 
graspable functions. It is important to note that the linear fader console is not only a 
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set of input transducers but those same transducers serve as an output display. For 
example, by examining the position of a set of slider knobs, a user can determine the 
state of the system. Thus, the system has both space-multiplexed input and output. 
The audio-mixing console acts as if each graphical widget was physically instantiated 
as a transducer on the fader console device. And on some devices, the sliders are 
actually motorized so as to give a dynamic visual display of state.  

Multiple devices are instantiated which allows the user to perform actions not easily 
done with just the single mouse device. For example, two physical sliders can be 
associated to two tracks of audio. Simultaneous adjustments of the two sliders is 
possible through the use of both hands. Alternatively, two physical sliders can be 
physically coupled or attached such that when one is moved the other moves as well. 
This feature can also be implemented quite easily in software where two graphical 
sliders are logically coupled or attached.  

In terms of physical form, the mouse has a generic shape designed to be easily 
grasped with a precision (i.e., fingertips) or power grip (i.e., palm of hand). In 
contrast, the physical transducers (e.g., sliders, dials, buttons) of the audio mixing 
console have a more specialized form. For example, a slider is a one-dimensional 
controller with a fixed range of operation. The physical form suggests and facilitates 
the functionality it provides.  

The physical transducers of the linear fader console cannot be physically moved 
around. That is, you buy it with a fixed number and layout of transducers. 
Moreover, if two physical slider knobs are swapped, the system has no way of 
detecting this. Thus, the transducers have no inherent spatial awareness. Moreover, 
the device does not offer spatial reconfigurability due to the fixed transducer layout. In 
essence, the fader console is a permanent control panel. How could we improve 
this? Perhaps each transducer could be physically plugged into a peg board. Thus 
users could design their own control panels for the task at hand. Building in spatial 
awareness for each controller would mean that the system could track when a 
controller is moved on the board and if and when it is near other controllers. 
Furthermore, consider a recording situation in which each instrument or instrument 
section of an orchestra has a microphone and a recorded audio track. The input 
transducers (sliders/faders) of a mixing console could be re-arranged in the same 
spatial layout as the orchestra (e.g., trumpets are next to the percussions, first 
violinist is in the front, etc.) to organize and facilitate task workflows.  
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3.2 Computer Augmented Environments  

An emerging field known as Computer Augmented Environments [Wellner et al., 
1993] reflects a popular trend towards human-computer interaction systems:  

Another view of the future of computing is emerging that takes the 
opposite approach from Virtual Reality. Instead of using computers to 
enclose people in an artificial world, we can use computers to augment 
objects in the real world. We can make the environment sensitive with 
infra-red, optical, sound, video, heat, motion and light detectors, and we 
can make the environment react to people's needs by updating displays, 
activating motors, storing data, driving actuators, controls and valves. 
With see-through displays and projectors, we can create spaces in which 
everyday objects gain electronic properties without losing their familiar 
physical properties. Computer Augmented Environments (CAE) merge 
electronic systems into the physical world instead of attempting to replace 
it. Our everyday environment is an integral part of these systems; it 
continues to work as expected, but with new integrated computer 
functionality [Wellner et al., 1993, p. 26].  

Our research into Graspable interfaces adheres to this philosophy. With this 
definition in mind, we review some systems and projects underway which follow 
the computer augmented environments philosophy [Rekimoto and Nagao, 1995; 
Rekimoto 1995; Tani et. al. 1992]. Note that for most of the systems reviewed we 
start by showing a table containing the associated Graspable UI property ratings.  

3.2.1 Ubiquitous Computing   
The ubiquitous computing project, initiated by Xerox PARC [Weiser, 1991, 1993], 
proposes an environment in which people interact with hundreds of nearby 
wireless, interconnected computers in their everyday environment. The 
investigation has started by examining three scales of devices: inch (Tab), foot (Pad), 
yard (Liveboard). The Tab device, modeled after Post-it notes, is a palm-sized 
computer with a touch sensitive screen which communicates via wireless infra-red 
to a larger computer infrastructure. Pads, modeled after sheets of paper, are pen-
based computers capable of running X-based applications and use radio waves to 
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communicate to the larger computing infrastructure. The Liveboard, modeled after 
whiteboards, also can run X-based applications which use wireless pens for drawing 
on its surface. One of the key ideas here is the relationship between the devices. 
Applications do not only use one computer but span multiple devices of similar and 
dissimilar types (e.g., multiple tabs, or applications that use the Liveboard and Tab 
simultaneously).  

Active badges [Want, et al., 1992] are also part of the ubiquitous computing project. 
These lightweight devices are often attached to people. An infra-red signal is sent 
from the badge periodically and detected by receivers throughout a building 
(typically one per room). This allows the computing infrastructure to find people in 
an environment and bring and configure the computing to them when appropriate.  

Buxton et. al. [in press] has extended the idea of ubiquitous computing to include 
computers (UbiComp) and media spaces (ubiquitous video or UbiVid). In UbiVid 
there are a wide variety of cameras and monitors in the workspace in different sizes 
and locations which are sensitive to the relationship between the functions they 
provide given the space they occupy. The goal is to seamlessly integrate computers, 
personal spaces and social protocols. In summary, the ubiquitous computing project 
serves as an example of how computation can be embedded into physical objects 
and spread throughout a user's environment.  

In terms of input style, the Tab device can service many programs and functions and 
thus has a time-multiplex input scheme. In contrast, since the Active Badge is 
generally assigned to one object (i.e., a person), it has a dedicated function and thus 
offers a space-multiplex input scheme. In addition, a user may only be using one 
active badge, for example, to automatically identify a person and unlock doors in a 
building. In this application, only one device is being used and there exists no device 
concurrency. In contrast, a collaborative application that tracks a group of people or 
the location of many individuals within a building employs a level of device 
concurrency. It is interesting to note that in this application, a user does not grasp or 
physically manipulate a set of active badges but instead queries their location. 
Again, we need to understand the use of a particular input device within the context 
of an application before we can judge and measure its Graspable UI property 
ratings.  
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3.2.2 Digital Desk   
The DigitalDesk [Wellner, 1993; Newman and Wellner, 1992] merges our everyday 
physical desktop with paper documents and electronic documents. A computer 
display is projected down onto a desk and video cameras pointed at the desk uses 
image-analysis techniques to sense what the user is doing (see Figure 3.4). The 
system (1) projects electronic images down onto the desk onto paper documents (2) 
responds to pen-based interactions as well as with fingers, and (3) can read paper 
documents placed on the desktop. Using computer vision techniques, the system 
can also recognize command icons drawn on small pieces of paper. From a 
Graspable UI perspective, the pen and finger input are similar to that of a 
touchscreen or digitizing tablet which offer time-multiplexing input. The command 
icons are more interesting as they are dedicated physical commands which can be 
spatially arranged and offer space-multiplexing input. Nevertheless, the DigitalDesk 
is a great example of how well we can merge physical and electronic artifacts, taking 
advantage of the strengths of both mediums. A related system, the InfoBinder [Siio, 
1995], takes advantage of a similar set-up to the DigitalDesk where small physical 
objects can serve to bind together a physical and virtual component. Each unit, 
approximately the size of a 2 inch disk, emits a unique infra-red ID to identify itself 
to the system while being tracked on the desk.  

 

Figure 3.4. DigitalDesk prototype 
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3.2.3 Mosaic   
The Mosaic system [Mackay et al., 1993; Mackay and Pagani, 1994] combines the 
benefits of paper storyboards and index cards with computer-controlled video. 
Users manipulate the index cards on the desk and the computer is able to recognize 
the cards and access their video segment to be played back to the user. The spatial 
arrangement of the cards can be used to specify the temporal ordering of the video 
segments. Special buttons and glyphs (e.g., "print" or "play") can be added to the 
index cards which can also be recognized by the system. Here, once again, the 
physical artifacts (e.g., index cards) and the dynamic video can be merged, allowing 
the user to take advantage of physically manipulating the cards representing the 
video segments while still offering the dynamic function of video access and 
presentation. Note that although multiple physical cards can be manipulated 
simultaneously, in the current version of the system, only one card at a time can be 
"recognized" by the computer vision system. The system cannot currently locate and 
identify all of the cards on the user's workspace. Instead, the cards must be placed 
and oriented under a video camera "hot spot" on the desk for recognition. However, 
it is not difficult to imagine a more sophisticated camera set-up and computer vision 
techniques which would allow for multiple, orientation-independent, concurrent 
card recognition on a large workspace.  

3.2.4 KARMA   
The KARMA system [Feiner et al., 1993] uses a see-through head mounted display 
to overlay graphics onto physical objects. The prototype accesses an expert system 
and knowledge base to understand the properties and behaviors of the physical 
artifacts. One example application is repair work for a laser printer. The overlay 
graphics provide diagnostic assistance to the operator. In some instances, the 
graphics allow the user to have "x-ray vision" as internal components of the laser 
printer can be outlined from the exterior surface. The user's head and components of 
the laser printer are tracked by multiple 6D devices to provide realistic viewing 
perspectives when the graphics are overlaid onto the physical objects. A primary 
issue with this system is the need to accurately align the graphical images to the 
corresponding physical objects. The KARMA system allows the primary interface to 
be the physical objects in a user's environment and augments these objects with 
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virtual information. From a Graspable UI perspective, the KARMA system rates 
high on all of the properties since the user interface consists of sensing and 
manipulating real, everyday physical artifacts.  

3.3 Physical Manipulation Interfaces  

Physical manipulation interfaces emphasize the importance of using real world 
objects and everyday actions to drive a computer-human interface. The systems 
below fall into this category as well as using some two handed interaction 
techniques.  

3.3.1 Synthetic physical manipulations   
Some complicated virtual user interfaces lack the use of physical objects with their 
corresponding constraints and affordances which may make many interactions 
difficult. This is especially true for 3D virtual environments. We present two 
research systems which attempt to compensate for the lack of physical properties 
and manipulations within a virtual environment. Both systems use the mouse as an 
input device.  

Bramble -- Differential Manipulation  

Virtual objects can take on physical, real-world behavior and follow physical laws 
by adding constraints to direct manipulation techniques. This has been elegantly 
shown in Gleicher's work [Gleicher, 1993] in which software constraints have been 
added to 2D and 3D toolkits to facilitate interaction behavior for users. In his 
Bramble system, users can attach constraints to objects to guide their behavior in a 
community of objects. Some of the primitive constraints are go-towards, follow, 
bound, snap and click.  

Narrative Handles  

Houde [1992] has explored the concept of using different hand positions as mouse 
cursors to indicate interaction possibilities (i.e., virtual affordances) for 3D 
manipulation. Figure 3.5a-d shows the result of this investigation in which four 
types of hand cursors were defined: (a) ready state, (b) horizontal sliding, (c) 
grabbing to lift, and (d) two hands pushing in opposite directions for rotation. A 
bounding box can be generated around objects (Figure 3.5e and 3.5f shows a chair) 
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with narrative handles attached. These narrative handles consist of hand postures 
for indicating interaction behaviors. Selecting a narrative handle with the arrow 
cursor causes the corresponding manipulation. In the absence of the narrative 
handles, the user clicks on the chair and may be unsure of the resulting action.  

 

Figure 3.5. A variety of mouse cursors can be used to specify hand postures that 

correspond to interaction possibilities. A bounding box around the chair object has 

narrative handles on it along with hand postures for indicating interaction behavior.  

Both the Bramble and narrative handles systems attempt to transfer some of the 
rules, constraints and behaviors of physical object manipulations into the virtual 
interfaces. This is the opposite approach to Graspable UIs which attempt to leverage 
off of the physical objects by having systems use both physical and virtual objects 
for their interaction techniques.  

3.3.2 3-Draw   
The 3-Draw computer-aided design tool [Sachs et al., 1990] uses a novel two handed 
input strategy which allows users to easily specify their viewing perspective using 
one hand and point or draw with a 6D stylus using their dominant hand (see Figure 
3.6). It achieves this by first placing a polhemus 6D tracing device on a thin 
rectangular plate which may be held in the user's non-dominant hand. The plate 
(approximately the size of the SUN optical mouse pad) acts as a means for specify 
the user's frame of reference for viewing and manipulating virtual objects. A virtual 
version of the plate appears on the SGI screen so the user can assimilate the physical 
and virtual worlds. The stylus, held in the dominant hand, is also tracked in 6D. 
Consider the following interaction scenario where a user is working in a computer-
aided drawing application to edit a car model. The user holds the physical plate in 
his non-dominant hand with the stylus in his dominant hand. By physically 
manipulating the plate (i.e., rotating and translating) the user specifies the viewing 
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perspective of the virtual car model to change in synchronous accordance. The 
notion is that the user can pretend that the car is sitting on the physical plate. The 
stylus is used to issue commands or to draw and edit curves on the model.  

 

Figure 3.6. 3-Draw input devices 

3-Draw serves as an early example of a Graspable UI for a number of reasons. First, 
while the plate and stylus are generic physical devices, their functional roles are 
clearly separated (the plate is responsible for view controls while the stylus is 
responsible for issuing commands and pointing). This is a space-multiplex design. 
Secondly, it makes use of concurrency in its interactions (both the plate and stylus 
can be manipulated at the same time). Finally, both input devices are spatially-
aware in that the computer can always sense their physical location.  

3.3.3 Passive Interface Props   
Following a similar design of the 3-Draw tool, Hinckley has developed the notion of 
passive real-world interface props for a neurosurgical visualization program (see 
Figure 3.7) [Hinckley et al., 1994]. Here they want to give the user physical props as 
a mechanism to manipulate 3D models. Each of the props have a 6D tracker 
embedded in them. One example they describe provides the user with a doll's head 
and a small rectangular plate. These two props allow users to select a cutting-plane 
for a patient's head data (see Figure 3.7). They are striving for interfaces in which the 
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computer passively observes a natural user dialog in the real world (manipulating 
physical objects), rather than forcing the user to engage in a contrived dialog in the 
computer-generated world. The passive interface props differ in the 3-Draw system 
in that the input devices are truly graspable functions with a space-multiplex input 
scheme and a very specific physical form.  

 

Figure 3.7. Real-world interface props for neurosurgical visualization programs. The 

user specifies orientation and a cutting plane for a patient's head data using a ball 

and plate which have 6D trackers embedded in them.  

3.3.4 Dinosaur input device   
One may argue that the ultimate in physical manipulation interfaces is to build a 
customized input device that has the same manipulation points as the target virtual 
object such that all manipulations can be done using the physical input device. This 
strategy was chosen for creating computer keyframe animations of dinosaur motion 
for the film Jurassic Park [Knep et. al., 1995]. Here a customized physical skeleton 
(i.e., armature) was constructed and connected to a graphics workstation to animate 
an articulated dinosaur figure. The skeleton has sensors attached to each joint; each 
joint angle is monitored and this data is sent back to the workstation in near real 
time. This enables animators to manipulate the physical skeleton and have the poses 
captured by the computer. The authors of the system state that the armature is 
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precise, fast, compact and easy to use. However, they do point out that some 
problems do occur. For example, slight discrepancies in the physical skeleton and 
the virtual skeleton may produce undesirable results (sometimes causing animators 
to go back to the virtual interface and do some clean-up work). Also, the physical 
skeleton often cannot support all degrees of joint freedom due to mechanical 
limitations. In this truly direct manipulation interface, individual joints cannot be 
easily isolated and separately manipulated without causing surrounding joints to be 
altered. Nevertheless, the physical manipulations were preferable to the purely 
virtual manipulations. Finally, this system illustrates the tradeoff between physical 
and virtual manipulations. Regardless of the medium chosen, the other cannot be 
ignored.  

From a Graspable UI perspective, each joint on the dinosaur can be considered an 
input device. Thus, the joints offer a space-multiplex input, allow for concurrent 
manipulation and have a specific physical form. One could argue that the joints are 
spatially-aware since they collectively describe a spatial pose of the dinosaur. 
However, consider the fact that the joints are physically strung together and the 
system has been calibrated for a given joint sequencing. If we swap two similar 
joints (e.g., right elbow joint with the left elbow joint), the system has no way of 
detecting this. Moreover, if we swap two dissimilar joints (e.g., right elbow joint 
with right knee joint), the system will not detect this and even more confusing data 
will be generated. Thus, spatial reconfigurability of the device is often discouraged 
due to the extensive recalibration needed.  

3.3.5 LegoWall   
The LegoWall prototype (developed by Knud Molenbach of Scaitech and LEGO) 
consists of specially designed blocks that fasten to a wall mounted panel composed 
of a grid of connectors. The connectors supply power and a means of 
communication from the bricks to a central processing unit. This central processing 
unit runs an expert system to help track where the bricks are and what actions are 
valid (see Figure 3.8).  

An example ship scheduling application has been prototyped. The application has 
objects (e.g., ships) and actions (e.g., print or display schedule). Both the objects and 
actions are physically instantiated as "bricks." The bricks contain a 64 bit 
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identification number and come in a variety of sizes and sophistication. Some bricks 
are very small (e.g., a push button for a scrollbar). Most bricks are designed to be 
"containers" of information. For example, a container object represents a ship which 
is traveling between ports. The container is used to access information such as its 
cargo, crew, schedule, etc. Multiple bricks are instantiated and are permanently 
assigned a ship or action function. Since the bricks operate on a wall mounted panel 
composed of a grid of connectors, the bricks and panel collectively define a space-
multiplexed input and output system. The wall panel is divided up into spatial 
regions where a column represents a shipping port. As ships travel to different 
ports, their corresponding brick is physically moved to the appropriate column. Two 
or more bricks can be manipulated at the same time.  

 
(a)          (b)  

Figure 3.8 LegoWall prototype. Physical bricks can be moved around on a wall 

mounted panel (a). Ship scheduling application (b).  

While the LegoWall uses fairly generalized input devices in the shape of a "brick," 
one could imagine the use of slightly more specialized forms. For example, bricks 
could have the shape, size and color of model ships. This, potentially, would make it 
easier to identify individual ships on the board as well as obtain a more detailed 
gestalt overview of which ships are in which ports.  

When the bricks are attached to the grid board, they can be uniquely identified and 
located on the board. Thus, the bricks are spatially aware devices. Moreover, the 
proximity of bricks serves to bind an action command operator to operand. For 
example, placing the "ship" container brick next to the display brick causes the 
shipping schedule for the given ship to be presented. Positioning the print brick next 
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to a ship brick and pressing the print button generates a hard copy of that ship's 
traveling schedule on paper. Because the bricks can be easily moved on or off or 
within the grid board, the system supports high spatial device reconfigurability.  

People can easily point, touch or activate the bricks. Moreover, their everyday skills 
(touching, pushing, squeezing, moving) and spatial reasoning skills can be used. 
One of the key ideas is that the user manipulates physical artifacts and the computer 
monitors these manipulations and interactions and reacts appropriately.  

There are several ways of enhancing the current LegoWall design. First, we could 
project a large display onto the gridboard. This would allow the application to 
display dynamic output directly on the board. For example, it could select or 
highlight a set of bricks after a user query (e.g., show me those ships carrying 
perishable items). Moreover, we could imagine a system that used an alternative 
input sensing technology that did not require the use of a gridboard. The gridboard 
requires the discrete and effortful placement of bricks on the board (i.e., uses must 
line up the pegs with the holes in the board). Instead, a smooth surface may be more 
desirable which allowed the bricks to slide along the surface and afford more rapid 
placement. These ideas are further explored in the "Bricks" prototype described in 
Chapter 5.  

3.3.6 Behavior Construction Kits   
The behavior construction kits being developed at the MIT Media Lab [Resnick, 
1993] consist of computerized LEGO pieces with electronic sensors (such as light, 
temperature, pressure) which can be programmed by a computer (using 
Lego/Logo) and assembled by users. The idea is to have children construct an 
assortment of "behaving machines" such as vehicles that move toward the light, or 
run away when they hear sounds. These LEGO machines can be spread throughout 
the environment to capture or interact with behaviors of people, animals or other 
physical objects. In terms of Graspable UI properties, the LEGO pieces offer a space-
multiplex input scheme, allow for concurrency and a high degree of spatial 
reconfigurability. Their physical form is designed to be generic and composable and 
the pieces are not spatially-aware. Note that a related research system, the Lego 
Interface Toolkit [Ayers and Zeleznik, 1996], allows users to assemble customized, 
physical control panels using LEGO components that have been augmented with 
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sensing devices (e.g., rotation and linear sensors, push buttons). The intent of this 
physical toolkit it to allow designers to rapidly experiment with developing 3D 
interaction devices.  

3.3.7 Programmable brick   
Most recently, Randy Sargent, a member of Resnick's group, has developed a 
programmable brick [Resnick, 1993]. The brick is a small (approximately 2''x3''x1.5''), 
battery-powered computer with a wide variety of I/O features (Figure 3.9). Some of 
the I/O features include a microphone and speaker, infra-red transmitters and 
receivers, networking capability to connect to host computers, two push buttons and 
a dial, and a small character-based LCD display (16 characters by 2 lines). It uses a 
Motorola 6811 microprocessor and contains 128K of non-volatile ROM. These bricks 
serve as a powerful, portable, computational device which can plug into other lego 
compatible sensors and motors for detecting and modifying the surrounding 
environment.  

 

Figure 3.9. Programmable brick consisting of a microprocessor, non-volatile ROM 

and many multiple I/O ports. Brick measures approximately 2''x3''x1.5''.  

While the programmable brick shares many of the Graspable UI properties as the 
behavior construction kit, it has significant differences. First, it offers a time-
multiplex input scheme since the brick can be used and re-used for a variety of 
multimedia and computational functionality. The brick is spatially-aware, at a 
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coarse level, due to its infrared transmitter and receivers; each brick can uniquely 
identify itself within the range of a given infrared sensor. Finally, while the 
programmable brick has a very intricate physical form, it is still fairly generic in that 
the shape, color, and size does not suggest a single function or role.  

3.3.8 AlgoBlock   
The AlgoBlock system [Suzuki and Kato, 1993] is a set of physical blocks that can be 
connected to each other to form a program. Each block corresponds to a single Logo-
like command in the programming language. Once again, the emphasis is on 
manipulating physical blocks each with a designated atomic function which can be 
linked together to compose a more complex program. The system facilitates 
collaboration by providing simultaneous access and mutual monitoring of each 
block. The AlgoBlock system shares Graspable UI properties similar to the 
LegoWall.  

