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Abstract

The general solution of satisfiability problems is NP-
Complete. Although state-of-the-art SAT solvers can effi-
ciently obtain the solutions of many real-world instances,
there are still a large number of real-world SAT families
which cannot be solved in reasonable time. Much effort
has been spent to take advantage of the internal struc-
ture of SAT instances. Existing decomposition techniques
are based on preprocessing the static structure of the orig-
inal problem. We present a dynamic decomposition method
based on hypergraph separators. Integrating the separa-
tor decomposition into the variable ordering of a modern
SAT solver leads to speedups on large real-world satisfiabil-
ity problems. Compared with a static decomposition based
variable ordering, such as Dtree (Huang and Darwiche,
2003), our approach does not need time to construct the full
tree decomposition, which sometimes needs more time than
the solving process itself. Our primary focus is to achieve
speedups on large real-world satisfiability problems. Our
results show that the new solver often outperforms both reg-
ular zChaff and zChaff integrated with Dtree decomposi-
tion. The dynamic separator decomposition shows promise
in that it significantly decreases the number of decisions for
some real-world problems.

1. Introduction

Methods to solve the satisfiability problem play an im-
portant role in several industrial applications of computer-
aided design and verification. Such applications include au-
tomatic test pattern generation, formal verification and rout-
ing of field-programmable gate arrays.

However, the worst-case complexity of solving SAT
problems using the original DPLL is ������, where � is

the number of clauses and � is the number of variables. So
an efficient general algorithm is not expected to be found.
In order to improve this worst-case complexity, a variety of
structural decomposition methods have been investigated.
The best known tree decomposition leads to a time com-
plexity in ��������, where � is the tree-width of the hy-
pergraph representation of the SAT problem.

Methods to improve the efficiency by exploiting the
problem structure have been intensively investigated in both
the CSP (Constraint Satisfaction Problems) and SAT com-
munities [5, 6, 13]. The term “structure” means the prob-
lem’s structural properties, which can be presented as graph
theoretic properties of the constraint graph or constraint hy-
pergraph. In real-world applications, the internal structure
of the corresponding SAT problems represent the follow-
ing facts:

1. Real-world applications are built and designed in a
modular way. Modularization with minimal intercon-
nectivity is encouraged.

2. Each module uses distinct name spaces and variables.

3. Small sets of variables are designed to control an ap-
plication.

Problem structure has been used to guide the variable
ordering heuristic in backtracking search since Freuder[4],
who presents how to construct the variable ordering by find-
ing the biconnected components of a constraint graph. Re-
cent experimental results show that guiding the variable or-
dering heuristic using tree decompositions can improve the
performance of SAT and CSP solvers [1, 3, 9, 10]. Huang
and Darwiche’s [9] variable ordering heuristic uses a Dtree,
a static binary tree decomposition, to compute the variable
group ordering. Because the Dtree has to be constructed be-
fore search, the pre-established variable groupings never
change during the execution of the solving. Bjesse et al.
[3] present dynamic variable groupings. However, no ex-



perimental results are shown to demonstrate whether the
method is more promising than static variable groupings.
Also, there is still no conclusion about how to arrange
the order of subproblems induced by tree decomposition.
Amir and McIlraith [2] provide the heuristic of solving
the most constrained subproblem first. But again, no ex-
perimental evaluation is performed. A static global vari-
able ordering based on recursive min-cut bisection of hy-
pergraphs was proposed in [1]. This preprocessing approach
does not require modifications to the SAT solver. But most
modern SAT solvers use dynamic variable ordering. The
pre-established static variable ordering can only be used to
break the ties of dynamic variable ordering in some situa-
tions.

Figure 1. Constraint graph of original
dp05s05 problem.

The visualization approach proposed in [13] provides an
empirical tool to observe and analyze the structure of real-
world SAT problems. It shows that long implication chains
exist in those instances. Unit propagation is a look-ahead
strategy for all of the cutting-edge SAT solvers. Since most
of the variables on the implication chains are instantiated af-
ter making a relatively small number of decisions, the inter-
nal structure of real-world instances often change dramati-
cally in different parts of the search tree. For example, Fig-
ure 1 is the constraint graph of the bounded model check-

Figure 2. dp05s05 problem at decision level
1, after one variable has been instantiated.

ing instance dp05s05, which is from the diningphilosophers
problem. Figure 2 is obtained by setting proposition 1283 to
false, and after subsequent unit propagation.

Since the structure of a SAT problem changes dramat-
ically during the running time of DPLL, in this paper,
we use a dynamic decomposition method based on hyper-
graph separators. A separator of a hypergraph � is a set
of hyper-edges whose removal chops � into disjoint sub-
hypergraphs whose sizes stand in some sought relation.
Finding hypergraph separators naturally leads to a divide-
and-conquer strategy. The separator becomes the root of the
corresponding tree structure, while the subtrees become the
subproblems induced by the separator. The most important
difference between Dtree decomposition [9] and our hyper-
graph separator decomposition is that the generation of the
separator does not depend on its subproblems, which means
that the separator based decomposition can stop at any time
during the decomposition process. In contrast, to construct
a node of Dtree we need to merge the variables in each sub-
tree under the same parent node, which means that Dtree
decomposition needs time to build the whole Dtree before
the solving process and the Dtree will never change. We
report our effort of using hypergraph separator decompo-
sition to guide the variable ordering of a SAT solver dy-
namically, which includes (i) highly ranked variables are
added to the current separator dynamically; (ii) various sub-
problem ordering heuristics are tried; and (iii) hypergraph
separators are generated dynamically during backtracking



search rather than statically prior to search.
Our primary focus is to achieve speedups on large real-

world satisfiability problems. We combined the state-of-the-
art SAT solver zChaff [14] with hypergraph separator de-
composition and tested it on SAT 2002 competition bench-
marks. Our results show that the new solver often outper-
forms both the regular zChaff and the zChaff integrated with
Dtree decomposition in solving real-world problems. Fur-
thermore, the new solver solved more hard instances than
the Dtree decomposition within a given cutoff time limit.

2. Hypergraph Separator Decomposition

Given a propositional formula � in CNF, its hypergraph
representation � � ����� is a hypergraph whose vertex
set� consists of the clauses in � , and there is a hyper-edge
for each Boolean variable in � connecting all of the clauses
(vertices) that contain that variable.

A