3.3.9 Phantom chess   
The Phantom electronic chess system dramatically begins to illustrate the concepts 
of self-propelling bricks, position and motion feedback and system reciprocity. The 
Phantom system consists of physical chess pieces each having a small magnet 
embedded within its base. The pieces are placed on a special board that houses a 
computer controlled mechanical arm underneath the surface. Chess pieces can be 
grabbed by the computer due to the magnetic attraction and moved around on the 
playing board by the hidden mechanical arm. The board is also touch sensitive to 
detect when humans move the chess pieces. This allows a very seamless blend of 
user control and computer control. At any point, the user can override the computer 
moves by grabbing a game piece and breaking the magnetic hold. When pieces are 
"captured" by the computer they are moved off of the main game board and into a 
designated "parking spot" region situated to the left and right of the board.  

The Phantom system has a few interesting features and properties. If the system 
needs to draw the user's attention to a specific chess piece, the Phantom wiggles or 
shakes the piece in its current square. This "highlighting" mechanism is very clever 
and effective. It is used, for example, when the user requests a hint from the 
computer as to which piece to move next. Another feature the user can request is the 
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"Valid moves" button. First the user selects a game piece and hits the "Valid move" 
button. The Phantom will demonstrate what moves are currently valid given the 
current game board state by moving the piece to each valid final position. During a 
game, it is often necessary to "jump over" pieces to get to the final square. The 
system cleverly calculates the path to its target square and shifts those pieces in the 
way slightly off of their center square to slip the moving piece through the traffic. 
After the moving piece reaches its final resting square, the Phantom slides any 
displaced pieces back to its center. In fact, the Phantom keeps a quiet vigil over the 
pieces and centers them in the square whenever given the opportunity (a neatnick).  

In terms of Graspable UI properties, the Phantom offers a space-multiplex input 
scheme, specialized physical pieces and no concurrency support. The Phantom gives 
the illusion of having spatial-awareness of the pieces but it actually cannot sense the 
pieces. Instead, it relies on the pieces starting in their proper positions at the start of 
a game. It keeps a constant accounting of where each piece should be throughout the 
game. If a user moves a piece without registering the move with the computer, the 
Phantom will be unaware of the change. Moreover, game pieces can be swapped 
(i.e., a pawn for a king) without the Phantom's knowledge. While the pieces may be 
considered free-ranging, the game board serves as a touch sensitive gridboard 
where each piece must register its original and final resting position (by applying 
pressure on these spots).  

3.3.10 Wacom Character devices   
Wacom Technologies Inc. has explored the concept of having specialized "character 
devices," what they call electronic stationary, in which devices have a unique shape 
and a fixed, predefined function associated with it [Fukuzaki, 1993]. The idea is that 
the form or shape of the device reveals or describes the function it offers. Three 
character devices were defined: (1) eraser, which functioned to erase electronic ink, 
(2) ink pot which served to select from a color palette and (3) a file cabinet which 
brought up a file browser to retrieve and save files (see Figure 3.10).  

When the devices are on the tablet, the system is spatially-aware of their location 
and can identify which device is on the tablet. Note that only one of these character 
devices can be sensed on the tablet at any given time. However, the devices not on 
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the tablet do serve a purpose in reminding the user what functionality is available 
and serve as dedicated graspable functions. In that sense, the devices are being used 
all of the time. We call this background concurrency. Serving as physical, graspable 
functions the devices can be easily rearranged in a user's workspace to afford rapid 
task switching and task workflow. Thus, the system has a high degree of spatial 
device reconfigurability. The main difference between the character devices and the 
puck and stylus configuration is that the character devices offer a space-multiplex 
input design as they have one permanently assigned functional role in the user 
interface. Moreover, their physical form factor is specialized to suggest and facilitate 
the functionality it offers.  

  

Figure 3.10 A Wacom tablet with prototype "character devices:" a file cabinet, ink pot 

and eraser.  

Wacom offers digitizing tablets which supports simultaneous use of a stylus and 
puck device (see Figure 3.11). This Wacom tablet is the first in its class to offer two 
handed device support. The stylus is pressure sensitive and has a button along the 
shaft. The puck, has four buttons and a cross-hair pointer. Both the stylus and puck 
can be sensed and tracked simultaneously. Alias|Wavefront uses this multi-device 
mode in StudioPaint, a high end drawing program. The puck can be attached to a 
tool shelf while the stylus can select from the shelf. In a different two-handed mode, 
the puck can be used to move the drawing canvas around while the stylus remains 
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in inking mode. Thus, each device is assigned a functional role in the integrated two-
handed interaction techniques.  

 

Figure 3.11. Wacom tablet which supports simultaneous use of the stylus and puck 

devices for two handed interactions.  

3.4 Summary  

In this chapter we presented a collection of research systems, projects and 
prototypes that exhibit some properties of Graspable UIs. For every system 
surveyed, we discussed and rated them using the 5 Graspable UI properties outline 
in Chapter 1. Figure 3.12 summarizes these ratings.  

We survey two main areas: Computer Augmented Environments and physical 
manipulation interfaces. The augmented environments advocates merging electronic 
systems into the physical world instead of attempting to replace it (as with 
immersive virtual reality systems). We reviewed some systems which emphasize 
blending virtual and physical artifacts into a unified interface (e.g., the Digital Desk, 
Mosaic, KARMA). Next we described systems that focus on the act of physical 
manipulations of customized and generic sets of physical artifacts. Many of these 
systems can be considered early examples of Graspable user interfaces. The most 
influential and Graspable UI compliant are the Passive Interface Props, LegoWall 
and the Wacom character devices. These systems have a balance between virtual 
and physical interface components.  
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Figure 3.12. Summary of surveyed systems and Graspable UI property ratings. 

All of the systems reviewed in this chapter collectively contribute to the refinement 
and articulation of Graspable user interfaces. In the next chapter (Chapter 4) we go 
through a detailed example of applying the Graspable UI properties to an existing 
interface to see the benefits and costs of evolving a GUI to a more Graspable UI.  
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Chapter 4: A Design Evolution – from GUI to a more 
Graspable UI  

In this chapter we illustrate how the Graspable UI properties are applied to an 
existing graphical user interface to evolve it into a more Graspable UI. Here we have 
chosen the context of a commercial software animation program called 
PowerAnimator(TM) by Alias|Wavefront. Specifically, we chose the task of 
character keyframe animations. By applying some of the design properties we, in 
some cases, generate new input devices and interaction techniques.  

4.1 Keyframe animation and current GUI design  

In character animation, a geometric model of a character is first built. Mathematical 
expressions which serve as constraints are then added to govern the movement of 
the character model. To adjust the character, animators can often manipulate the 
limbs or expressions directly, one at a time. Creating a keyframe animation sequence 
involves: (1) setting a pose with the character, (2) recording the frame, and (3) 
advancing to the next unit of time. These three steps are repeated until the sequence 
is complete. Often this involves going back and adjusting existing keyframes. 
Another common style is to edit portions of a character (e.g., the head), going 
through the entire sequence then returning to the beginning and editing another 
portion (e.g., the arms).  

What makes this job challenging is having only one input device (i.e., the mouse) to 
manipulate each limb or expression of the character. The keyboard is often used to 
quickly select or cycle through the limbs or expressions which are then manipulated 
using the mouse.  

Four general control categories  
A high level task analysis of the animation workflow was conducted. We 
determined that character keyframe animation tasks have roughly four categories of 
interaction: (1) selection of objects and commands, (2) 3-D view controls, (3) time 
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controls and (4) character control. These four control categories are candidates for 
dedicated devices. It is interesting to note that awareness of the Graspable UI pushes 
us to search for categories. These categories, in turn, aid us in determining where to 
deploy devices.  

Selection (of objects and commands)  
Selection consists of picking command icons, menuing or picking geometric objects 
which compose the character and the scene (see Figure 4.1). In the current GUI 
design, selections are made by pointing to an icon or a graphical handle on an object. 
Selecting a graphical handle is sometimes difficult as a scene may have many 
handles clustered together. Multiple views of the model (in perspective or 
orthographic views, or hierarchical component lists) serve to facilitate selecting parts 
of the model. Keyboard short-cuts (i.e., "hotkeys") also allow the user to issue 
commands and cycle through selection lists.  

3-D View controls  
View controls often allow users to manipulate all six degrees of freedom (i.e., 
tumble, track, and dolly) to change their viewing perspective. The 3D view controls 
are accessed in a variety of ways including selecting from a set of command icons on 
a window border or in a tool palette (see Figure 4.1). Since these commands are used 
so frequently, the view controls are sometimes assigned to a dedicated set of 
modifier keys on a keyboard. By holding down the keys and using the mouse along 
with the three mouse buttons, users can activate the necessary view controls.  

Time controls  
Since animations are heavily time based, VCR-like controls are readily available to 
go forward or backwards in time with varying time increments. Users click on the 
corresponding VCR control icon to issue a time control command (see Figure 4.1) or 
use the timeslider widget. This widget shows a range of keyframes with a graphical 
bar indicating the current time unit being viewed. Using the mouse, users can drag 
this bar along the slider to access frames.  

Character controls  
Finally, character controls are used to set and adjust poses for each keyframe. 
Sometimes users create customized graphical widgets to facilitate this process. In 
general, however, users first select a joint on their character and manipulate it 
directly with the mouse (often specifying a translation or rotation along the X, Y, or 
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Z directions). The collection of joints and limbs comprise the skeleton of the model 
which are superimposed (or are "inside") the main volume and surfaces of the 
character (see Figure 4.1).  

 

Figure 4.1. Alias|Wavefront's PowerAnimator(TM) package with four main controls 

for character keyframe animation: time, 3-D view, select and character controls.  

4.2 Matching input devices to tasks  

Once the control categories are chosen, we must decide which input devices are best 
suited for the specific tasks. In general, we want to select compatible input devices 
where the form factor and the manipulation capabilities of the device serve not only 
to remind the user of the associated functionality but also facilitates the execution of 
the task. There has been much research on classifying input devices [Card et al., 
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1990; Robinett, 1992]. Many input device properties must be considered. While it is 
beyond the scope of this thesis to give an exhaustive enumeration of input device 
properties, the following factors illustrate some of the issues to be considered:  

• discrete/continuous action. Does the task require single discrete actions (e.g., a 
push-button for issuing a command) or continuous actions (e.g., a slider for 
selecting a range of values such as audio volume).  

• relative/absolute mapping. Can the task be performed equally well with input 
devices that operate using relative or absolute mappings? For example, 
device clutching is often necessary for relative mappings. Will this interfere 
with the performance of the task? In addition, absolute device mappings may 
be more suited for tasks that rely on spatial layouts and arrangements.  

• fixed ranges. Does the task have natural, pre-defined bounds of operation? For 
example, a scrollbar in a document has a natural fixed range (i.e., beginning 
and end of document). Thus a physical linear slider may be suited as its range 
of operation is physically constrained.  

• number of degrees sensed. How many degrees of freedom (DoF) does the task 
require? Does the input device offer extra or too few DoF?  

• device uniqueness. If a range of devices will be used for a set of tasks, is the 
device similar to other devices already being used? Using similar devices for 
related functionality may aid the user to identify a device. However, users 
must be capable of easily differentiating between similar devices. For 
example, if a second mouse is added to a system and the two mice sit side by 
side, users may get confused as to which mouse is attached to which 
functionality and accidentally acquire the wrong device. This confusion may 
be diminished by changing the shape, color, or texture of one of the mice or 
by moving the second mouse to its own space (e.g., the other side of the 
keyboard).  

• gestural compatibility. Does the task have gestural requirements in terms of 
scale of gesture and degree of expression. For example, a gesture can have 
granularities such as finger, wrist, and arm (i.e., free-hand drawing often 
benefits by having input devices that support arm-scale gestures such as large 
digitizing tablets). Degree of gestural expression also has a wide range. For 
example, a push button does not capture any specifics of how the user pressed 
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the button. In contrast, a stylus on a digitizing tablet can capture a high 
degree of gestural expression including the user's stroke, the orientation of 
the stylus as well as the stylus tip pressure.  

• fatigue. What will be the average time duration of the task? Some input 
devices are more fatiguing than others. In general, we wish to minimize the 
onset of fatigue especially for tasks that have fairly long durations and high 
frequency of use.  

• system pragmatics. In terms of the pragmatics of adding and maintaining the 
input device to a system, a myriad of other issues are at play including: 
system support (e.g., device drivers), power requirements, serial ports, cable 
requirements, etc.  

• footprint. How much physical space does the device take-up in the user's 
workspace?  

• cost. How expensive is the device?  

There are many design tradeoffs when matching and assessing an input device for a 
given task. Tasks that are more frequently performed, for example, may justify a 
larger device footprint and higher cost than less frequent tasks. While further 
analysis is beyond the scope of this thesis; we wanted to provide some design 
rationale and insight into the process of matching input devices to tasks.  

4.3 Stages of Evolution  

Stage 0: Status quo  
Having defined the basic character animation task and the set of four main controls, 
we now describe the design stages and the specific input devices used in the 
evolution of this GUI towards a more Graspable UI. Our starting point reflects the 
status quo or the current GUI design (see Figure 4.2). That is, the mouse device is 
commonly used to perform all four categories of tasks (select, view, time, and 
character controls).  

 
Figure 4.2 Starting design where the mouse is used for all four categories of task. 
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Stage 1: MIDI sliders for character control  
We first apply the space-multiplex input property to the character controls. In our 
first prototype enhancement, we use the MIDI interface [Chamberlin, 1985] to drive 
multiple interaction input channels for controlling a character. Each limb or 
expression of the model can be assigned a generic interaction input channel. This is 
achieved by simply selecting the graphical object and, using a dialog box, assigning 
it a channel number and optional scale and offset values. Once assigned, these 
interaction input channels can be driven by one or more MIDI devices which are 
routed through the serial port on the SGI workstation. For example, we have a MIDI 
device which contains 8 physical sliders (see Figure 4.3a). Each of the sliders are 
assigned to one of the interaction input channels. In our example, a robot model can 
be controlled using the MIDI sliders (see Figure 4.3b). The slider assignment is done 
dynamically during run-time by using a "plug-in" architecture supported by 
PowerAnimator(TM). Note that for convenience, each physical slider is labeled as to 
its limb or expression association using a pen and masking tape.  

(a) (b)  

Figure 4.3 MIDI sliders (a) used to control the robot character. Each slider is 

assigned a limb to control the robot model character (b).  

There are a number of advantages to the MIDI approach. First, the MIDI sliders 
serve as a space-multiplexed input scheme where each slider is a graspable function. 
That is, each slider has a permanent selection and attachment to the graphical 
widget used to move a particular limb on the robot model. The net result is the 
ability to manipulate multiple limbs or expressions simultaneously using the 
physical MIDI sliders. In contrast, using the traditional GUI approach of using only 
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a mouse, users have to select and attach to the graphical widget controller every time 
they wish to perform a manipulation on a new limb. Figure 4.4 shows the first stage 
in our design evolution.  

 

Figure 4.4. First stage in design evolution. Space-multiplex input was applied to 

character controls. This affords rapid and concurrent limb control.  

Stage 2: Space ball for time and view controls  
In this stage of evolution we consider using a (quasi) isometric, 6 DoF input device, 
the space ball, to control both the time and view commands (see Figure 4.5). Here 
we are again applying the concept of space-multiplexing input by physically 
instantiated some of the graphical widgets. In terms of physical form, we consider 
using the spherical shape of the space ball which affords an intuitive navigation 
metaphor. However, it is difficult to design a set of intuitive time controls based on 
the spherical device. Figure 4.6 shows the evolution of our design.  

 

Figure 4.5 The space ball six degrees of freedom input device has a generic physical 

form well suited for view controls but less so for time controls.  
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Figure 4.6. Second stage in design evolution. 

Stage 3: Space mouse for time and view controls  
Instead of using the generalized spherical space ball device, we decided to use the 6 
DoF Magellan space mouse (see Figure 4.7a) to operate both the view and time 
controls. The space mouse is also a (quasi) isometric device but has a more 
specialized form factor. It is roughly the shape and size of a hockey puck instead of a 
sphere. The Magellan has a "cap" that the user grasps. The cap rests on a pivot which 
allows the user to tilt, twist, push, pull and translate the cap. When released, the cap 
returns back to its initial resting state. Here the cap serves as our graspable 
functions.  

 
(a)             (b)  

Figure 4.7. A six degrees of freedom input device, (a) the Magellan space mouse 

and (b) axis labeling for the space mouse.  
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Six DoF (quasi) isometric input devices such as the Space Ball and Magellan are 
commonly used to manipulate (translate and rotate) graphical objects in a three 
dimensional world. Figure 4.7b shows the labeling for each axis and dimension of 
control that the input device offers (X, Y, Z, A, B, C). Note that positive directions are 
indicated by the arrows.  

Again, the time controls for PowerAnimator(TM) are available through a standard 
VCR like control panel in the animation package (see Figure 4.8). Once a model and 
animation is loaded into the program, users click on these controls or the timeslider 
bar (running across the top of the window) using a mouse to access individual 
frames or to begin playback.  

 

Figure 4.8. VCR-like button control panel for PowerAnimator (from left to right): first 

frame, retard single frame, previous keyframe, play backwards, stop, play forward, 

advance to next keyframe, advance single frame and last frame.  

As has been stated, the Magellan 6D signals have been typically used to rotate, 
translate and scale objects in 3D space. The novelty of our design lies in mapping 
these signals to functions that control the playback and temporal navigation through 
dynamic (time-based) media such as digital video, audio and, for our design 
example, animation. The mappings are summarized in Table 4.1.  

Dimension Positive Direction Negative Direction 
X Last frame First frame 
Y  Stop playback 
Z Mark/set keyframe Unmark 
A Keyframe retard Keyframe advance 
B Single/multiple frame retard Single/multiple frame advance 
C Play backward Play forward 

Table 4.1. Temporal command mappings for 6 DoF space mouse. 
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These mappings have a strong correlation, or compatibility, with control devices, 
such as jog and shuttle wheels, typically found in video and audio editing suites. 
The benefit of the design, therefore, is to enable the 6 DofF technology to support 
user's existing skills. In short, the new interface will feel familiar to the user, yet the 
same device can be used in different contexts for other functions, such as the rotate, 
scale and translate functions which are more commonly associated with the 
technology. We now discuss the transport control functions summarized in Table 4.1 
in more detail.  

Single Frame Advance / Retard: A quick twisting of the cap (dimension B in Figure 4.7) 
to the right/left will advance/decrement by a single time unit (what we call a 
frame).  

Multiple Frame Advance / Retard: Extended or prolonged twists of the cap will result 
in multiple frame advances/decrements. Sequential frames will be accessed (e.g., 1, 
2, 3, 4...) until a threshold time is reached when the frame access jumps from single 
frame increments to larger units (e.g., 1, 2, 4, 8, 16, ...). This allows for accelerated 
movement in the time domain.  

Single KeyFrame Advance / Retard: Within the animation domain, tilting the cap on the 
top and bottom (dimension A in Figure 4.7) will advance or retard the current time 
unit to the next designated "keyframe."  

Play Forward / Reverse: Tilting the cap to the right or left (dimension C in Figure 4.7) 
will cause playback at normal speed (in the forward or backward direction 
respectively). Rocking the cap back and forth, left and right, enables one to "rock and 
roll" back and forth smoothly over a particular segment of the data. Animators will 
find this especially useful when they wish to check how well their current keyframe 
edits work with the surrounding frames that immediately proceed and follow the 
current frame.  

Stop: Pushing the cap downwards (dimension Y in Figure 4.7) will issue a "stop" 
playback command.  

Go To Beginning / End: To get to the beginning or end frames of a time sequence, 
users translate the cap to the left or right direction (dimension X in Figure 4.7).  
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Two Handed Usage  
In terms of usage, we expect the 6 DoF input device to be used by the non-dominant 
hand while a mouse or stylus (or other input device) is being used in the dominant 
hand. This allows the user to issue time control commands while continuing to work 
with his dominant hand without switching modes or performing the costly act of 
traveling to on-screen time-control user interface widgets. Not only is each hand in 
"home position" for its respective task (typically transport control with the left, 
selection and marking using the cursor in the right), but these tasks can be 
performed simultaneously in a two-handed manner. That is, one can select or mark 
aspects of an animation with the right hand (dominant hand) as its playback is being 
controlled by the left (non-dominant hand).  

Eyes Free "In Hand" Operation  
Working with video and animation during playback is a visually demanding task. 
One's eyes should be concentrating on the data, not some UI widget that enables one 
to control the data. Yet, the status quo uses graphical icons, representing VCR 
controls, that not only consume valuable screen real estate, but which also demand 
distracting visual attention (not to mention additional time) in order to operate. Our 
technique supports "in hand" immediate eyes free control over the playback. While 
function keys have been used by others in an attempt to achieve similar purpose, the 
approach is inferior for at least two reasons: (1) the mapping of keys to function is 
neither intuitive, obvious nor builds upon the user's existing skills; (2) keys are 
binary on/off, so this design cannot support speed of playback, for example, being a 
function of the force of twisting the cap -- something that our implementation does 
support. Finally, Marking Menus [Kurtenbach, 1993] are another technique that can 
and has been used for eyes free transport control. The disadvantages of this in 
comparison with our design are: (1) this is typically done using the dominant right 
hand, therefore generally not enabling simultaneous marking and selecting, and (2) 
the technique and marks used are new to the user. They do not build upon existing 
skills in the same way as our design.  

Generality  
As an alternative to our approach, one always has the option to interface a "real" jog 
or shuttle wheel, or a VCR transport control to the computer (see next section). 
While this will work well, it involves added expense and special purpose hardware. 
The merit of our approach is that it achieves essentially the same end, using more 
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general hardware, that is, hardware which can be used for other functions in 
different contexts, and which is generally supported and available.  

This design and time command mapping may benefit users who already work with 
a jog/shuttle wheel. Specifically, we believe the Magellan 6 DofF input device is 
well suited for serving as a time controller as the shape of the "cap" is roughly the 
shape and size of a jog/shuttle wheel. This may suggest functionality to the user and 
potentially allow for some skill transfer.  

One of the difficulties with this design, however, is toggling between the two sets of 
mappings: time controls and view controls. Users toggle modes by hitting a button 
on the space mouse (the "*" button). We have found that users will forget what mode 
they are in and inadvertently issue a command in the wrong mode before realizing 
their mistake. To compensate for this, we have a mode icon visible on the screen. 
However, this is not very reliable. A somewhat better solution may be to have the 
cursor change shape. Nevertheless, this highlights one of the inherent problems of 
re-using a physical object (input device) for multiple sets of functionality. Here no 
tactile feedback is possible to let the user know what "mode" they are currently in. 
Instead they must rely on some visual cue. Figure 4.9 shows the evolution of our 
design.  

 

Figure 4.9. Third stage in design evolution. 

Stage 4: VCR time controls  
To alleviate the frequent mode errors in stage 3, we added a second MIDI box (see 
Figure 4.10) that contains a physical jog/shuttle wheel and a control panel with VCR 
buttons (e.g., play, stop, record, last/first frame, etc.). With the addition of these 
physical controls, character animators are able to issue animation and time 
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commands in a rapid manner without having to use the keyboard or mouse. The 
physical buttons offer a space-multiplexed design with graspable functions (each 
button having a persistent attachment to a time function). In this configuration, the 
space mouse is used exclusively to issue view controls (see Figure 4.11). Here users 
can arrange their physical devices to accommodate a particular workflow.  

 

Figure 4.10. MIDI jog shuttle wheel and VCR panel buttons 

Still, this design can be improved. In many animation applications, there are 
multiple animation or video sequences to edit. With the current design, users must 
first select the window in which they wish to issue a time command. Thus, this is a 
two step process and the time controls do not have a permanent target selection. 
One obvious solution is to have multiple MIDI VCR control boxes to control 
multiple sources. This is somewhat wasteful and will clutter up our workspace. In 
stage 5, we find a better solution.  

 

Figure 4.11. Fourth stage in design evolution. 
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Stage 5: Mobile scrubwheel  
The final prototype in stage 5, the mobile scrubwheel, looks at having a more highly 
specialized physical form to facilitate issuing time commands for multiple, digital 
video clips or animation sequences. The mobile scrubwheel is a prototype input 
device developed by Wacom Technologies. We use the device and define interaction 
techniques to aid the manipulation of temporal digital media. The scrubwheel uses 
one of the key properties of Graspable UIs to address the mode and attachment 
problems seen with the jog shuttle wheel. That is, it uses spatial-awareness while 
preserving the property of skill transfer.  

The mobile scrubwheel operates on a Wacom tablet and can sense its position and 
rotational velocity (see Figure 4.12b). When the mobile scrubwheel is positioned 
over a window containing temporal media (e.g., video) it can be used both as a 
cursor as well as for controlling the playback of the media.  

The scrubwheel consists of two Wacom sensors and a button on top for user 
selection. In terms of physical design, it consists of two transparent plastic discs (see 
Figure 4.12). The outer disk rests on ball bearings housed on the inner disk. By 
tightening the fastener that holds both disks together, users can vary the tension 
from locking the disks together to varying degrees of fluid spinning. Ultimately, the 
transparency could allow users to see "through" the device to the underlying video if 
the device could operate directly on the computer screen. This, however, is currently 
not possible.  

  
(a)            (b)  

Figure 4.12. Mobile scrubwheel input device (a). Schematic of mobile scrubwheel 

(b). Sensor s1 specifies location while sensor s2 specifies an angle relative to s1.  
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Figure 4.13 shows the application design if the scrubwheel operated on the visual 
surface directly. Here we see three separate windows containing a video clip. Users 
can position the mobile scrubwheel on top of the window and "scrub" the device 
which manipulates the underlying video. By scrubbing we mean that the user spins 
the wheel clockwise (forward) or counterclockwise (reverse) to advance or retard the 
current video to the next or previous frame. The button is used as a toggle button to 
stop/resume playback. In our current implementation, the scrubwheel operates on 
the Wacom tablet (i.e., the input control space and display space are separated).  

 

Figure 4.13 Mobile scrubwheel application. The scrubwheel acts on whichever video 

window it is on top of.  

This prototype adheres very strongly to the defining properties for Graspable UIs. 
Specifically, it physically instantiates part of the user interface (temporal commands) 
through a customized, specialized physical artifact (scrubwheel), is spatially-aware 
(its position can be sensed on the Wacom tablet) and is context-sensitive (commands 
are sent only to the video windows the scrubwheel is on top of).  

Nevertheless, we must ask if the same expressiveness could be achieved by using a 
mouse (to point to the target video) and a stationary scrubwheel (or even a space 
mouse) to issue commands. This is an area for future research. In any case, we 
believe the quality of the physical interaction is of paramount importance. The 
mobile scrubwheel, having a highly specialized physical form, suggests and 
facilitates the functionality it offers and serves as a very promising example of a 
Graspable UI. In the future we may wish to explore the idea of using multiple 
mobile scrubwheels to achieve even better usability. One application may be to use 
two mobile scrubwheels, one in each hand, to specify "in" and "out" points between 
two video sources. Again, this is left as future work.  
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4.4 User Evaluation  

Throughout the evolution of the five design stages we elicited user feedback to 
guide our designs. Since the prototypes were developed at Alias|Wavefront (to gain 
access to the source code of the PowerAnimator application), we had access to "in-
house" expert users of the product. These users have extensive experience creating 
character keyframe animations (as well as other styles of animation such as motion 
capture). Many have worked as animators on commercial film productions. The 
prototypes were informally evaluated by having users spend a small amount of time 
(e.g., a few minutes) using the system and commenting on their experience. While 
we were eager to get feedback from any of the expert users, we worked primarily 
with 3 of the animators.  

Our designs were also guided by feedback we received while demonstrating the 
prototypes at trade shows and conferences. While this feedback was mostly in the 
form of anecdotal evidence from animators who had a short exposure to the 
prototypes (e.g., a few minutes), we felt it was very valuable. Many animators and 
technical directors (professionals who set up animation workstations for animators) 
described the need to have physical devices to control the user interface and 
character poses. Much of their rational stemmed from two beliefs (1) they wanted a 
way to capture and leverage off of the quality of physical devices and tactile 
feedback (believing that the mouse and keyboard devices were not sufficient to 
capture their gestures) and (2) they believed that using physical input devices and 
artifacts would simplify the interface (e.g., reduce the complexity by reducing the 
number of functions that are accessible by using only dedicated physical 
controllers). We were encouraged by how close their requests were aligned with the 
Graspable UI philosophy.  

Stage 1: MIDI sliders for character control  
Beyond the parallel activity time-motion gains, users often commented on the "feel" 
of the physical MIDI sliders and the quality of interaction. This type and quality of 
interaction cannot be easily achieved using the graphical widgets and a mouse. The 
tactile feedback gives users additional information. For instance, users can feel when 
they are at the min or max values as the physical sliders are constrained to operate 
along a track that has a fixed length. We also had animators try a set of touch-
sensitive MIDI sliders instead of physical faders. They much preferred the touch of 
the physical sliders. Moreover, quite often the graphical widgets or expressions 
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consume valuable screen space. Using the MIDI approach the graphical widgets are 
not needed. Finally, because MIDI is a very popular and mature standard, many 
devices (often very economically priced) are available and can be easily added or 
chained to other MIDI devices.  

Stage 2: Space ball for time and view controls  
We did not gather much user feedback from using the Space mouse as the 
alternative 6 DoF device, the Magellan Space mouse, offered a more viable solution 
due to the puck-like shape of the device.  

Stage 3: Space mouse for time and view controls  
With user feedback, the device temporal mappings for the space mouse went 
through a few refinements (specifically the acceleration algorithm used in the 
accelerated playback mode). General improvements to the overall robustness in the 
design also occurred (e.g., allowing for the user to defined sensitivity settings for 
each control axis). It has been our experience that users who are familiar with the 
space mouse device quickly learn the new time control mappings. From the small 
group we have sampled (approximately 15), we estimate that users become very 
familiar and fluent with issuing commands within minutes. Users tell us that the up-
front learning costs are minimal and are easily amortized. The prototype has gone 
through several implementation iterations and is now part of the standard release 
for Alias' PowerAnimator(TM) product.  

Stage 4: VCR time controls  
Users commented that they preferred the use of the dedicated physical control 
buttons to issue time commands (such as play, fast forward, stop). Early prototypes 
using the scrub wheel device to advance/retard by single frames was not optimized 
and would often experience a backlog of events. Users noticed this almost 
immediately, and commented that they preferred using the mouse and the virtual 
timebar controller widget. This widget allows users to drag the "current frame" bar 
indicator along a timeline ribbon, affording rapid access to individual frames. While 
the backlog of events can easily be fixed, more refinements need to be performed on 
the mapping between the physical scrub action and the corresponding temporal 
adjustments. The scrubwheel seems more suited for accessing "nearby" frames (e.g., 
advancing/retarding up to 10 frames) than for providing random-access to the 
temporal media due to its linear (i.e., "spinning") nature.  
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Stage 5: Mobile scrubwheel  
For the mobile scrubwheel device users anticipated the functionality associated with 
the device. This, we believe, is attributed to the shape and manipulation 
characteristics of the device. Some users would actually use both hands to operate 
the device: one to hold the center and the other to make it spin. Initially, we thought 
users would only spin it slowly. Thus, the movie would be stopped and they would 
use the device only to get to nearby frames. However, to our surprise, while the 
movie was being played, users would operate the scrubwheel, sometimes spinning 
it very, very fast. If the movie was playing forward, users could spin the scrubwheel 
backwards (counterclockwise) at the proper rate to temporarily pause the video or 
even go backwards a few frames. When the scrubwheel started to slow down, the 
movie would again proceed forward but at a reduced speed. Normal playback 
would occur when the scrubwheel stopped spinning. Also, if the movie was playing 
forward, spinning the scrubwheel forwards (clockwise) would fast forward the 
video. Users commented that they enjoyed this interaction. The button on the device 
was not very usable. It was positioned at the outer edge of the scrubwheel so users 
would often have to hunt to find it. A better design would place the button in the 
center of the wheel.  

All of the 6 stages of design have shown how we can evolve an existing GUI 
application into a more Graspable UI. Figure 4.14 shows all 5 of the evolutionary 
design stages that we undertook to make the process of character keyframe 
animation into a more Graspable UI design.  

 

Figure 4.14. All five stages of our design evolution. 
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Finally note that this process of evolution is not terminal. For example, we can 
imagine improving the design further by making the MIDI sliders spatially-aware. 
Having a smaller form factor, the slider unit could operate on top of the Wacom 
digitizing tablet. Here the tablet can have designated regions marked for specific 
characters or pieces of geometry. When the slider unit is moved to a region, the 
sliders are automatically attached to the character's geometry and are ready for 
manipulation.  

4.5 Summary  

In this chapter we applied the design properties behind Graspable UIs in the context 
of a commercial software animation program. The designs at each stage were 
prototyped and informally evaluated. A byproduct of this design process was the 
development of novel interaction techniques (e.g., the time control mappings for the 
space mouse 6 DoF input device and the mobile scrubwheel). Chapter 5 further 
illustrates the concepts of Graspable UIs by describing a more detailed 
implementation and case study.  
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Chapter 5:  Bricks 
A detailed implementation and case study 

 
This chapter describes a detailed implementation and case study for a specific set of 
graspable user interfaces which we call "bricks.1" Here we are investigating a generic 
dialogue style rather than a single task or application as in Chapter 4. First, a series 
of exploratory studies was conducted to motivate and investigate some of the brick 
concepts. Primarily, we wanted to gain insights into the motor-action vocabulary for 
manipulating hand-scaled input devices on a desktop surface. In addition, we 
wanted to contrast the differences between physical and virtual object 
manipulations.  

The bricks design explores the use of generic physical objects as handles to virtual 
objects. In our initial configuration, the physical input control space and virtual 
display space are superimposed. We argue that the affordances of the physical 
handles are inherently richer that what virtual handles afford through 
conventionally direct manipulation techniques. After outlining the basic bricks 
design, we describe a working prototype system and a sample drawing application 
called GraspDraw. Both of these efforts aid exploring interaction issues in the 
context of a simple working application.  

Next, we apply the bricks design to a second application, that of curve editing. This 
prototype builds upon the first bricks prototype and investigates a specific 
interaction task within the context of a more robust commercial application. We 
describe a prototype system and the efforts and issues involved in transferring the 
ideas into a commercial application.  

                                                 

1 Note that portions of this chapter appear in [Fitzmaurice et al., 1995]. 
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Lastly, we present the “flipbrick” prototype which is a new input device specifically 
designed to economize the bricks design. That is, we would like to have multiple 
bricks available but want to minimize the physical clutter and at the same time 
cluster similar functionality. This prototype is described in terms of using a flipbrick 
to represent menu choices as well as rapid task switch.  

Throughout this case study we set out to gain further design experience with the 5 
Graspable UI design properties of (1) space-multiplex input and output, (2) 
concurrency, (3) physical form (weak general vs. strong specific), (4) spatially-aware 
devices and (5) spatial device reconfigurability.  

5.1 Exploratory studies 

The first two studies (LEGO separation task and domino sorting task) examine a 
user’s range of grabbing and gesturing behavior for tasks that require rapid hand 
movements and agile finger control for object manipulations. The next two studies 
(physical manipulation of a stretchable square; comparison using MacDraw 
application)  introduces the concepts of gestural “chunking and phrasing,” issues of 
interactions [Buxton, 1986] comparing physical and virtual interfaces. The following 
study investigates V-Blocks, a simple virtual block construction kit application. Here 
we contrast the differences between physical and virtual manipulations.  Next, a 
curve matching study is described that explores the use of a highly specialized input 
device. Finally, the last study uses a visual prototyping tool to simulate a range of 
interaction behaviors to be considered in future, more robust prototypes.  

5.1.1  LEGO separation task 
In the first exploratory study we asked subjects to perform a simple sorting task as 
quickly as possible. The basic idea was to get a sense of the performance 
characteristics and a range of behavior people exhibit while performing a task that 
warrants rapid hand movements and agile finger control for object manipulation. 
Four subjects were presented with a large pile of colored LEGO bricks on a table and 
were asked to separate them into piles by color as quickly as possible (see Figure 
5.1).  

We observed rapid hand movements and a high degree of parallelism in terms of 
the use of two hands throughout the task. A very rich gestural vocabulary was 
exhibited. For instance, a subject's hands and arms would cross during the task. 
Subjects would sometimes slide instead of pick-up and drop the bricks. Multiple 
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bricks were moved at the same time. Occasionally a hand was used as a "bulldozer" 
to form groups or to move a set of bricks at the same time (see Figure 5.2). The task 
allowed subjects to perform imprecise actions and interactions. That is, they could 
use mostly ballistic actions throughout the task and the system allowed for 
imprecise and incomplete specifications (e.g., "put this brick in that pile," which does 
not require a precise (x, y) position specification). Finally, we noticed that users 
would enlarge their workspace to be roughly the range of their arms' reach.   

 

Figure 5.1. The image shows a subject performing the LEGO separation task. 

   
Figure 5.2. Lego separation task. Separate the lego bricks by color. Here we see a 
subject using their hand as a “bulldozer” to move a group of bricks. 
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It is also interesting to note that before the task started, all subjects instantly began 
“playing” with the LEGO bricks once they were in front of them. That is, they would 
compose larger structures and design more complex objects. This suggests a few 
points. First, the bricks afford the act of composing. Secondly, people may enjoy the 
act of physically manipulating the LEGO bricks. That is, there is an inherent “fun 
factor” with these particular artifacts.  

5.1.2  Domino sorting task 
The second exploratory study asked four subjects to place dominos on a sheet of 
paper in descending sorted order. Here the domino bricks have very similar 
Graspable UI properties compared to the LEGO bricks except for the obvious shape, 
color and texture differences. Initially, the dominos were randomly placed on a 
tabletop and subjects could use the entire work surface. A second condition was run 
which had the dominos start in a bag. In addition, their tabletop workspace was 
restricted to the size of a piece of paper (see Figure 5.3). The notion behind 
restricting the workspace was to see if subjects exhibited different motor behaviors 
and placement strategies when faced with more workspace constraints. 

Once again this sorting task revealed unique interaction properties. Tactile feedback 
was often used to grab dominos while visually attending to other tasks. The non-
dominant hand was often used to reposition and align the dominos into their final 
resting place while, in parallel, the dominant hand was used to retrieve new 
dominos.  

One of the most useful observations was the confirmation that subjects seemed to 
inherently know the geometric properties of the bricks and made use of this 
everyday knowledge in their interactions without prompting. For example, if 5 
bricks are side-by-side in a row, subjects knew that applying simultaneous pressure 
to the left-most and right-most end bricks will cause the entire row of bricks to be 
moved (see Figure 5.3b).  

Finally, in the restricted workspace domino condition we observed one subject 
taking advantage of the “stackability” of the dominos and occasionally piled similar 
dominos on top of others to conserve space (see Figure 5.3c). Also, sometimes a 
subject would use their non-dominant hand as a “clipboard” or temporary buffer 
while they plan or manipulate other dominos (see Figure 5.3d).  
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Both the LEGO and domino studies confirm our belief that people will automatically 
take advantage of their everyday skills and knowledge about physical objects to 
efficiently manipulate and interact with them. These types of grasping and gesturing 
behaviors (e.g., “bulldozing,” stacking, composing, sliding, squeezing) should be 
supported with Graspable UIs that employ similar size and style input devices. 

  

   

Figure 5.3. (a) domino sorting task. (b) moving a whole row of dominos by applying 

pressure to the two end dominos (c) stacking dominos to conserve workspace, (d) 

using the non-dominant hand as a clipboard. 

5.1.3  Physical manipulation of a stretchable square 
The next three studies (physical manipulation of a stretchable square; comparison 
using MacDraw application; and V-Blocks: physical & virtual manipulations) are 
designed to examine the differences between physical and virtual manipulations 
and the gestural and conceptual “chunking and phrasing” issues of interactions.  
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Chunking and phrasing are important issues to consider when designing input 
devices and interaction techniques. The idea of chunking and phrasing [Card, 
Moran and Newell, 1983] originates in the area of human memory and cognition. 
While the concept is still being actively researched, it postulates that our memory 
and cognition uses chunks which are atomic units of operation. These chunks help 
us cognitively organize our methods of operation. Chunks can be grouped and 
sequenced into larger units called phrases. A phrase occurs when we need to access 
our short or long term memory. For example, telephone numbers are likely to be 
cognitively organized into one phrase consisting of three chunks (e.g., 617-555-4779 
instead of, for instance 5 chunks: 61-75-55-47-79). We argue that motor activity also 
can be thought of as using chunking and phrasing. That is, we want to extend it to 
gestures and interface design. Phrasing can aid the “ebb and flow of tension in a 
dialog. It lets us know when a concept is beginning, and when it ends. It tells us 
when to be attentive, and when to relax [Buxton, 1986].” Many interaction 
techniques are based on this flow of tension. For example, users click and hold a 
mouse button to bring up a pop-up menu, drag the mouse while the button is still 
held down (with tension) and finally release the button to make and execute a menu 
selection. A key issue in designing interaction techniques is to have the human 
chunks and phrases match the task at hand. As we shall see in this exploratory 
study, as well as in our experiments (Chapter 6), a significant performance 
improvement can be achieved when the user interface is chunked and phrased at the 
proper granularity.  

In this study we wanted to understand the nature of any chunking and phrasing 
differences between manipulating physical versus virtual objects. A physical 
"stretchable square" was constructed out of foam core. This square looks like a tray 
with a one inch rim around each side. Users could expand or collapse the length of 
the square (see Figure 5.4). We displayed an end position, orientation and scale 
factor for the physical square and asked subjects to manipulate the square to match 
the final target as quickly as possible. A variety of cases were tested involving one, 
two or all three transformation operations (translate, scale, and rotate).  

We found that each of the four subjects had a different style of grasping the 
stretchable square for position and orientation tasks. This served to remind us that 
physical objects often have a wide variety of ways to grasp and to manipulate them 
even given natural grasp points. In addition, subjects did not hesitate and were not 
confounded by trying to plan a grasp strategy. One subject used his dominant hand 
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to perform the primary manipulation and the non-dominant hand as a breaking 
mechanism and for finer control.    

      

Figure 5.4. (a) Flexible curve and stretchable square, (b) stretchable square in action 

on the Active Desk. 

Perhaps the most salient observation is that users performed the three operations 
(translation, rotation and scaling) in parallel. That is, as the subjects were translating 
the square towards its final position, they would also rotate and scale the square at 
the same time. These atomic operations are combined and chunked together.  

5.1.4  Comparison Using MacDraw Application  
The same matching tasks were then done using virtual objects and a stylus on the 
Active Desk.  Using the MacDraw IIª program, subjects were asked to move a virtual 
object on top of a target virtual object matching position, orientation and scale 
factors (see Figure 5.5).  

 
Figure 5.5 Comparable task using MacDraw on the Active desk 
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We observed that even when we factor out the time needed to switch in and out of 
rotation mode in MacDraw, task completion time was about an order of magnitude 
longer than the physical manipulation using the stretchable square. We noticed a 
"zoom-in" effect to reach the desired end target goal. For example, subjects would 
first move the object on top of the target. Then they would rotate the object, but 
often be unable to plan ahead and realize that the center of rotation will cause the 
object to be displaced. Thus, they often had to perform another translation 
operation. They would repeat this process until satisfied with a final match. 

The MacDraw user interface, and many other interfaces, forces the subject to 
perform the operations in a strictly sequential manner. While we can become very 
adept at performing a series of atomic operations in sequence, the interface 
constrains user interaction behavior. In effect, the interface makes it hard for novices 
to become experts by not allowing users to exhibit more natural and efficient 
expressions of specifying atomic operations in parallel. That is, the traditional 
combination of user interface and input devices do not allow users to chunk and 
phrase the operations at their desired granularity.   

5.1.5  V-Blocks: Physical vs. Virtual Manipulation 
Next we compared manipulating physical vs. logical LEGO bricks. Brian Paul at the 
University of Wisconsin developed Virtual Blocks (V-Blocks), a 3D building blocks 
simulator in which users create and manipulate 3D structures using virtual LEGO 
pieces (see Figure 5.6). Users select from a catalog of brick, plate or roof pieces of 
varying sizes and colors from a dialog box. New pieces can be added to the 3D scene 
or existing pieces can be manipulated (e.g., rotated or translated). Manipulations are 
constrained such that the rotations are on 90 degree units and the translations can 
occur only in orthogonal directions from a given mouse down point. Thus, a 
sequence of drag, release, drag movements with the mouse are usually needed to 
position a piece. The constrained manipulations are a bit awkward at first but 
ultimately aid the overall efficiency of the interactions. Users also have the option of 
selecting multiple discontiguous pieces and forming groups, as well as deleting, 
locking, and recoloring pieces. 

An informal study was conducted comparing the V-Blocks interface to the physical 
LEGO bricks in a simple model construction task. Using the physical bricks, we 
found that users inherently used two hands. This is not possible in V-Blocks which 
has been designed for one-handed interactions. The second hand was often used to 
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manipulate the model, to troll for new pieces, or to assemble pieces. With the 
physical bricks, users get to see the entire range of pieces to choose from since the 
bricks are often all in a visible pile. Thus, the selection process is much quicker. The 
fidelity of the interaction in the physical condition is much higher than the virtual 
condition. In the physical condition, everyday physical constraints are automatically 
enforced (i.e., you can’t place a brick inside another brick). Moreover, the alignment 
of two bricks often relies more on the tactile than visual perception.  

 
Figure 5.6. Virtual Blocks 3D simulator in which users manipulate virtual LEGO 
bricks to create models. 

In the virtual interface, users are forced to use only their visual perception for 
placement feedback. However, there are some advantages in the virtual world 
environment. You can do things that are impossible to do in the physical world. For 
example, in the virtual interface one can recolor bricks in-place without moving any 
of the surrounding pieces, or select a set of bricks (even located in different regions) 
to be manipulated at the same time. Nevertheless, we believe these features would 
not be performed frequently enough to outweigh the cost of virtual manipulations.  

One of the most noticeable differences between the V-Blocks interface and the 
physical LEGO pieces is the significant learning curve the V-Blocks interface 
requires users to go through to become adept at navigating the scene as well as 
selecting and manipulating virtual bricks. In contrast, users are already familiar with 
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manipulating the LEGO bricks. Therefore, we again argue that human-computer 
dialogs that use physical objects (i.e., graspable functions) and physical 
manipulations have the potential to be very efficient. 

5.1.6  Curve Matching 
Continuing to explore our skills at physical manipulations, we asked four subjects to 
use a flexible curve (see Figure 5.4a) to match a target shape. The flexible curve is 
often used in the context of graphic design and has been used in other contexts such 
as statistics to define a "best fit" curve through a set of points. It consists of a 
malleable metal surrounded by soft plastic in the shape of a long (18 inch) rod. The 
inner metal allows the curve to hold its shape once deformed. 

We found that users quickly learned and explored the physical properties of the 
flexible curve and exhibited very expert performance in under a minute. All ten 
fingers were often used to impart forces and counterforces onto the curve. The palm 
of the hand was also used to preserve portions of the shape during the curve 
matching task.  

We observed that some subjects would contort their hands and arms before making 
contact with the flexible curve in anticipation of their interactions. This posturing is 
a preconceived grasp and manipulation strategy which will allow the user to reach 
the final target curve shape in one gestural chunk or action. Often the arms, hands 
and fingers must start in a specific, sometime uncomfortable position.  

The flexible curve serves as a highly specialized input device and users take 
advantage of its unique shape and manipulation properties to facilitate solving the 
task. It is difficult to imagine how this style of interaction could be expressed easily 
using a mouse. Here both the minimal learning and the expressive power of the 
input devices are at play.  

5.1.7  Mock-up and simulations 
As a final exploration, we mocked-up some sample brick interactions (see Figure 
5.7) using a prototyping tool (Macromind Director) and acted them out on the 
Active Desk. By using a few LEGO bricks as props and creating some basic 
animations using the prototyping tool, we could quickly visualize what the 
interactions would look and feel. These sample interactions were video taped and 
edited. We were able to mock-up many of the primary ideas such as: attaching and 
detaching bricks from virtual objects; translation and rotation operations using one 
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brick; using two bricks each attached to separate virtual objects, and finally two 
bricks attached to a single virtual object to specify stretching and simple 
deformations.  

 
Figure 5.7. Macromind Director simulation of sample brick interactions. Here two 
bricks are being simultaneously sensed (both translation and orientation) to cause 
the rectangle to bend. 

5.2 Prototype 1:  Bricks for drawing 

5.2.1  Implementation 
After the mock-ups, and design scenarios, we built the bricks prototype to further 
investigate the Graspable UI concepts. The prototype consists of the Active Desk, a 
SGI Indigo2 and two Ascension Bird receivers (see Figure 5.8).  

Bird receivers

Bird transceiver

SGI
Active desk

 
Figure 5.8. Graspable Object prototype environment consisting of Active Desk, SGI 
workstation and two 6D Bird receivers. 

 83  



The Active Desk, modeled after a drafting table, has an overall desktop surface 
dimension roughly 4.5' by 3.0' on a slight 30 degree angle. The projected computer 
screen inset has a dimension roughly 3' by 2' (see Figure 5.9). A Scriptel transparent 
digitizing tablet lays on top of the surface and a stylus device may be used for input. 
The LCD projection display only has a 640x480 resolution so the SGI screen is down 
converted to an NTSC signal and sent to the LCD display.  

To prototype the graspable objects (bricks), we use the Ascension Flock of Birdsª 6D 
input devices to simulate the graspable objects. That is, each receiver is a small 1 
inch cube that constantly sends positional (x, y, and z) and orientation information 
to the SGI workstation. We currently have a two receiver system, which simulates 
two active bricks that operate on top of the Active Desk. More receivers can be 
added to the system but the wires attached to the receivers hinder interactions. 
Nevertheless, the two receivers offer us an initial means of exploring the design 
space in a more formal manner. 

5.2.2  GraspDraw application  
A simple drawing application, GraspDraw, was developed using the bricks 
prototype to test out some of the interaction techniques mocked-up in the earlier 
example. The application lets users create objects such as lines, circles, rectangles 
and triangles (see Figure 5.9). Once created, the objects can be moved, rotated and 
scaled. GraspDraw is written in C using the GL library on an SGI Indigo2. 

    
Figure 5.9. (a) GraspDraw application running on the ActiveDesk. (b) close-up of the 
physical tool tray 

The two Bird receivers act like bricks and can be used simultaneously to perform 
operations in parallel. One of the bricks has a push button attached to it to register 
additional user input. This button is primarily used for creating new objects. Grasps 
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(i.e., attaching the brick to a virtual object) are registered when a brick is near or 
directly on the desktop surface. To release a grasp, the user lifts the brick off of the 
desktop (about 2 cm). 

To select the current tool (select, delete, rectangle, triangle, line, circle) and current 
draw color, we use a physical tray and an ink-well metaphor (see Figure 5.9b). Users 
dunk a brick in a compartment in the tray to select a particular tool. A soft audio 
beep is heard to act as feedback for switching tools. Once a tool is selected, a 
prototype shape or tool icon is attached to the brick. The shape or icon is drawn in a 
semi-transparent layer so that users may see through the tool.  

We have experimented with an alternative technique for users to select the current 
tool (square, circle, line, triangle, select). The technique takes advantage of the Z axis 
by having the virtual tools stacked on top of each other with each tool on a different 
layer or height. Raising or lowering the brick allows users to select a tool. While this 
approach seems more efficient, there are a number of interaction difficulties which 
arise. First, selecting a tool layer is challenging since our design required the user to 
click the brick button to lock in a layer and bring it down to the work surface. 
Secondly, there was no easy way to see all of the tool layers at all times. While one 
could come up with some designs for supporting this, we were restricted by the 
limited resolution of the active desk. Finally, we felt it was too fatiguing to cycle 
through the tools (browsing then selecting) by raising one’s hand. The physical tool 
tray has advantages in that the user always knows what functions are available 
(predictableness), learns the approximate gesture needed to get to the tool, and can 
use the physical constraints of the tool compartments to make a coarse, imprecise, 
ballistic gesture to activate the tool. 

The concept of an anchor and actuator have been defined in interactions that involve 
two or more bricks (see Figure 5.10). An anchor serves as the origin of an interaction 
operation. Anchors often specify an orientation value as well as a positional value. 
Actuators only specify positional values and operate within a frame of reference 
defined by an anchor. For example, performing a stretching operation on a virtual 
object involves using two bricks one as an anchor and the other as an actuator. The 
first brick attached to the virtual object acts as an anchor. The object can be moved or 
rotated. When the second brick is attached, it serves as an actuator. Position 
information is registered relative to the anchor brick. If the first anchor brick is 
released, the actuator brick is promoted to the role of an anchor. 
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Figure 5.10. Two bricks are used to simultaneously translate, scale and rotate the 
rectangle. The first brick serves as an “anchor” while the second brick serves as an 
“actuator.” 

The prototype allows users to manipulate two virtual objects at the same time by 
attaching bricks to each one. This provides a natural level of expressiveness in terms 
of improved throughput (moving 2 objects at the same time) as well as aiding 
certain alignment tasks. Beyond the anchor/actuator roles that the bricks take on 
during manipulations, we explored the issue of assigning permanent or transient 
functionality to the bricks. Because we could only have two bricks (due to 
technology constraints), we were forced to go with the transient functionality. 
However, it is interesting to speculate on the value of having all bricks behaving the 
same (which can be used interchangeably) or having bricks designated a permanent 
interaction role (i.e. a specific tool or function).  

Following Guiard’s bimanual principles [Guiard, 1987], we originally designed all of 
the object creation and manipulation interactions as having the non-dominant hand 
serve as the “frame of reference” for the interaction. This worked well for the 
rectangle tool but less so for the circle and line tools (see Figure 5.11 and 5.12). 
Essentially, the visual attention and perception factors dominated the interaction 
technique. For example, we wanted to avoid interactions that may become visually 
obscured due to the hands getting in the way. Thus, an interaction technique for 
creating a circle would have had the non-dominant hand specify the center of the 
circle while the dominant hand specifies the radius (see Figure 5.11b). This design 
forces part of the circle to be obscured by the non-dominant hand. Instead, we have 
designed an interaction that creates a circle by having the two bricks serve as the 
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diameter for the circle (see Figure 5.11c). The frame of reference for the interaction is 
not specified by the non-dominant hand but instead by the slope of the line created 
by the position of both hands (see Figure 5.12). In general, we believe that the 
physical triangle of interaction (defined by the position of the two hands on the Active 
desk and the user’s body) should contain the majority of visual feedback that the 
interaction technique employs.   

Frame of 
Reference

(a) (c)(b)  
Figure 5.11. Creating a circle with two bricks. In (a) we see the original design with 
the non-dominant hand brick defining the frame of reference for the interaction. In (b) 
portions of the circle are obscured by the hands. The chosen technique (c) uses the 
slope of the line between the two bricks as the diameter for the circle. Note, the left 
black rectangle in each figure is the non-dominant hand brick.  

Frame of 
Reference

Frame of 
Reference

(a) (b)

 
Figure 5.12 Frame of reference for two handed interactions: (a) non-dominant hand 
defines frame of reference for rectangle; (b) slope of the line created by the position 
of both hands defines the frame of reference for the circle.  

User Evaluation 
There were many interesting interaction issues that emerged due to the 
development of the GraspDraw prototype application. We report on feedback 
obtained by informal user testing of approximately 30 users (20 who where 
unfamiliar with the research objectives and 10 people within our research lab). Most 
of the users worked with the prototype to generate simple drawings. Only 5 of these 
users had formal training in graphic design or art. The sessions would last between 
5 to 30 minutes. 
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All of the users who worked with the interface performed parallel operations (e.g., 
translate, rotate and scale) at a very early stage of using the application. Within a 
few minutes of using the application, users became very adept at making drawings 
and manipulating virtual objects.  

Furthermore, users did encounter some difficulties while using the GraspDraw 
prototype. First, some users commented on the fact that the bricks were tethered, 
which hindered some of their interactions. Moreover, depending on the angle of the 
desktop, physical artifacts will tend to slide off which is an important design issue if 
we are relying on spatial arrangements and persistence. Secondly, some users had 
difficulty knowing whether they were in “select” mode or “delete” mode. While we 
did provide for a different cursor shape to indicate mode, the resolution of the desk 
made this difficult to see. Indeed, one has to wonder whether the bricks should have 
any cursor or virtual representation on the screen.  

Thirdly, we noticed that many users had trouble when it came to performing precise 
alignments between objects as well as creating very small objects (i.e., when both 
bricks were right next to each other). Some of this difficulty could be attributed to 
technology: the low resolution and distorted imaging of the monitor on the Active 
desk (caused by the NTSC signal conversion) as well as some “jitter” introduced by 
the flock of Birds input devices. However, we believe that this is not the only source 
of the problems. When holding a brick and operating directly on the image, the 
physical shape of the brick can obscure part of the underlying data that users wish 
to manipulate. Moreover, the user’s hands, arms and other physical artifacts on the 
desktop can also obscure part of the application data. Another interesting effect of 
working on a large scale drafting table size image is that it encourages (and 
sometimes requires) a different scale of gestures compared to, say, a mouse. 
Reaching to the top of the table to get to the physical tool tray proved difficult for 
some users. Beyond the scale of gesturing, the large image makes it more effortful to 
quickly scan the entire image. All of these factors must be considered when 
constructing Graspable UIs where the input control space is superimposed on the 
output display space.  

5.3 Prototype 2:  Bricks for curve editing  

The second application builds upon the previous bricks prototype and investigates a 
specific interaction task, curve editing, within the context of a more robust 
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commercial application. We first describe a prototype system and then, the efforts 
involved in transferring the ideas into a commercial application. 

In our context we define the task of curve editing as one of interactively adjusting 
the contour or shape of an existing curve. We concentrate on editing curves to create 
models or motion paths for character animations. From a user's perspective, the 
adjustments include moving, stretching, bending, sharpening and smoothing a 
curve or a portion of a curve. From the computer's perspective, the curve is defined 
mathematically by a set of points or control vertices (CVs) in Euclidean space. The 
number of CVs and their placement in space define the shape of a curve. Many 
computer aided drawing packages force users to have a sophisticated 
understanding of the underlying mathematical representation of the curves in order 
for them to get the desired shape.   

5.3.1  Implementation 
In our first curve editing prototype, we used two Ascension flock of bird receivers as 
bricks for editing hermite curves. The hermite curves [Foley, et. al., 1995] define a 
parametric curve by the use of two vectors at the head and tail of the curve. Each of 
these vectors consists to two control vertices (see Figure 5.13). To change the shape 
of the curve, one or both vectors can be adjusted. Each endpoint vector has 4 degrees 
of freedom to manipulate: x position, y position, vector angle, vector length. 

 

Figure 5.13. Hermite curve. Each endpoint vector has 4 degrees of freedom to 

manipulate: x position, y position, vector angle, vector length. 

For our prototype, we did not use the Active desk but instead used a standard SGI 
computer monitor and had the bird receivers operate in front of the monitor on a 
horizontal desktop surface. Our simple hermite curve editor senses both the position 
and orientation of the bricks and directly maps these values to the hermite curve 
vectors. This allows for great flexibility and expressiveness for editing a curve as 
both endpoints can be positioned and oriented at the same time. 
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Our intention is it to mimic the "flexible curve" interaction style we observed in the 
exploratory study where each brick corresponds to a small segment on the physical 
curve. Rapid attach/detach actions would allow the user to make many quick 
position and rotation adjustments along the curve.  

From an implementation perspective, the z dimension is used to attach/detach from 
the curve. In this configuration, it is difficult to assign one of the remaining 6 
degrees of freedom of the bird receiver to the role of modifying the hermite vector 
scale values. It is an unnatural mapping. However, we believe the rapid position 
and rotation of many points along a heavily segmented curve may minimize the 
need to scale the hermite vectors. Alternatively, we can use 2 bird receivers to edit 
one endpoint vector. In this situation the second bird is used to specify the vector 
scale by its relative distance from the first receiver.   

User Evaluation 
We tested the prototype on 5 users, 4 of whom were very familiar with curve editing 
and developing user interfaces for curve manipulations. All of the users found the 
prototype interesting but wondered if the design would work in a more complicated 
environment. As the prototype only allowed for the manipulation of one hermite 
curve segment, we wanted to see how well it would work with multiple hermite 
curve segments and more robust curve representations.   

5.3.2  Development in larger application context 
We implemented a critical mass of the Graspable UI into a modified version of Alias 
Studioª, a high-end 3D modeling and animation program for SGI machines. 
Specifically, we explored how multiple bricks could be used to aid curve editing 
tasks. Developing within Studio gave us access to a very sophisticated mathematics 
library used for representing and manipulating curves.  

Within Alias Studioª, curves can be edited in a variety of ways. One of the more 
popular direct manipulation technique is to use the “curve editor widget.” Once a 
curve is selected, the manipulation widget attaches to the curve. To affect a region of 
the curve, the widget is dragged to an "edit point" using a sub-component on the 
widget (see Figure 5.14b part p). The widget glides along the curve as it is being 
moved so all a user has to do is move the mouse in the left and right direction to get 
the widget to traverse the curve. Once in position the user can move, rotate or scale 
the current point on the curve using separate sub-components on the widget (see 
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Figure 5.14b part t, r and s). The manipulation of the curve widget does not only 
affect the current edit point along the curve but a curve region or segment. Typically 
this is 2 or 3 CVs before and after the current widget position. Depending on how 
the curve was created (and consequently the placement and density of CVs) 
manipulating the widget can have quite a different affect on a curve. The move 
operation translates the affected CVs in the same direction that the curve widget is 
being dragged. Rotating the widget causes the CVs to rotate in the same direction 
causing the curve to twist. Lastly, scaling the widget will adjust the density of the 
affected CVs (bringing them closer to the curve widget or pushing them away). 
Finally note that the widget provides for orthogonal control so only one factor 
(translate, rotate, scale, and widget position) can be adjusted at any given time.  

In our implementation two Ascension flock of bird receivers have been integrated 
into the Studio program. We were unable to easily implement the hermite style of 
curve editing where both bricks can be used to modify two points (i.e., both position 
and orientation) along the curve simultaneously. This is due to two basic reasons. 
First the application has been built with the assumption that there is only one 
“pointing device” driving the application. Introducing the second brick as a primary 
pointing device was infeasible. Secondly, the underlying mathematical NURB (non-
uniform rational b-spline) representation and associated libraries could not handle 
this style of interaction.  

p
s

r

t

(a) (b)  
Figure 5.14. Alias Studio curve editor widget. Figure 5.14a shows the widget within 
Studio while figure 5.14b labels subcomponents of the widget. There are 4 modes of 
editing a user can select with the curve editor widget: (t) translate point on curve, (r) 
rotate point on curve, (s) scale point on curve, (p) reposition widget on curve. 
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Therefore, we had to settle for our secondary design. One brick is used to specify the 
point on the curve to be edited as well as the new translation and rotation values. 
The second brick is used to specify a new scale value if needed by the relative offset 
from the first brick. Thus, both bricks can be used to simultaneously edit the 
position, orientation and scale factor for points along a curve. In this approach, the 
same “curve editor widget” is used so the application visually looks the same. 
However, one brick is attached to one endpoint (see Figure 5.14b part t) which 
serves as the primary pointer and the second brick is attached to the other endpoint 
of the widget (see Figure 5.14b part s).  

User Evaluation 
We tested the prototype on approximately 7 users, all of whom were very familiar 
with curve editing and developing user interfaces for curve manipulations. Our 
informal user study consisted of demonstrating the interaction techniques to the 
subject and then having the subject "play" with it for a few minutes (between 2 to 
15). We asked subjects to describe what they liked and disliked about the interface. 
All of the subjects had a strong preference for the ability to position and rotate 
points along the curve. Users felt more awkward using the second brick as the 
means of specifying a scale factor. This may be attributed to the fact that minimal 
visual feedback was provided for the position of the second bird. Moreover, the 
scale factor seems to be a more unintuitive attribute for novices to understand. In 
essence, the task relies heavily on the ability for the user to predict a response (i.e., 
how will the curve change) given a change in the widget (or input device) which has 
no physical analogy. Even providing a very tight feedback loop will not solve the 
interaction problems if the users are not able to discern the underlying model.  

Ultimately, we would like a design which matched more closely to what our original 
curve matching exploratory studies exhibited. In our envisioned system, users 
would be able to position one or two bricks on the curve and directly manipulate the 
curve. One brick would serve as a clamp (i.e., the ability to freeze portions of the 
curve) while the second brick is used to move or bend portions of the curve. Again, 
this style of interaction was exhibited in the curve matching study. We have not 
implemented this approach within Alias Studio due to the mathematical complexity 
and architectural constraint of supporting multiple simultaneous input devices.  

In essence this effort showed us how challenging it is to deviate from the standard 
input device and event processing model in commercial applications. Moreover, this 
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difficulty goes beyond commercial applications as many toolkits cannot handle 
these requirements as well.  

In terms of Graspable UI concepts we found that users were very excited about the 
ability to use the bricks to simultaneously position and rotate points along the curve. 
We observed them quickly selecting points and making quick adjustments and 
repeating this process. However, they were not able to always get their desired 
shape due to the underlying mathematical representation and the awkward access 
to the “scale” factors for the curve points. We found that the standard “curve editor 
widget” was very unnatural in that it always forced the user to affect only one 
dimension at a time (e.g., position or rotate) and thus users were unable to chunk 
and phrase their interactions at their desired granularity. In addition, we realized 
that some of the curve interaction techniques (e.g., scale) were very unnatural and 
hard to predict outcomes when using the widget. Perhaps this was due to the fact 
that these operations did not correspond to any physical analogy or physical 
metaphor. Our attempt to provide physical objects to overcome this failed as the 
physical objects suggested one style of interaction but the underlying software could 
not support this.   

5.4 Prototype 3:  FlipBricks 

The third prototype, called “flipbricks” is a new input device specifically designed 
to economize the bricks design. That is, we would like to have multiple bricks 
available but want to minimize the physical clutter and at the same time cluster 
similar functionality. Specifically, we consider this design in terms of using a 
flipbrick to represent menu choices as well as rapid task switching. 
 
A number of techniques can be developed when using a brick to make menu 
selections. One option could design a pop-up menu in which the user slides the 
brick up or down to choose menu selections. When pressure is released on the brick, 
the current menu item is selected (see Figure 5.15b). A second option uses the brick 
to specify an angle for selecting items in a pie menu (see Figure 5.15c). While these 
are interesting and valid designs, they do not take advantage of the full properties of 
the physical objects as the flipbricks do. 

The flipbrick is different than the previous styles of manipulations described so far. 
With the flipbrick we assign a menu selection on each face of the brick (see Figure 
5.15a). Whichever side is facing up defines the menu selection. This design takes 
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advantage of our fine finger manipulation skills and our object manipulation 
knowledge. Similar operations can be placed on adjacent sides so that they can be 
issued in sequence. For example the Copy and Paste operations could have 
adjoining faces (see Figure 5.16). The shape of the brick may dictate how the menu 
selection items should be assigned to each face. That is, neutral or common 
selections should be placed on faces of the brick that have the most surface area and 
object stability (e.g., top and bottom face of a domino shaped brick instead of any of 
the side edges).  

 
Figure 5.15. Menu design options. (a) Flip brick menus, (b) 
Pop-up menus, (c) Pie menus. 

 
Figure 5.16. Proposed layout and manipulation sequence for 
flipbricks that have related command functionality. User starts in 
(a) issuing the “Copy” command then transitions to the “Paste” 
command by flipping the brick (b-c).  

The flipbrick design has the advantage of clustering similar functions to the same 
physical object and potentially reducing the number of physical objects needed in a 
workspace at a given time.  

An initial simple prototype of the flipbrick design was built using the Ascension 
Flock of Birdsª. Admittedly, it was very clumsy as the tethered receiver made it very 
difficult to “flip” the receiver. Nevertheless, the flipping action was associated with 
two features: (1) selecting the current drawing tool and (2) selecting drawing modes 
(i.e., constraints on/off, snapping on/off, etc.).  
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A more robust design was built using the Wacom tablet and sensors (see Figure 
5.17). Three of the faces of the brick have sensors embedded in them plus two 
buttons. The two largest faces and one of the edges of the brick have sensors built 
into them. With the sensors, we are able to tell which face of the brick is facing up 
and whether a user is pressing one of the two “dimple” buttons. Users can 
distinguish the current mode (i.e., which face is up) by tactile sensing (one side is 
covered in felt material). In general, using a variety of different textures is a simple 
technique for determining sides tactily. Other tactile cues, such as asymmetrical 
shapes could further disambiguate the orientation of the brick.  

 

Figure 5.17 A customized, wireless “flipbrick” that operates on a Wacom tablet. 

One proposed use of flipbricks allows the user to operate the flipbrick as a simple 
one button mouse, flipping the brick to rapidly switch between functions or 
application programs. Continued exploration on this design is still needed but it 
appears to be promising. One unusual issue that has arisen so far is the soft 
“thumping” sound that is generated each time the brick is flipped. This sound may 
becoming annoying to users but may be minimized by careful selection of material 
used for the flipbrick and tablet surface. 

Indeed, there are many open research questions to be answered about flipbricks. For 
example, in terms of menuing, what shape works best in terms of number of sides 
(e.g., a pyramid shape or an octagon shaped rod)? How many sides should be used? 
How does the user learn what is on each face edge? Can multiple flipbricks be used 
at the same time?    
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User Evaluation 
We tested the flipbrick prototype on approximately 15 users. Our informal test 
consisted of showing them the flipbrick device and how it works within an 
application (e.g., to flip between 2 different tool palettes). All of the users 
understood the concept in less than a minute. Many commented on the need for 
having a way of knowing which side is up using a tactile cue such as texture or size.  

From our initial feedback and designs, we believe this approach to be worthy of 
deeper investigation. Specifically, the flipbricks offer a design solution that can 
reduce the physical clutter of having only one brick per command and, at the same 
time, offers a way of clustering similar functionality. In some sense, the flipbrick 
goes beyond offering space-multiplexed input in that it also offers modes and state 
information not only by its spatial presence and location but also by the physical act 
of manipulating the object. We call this "manipulation multiplexing."  

5.5 Summary 

This chapter described a detailed case study for a specific set of Graspable user 
interfaces known as “bricks.” Specifically, a set of exploratory studies were 
conducted followed by the development of three prototypes (GraspDraw, curve 
editing and flipbricks). Through this investigation we have discovered some of the 
design challenges posed by implementing Graspable user interfaces. These 
challenges and lessons learned include: 

• Current software systems are hard to adapt. That is, many assumptions have 
been built into software toolkits to handle only a single pointing device and a 
single stream of input. 

• Tethered devices can get in the way during use. For example, having more 
than two bird receivers on the Active Desk is infeasible due to the high 
potential for wires becoming entangled. While tethered devices have the 
benefit of not easily being removed from a workspace, the devices can often 
impede a user's natural gesturing style.  

• Hands can get in the way. For example, when operating on the Active desk, 
the hands and arms can obscure portions of the computer display. As well, 
during interactions, a person's hands can bump into and displace physical 
objects which are being used for solving the current task. 
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• It can be difficult to map physical tools to computer functions especially 
when the functions are abstract. 

• Very little software has been written to handle some of the physical motions 
observed in the exploratory studies. 

• The cost of building interfaces that capture physical motions is quite 
difficult. That is, inexpensive recognition of multiple (i.e., more than two), 
spatial-aware objects with accurate and precise sensing resolution is not 
commercially available yet. However, we believe tablet technology holds 
great potential. 

Finally, note that Appendix B presents a series of design variations for Bricks to 
illustrate a variety of interaction styles. The design variations include using bricks 
without virtual context, 3D applications and transitioning between physical and 
virtual  interactions. All of the studies and prototypes served to gain further design 
experience with the 5 Graspable UI design properties. The next chapter formally 
evaluates the core Graspable UI design properties of space-multiplex input and 
physical form factors. 
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Chapter 6:  Empirical Evaluations on 
Space-Multiplexing Input for Graspable UIs 

 
This chapter describes two experiments that empirically investigate the property of 
space-multiplexing input for Graspable UIs. We conduct these experiments to 
investigate the claims that the proposed Graspable UI properties provide faster 
input and less errors compared to conventional GUI styles of input for a set of 
spatial tasks.  

The first experiment focuses on manipulation issues for tasks when users already 
have input devices acquired in their hands. Here we compare three space-
multiplexed conditions with a time-multiplexed condition. We predict that, in 
general, the space-multiplexed conditions will out-perform the time-multiplexed 
condition. In addition, we want to determine if and how the "physical form" of the 
input devices (ranging from generic to specific form factors) can influence 
performance. Finally, we want to understand how manipulation performance varies 
through time (e.g., learning) and as the task becomes more difficult (i.e., the number 
of degrees for manipulation increases).  

The second experiment again focuses on the issue of space-multiplexed versus time-
multiplexed input but examines the inter-device transaction phase of interactions 
and tests the utility of having generic vs. specialized form factors for input devices. 
That is, the experiment is designed to study the relative costs of acquiring physical 
devices (in the space-multiplex conditions) versus acquiring virtual controllers (in 
the time- multiplex condition). One possible advantage is the presence of visual and 
tactile mnemonics for the specialized, space-multiplexed input devices. 
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6.1 Experiment 1: Manipulating physical/logical devices 

6.1.1  Design 
The focus of this experiment is to examine time- vs. space-multiplex manipulation 
issues for tasks when users already have input devices acquired in their hands. For 
the experiment we varied the physical form of each input device configuration and 
the degree of task difficulty and asked subjects to match a target rectangle shape on 
the computer screen as quickly as possible. This is essentially the same task 
prototyped and discussed in Chapter 5.1.3. We defined one time-multiplexed and 
three space-multiplexed input device configurations. Note that the remaining 
Graspable UI properties were fixed: maximum concurrency, spatially-aware devices 
and high spatial reconfigurability of devices (e.g., free-ranging). All input 
configurations operated on a digitizer tablet. The first condition (time-multiplex) 
used a stylus device and most closely reflects the traditional GUI design. The next 
three conditions were space-multiplexed (see Figure 6.1). Two bricks in the shape of 
a round dial and a square block served as the second device configuration. The 
bricks (discussed in detail in Chapter 5) offer a strong compliance to the Graspable 
UI philosophy. A stretchable ruler and stretchable square are customized input 
devices and were constructed for this experiment serving as the third and fourth 
input device configurations. Both the stretchable ruler and square are more 
specialized devices which more closely match the properties of the task due to their 
shape and manipulability.  

In defining the target stimuli we varied the difficulty or dimensionality of the task. 
A single dimension target would require the subject to alter only one parameter (i.e., 
only translate, rotate or scale) to match the target. These single dimension stimuli 
were considered the easiest target set. Two dimension targets would require the 
subject to alter two out of the three parameters (e.g., translate, rotate but not scale) to 
match the target. Finally some targets varied all three parameters. These served as 
the most difficult targets to acquire. Said slightly differently, we claim that the level 
of task difficulty corresponds directly with the task dimensionality. Finally, note that 
we considered translation as a single one dimensional parameter even though it is 
often described in terms of X and Y positions. That is, a straight line can be drawn 
from the initial subject's rectangle to the target rectangle; translation along this line is 
a one dimensional transformation from the subject's perspective. We had the 
subjects perform three repeated blocks of a set of trials for each input device 
configuration to measure learning effects on the task.  
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(a)

(b)

(c)

(d)  
Figure 6.1 Four input device configurations. Configuration (a) serves as the 
traditional time-multiplexed GUI condition using a stylus while the bricks (b) and 
stretchable ruler (c) and square (d) serve as space-multiplex conditions. All devices 
operate on the Wacom digitizer tablet. 
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6.1.2  Hypotheses 

Hypothesis 1a. Space-multiplex performs better than time-multiplex 

We hypothesize that the space-multiplex input configurations will result in an 
overall superior task completion time performance over the time-multiplex stylus 
configuration. This is based on the belief that the space-multiplex condition 
minimizes interaction modes. With the time-multiplex condition, subjects must plan 
when to switch among tools to achieve the end goal. That is, their interactions are 
regulated by a set of atomic virtual functions which they must switch between. In 
contrast, the space-multiplex condition allows for more functionality to be active all 
of the time (e.g., translate, rotate, and scale operations can be active simultaneously). 
Instead of the interactions being regulated by virtual functions, the physical 
properties of the graspable functions (i.e., devices) offer physical laws and 
regulations that we are already very familiar with. Moreover, we argue that the 
space-multiplex conditions allow for designing interactions which are more 
compatible with how subjects' naturally chunk and phrase their actions. That is, for 
the task subjects probably articulate a high level goal such as "match my rectangle 
with the computer target." What follows for the time-multiplex situation is a more 
complex set of subtasks (e.g., separate, multiple sequences of translate, rotate, and 
scale combinations) compared to the space-multiplexed one which allows the 
expression of this goal at the interaction level. 

Hypothesis 1b: As task dimensionality increases, space-multiplex performs better than time-

multiplex 

As the dimensionality of the task increases (i.e., the tasks become more difficult), 
performance will degrade in the time-multiplex condition. This is due to the fact that 
the time-multiplex condition (e.g., stylus) often only allow one dimensional 
transformations at any given time. Thus, parallel transformations are not possible 
and potentially degrade performance. Nevertheless, this time-multiplex design 
should be superior over the space-multiplex conditions for single dimension tasks 
because it is designed to have constrained or isolated single dimensional 
transformations. For example, it will be difficult to keep the stretchable square 
device perfectly horizontal (i.e., no rotation changes) during translations. We predict 
that the space-multiplex input conditions will also degrade as dimensionality of the 
task increase but to a much lesser degree. The degradation is primarily attributed to 
the increase in task difficulty.   
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Hypothesis 2. In space-multiplex conditions, specialized devices perform better than generic  

We predict a higher degree of coordination for the stretchable ruler and square over 
the brick conditions. This is primarily due to the fact that the bricks can operate 
independently (i.e., the two sensors are housed in two separate physical objects) 
while the ruler and square have inherent coordination built into the physical design 
of the artifact (i.e., the two sensors are housed in the same physical artifact). Said 
slightly differently, we hypothesize that motor limb coordination will be facilitated 
by the specialized devices which have the sensors housed in the same physical 
artifact. This improved limb coordination will, in turn, result in superior task 
completion performance times.   

We believe that motor limb coordination is improved because the connection 
between the two devices gives a physical relationship between the two dimensions 
being adjusted that parallels the virtual relationship. Just as the additional physical 
constraints in the tower of Hanoi/oranges/tea cups task helped the user with 
mental problem solving, the physical constraints in the ruler and stretchable square 
help the users physically maintain these relationships that exists between the 
dimensions of the virtual and real rectangle being drawn.  

Hypothesis 3. Space-multiplex input is easier to learn 

We expect a learning effect to be present in both the time-multiplex condition and 
the space-multiplex input conditions. However, we expect the space-multiplex task 
to be easier to learn than the time-multiplex one. This is due to the fact that there is 
more cognitive management to learn in the time-multiplex case. With the space-
multiplex condition, all functionality is available and loaded into the physical input 
devices. Manipulation of physical devices is a well established, finely tuned learned 
motor behavior. In contrast, the time-multiplex condition requires extra cognitive 
management and planning as all functionality is not available all of the time. 
Subjects must decide which function to make active and decide when to switch to a 
different function to best achieve solving the task at hand. Thus, we predict that 
subjects will take longer to become proficient in the time-multiplex condition.  

6.1.3  Method 

Subjects 
Twelve subjects participated in the experiment. Only one was left handed. All 
subjects except one had minimal exposure to operating the tablet device (10 have 
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used the tablet a few times, one never and one makes use a few times a month). All 
subjects were university students (mostly graduate students) and were naive to the 
purpose and predictions of the experiment.   

Equipment 
The task was performed on a Silicon Graphics Indy workstation computer using a 
Wacom tablet (see Figure 6.2). The first time-multiplex input device configuration 
used a pressure sensitive stylus. The remaining three space-multiplexed input 
conditions used customized devices with Wacom sensors built into the physical 
housing. The Wacom device operated in "multimode" which can simultaneously 
sense a stylus and puck device. We removed the stylus and puck sensors and placed 
them in our customized input devices (see Figure 6.1). Therefore, all three input 
device configurations reported a stream of X and Y tablet positions for both sensors. 
Also note that the sensors are small, wireless and batteryless which allowed us to 
build input devices without having wired tethers and yet still providing accurate 
and efficient sampling. All input devices operated in absolute position mode. 

 

Figure 6.2. Experimental setup consisting of an SGI workstation, Wacom tablet, 

keyboard and graspable objects (stretchable square shown here). 

The customized input devices used for the experiment have the following physical 
shape, dimensionality and manipulation range. The brick input device condition 
consists of two physical objects: a "dial" and "block." The "dial" shaped knob is 
approximately 1.25 inches in diameter and 0.5 inches height and colored black. The 
block is a square red LEGO brick having 1.25 inch width and length with a height of 
approximately 0.75 inches. Both objects have felt on the bottom surface for a 
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consistent smooth feel. The stretchable ruler measures 11 inches long with a thin 
knob at one end (for the non-dominant hand) and a slider on a track that extends to 
the opposite end. The ruler is approximately 1.5 inches wide. The puck sensor is 
housed in the knob end while the pen sensor is housed in the physical slider.  The 
stretchable square has a more compact design in that its length dimension ranges 
from 4.25 inches to 8 inches. It has a constant width of 3.25 inches. The puck sensor 
is at the left edge while the pen sensor is at the right edge. Both the stretchable ruler 
and square were milled out of hard plastic. 

Task 
Subjects used each of the four input device configurations to match a series of target 
rectangle shapes as quickly as possible. The task reflects the use of three common 
operations (translate, rotate and scale) performed in many graphics applications. A 
total of 18 matching tasks were presented randomly to the subject for each block and 
input condition. Six were of dimensionality one, six had dimensionality 2 and six 
had dimensionality 3. Table 6.1 shows the 18 stimuli along with its corresponding 
dimensionality (where T=translate, R=rotate, and S=scale).  

Stimuli Dimension 1 Stimuli Dimension 2 Stimuli Dimension 3 

1 T 7 TR 13 TRS 
2 T 8 TR 14 TRS 
3 R 9 RS 15 TRS 
4 R 10 RS 16 TRS 
5 S 11 TS 17 TRS 
6 S 12 TS 18 TRS 

Table 6.1 Eighteen task stimuli and corresponding dimensionality.  

For each task, the subject is asked to align their rectangle shape with the target 
rectangle stimuli. Alignment consists of properly matching all four corners of the 
rectangle as well as color matching the edges. That is, each rectangle was drawn 
with two edges colored red and the other two edges colored blue (see Figure 6.3). 
This ensured that the rectangle was properly oriented (instead of having a 180 
degree mismatch). When a corner matched (i.e., less than 5 pixels away from the 
target corner), the system would instantly highlight the corner handle (i.e., turn it 
from gray to yellow) to indicate a match. If all four corners matched for a given 
threshold time period (0.75 seconds), the trial was considered completed. Note that 
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subjects could not advance to the next trial until they successfully completed the 
current trial, thus trial errors were not possible. 

Target rectangle

Subject's rectangle

 

Figure 6.3. Sample task trial with target rectangle stimuli and user's rectangle. 

For the bricks, stretchable ruler and square, the subject specifies the translation, 
rotation and scale factors by physically manipulating the input devices. That is, the 
current translation is determined by the average (X, Y) values for both sensors (pen 
and puck). The rotation is determined by the current slope of the line formed by 
both of the sensors while the scale factor is calculated as the relative distance 
between the two sensors. Therefore, all three dimensions can be manipulated 
simultaneously if the subject desires. 

In contrast, the time-multiplex stylus input condition requires the subject to toggle 
between scale and rotate mode while solving the task. The current mode is indicated 
by the shape of the cursor (a cross for rotate mode and a normal arrow cursor for 
scale mode). Depending on the current mode, selecting a corner handle will cause 
the rectangle to scale (grow or shrink) or cause the rectangle to rotate (with the 
center of rotation being the center of the rectangle). Subjects toggle modes by hitting 
the spacebar on the keyboard which was positioned at the top of the Wacom tablet. 
This was achieved using their non-dominant hand. Thus, this condition employed 
the use of both hands from the subject. Moving the rectangle is achieved by selecting 
any interior region of the rectangle or edge and "dragging" it. This style of 
interaction is very similar to Macintosh graphics applications.  
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Finally, before each trial begins, the input devices must be placed in their "home 
positions" which are indicated by one or two rectangles on the screen. After a 
threshold time (1.5 seconds), a target rectangle shape appears and the trial begins. 

Design and procedure 
All twelve subjects used the four input device configurations (stylus, bricks, ruler 
and square). The trials were blocked into three sets of 18 stimuli. The stimuli were 
randomized for the three blocks and then this ordering was consistently presented 
across all four input device configurations. Subjects were assigned the sequence of 
input device conditions based on a Latin-square counterbalancing scheme to 
minimize ordering effects. Thus, this is a four factor 4 x 3 x 3 x 6 (Device x Blocks x 
Dimensions x Trials), within subjects, repeated measures design.  

For each new input device condition, subjects were given a minimal number of 
practice trials (up to 18) to acquaint themselves with the device or interaction 
techniques lasting no more than 5 minutes. After the experiment, the subjects were 
presented a questionnaire to obtain their subjective preference for each condition as 
well as to note any other issues they may have had. 

In summary, each subject performed 54 trials on each of the four input device 
conditions resulting in a total of 216 scores per subject. Thus, the twelve subjects 
collectively generated a total of 2,592 data points.  

6.1.4  Results and discussion 
The main dependent variable of interest is task completion times for each trial. The 
task completion time is defined as the time from the initial stimulus presentation to 
the matching of the target rectangle by the subject. An analysis of variance 
(ANOVA) was conducted on the data (see Appendix D). Note that for the analysis 
reported here, subjects were grouped to factor in ordering (degrees of freedom 
equals (subjects - 1) - (orderings -1) which, in this experiment is (12-1) - (4-1) = 8). 
Given the hypotheses, we now present our findings. 

Hypothesis 1a. Space-multiplex performs better than time-multiplex 

As we predicted, there was a significant performance difference between input 
device conditions (F(3,24) = 98.0, p < .001). Specifically, the space-multiplex input 
configurations have an overall lower mean task completion time compared to the 
time-multiplex (stylus) configuration. A significant difference was found when a 
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pairwise means comparison was conducted between the conditions (stylus and 
bricks: F(1,24) = 206.0, p < .001; stylus and ruler: F(1,24) = 186.2, p < .001 and stylus 
and square F(1,24) = 195.0, p < .001). No difference was found when a pairwise 
means comparison was conduction between the space-multiplex conditions. These 
results suggest that for this class of task, the more generic brick devices can perform 
almost equivalently compared to the highly specialized stretchable ruler and square 
devices. However, we believe that the physical constraints that the stretchable 
square and ruler offer for the task would make them more advantageous. Our 
findings did not show this but perhaps with more trials or a more difficult task these 
differences could be observed. Figure 6.4 shows the mean response time values with 
95% confidence error bars.  
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Figure 6.4. Mean response time as a function of input device configuration. 

Hypothesis 1b: As task dimensionality increases, space-multiplex performs better than time-

multiplex 

We found that task dimensionality has an effect on task completion time (F(2,16) = 
88.3, p < .001). In addition, we found a significant interaction between input 
condition and task dimensionality (F(6,48) = 57.0, p < .001). Figure 6.5 shows the 
combined results of task completion time separated by input condition and task 
dimensionality. By examining Figure 6.5, we first observe that in the stylus, time-
multiplex condition, task completion times increase as task dimensionality increases. 
This, however, is not true for the space-multiplex conditions which have a much 
lower increase in task completion time as the dimensionality increases. Very little 
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performance difference exists among the space-multiplex conditions for any given 
task dimensionality.  

Against our intuition, the overall task completion times for the one dimensional 
tasks in the stylus, time-multiplex condition were significantly longer than the 
space-multiplex conditions. Since the stylus provides single dimensional 
transformations, we believed it would be superior to the space-multiplex conditions 
which are much more difficult to operate along a constrained single dimension. One 
explanation for this result could be that subjects sometimes did not realize that they 
only needed to do a single transformation. For example, it was observed that for a 
task that required only a single scale operation (i.e., two corners are matched at the 
start of the trial), subjects would sometimes translate their rectangle to match the 
other corners then perform the stretch action. Clearly this is not the most efficient 
way of completing the task. Similarly, the one dimensional rotation stimuli gave 
subjects trouble. This may suggest that our perceptual systems are not well suited 
for detecting and performing mental rotations, but this analysis is beyond the scope 
of this study. Nevertheless, when we examine learning effects we show that the 
stylus, time-multiplex performance improves over time and become roughly 
equivalent to the space-multiplex conditions for one dimensional tasks (see Figure 
6.7). 
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Figure 6.5 Mean response time as a function of input and task dimensionality. 
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Hypothesis 2. In space-multiplex conditions, specialized devices perform better than generic 

The specialized space-multiplex conditions (ruler and square) performed statistically 
equivalent to the generic space-multiplex condition (bricks). See Figure 6.5. This may 
be attributed to the fact that our task could be easily accomplished with the use of 
visual feedback instead of tactile feedback or relying on the physical constraints of 
the specialized input devices. One could argue that once the devices are acquired, all 
of the space-multiplex conditions are the same from a motor-control perspective. 
That is, it does not matter what physical objects you use in each hand (i.e., a brick, 
dial, puck) for this task, the gross motor movements will be the same. While we 
believe that there exist differences between the specialized and generic devices, our 
task was not sensitive to detect this (floor effect).  

A more detailed coordination analysis also verified that there was approximately the 
same degree of motor limb coordination using the bricks, stretchable square and 
ruler devices (see Appendix C). However, a more complex task (e.g., using more 
degrees of freedom) or a less visually dominant task (e.g., not having such a closed 
feedback loop) could yield different results as we place more demands on the motor 
channel and less on the visual channel.  

Nevertheless, we believe that the specific physical form factors for the graspable 
functions can be used to suggest and facilitate the functionality they offer. 
Experiment 2 further explores these issues and the utility of specialized vs. generic 
devices.  

Hypothesis 3. Space-multiplex conditions easier to learn 

Within each input device condition we separated the trials into three consecutive 
blocks. Response times were calculated based on these blocks across all input device 
configurations. A learning effect is present across blocks (F(2,16) = 24.8, p < .001). In 
addition, a significant interaction effect exists between input device configuration 
and blocks (F(6,48) = 13.0, p < .001). However, when we examine this more closely 
we find that this difference is mostly attributed to the stylus, time-multiplex 
condition (see Figure 6.6). The slope of the stylus, time-multiplex condition is very 
different compared to the three space-multiplex conditions. With the space-
multiplex conditions, we observe that learning has almost leveled off over the three 
blocks. One explanation is that the majority of learning happens very quickly in the 
space-multiplex conditions (perhaps in the first few practice trials). We argue that 
this rapid learning indicates that subjects are very familiar with manipulating these 
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input devices and are operating them based on their everyday knowledge, skills and 
a lifetime of learned motor behaviors.  
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Figure 6.6. Mean response time by blocks and input device configurations. 
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Figure 6.7. Mean response time by blocks, task dimensionality and input device 

configuration. 

If we further decompose the learning effect into task dimensions within blocks and 
input condition, we can examine how task dimensionality effects learning (Figure 
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6.7). This again supports our hypothesis that the stylus, time-multiplex condition 
takes longer to become proficient compared to the space-multiplex conditions. Most 
notably, in Figure 6.7 task completion time decreases for the stylus, time-multiplex 
condition across blocks for one dimensional tasks. In fact, for the one dimension task 
during the third block of trials, subjects perform equally as well in the time- and 
space-multiplex conditions. The Power Law of Practice [Welford, 1968; Card, Moran 
and Newell, 1983] predicts that the time T(n) to perform a task on the nth trial 
follows a negative exponential (see equations 6.1 and 6.2). 

                (6.1) 

  (typical values for a range between 0.2 - 0.6)  (6.2) 

In the 2 dimensional tasks we can see that it will take many more time-multiplex 
trials before reaching the same skilled performance as the space-multiplex 
conditions. Moreover, Figure 6.7 shows that still more trials will be needed for the  3 
dimensional time-multiplexed tasks to reach equivalent space-multiplex 
performance. In general, as the task dimensionality increases, it will take 
progressively longer to reach equivalent space-multiplex performance. 

After the experiment, subjects were asked to quantify their preferences for each of 
the input device configurations. They were asked to rate the physical comfort of 
each device (extreme discomfort to extreme comfort) as well as the ease in which 
they could solve the task (very difficult to very easy). A continuous scale from -2 to 
+2 was used for both ratings. Figures 6.8 and 6.9 show the results. On average, the 
stylus, time-multiplex condition was considered more uncomfortable and more 
difficult to use to solve the tasks. While the bricks appear to have the highest 
comfort factor, a pairwise means comparison shows only a significant difference 
between the stylus and bricks (student-t(11) = -2.51, p < .02) for physical comfort. As 
for ease of use, the stylus, time-multiplex condition was viewed as significantly 
more difficult than the space-multiplex input conditions (stylus and bricks: student-
t(11) = -7.39, p < .0001; stylus and ruler: student-t(11) = -6.07, p < .0001; stylus and 
square: student-t(11) = -7.44, p < .0001). A pairwise means comparison indicates no 
significant difference between the bricks, ruler and square.  
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Figure 6.8. Physical comfort subjective rating (from -2 to +2) for each input device. 

Subjects were then asked to rank order the overall preferences for each input device 
configuration. The bricks and stretchable square tied as the most preferred condition 
(ranking = 1.6). The stretchable ruler was next preferred (ranking = 2.6) followed by 
the stylus condition (ranking 3.9).  
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Figure 6.9. Ease of use subjective rating (ranging from -2 to +2) for each input 

device. 

In Appendix C we present additional analysis of the data for this experiment called 
"coordination" analysis. This analysis offers more insight into the manipulation 
styles  by more closely examining and comparing the manipulation efficiency used 
for the input conditions.  
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6.2 Experiment 2: Acquiring physical/logical devices 

In this second experiment we again focus on the issue of space-multiplexed versus 
time-multiplexed input but examine the inter-device transaction phase of 
interactions. That is, the experiment is designed to study the relative costs of 
acquiring physical devices (in the space-multiplex conditions) versus acquiring 
virtual logical controllers (in the time-multiplex condition). We predict that the 
space-multiplex conditions will out perform the time-multiplex conditions due to 
the persistence of attachment between the physical device and logical controller. The 
act of selecting a widget or tool is made by physically acquiring an input device in 
the space-multiplex condition instead of selecting a logical tool handle in the time-
multiplex condition. Moreover, we investigate the utility of specialized physical 
form factors versus generic form factors for input devices. Specialized input devices 
should out perform generic input devices in that the specialized forms suggest and 
facilitate their designated functionality. Said slightly differently, the specialized 
input devices can offer tactile mnemonics. 

6.2.1  Design 
This experiment varies the input style (from space-multiplexed to time-multiplexed) 
and the physical form factor of the input devices (generic to specific) and asks 
subjects to continuously track four randomly moving targets on the computer screen 
(see Figure 6.10). The four targets can be considered four user interface widgets 
which a user manipulates during a compound task or workflow. Two of the targets 
(mobile scrubwheel and flipbrick) require position and rotation adjustments while 
the other two targets (stretchable square and ruler) require position, rotation and 
scale adjustments. The continuous pursuit tracking task was chosen to emphasize 
the inter-device transaction phase, not the manipulation phase (as was explored in 
Experiment 1). That is, we are interested in studying the switching costs of the 
interaction. Condition 1 and 2 consists of space-multiplexed input while condition 3 
consists of time-multiplexed input. With the space-multiplexed conditions, the 
physical input devices are permanently assigned and attached to a virtual, logical 
widget. Thus, to manipulate an on-screen widget, the subject directly manipulates 
the physical device. In contrast, the time-multiplex condition uses only one set of 
input devices which must be attached and detached to each logical widget before it 
is manipulated. Thus, subjects never need to release the physical input devices in the 
time-multiplex condition. Condition 1 uses specialized input devices (the mobile 
scrubwheel, flipbrick, stretchable square and ruler) while condition 2 uses a generic 
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puck and brick pair for each logical widget (thus a total of 4 pucks and 4 bricks are 
used). Here we are testing the utility of input devices having a specialized form 
which suggests and facilitates their designated functionality. 

Condition 1 :  
Space-multiplex,  
specialized, 

Condition 2 :  
Space-multiplex,  
generic

Display

Mobile 
scrubwheel

Stretchable 
square

Flipbrick

Ruler

puck & brick

puck & brick

puck & brick

puck & brick

Condition 3 : 
Time-multiplex

puck & brick

 

Figure 6.10. Three experimental conditions.  

The three remaining Graspable UI properties did not vary throughout the 
experiment: maximum concurrency, spatially-aware devices, and high spatial 
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reconfigurability. All of the input devices operate on the Wacom tablets and thus are 
spatially-aware and offer highly spatial reconfigurability (i.e., free ranging). Subjects 
were encouraged to use as much concurrency as possible. Finally, the multiple target 
tracking task was designed as a two handed task. In summary this experiment is a 
three factor 3 x 4 x 6 (MultiplexCondition x Device x Trials), within subjects, 
repeated measures, Latin-square design. 

6.2.2  Hypotheses 

Hypothesis 1. Subjects perform better with space-multiplex than time-multiplex input 
conditions 
We predict that subjects will have superior performance for the space-multiplexed 
conditions over the time-multiplexed input condition. This is primarily due to the 
persistence of attachment between the physical input devices and the assigned 
virtual, logical widgets. We speculate that the physical input devices are easier to 
acquire than the corresponding virtual handles in the time-multiplex condition. 
Moreover, the space-multiplex conditions offer a greater potential for concurrent 
access and manipulation of virtual widgets by providing continuous access to the 
physical handles.  

Note that hypothesis 1 is consistent with experiment 1. Hypothesis 2 is intended to 
tease out results that did not emerge in the first experiment. Specifically, within a 
space-multiplex input design, do the specialized physical form factors affect 
performance? 

Hypothesis 2. In space-multiplex conditions, subjects perform better with specialized than 
generic devices. 
Within the space-multiplex conditions, we predict that the specialized input devices 
will allow for superior task performance compared to the generic devices. Again, the 
specialized form factor should serve to remind the subject what virtual widget is 
attached to the device as well as facilitate the manipulation of the widget.   

6.2.3  Method 

Subjects 
Twelve right-handed subjects participated in the experiment. All subjects except two 
had minimal exposure to operating a tablet device. Ten of the subjects were staff 
from Alias|Wavefront with significant computer experience. Two of the subjects 

 116  



were graduates students from the university. Finally, all subjects were naive to the 
purpose and predictions of the experiment.  

Equipment 
The task was performed on a Silicon Graphics Indigo2 workstation computer using 
four 12''x12'' Wacom tablets arranged in a 2x2 grid for the space-multiplex 
conditions and a single 18''x25'' Wacom tablet for the time-multiplex condition (see 
Figure 6.11a-c). A SpecialiX serial expander was used to attach the four Wacom 
tablets simultaneously to the computer and all accessed the same X11 device driver. 
The program was written in C using a mixed-model of OpenGL (a graphics library) 
and X11 (for window and event-based input handling). The 2x2 grid of Wacom 
tablets was necessary due to the fact that the tablets can only support two sensors on 
them while operating in "multimode." Ideally, we would have run all conditions of 
the experiment on one large Wacom tablet if it could support multiple sensors (e.g., 
8 or more). Each of the tablets map onto a full screen dimension. All input devices 
operated in absolute mode. Thus, moving a device to the bottom left of a tablet 
would have the corresponding effect of moving the virtual widget to the bottom left 
of the computer screen.  

Four specialized input devices were used in the space-multiplex, specialized devices 
condition consisting of the stretchable square, ruler, flipbrick and mobile scrubwheel 
(see Figure 6.11a). Both the stretchable square and ruler were used in experiment 1. 
While the flipbrick can sense which side it is on, we ignored this and sense only 
position and orientation. The mobile scrubwheel senses both position and 
orientation (see Section 4.3.1). The devices were assigned to the same tablets in the 
2x2 grid of tablets for all subjects (scrubwheel top left, flipbrick top right, ruler 
bottom left, and stretchable square bottom right tablet).  

Four pairs of a brick and puck were used in the space-multiplexed, generic devices 
condition. The puck is a standard 4 button Wacom digitizing puck. The brick was a 
LEGO brick measuring 1.25 inches in width and length and having a height of 
approximately 0.75 inches. Inside the brick was a Wacom stylus sensor which is 
small, wireless and batteryless providing as accurate position information as a 
regular stylus device. Note that both the pucks and bricks have felt on the bottom 
surface for a consistent smooth feel. Each of the four tablets were labeled using a 
graphic picture to indicate the virtual widget which was permanently attached to 
the brick and puck pairing (see Figure 6.11b).  
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 (a)   

 (b)    

 (c)   

Figure 6.11. Experimental equipment set-up for the three conditions consisted of (a) 
space-multiplex with 4 specialized devices using 4 tablets, (b) space-multiplex with 4 
puck and brick pairs of generic devices using 4 tablets and  (c) time-multiplex with 
one puck and brick devices operating on a large tablet.  
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The time-multiplex condition used one puck and brick device on a single 18''x25'' 
Wacom tablet (see Figure 6.11c).  

Task 
Subjects used the three input conditions on a multi target tracking task. A trial 
consisted of a 90 second pursuit tracking session. Six trials were conducted for each 
of the three input conditions for a total of 18 trials. Before the trial begins, subjects 
must align their 4 widgets on top of the 4 computer targets. When the trial begins, 
the 4 computer targets begin to move on their pseudo-random track. Each target 
position is updated approximately every 1/20th of a second having a total of 1800 
tracking steps. The targets can make up to 4 adjustments (x, y, rotate, scale) per 
update. However, to minimize a jittering effect, a direction and a minimum duration 
were chosen to have a target adjust along one dimension for a period of time before 
possibly switching to a new direction. The duration was approximately 0.5 seconds. 
In addition, periodically (approximately every 4 seconds), one target would "dart 
off" (i.e., make much larger incremental adjustments). Thus, the targets have a non-
uniform adjustment. This design encourages the subject to service the dominant 
deviants in order to achieve the best score as opposed to randomly servicing each 
widget or sequencing through each widget regardless of assessing the scene. A total 
of six pseudo-random tracks were pre-computed for each of the four computer 
targets. The ordering of the tracks were randomly shuffled for each condition. Thus, 
all subjects experienced the same 6 tracks a total of three times (once per input 
condition).  

In terms of visual representations, the computer targets were drawn in a blue 
outline while the user's widgets were drawn in a solid, transparent red color (see 
Figure 6.12). The transparency was used to allow for computer and user target 
overlaps. Transparency was achieved using alpha-blending with a value of 0.60. The 
shape of the targets roughly matched the shape of the specialized input devices 
(stretchable square, ruler, flipbrick and mobile scrubwheel).  

At the end of each trial, subjects were presented with a score of their trial. The score 
represents the average root-mean-square (RMS) Euclidean distance off-target for all 
four targets (along all dimensions: translation, rotation and scale). 

For the space-multiplex conditions subjects could move their targets by physically 
acquiring the associated input device(s) and manipulating the device(s).  

 119  



 

Figure 6.12. Snapshot of multi target tracking task. Computer targets are outlined in 

blue while the user's targets are in transparent red color. 

For the time-multiplex condition two graphical cursors are visible on the screen. The 
puck (used in the dominant, right hand) is represented by an "arrow" cursor while 
the brick is represented by a "cross" cursor. Before manipulating a user widget, the 
subject first must acquire the widget by moving towards the widget's selection 
"handle" and selecting it with the puck cursor. This is achieved by pressing and 
holding any one of the four puck buttons. Once pressed, the user's widget becomes 
attached to the puck and automatically attached to the brick device. Subjects 
manipulate the widget and once the puck button is released, the widget is detached. 
Note that the selection handles appear as rectangle on the widget approximately 15 
pixels wide.  

Design and procedure 
All twelve subjects used the three input conditions: space-multiplex, specialized 
devices (SpaceS), space-multiplex generic devices (SpaceG), and time-multiplex 
(Time). Six trials lasting 90 seconds were conducted in each of the three input 
conditions. A total of six, 90 second, multi-target, pseudo-random tracking path 
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stimuli were predefined. The ordering of the stimuli were randomly shuffled for 
each condition. Thus, all subjects experienced the same 6 track stimuli a total of 
three times (once per input condition). Subjects were assigned the sequence of input 
device conditions based on a Latin-square counterbalancing scheme to minimize 
ordering effects. For each new input device condition, subjects were given a 
maximum of one 90 second trial to acquaint themselves with the device and 
interaction technique. After the experiment, subjects were presented a questionnaire 
to obtain their subjective preference for each condition and to elicit comments about 
their experience.  

All tablet motion and button events were logged with timestamps. The computer 
and user targets were logged on every update (approximately every 1/20th of a 
second). In summary, each subject performed 6 trials on each of the three input 
conditions resulting in a total of 18 scores per subject. Thus, the twelve subjects 
collectively generated a total of 216 data points.  

Experimental biasing. The technology constraint of using four tablets biases the 
conditions in favor of the time-multiplex conditions. The 2x2 grid of Wacom tablets 
was necessary due to the fact that the tablets can only support two sensors on them 
while operating in "multimode." Ideally, we would have run the experiment on one 
large Wacom tablet if it could support multiple sensors (e.g., 8 or more). With the 
time-multiplex condition, a stronger stimulus-response (SR) compatibility exists 
with the input control space and the computer display space. That is, subjects move 
their devices and limbs in the direction they wish to acquire or manipulate a widget. 
In contrast, the 2x2 grid of tablets has a stimulus-response incompatibility. First, the 
input devices always remained on their designated tablet. In order for subjects to 
manipulate a virtual, logical widget, they must remember or visually search the 2x2 
grid of tablets to acquire the proper physical input device. For example, the ruler 
logical widget may currently be in the top right of the computer display. However, 
the physical ruler device is located on the bottom left tablet. We believe this 
mismatch places an extra cognitive burden on the subject. In addition, the space-
multiplex conditions were susceptible to  infrequent system lags due to the multiple 
tablet configuration. The lag would manifest as moving a physical device but not 
seeing an immediate update of the users' target (up to a 1 second delay but often 
much less). In pilot studies, the lag was only observable in the space-multiplex, 
specialized device condition which generates more tablet data due to the inherent 
concurrency of having two sensors built into one physical device. Again, this lag 
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phenomena was very infrequent and biases in favor of the time-multiplex control 
conditions. We predict that the phenomena we wish to detect is strong enough to 
overcome these effects.    

6.2.4  Results and discussion 
Traditional tracking experiments define the tracking error at any moment as the 
distance between the center point of the user and computer targets. This is not 
sufficient for our tracking experiment that varies multiple dimensions and has 
multiple targets. An overall single measure of the tracking quality is necessary for 
feedback to the subject as well as for manageable data analysis [Zhai, 1996]. Thus, 
we have defined a single main dependent variable of interest, the "score," to reflect 
the overall tracking error of the user's 4 targets from the computer's 4 targets. 
Specifically, the score is defined in equations 6.1-6.8 as the root-mean-square (RMS) 
Euclidean distance off-target for all four targets along all three dimensions: 
translation, rotation and scale (see equation 6.1). 

 (6.1) 

Each of the user's widgets have a root-mean-square (RMS) off target based on 
translation, angle and scale dimensions (see equations 6.3-6.5). Note that the 
scrubwheel and flipbrick do not have a scale component. 

 (6.2) 

 (6.3) 

 (6.4) 

 (6.5) 

For each trial (90 seconds, 1800 tracking steps) overall tracking performance was 
calculated by root mean square (RMS) error for each dimension (see equations 6.6-
6.8).  

 (6.6) 
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 (6.7) 

 (6.8) 

At any tracking instant k, the translation tracking error errorTrans(k) is defined as 
the Euclidean distance between the user and computer target. The errorAng(k) is 
defined as the arc length ( ) between the user and computer target 
where  ranges from 0 to PI and length is the current length of the computer target. 
Finally, the errorScale(k) is defined as the difference between the user and computer 
target lengths. 

An analysis of variance (ANOVA) was conducted on the RMS score data and we 
now revisit the experimental hypotheses (see Appendix E). Note that pilot studies 
showed no ordering effect and thus our analysis does not group subjects as in 
experiment 1 (the degrees of freedom for subjects is 11).  
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Figure 6.13. Mean RMS tracking error as a function of input device configuration. 

Both of our hypotheses were supported (see Figure 6.13). We found that input 
condition has an effect on RMS score (F(2,22) = 103.7, p < .001). Specifically, the 
space-multiplex specialized devices condition performs best followed by the space-
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multiplex generic devices followed by the time-multiplex condition. A significant 
difference was found when a pairwise means comparison was conducted between 
the conditions (SpaceS and SpaceG: F(1,22) = 96.9, p < .001; SpaceS and Time: F(1,22) 
= 196.8, p < .001; and SpaceG and Time: F(1,22) = 17.5, p < .001). 

Further analysis of the data revealed how the 90 seconds worth of trial activity 
varied between each of the input device conditions (see Figure 6.14). With the time-
multiplex condition, 45.2 seconds of the trial activity was accountable to logical 
widget manipulation. That is, the time when a subject has the input devices attached 
to a logical widget and the device is in motion (i.e., manipulating a widget). The 
majority of the remaining time (44.2 seconds) of the trial was dedicated to device 
motion without a widget attached. The bulk of this time can be considered the 
"switching cost" for acquiring different widgets. The remaining 0.6 seconds of the 
trial had no device motion. In contrast, we found that subjects in the space-
multiplex, specialized device condition had 80.0 seconds of the trial accountable to 
device motion while the space-multiplex generic devices had only 71.6 seconds 
accountable for device motion. This difference is significant (pairwise means 
comparison between SpaceS and SpaceG: F(1,22) = 22.75, p < .001). In general, this 
suggests that roughly 10-20 percent of the time was used for switching between the 
physical devices.  
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Figure 6.14. Trial activity breakdown between input device conditions.  

If we examine the data by individual input device, we see a consistent trend for all 
four input devices across the three conditions (see Figure 6.15). This implies that our 
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conclusions are generalizable. All of our specialized devices had superior 
performance over the generic devices in both the space and time-multiplex 
conditions. However, a significant interaction exists between the input devices and 
input condition (F(6,66) = 3.42, p < .005). One explanation for this difference could be 
that some specialized devices perform better than others compared to the generic 
devices. For example subjects performed slightly better with the scrubwheel and 
flipbrick devices compared to the stretchable square and ruler devices. There are a 
number of competing explanations for the device differences. First, the location of 
the device and tablet could effect performance. Secondly, the distinct physical 
shapes could aid visual search when trying to acquire a device. Lastly, these results 
could suggest that beyond tactile mnemonics, some devices have physical 
affordances that facilitate the operation of the task.   
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Figure 6.15. RMS tracking error by input device and condition  

We were also interested in measuring learning effects across the six trials per input 
condition (see Figure 6.16). A significant learning effect was found across the trials 
(F(5,55) = 4.8, p < .001). There was no significant interaction between learning and 
input conditions. Thus, we cannot conclude that subjects exhibited different learning 
rates between the space or time-multiplex conditions. Indeed, due to the high 
variance of the data, we can not conclude much beyond the fact that learning is 
happening.   
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After the experiment, subjects were asked to quantify their preferences for each of 
the input device configurations. They were asked to rate the physical comfort (i.e., 
how fatiguing) each device was ranging from extreme discomfort to extreme 
comfort) as well as the ease at which they could solve the task (very difficult to very 
easy). A continuous scale from -2 to +2 was used for both ratings (as in Experiment 
1). Figures 6.17 and 6.18 show the results.  
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Figure 6.16. Mean RMS tracking error by trials across all input conditions (learning). 

The space-multiplex with specialized devices was considered significantly more 
comfortable than the space-multiplex generic devices (student-t(11) = 4.61, p < .0008) 
or the time-multiplex conditions (student-t(11) = 4.15, p < .0016). No significant 
difference exists between the space-multiplex with generic devices compared to the 
time-multiplex condition for physical comfort.  

As well for ease of use, the space-multiplex, specialized devices was viewed as 
significantly easier to use than both the space-multiplex, generic devices (student-
t(11) = 5.74, p < .0001) and the time-multiplex condition (student-t(11) = 6.83, p < 
.0001). A pairwise means comparison indicates no significant differences between 
the space-multiplex, generic and time-multiplex conditions for ease of use. 
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Figure 6.17. Physical comfort subjective ranking (from -2 to +2) for each input 

condition. 
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Figure 6.18. Ease of use subjective ranking (from -2 to +2) for each input condition. 

Subjects were then asked to rank order the overall preferences for each input device 
configuration. The space-multiplex specialized condition ranked at the top 
preference (average ranking=1.1) followed by the space-multiplex generic condition 
(average ranking=2.3) and then the time-multiplexed condition (ranking=2.6).  

Discussion 
In general, a variety of strategies was observed throughout the experiment. The 
majority of the subjects used one hand to operate the specialized devices. The ruler 
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and stretchable square were more difficult to operate than the mobile scrubwheel 
and flipbrick. Some subjects keep their left hand on the ruler device and used their 
right hand to service the remaining three devices. It was not clear if this offered any 
improvement in performance. Nevertheless, all the subjects managed to operate the 
scrubwheel and flipbrick with one hand. Only one subject complained about 
grabbing the wrong input device.  

In contrast, the space-multiplex, generic device conditions for the most part had 
subjects using two hands (one for the brick and the other for the puck) to manipulate 
each widget. However, at least two of the subjects used one hand to operate both the 
puck and brick simultaneously. We observed one subject who used one hand on the 
puck and drove the puck into the brick to move both of them. The graphic overlays 
on the tablets were designed to aid the subject in remembering what virtual widget 
could be controlled with a given brick and puck pair. It is not clear how frequently, 
if ever, the subjects used the graphic overlays. Questioning the subjects after the 
experiment, they claimed to make very little use of the graphic overlays. Two did 
say that they would look down at the tablets (i.e., graphic overlays) if they were 
confused. Five of the subjects complained at least once during this condition of 
grabbing the wrong device pairings. 

In the time-multiplex condition, some subjects would occasionally attempt to select a 
computer target instead of the corresponding user target. This cannot be easily 
explained except for the fact that the multi-target tracking task is difficult. Subjects 
must constantly assess the scene and watch the moving targets to make a decision 
when to stop servicing the current widget and determine which target to service 
next. In contrast, the space-multiplex conditions does not suffer from mistakenly 
selecting a computer target instead of the corresponding user target. By using the 
physical devices, it is only possible to select user targets. Moreover, we believe that 
target acquisition is easier with physical targets than virtual targets. Physical targets 
can often be larger than virtual targets. Moreover, tactile feedback and mnemonics 
can facilitate the physical target acquisition and confirmation process.    

One could argue that Fitts law [Fitts and Peterson, 1964] could serve as a model to 
predict our performance results of this experiment. This, however, would be 
misleading. In general, Fitts law defines the time to acquire a target as a function of 
the distance traveled (between the starting position and final target position) 
divided by the target size. While this has been shown to be true for rapid reciprocal 
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target tapping tasks, our experimental task has a number of different features: (1) 
requires more high level cognitive reasoning (e.g., to assess the scene and determine 
which and when to switch devices), (2) consists of device acquisition for the space-
multiplex conditions, as well as (3) requires not only target acquisition but a 
significant portion of the task deals with the subject manipulating the device to 
perform a target tracking task.  
 
Future data analysis is possible. For example, we could adapt the coordination 
metrics used in the first experiment to measure how well subjects coordinate the 
various dimensions in conjunction with the multiple targets and various input 
conditions. This analysis is beyond the scope for the current goals of this 
experiment. We also may speculate on whether the connected devices (e.g., 
specialized devices: stretchable square, ruler, scrubwheel and flipbrick) place a 
lower cognitive burden on the subject compared to the disconnected devices (e.g., 
puck and brick combination). This is again left for future research. 

 

6.3 Summary  

This chapter described two experiments that empirically investigated the property 
of space-multiplexing input for Graspable UIs. The first experiment focused on 
manipulation issues for tasks when users already have input devices acquired in 
their hands. Here we compare three space-multiplexed conditions with a time-
multiplexed condition. As we predicted, for our task, the space-multiplexed 
conditions out-performed the time-multiplexed condition. The specialized space-
multiplex conditions (ruler and square) performed statistically equivalent to the 
generic space-multiplex condition (bricks). This was not too surprising due to the 
nature of our task. We argue that the space-multiplex performs better than the time-
multiplex conditions for a number of reasons. The space-multiplex designs (1) 
reduce interaction modes, (2) allow for more natural conceptual chunking and 
phrasing, and (3) tap into our everyday skills at physical object manipulations.  

Nevertheless, we wanted to determine if the specific physical form factors for the 
graspable functions can be used to suggest and facilitate the functionality they offer. 
The second experiment again focused on the issue of space-multiplexed versus time-
multiplexed input but examined the inter-device transaction phase of interactions. 
That is, the experiment was designed to study the relative costs of acquiring 
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physical devices (in the space-multiplex conditions) versus acquiring virtual 
controllers (in the time-multiplex condition). The experiment showed that space-
multiplexed input provided a significant performance improvement given our task. 
Furthermore, the specialized physical form factors out-performed the generic 
devices within the space-multiplex conditions. There are a number of competing 
explanations for the specialized versus generic device performance differences. First, 
the location of the device and tablet could have effected performance. Secondly, the 
distinct physical shapes could have aided visual search when trying to acquire a 
device. Lastly, beyond tactile mnemonics, some devices have physical affordances 
that facilitate the operation of the task. These issues could be teased out in future 
experiments but they all suggest that there are significant benefits for using 
specialized input devices. 
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Chapter 7:  Conclusions 

 

7.1 Summary 

This dissertation has defined and explored Graspable User Interfaces, an evolution 
of the input mechanisms used in graphical user interfaces. Graspable UIs provides 
users concurrent access to multiple, specialized input devices which can serve as 
dedicated physical interface widgets, affording physical manipulation and spatial 
arrangements. Like conventional GUIs, physical devices function as “handles” or 
manual controllers for logical functions on widgets in the interface. However, the 
notion of the Graspable UI builds on current practice in a number of ways. With 
conventional GUIs, there is typically only one graphical input device, such as a 
mouse. Hence, the physical handle is necessarily “time-multiplexed,” being 
repeatedly attached and unattached to the various logical functions of the GUI. A 
significant aspect of the Graspable UI is that there can be more than one input 
device. Hence input control can then be “space-multiplexed.” That is, different 
devices can be attached to different functions, each independently (but possibly 
simultaneously) accessible. This then affords the capability to take advantage of the 
shape, size and position of the physical controller to increase functionality and 
decrease complexity. It also means that the potential persistence of attachment of a 
device to a function can be increased. 

We are proposing a conceptual shift in thinking about physical input devices not as 
graspable devices but instead as graspable functions. In the traditional sense, almost 
all physical input devices are “graspable” in that one can physically touch and hold 
them. However, in this thesis we have explored the utility of designing the physical 
devices as graspable functions. This can best be shown in Figure 1.2 (redrawn as 
Figure 7.1 for the reader's convenience). With traditional GUIs there are often three 
phases of interaction: (1) acquire physical device, (2) acquire logical device (e.g., a UI 
widget such as a scrollbar or button) and (3) manipulate the virtual device. 
Alternatively, with Graspable UIs, we can often reduce the phases of interaction to: 
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(1) acquire physical device and (2) manipulate the logical device directly. This is 
possible because the physical devices can be persistently attached to a logical device. 
Thus, the devices serve as dedicated graspable functions.  

Acquire physical 
device

Acquire logical 
device

Manipulate 
logical device

Acquire physical 
device

Manipulate 
logical device

GUIs

Graspable 
UIs

(a)

(b)  

Figure 7.1.  Phases of interaction. In (a) traditional GUIs have 3 phases of interaction 

while Graspable UIs (b) often need only 2 phases (removing the need to acquire the 

logical device). 

Graspable UIs attempt to tap into the a user's existing skills at manipulating physical 
objects. These manipulations are possible by knowledge we have learned through a 
lifetime of practice. Our innate motor abilities, sense of touch and texture 
discrimination, and our everyday skill in grasping, gesturing and manipulation all 
contribute to the performance gains of Graspable UIs. The challenge lies in 
designing efficient Graspable UI objects that minimize the switching costs to acquire 
objects as well as minimize the learning needed to understand the relationship 
between the physical manipulation and corresponding virtual action.  

We began this thesis by reviewing relevant motor, perceptual and cognitive 
psychology literature which provided the underlying theoretical support for 
workable Graspable user interfaces (Chapters 2). Next, existing input devices and 
research systems which exhibit some early traits of Graspable UIs were surveyed 
(Chapter 3).  

We then motivated, and applied the five design properties for Graspable UIs in the 
context of a commercial software animation program. A byproduct of this process is 
the development of a new input device (the mobile scrubwheel) and novel 
interaction techniques (e.g., the time control mappings for the space mouse 6 degree 
of freedom input device). The five properties are summarized in Figure 7.2.  

Next, we described a detailed implementation and case study for a specific set of 
graspable user interfaces which we call "bricks" (Chapter 5). First, a series of 
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exploratory studies was conducted to motivate and investigate some of the brick 
concepts. Primarily, we wanted to gain insights into the motor-action vocabulary for 
manipulating hand-scaled input devices on a desktop surface. After outlining the 
basic bricks design, we describe three prototype systems and applications: (1) a 
simple drawing program, GraspDraw, (2) curve editing within the context of a more 
robust commercial application and (3) flipbricks. Throughout these case study we 
set out to gain further design experience with the 5 Graspable UI design properties 
of (1) space-multiplex input and output, (2) concurrency, (3) physical form (weak 
general vs. strong specific), (4) spatially-aware devices and (5) spatial device 
reconfigurability. 
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Figure 7.2. Graspable UI defining properties  

Finally, Chapter 6 presents two experiments that empirically investigated the 
property of space-multiplexing input for Graspable UIs. The first experiment 
focused on manipulation issues for tasks when users already have input devices 
acquired in their hands. Here we compare three space-multiplexed conditions with a 
time-multiplexed condition. As we predicted, for our task, the space-multiplexed 
conditions out-performed the time-multiplexed condition. One could argue that the 
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performance difference we observed was mainly attributed to the parallel activities 
permitted in the  space-multiplex condition. This issue was factored out in the 
follow-on experiment.  

The second experiment again focused on the issue of space-multiplexed versus time-
multiplexed input but examined the inter-device transaction phase of interactions. 
That is, the experiment studied the relative costs of acquiring physical devices (in 
the space-multiplex conditions) versus acquiring virtual controllers (in the time-
multiplex condition). The experiment showed that space-multiplexed input 
provided a significant performance improvement given our task. Furthermore, the 
specialized physical form factors out-performed the generic devices within the 
space-multiplex conditions. That is, the graspable functions (i.e., input devices) 
suggested and facilitated the functionality they offered. The experiment offers proof 
that the "strong-specific" design of input devices can, in many cases, outperform the 
"weak-generic" designs.  

7.2 Contributions 

The main contribution of the thesis is the defining and exploration of Graspable user 
interfaces. Specifically, the contributions can be summarized as follows: 

• A set of 5 design properties for Graspable UIs. 

• Showed how the Graspable UI can be derived and applied for a complex 
spatial task. 

• Explored the difficulties and issues of implementing Graspable UIs in our 
current commercial environment with current transducers and spatially-
aware devices. 

• Experimental comparison between space-multiplex and time-multiplex input 
schemes. We showed that a space-multiplex design performs better than a 
time-multiplex input design. 

• Experimental comparison showing the advantage of having specialized 
physical form factors for input devices within a space-multiplex input 
scheme. 
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• Proposed and illustrated the utility of having spatially-aware computational 
devices (such as the bricks).  

• Created novel input devices and interaction techniques derived from 
applying the design properties for Graspable UIs. Such devices and 
techniques include: the flipbrick, mobile scrubwheel, and the space mouse 
for temporal control through dynamic media.   

7.3 Limitations, challenges and open issues 

Physical and cognitive clutter. One of the design concerns with Graspable UIs is 
the opportunity for physical and cognitive clutter in the workspace. In terms of 
physical clutter, how many objects should be present to avoid clutter? This is almost 
entirely dependent on the task. One may argue that at most two objects be present 
(one for each hand). Alternatively, if one is sculpting shapes using a particle system 
representation, where hundreds of points are used to define a 3D surface model, 
perhaps there should be one physical object per particle. This could mean the user 
has access to hundreds of physical objects at any given time. Having too many 
graspable objects and thereby creating a challenge to find the one you are looking 
for may obviate any performance benefits they offered to begin with. Moreover, can 
our interface designs handle the situations when users lose their graspable objects? 
Here, we can suggest having dual representations for the task such that it can 
always be done with one or more specialized graspable devices but can still be done, 
perhaps more clumsily, with a generic input device (i.e., the mouse).  

Both physical and cognitive clutter should be avoided when designing interactions. 
By cognitive clutter we mean cognitive overload arising from physical clutter and 
object discrimination problems. This type of clutter is perhaps more difficult to 
measure than physical clutter. However, one way of measuring clutter is through 
the use of search tasks. As with physical clutter, cognitive clutter may be induced by 
having too many similar type objects in a conceptual workspace. Both types of 
clutter run the risk of interfering with the intended benefit of providing externalized 
representations for a given task.  

Physical vs. Virtual. While we advocate that the Graspable UI externalize some of 
the internal computer representations, which interface components should be 
physical and which should remain virtual? This is, once again, an important design 
issue in which there are no concrete rules. In general, however, one may tend to 
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physically instantiate those interface components which are very static in nature 
(e.g., tool icons or menus). Highly dynamic, visually demanding interface elements 
should remain in virtual form since the computer screen is very good at updating 
and displaying the dynamics. 

Physical intermediaries. We could also eliminate graspable objects and instead use 
only our hands as physical input devices (as in systems like Videoplace or 
Multipoint Control [Kruger, 1991]). While this may be useful for some applications, 
in general using a physical intermediary (e.g., brick or stylus) may be more desirable 
(by physical intermediary we mean a physical device that operates between the user 
and the computer. Touch screens are an example of input that does not require any 
physical intermediary objects). We argue that having graspable objects serving as 
physical intermediaries between the user and the computer has important interface 
value. First, physical intermediaries like the scrubwheel prototype can both suggest 
and facilitate their functional operation. Secondly, the intermediary devices 
consume space (i.e., footprints) and allow for nonlinear interpretations of user's 
movements which can enhance the resolution and interaction of the user with the 
virtual environment. This is harder to support with gestures alone. Devices can also 
constrain movements and maintain relationships which the freeform flow of hands 
cannot. Finally, using only hand gestures (i.e., no physical intermediaries) is difficult 
as hand gestures lack very natural delimiters for starting and stopping points. This 
makes it difficult to segment commands and introduces lexical pragmatics. In 
contrast, the affordances of touching and releasing a physical object serve as very 
natural start and stop points. 

System support. There are a number of system requirements that emerge when 
supporting a Graspable UI. First, operating systems should become more 
sophisticated in sensing and installing new devices (i.e., device drivers) when 
graspable objects (i.e., devices) are constantly being added or removed from the 
input control space. Currently, most computer systems have a very primitive model 
of device drivers which a system administrator must install by hand. Moreover, the 
system should support reassignable device drivers. When graspable objects are 
placed on the desktop, they must be recognized by the system and their 
communication protocols interface dynamically loaded and added to the pool of 
current system devices. This all should happen without having to rebuild the 
operating system kernel, rebooting the system or logging in and out (e.g., to restart 
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the X11 server). Computer network models may offer some design solutions when 
we consider a desktop-area-network for all of the graspable objects operating on an 
input surface.  

Hardware support. In terms of input devices, we need cheap, rugged, wireless 
physical objects that serve as graspable objects for the interface. For sensing 
resolution, we can work with a wide range of granularity and dimensionality. Some 
devices could be very sensitive and sense fractions of a millimeter of 6 DoF motion 
with very high update rates. Alternatively, we could have some primitive sensing 
devices in which the system only detects the presence or absence of an object in the 
input space. The idea is that there is an economy of input devices in that all do not 
need to be highly sensed by the system.   

Finally, the use of graspable objects may provide an interesting opportunity to the 
software industry which could sell specialized graspable objects along with their 
applications. One primary advantage to this approach may be as a deterrent to 
software pirating. That is, customers could copy the software, but not be able to 
operate the interface efficiently without the graspable objects.  

7.4 Future work 

We wish to continue to investigate and refine the concepts behind Graspable UIs. 
Specifically, we want to continue to explore our design space of Graspable UI 
properties. While this dissertation has focused on the space-multiplex input and 
physical form properties there remains the three additional properties of 
concurrency, spatial-awareness and spatial reconfigurability of devices to be 
researched in more depth. Still more study needs to be done on more formally 
classifying what specific tasks, in general, are the Graspable UIs most suited for.   

In addition, we are interested in exploring the simultaneous use of multiple, free-
ranging graspable objects. Technology is almost available to allow us to do this 
efficiently. Two promising areas are computer vision techniques [Schneider, S.A., 
1990] and electric-field sensing [Zimmerman, et. al., 1995]. In addition we wish to 
look at interactions that last longer than fractions of a second, that is, having 
dedicated graspable objects that have a persistent attachment to a virtual object for 
durations of hours, days, weeks and months (e.g., graspable objects as handles to 
files). The concept of physically composing graspable objects is also left for future 
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exploration. Finally, we would like to expand our ideas to much larger interaction 
granularities such as graspable objects operating at a room or building scale.  

7.5 Closing remarks 

Our research into Graspable UIs encourages us to reflect upon how we classify input 
devices. Many of the traditional design spaces characterize input devices based only 
on the physical properties sensed and displayed, or they are organized based on the 
human sensory system alone. Instead we should consider input devices along 
multiple relationships: (1) inter-device relationships, (2) device-user relationships 
and the environment in which the devices operate.  

From a designer's perspective we argue that it is no longer sufficient to design 
systems with only two input devices in mind (one for the dominant and one for the 
non-dominant hand). Furthermore, the input devices are not just “pointing” devices. 
Instead, the Graspable UI philosophy views input devices as handles to virtual 
objects and functions. A collection of input devices should be available that require 
minimal overhead to activate and manipulate them.  

Designers also should consider interaction techniques that span both the virtual and 
physical domains. That is, designers can create virtual widgets (e.g., buttons, 
scrollbars) but also generic physical widgets or specialized widgets that operate on 
virtual objects.   

We argue that the affordances of the physical handles are inherently richer than 
what virtual handles afford through conventional direct manipulation techniques. 
With Graspable UIs, a physical handle can be assigned to a virtual object until it is 
detached. Thus, the physical to virtual object association persists across many 
interactions. The physical handle acts as a persistent selection mechanism which is 
made active by a user touching the physical object. Having simultaneous access to 
multiple physical handles facilitates two handed interactions as well as providing 
parallel access and manipulation of interface controls. Moreover, the physical 
handles can be spatially arranged in a user's workspace to facilitate task workflow 
and rapid task switching. In short, the “directness” in the direct manipulation 
interface is enhanced through the affordances of the physical object and through the 
persistent attachment to the virtual objects.  

We believe this thesis proposes a significant advance in human-computer 
interaction. Consider the analogy of transmitting text messages using a singular 
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contact switch to send Morse code (a time-multiplex design) vs. a QWERTY 
keyboard (a space-multiplex design). What this thesis proposes is the analogy of 
transmitting graphical and spatial information from a mouse (time-multiplex) to 
Graspable user interfaces which offer a space-multiplexed design.  
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Appendix A:  An overview of Prehension 

 
In this thesis we are mostly concerned with new, hand-scaled input and output 
transducers for the computer. Prehension plays a critical role in understanding the 
relationship between the hands and physical object grasps and manipulations. This 
section describes in detail some of the theory underlying movement and the high 
versatility of our hands. We first describe what prehension is and why it is relevant 
for human-computer interactions. Next we outline the phases of prehension and 
then conclude with prehension experiments that are particularly relevant for 
graspable interfaces. 

A.1  What is Prehension 

prehension: n. 1. a taking hold; a seizing, as with the hand or other limb. 
2. mental apprehension. From the Latin prehendere, to take or seize. 
(Webster’s New Twentieth Century Unabridged Dictionary, 2nd Edition). 

In the context of motor psychologists, neuro-physiologists, and kinesiologists, the 
definition of prehension can best be described as “the application of functionally 
effective forces by the hand to an object for a task, given numerous constraints 
[MacKenzie and Iberall, p. 6].” The study of prehension is critical to understanding 
the needs, constraints and design issues involved in building input devices for the 
hands. 

From the most abstract level, our hand behavior is determined by a controller which 
accepts objects and tasks as input and generates prehensile behavior in the form of 
hand postures and forces over time (see Figure A.1). 

One of the primary goals with prehension is that the object not be dropped so the 
establishment and maintenance of a “stable grasp” is of paramount importance.  
Potential instabilities and perturbations may occur through the task which must be 
compensated for by the hand.  
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Object  
Shape 

Surface Characteristics 
Size 

Task  
Apply forces 
Impart motion 
Gather sensory information

•  Biological 
•  Mechanical 
•  Neural 
•  Behavioral 
•  Computational

Control 
System

Prehension behavior  

Figure A.1. Hand controller model accepts objects and task as input and generates 

prehensile behavior as output (from MacKenzie and Iberall, p. 7) 

In general, we have two main types of grasps: power and precision grasps. While 
there are many subclassification schemes, Figure A.2 shows one classification that 
illustrates the variety of grasps that we are capable of selecting from to match the 
characteristics of the object and task. We can begin to appreciate just how well 
designed our hands are. 

 

Figure A.2. Grasp classification. Power grasps are shown on the left while precision 

grasps are shown on the right Originally from (Cutkosky and Howe, 1990) and 

adapted by [MacKenzie and Iberall, 1994]. 
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Object properties are perceived in hand-sized dimensions. Moreover, objects that we 
grasp for have two types of properties: intrinsic and extrinsic properties. 

“Intrinsic object properties are the physical identity constituents of objects, 
such as size, weight and shape. Extrinsic object properties are spatial 
properties of objects in an egocentric body space, such as distance, 
orientation with respect to the body, and, if in motion, direction and 
velocity of the object. [MacKenzie and Iberall, p. 76].” 

Finally, our hands often require the use of tools which serve to increase the strength 
or  precision of our hands. Input devices for computers can also be viewed as tools. 
Effective input devices strengthen and increase the precision of our interaction with 
the computer.  

A.2  Phases of Prehension 
In general, there are three main phases of prehension: planning, moving before 
contact, and during contact. Each will be briefly described next.  

Planning of prehension 
The planning of prehension simply is the “preparatory processes related to the 
organization and planning of the upcoming movement [MacKenzie and Iberall, p 
63].” The planning process involves three components: “(1) perceiving task-specific 
object properties, (2) selecting a grasp strategy, and (3) planning a hand location and 
orientation [MacKenzie and Iberall, p. 63].” We have built up an extensive 
knowledge base of the intrinsic properties of everyday objects and how they can be 
expected to behave when grasped. This knowledge is used extensively to plan our 
reaching and grasping actions. For example, when we want to grasp a mug, we 
reach for the handles because we do not want to get scalded by any hot liquid inside 
the mug, plus we realize that we need to bring the mug close to our mouth and 
potentially tilt it to drink. We place a finger on the side of the handle to reduce 
torque. All of these actions are in anticipation of the object behavior during our 
interaction. 

Movement before contact 
There are two basic phases of prehension: a fast (high velocity) phase where the 
fingers preshape and a slow (low velocity) phase where contact of the object is 
made. This was experimentally shown by Jeannerod [1984]. The first phase lasts 
approximately 70% of the total movement time. During movement the grip fingers 
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reach their peak aperture also roughly at the 70% time for the total movement. A 
generalized model of movement before contact prehension can be seen in Figure 
A.3. The two phases of prehension are often called Phase 1: “ballistic movement” or 
“open-loop” and Phase 2: “adjustment” or “closed-loop”. 

 

Figure A.3. Motor control model of movement. [MacKenzie and Iberall, 1994, p. 110] 

During the ballistic phase of movement, the hand and palm orient themselves into a 
preshape grasp for anticipatory object contact. This is also considered as an 
anticipatory feedforward control phase. 

During contact 
Once we have grasped an object, we are very adept at discriminating object 
properties such as object length and weight. We are also very good at exploring and 
extracting salient object features such as texture, hardness, temperature, weight, and 
volume [Lederman and Klatzky, 1994]. During object contact, we are often 
interested in maintaining a stable grasp on the object which requires transmitting 
forces through the fingertips in order to counterbalance the weight of the held 
object. Maintaining a stable grasp also involves resisting perturbations by external 
forces (e.g., when a hammer comes in contact with a nail).  

Also, there is often a distinction made between a static grasp that is used for holding 
and transporting an object versus a dynamic grasp for manipulation. The dynamic 
grasp has four forms of manipulation: fixed contacts, rolling contacts, sliding 
contacts and repositioning or regrasping [Elliott and Connolly, 1984].  

A.3  Studies on Prehension 
There have been many experimental studies in the field of prehension. We now 
describe one particular study which is relevant to the concept of graspable 
interfaces.  

 144  



Marteniuk, et al., [1987] showed how task intention, context and object properties 
affect timing parameters for prehensile movements. In the first experiment they 
varied the goal (i.e., point or grasp the object). In the second experiment they varied 
object fragility by asking subjects to grasp a tennis ball or light bulb. The third 
experiment varied task intent by asking subjects to grasp an object and then fit it 
into a hole or throw the object. The findings revealed that the velocity deceleration 
phase was longer for grasping than pointing, for grasping a light bulb than a tennis 
ball, and for fitting rather than throwing. Less variability was observed between the 
conditions during the ballistic phase of movement. While the timing differences are 
relatively small between the conditions, it suggests that context, intent and object 
properties factor into our prehensile behavior. 

Perhaps what prehension best reveals is that predictive models and performance 
evaluation of input devices need to acknowledge the finely tuned processes that 
occur before, during and after the hands make contact with input devices. 
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Appendix B:  Design variations for Bricks 

 

B.1  Bricks without dynamic virtual context 
In some of the examples described in Chapter 5, the bricks operate on the Active 
desk, a highly dynamic surface presenting context information. The bricks may also 
be valuable if they are placed in our everyday physical environment (see Figure B.1). 
They could be stored anywhere; spatial organizations and spatial memory can be 
used. That is, the bricks would serve as external memory aids.  

 
Figure B.1. Bricks can be placed in our environment to serve as external memory 
aids and potentially facilitate epistemic actions. 

For example, placing a brick near the telephone while talking on the phone may 
store the caller's telephone number. The user could then move the brick to the 
bookshelf or near a file folder as a reminder to do something (e.g., check the 
references for a paper). The physical presence of the brick reminds the user of the "to 
do" task. Later, as a convenience, the same brick could be used to call back the caller 
by placing the brick next to the telephone (the brick would transmit the stored 
telephone number). Thus, placing the bricks in our working environment would 
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allow them to be associated within a given context or situation; their location will 
not be random but instead serve to simplify (1) choice, (2) perception, and (3) 
internal computation.    

B.2  Not just bricks 
While the term "brick" is used to describe the physical handle, the ideas are meant to 
include everyday objects (such as miniature ship and plane models, rulers, erasers, 
or just about any solid object that can be "recognized" by the system). The use of 
everyday objects may make it easier for users to recognize or realize the associated 
function that has been attached to the object. One danger to note, however, is that 
the everyday physical objects have capabilities which must be supported; otherwise, 
the physical object may give the user too high functional expectations.  

B.3  Revealing affordances of virtual and graspable objects 
What the graspable objects (i.e., bricks) attempt to do is merge the physical and 
virtual affordances. As a result, we can begin to think of hybrid objects. For example, 
a scrollbar may have a physical brick serve as its elevator thumb (see Figure B.2).  
Alternatively, we could define a special dedicated “scroll” brick which could be 
placed anywhere on the document to perform the scrolling action (i.e., not just on 
the scroll bar slider). The electronic medium may be used to express properties of 
the physical elements. Continuing with the idea of revealing affordances of physical 
objects, the virtual medium could provide visual cues for expressing a range of 
influence a physical object has. For example, magnetic rings that surround a physical 
brick may show the user the object's sphere of influence. Artifacts outside the 
magnetic rings are not affected (see Figure B.3).   

In this case, the electronic magnetic rings show more than just a range of influence 
and indicates that there is a difference between the two ends of the physical brick 
(i.e., North and South ends). If we only want to indicate a sphere of influence we can 
draw a set of virtual concentric circles starting from the center of the physical brick. 
Thus we must be careful not to assign meaningless virtual (as well as physical) 
properties when designing feedback and interaction techniques.   
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Figures B.2 and B.3. A hybrid object is shown in Figure 5.28. An electronic 

document and scrollbar can have a physical brick serve as the elevator thumb. 

Figure 5.29 shows a physical brick with graphical magnetic rings to symbolize the 

object's sphere of influence.  

Additionally, these hybrid objects will interact with one another and the physical or 
virtual appearances may suggest compatible types or operations. For example, one 
brick may be a spell checker tool which electronically appears as a wrench. A text 
document which has a brick as a physical handle may have a virtual appearance as a 
nut. The wrench and nut are compatible and thus one may operate on the other. 
Perhaps even twisting the wrench object one way would engage the spell checker 
while twisting it the other may undo the results. Incompatible objects with the spell 
checker appear in other forms (e.g., nails). The electronic visuals reveal more detail 
on the affordances of the physical artifact (see Figure B.4). 

 
Figure B.4 Bricks can operate on other bricks. Here the electronic wrench is shown 
to indicate that this brick can only interact with other bricks being displayed as "nuts."  

B.4  Virtual task to Real task back to Virtual tasks 
Much of our design requires that the virtual objects follow the bricks in real time; 
some tasks may not need this real-time property. For example, a virtual world could 
contain a set of file icons. The user may request that the icons be "transferred" to 
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physical bricks for him to manipulate and classify. When this process is done, the 
user can request that the system read the brick layout and transfer the physical items 
back into their electronic (or virtual) form. Here the virtual icons inherit the final 
physical bricks layout. All of the intermediate brick movements are not registered 
with the system (see Figure B.5). 

 
Figure B.5. Virtual objects are transferred to physical bricks. The bricks can be 
manipulated off-line. When finished, the brick information (layout, etc.) can be 
transferred back to virtual objects.  

B.5  Wiping with a brick 
Not only is position and orientation information useful at an instance in time, but 
also in an interval of time. Tracking a brick in an interval of time can also be called a 
wipe action (or wiping). A simple use of this idea is to designate one brick as a filter. 
When the filter brick is wiped across a surface, those items matching the filter query 
are highlighted (see Figure B.6).  

 

Figure B.6 Time sequence of wiping action of brick. As the filter brick is wiped from 

the top to the bottom of the display surface, the items matching the filter query are 

highlighted. An electronic "scanline" is provided for additional feedback.   

 150  



B.6  3D controller brick for Toolglass 
Bricks can be used for 3D interactions as well as 2D. Toolglass sheets and Magic 
Lenses [Bier, et. al., 1993] can be controlled by a special 3D Toolglass brick in the 
non-dominant hand. This brick serves as a handle for sheets and lenses (Figure B.7).  

 
Figure B.7 A brick can be attached to a Toolglass palette (here a layer of "fill 
patterns" is shown) or Magic lenses. User browses through catalog of layers by 
raising and lowering the brick. Clicking the button on the Toolglass brick selects a 
layer.  

Holding and moving the brick in one's hand causes the sheets and lenses to be 
moved and oriented with the brick. The brick can also be made aware of its height 
above the desktop surface. This dimension seems naturally to be used for scaling a 
Toolglass sheet or Magic Lens or for zoom controls. Adding a thumb button to the 
end of the brick makes selection articulation more explicit. Alternative button 
arrangements may be investigated. For example, we could place pressure buttons on 
the sides of the brick so that a squeezing action causes a selection to be made. 
Finally, we could imagine that a set of sheets or lenses are stacked like a pile of 
pancakes and attached to the brick. Raising and lowering the Toolglass brick above 
the desktop surface allows the user to browse  each layer and select the desired one 
by pressing the brick button (see Figure B.7). Note that the usage of the 3D Toolglass 
brick is somewhat ideal in the sense that the majority of the time the brick glides on 
the 2D desktop surface and only occasionally takes flight. This will minimize the 
onset of fatigue.  

B.7  System Reciprocity: Self-Propelled bricks  
We want bricks to act not only as input devices but as output devices in terms of its 
location and orientation. Not only do we want visual or tactile feedback but also 
position and motion feedback. That is, some applications may benefit from having  
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bricks be self-propelled instead of always using our hands to move and orient the 
bricks.  

System reciprocity exists in many graphical computer interfaces today. For example, 
users have the means of selecting and dragging icons on a computer desktop. 
However, the system has the same ability to move the icons itself without human 
intervention. This can be shown on the Macintosh desktop "Clean Up Window" 
option under the "Special" menu which tidies up icons in the current window by 
moving them around and aligning them in columns.  

Consider a file management system which uses bricks to contain files and has action 
bricks such as "Print file" like with the LEGO wall. The user can move the action 
brick "Print" next to a file to be printed. By the concept of system reciprocity, as the 
file is being printed the "Print" brick should slowly move away from the "file" brick 
to indicate its status, similar to the "percentage done bar" on Macintoshes. The point 
is that if a system is designed where physical proximity binds operator to operand, 
then the system itself needs to be able to affect the proximity of objects for proper 
usage feedback. 

For example, the Phantom electronic chess system (see Chapter 3) dramatically 
begins to illustrate the concepts of self-propelling bricks, position and motion 
feedback and system reciprocity. Chess pieces can be grabbed by the computer due 
to embedded magnets in the pieces and a hidden mechanical arm housed inside the 
playing board (see Figure B.8).   

 

Figure B.8. A possible design for self-propelled bricks. A magnet is embedded inside 

a brick. A computer controlled mechanical arm operates underneath the surface. The 

brick is grabbed by magnetic attraction, moved with the mechanical arm and released 

by breaking the magnetic hold. 
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Appendix C:  Experiment 1 — Coordination analysis 

 
Below we present the coordination analysis used in experiment one to gain more 
insight into the manipulation styles for the four input conditions. Coordination is 
defined as the degree of inefficiency used in solving the task. This coordination 
metric, defined by Zhai [1995], was originally developed for measuring coordination 
in 6 degree of freedom input devices. It measures how much effort above optimal a 
task requires. An optimal solution is defined as all task dimensions being solved 
simultaneously and minimally. For example, an optimal path between two fixed 
points on a plane is a straight line. If subjects deviate from the straight line trajectory 
then, in general, it takes more effort to complete the task. Figure C.1 shows this 
situation for two dimensions of the task (rotation and translation). An optimal path 
(i.e., a straight line) is defined from the initial starting position (To, Ro) to the final 
target match (Tf, Rf). The subject's actual path often deviates from the optimal path. 
We can compute the amount of deviation by calculating the length of both the 
optimal path and the subject's actual path.  
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Optimal path

Actual path

 

Figure C.1. Measuring task coordination within the translation and rotation 

dimensions.     

The overall coordination inefficiency (CI) coefficient for our task, which uses a three 
dimensional space (translation, rotation and scale), is defined as: 
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CI = (Length of actual path / Length of optimal path) - 1.0 

Thus a CI value of 0.0 indicates that the subject followed the optimal path. Values 
greater than 0.0 indicate the amount of inefficiency observed in the task. We now 
present our findings based on this coordination metric.   

There was a significant difference for the total coordination values between the 
input conditions (F(3,24) = 4.6, p < .01). A pairwise means comparison indicates that 
the major effect was attributed to the stylus, time-multiplex condition which was 
less efficient than the space-multiplex conditions when we consider collectively the 
1D, 2D and 3D tasks (stylus and bricks: F(1,24) = 11.4, p < .005; stylus and ruler: 
F(1,24) = 6.9, p < .05; and stylus and square: F(1,24) = 8.7, p < .01). There is no 
significant difference for coordination values among space-multiplex input 
conditions for the collective 1D, 2D and 3D tasks. However, the stylus, time-
multiplex condition has greater coordination efficiency compared to the space-
multiplex conditions for 1D tasks (see Figure C.2).  

There was no significant coordination difference between the bricks and stretchable 
ruler and square. Interviewing the subjects after the experiment we noted that some 
subjects like the fact that the bricks were not "attached" to one another so that they 
could move one without affecting the other. However, other subjects considered this 
a deficiency in the design. Therefore, we cannot conclude either a coordination 
benefit or cost for having two independent brick devices compared to a single input 
device (e.g., stretchable ruler and square).  

If we further decompose the coordination data by dimensionality we find a 
significant interaction effect on coordination for input condition and dimensionality 
(F(6,48) = 14.9, p < .001). Figure C.2 show the results more clearly by graphing the 
coordination values by input device configuration and task dimensionality. We can 
see that the stylus, time-multiplex condition has a lower degree of coordination 
inefficiency for the one dimensional tasks and gets progressively more inefficient for 
2 and 3 dimensional tasks. A pairwise means comparison between the stylus and 
bricks conditions quantifies this significance (1D: F(1,24) = 6.31, p < .02; 2D: F(1,24) = 
10.4, p < .005; and 3D: F(1,24) = 140.8, p < .001). The greater coordination efficiency 
for the 1D tasks and stylus condition is probably due to the fact that the stylus 
interactions allow for one dimension to be affected at any given time while 
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constraining the other dimensions. Thus, they can prevent alterations in other 
dimensions (e.g., one can move a rectangle without changing its rotation values). 
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Figure C.2. Mean coordination inefficiency by input device configuration and task 

dimensionality.  
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Figure C.3. Mean total coordination values across trial blocks and input device 

configurations.  
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In contrast, the degree of coordination efficiency for the space-multiplex conditions 
improve as the task dimensionality increases. This result may be explained by the 
fact that the devices have more degrees of freedom (DoF) than the task requires. 
Each of the space-multiplex input conditions use 2 sensors which sense an (x, y) 
value; thus, there are 4 DoF for the user to manipulate. For the 1D task, there are 3 
extra DoF (for the 2D task there are 2 extra DoF and for the 3D task there is 1 extra 
DoF). These extra degrees of freedom have the potential to contribute to 
inefficiencies while solving the task. Said slightly differently, the extra device DoF 
allow for more "interaction noise" during a trial. Finally, note that within every task 
dimensionality for the space-multiplex, the bricks, ruler and square have statistically 
equivalent coordination values (see Figure C.2).  

There was an overall learning effect across the blocks of trials for all input device 
conditions (F(2,16) = 15.7, p < .001). Moreover, if we decompose the learning by 
input device configuration, a weak interaction effect is found (F(6,48) = 2.1, p < .07). 
Figure C.3 shows the mean coordination values separated by blocks and input 
condition. Coordination improves as the subjects become more experienced in the 
task. The stretchable ruler is a curious deviator. We cannot easily explain why 
coordination decreased for the second block of trials.  
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Appendix D:  Experiment 1 — Statistical Results 

 

Source df Sum of Squares Mean Square F-Value P-Value
Order 3 1745.090 581.697 1.075 .4127

Subject(Group) 8 4328.779 541.097
Condition 3 29863.673 9954.558 97.990 .0001

Condition * Order 9 1715.377 190.597 1.876 .1055
Condition * Subject(Group) 24 2438.091 101.587

Blocks 2 1295.635 647.818 24.832 .0001
Blocks * Order 6 234.190 39.032 1.496 .2418

Blocks * Subject(Group) 16 417.414 26.088
Dimensions 2 6931.020 3465.510 88.297 .0001

Dimensions * Order 6 337.609 56.268 1.434 .2624
Dimensions * Subject(Group) 16 627.975 39.248

Trials 5 622.560 124.512 13.254 .0001
Trials * Order 15 139.993 9.333 .993 .4800

Trials * Subject(Group) 40 375.779 9.394
Condition * Blocks 6 1750.981 291.830 13.022 .0001

Condition * Blocks * Order 18 699.054 38.836 1.733 .0659
Condition * Blocks * Subject(Group) 48 1075.698 22.410
Condition * Dimensions 6 11126.783 1854.464 57.022 .0001

Condition * Dimensions * Order 18 561.518 31.195 .959 .5183
Condition * Dimensions * Subject(Group) 48 1561.061 32.522

Blocks * Dimensions 4 86.867 21.717 4.043 .0092
Blocks * Dimensions * Order 12 157.400 13.117 2.442 .0218

Blocks * Dimensions * Subject(Group) 32 171.869 5.371
Condition * Trials 15 2024.608 134.974 12.471 .0001

Condition * Trials * Order 45 405.968 9.022 .834 .7537
Condition * Trials * Subject(Group) 120 1298.796 10.823

Blocks * Trials 10 386.065 38.607 4.085 .0001
Blocks * Trials * Order 30 337.056 11.235 1.189 .2671

Blocks * Trials * Subject(Group) 80 756.042 9.451
Dimensions * Trials 10 2425.625 242.563 19.180 .0001

Dependent: Time  

Table D.1. Repeated Measure Variance Analysis of task completion time for Experiment 1.  
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Condition * Blocks * Trials * Order 90 596.477 6.628 .703 .9734

Condition * Blocks * Trials * Subject(Grp). 240 2264.007 9.433
Condition * Dimensions * Trials 30 3539.382 117.979 8.515 .0001

Condition * Dimensions * Trials * Order 90 1373.424 15.260 1.101 .2804
Condition * Dimensions * Trials * Sub(Grp). 240 3325.490 13.856

Blocks * Dimensions * Trials 20 159.100 7.955 .735 .7849
Blocks * Dimensions * Trials * Order 60 893.296 14.888 1.377 .0599

Blocks * Dimensions * Trials * Subject(Grp) 160 1730.543 10.816
Condition * Blocks * Dimensions * Trials 60 523.504 8.725 .809 .8441

Cond. * Blocks * Dimen. * Trials * Order 180 2083.135 11.573 1.073 .2762
Cond. * Blocks * Dimen. * Trials * Sub(Grp) 480 5175.309 10.782

Dependent: Time

Dimensions * Trials * Order 30 333.361 11.112 .879 .6461

Dimensions * Trials * Subject(Group) 80 1011.705 12.646
Condition * Blocks * Dimensions 12 300.644 25.054 2.885 .0019

Condition * Blocks * Dimensions * Order 36 368.449 10.235 1.179 .2607
Condition * Blocks * Dimensions * Sub(Grp). 96 833.639 8.684

Condition * Blocks * Trials 30 911.083 30.369 3.219 .0001

Source df Sum of Squares Mean Square F-Value P-Value

 

Table D.2. Repeated Measure Variance Analysis of task completion time for Experiment 1 

(continued).  
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Appendix E:  Experiment 2 — Statistical Results 

 

Source df Sum of Squares Mean Square F-Value P-Value

Subject 11 469731.620 42702.875

Condition 2 406914.812 203457.406 104.293 .0001

Condition * Subject 22 42918.015 1950.819

Trials 5 48924.058 9784.812 4.853 .0010

Trials * Subject 55 110884.732 2016.086

inputDevice 3 261461.184 87153.728 47.955 .0001

inputDevice * Subject 33 59974.794 1817.418

Condition * Trials 10 17388.490 1738.849 .684 .7374

Condition * Trials * Subject 110 279686.164 2542.601

Condition * inputDevice 6 12912.352 2152.059 3.421 .0053

Condition * inputDevice * Subject 66 41516.661 629.040

Trials * inputDevice 15 12547.640 836.509 1.146 .3195

Trials * inputDevice * Subject 165 120410.944 729.763

Condition * Trials * inputDevice 30 24615.683 820.523 .873 .6626

Condition * Trials * inDev. * Sub. 330 310322.996 940.373

Dependent: RMS tracking error

 

Table E.1. Repeated Measure Variance Analysis of RMS tracking error for 

Experiment 2.  
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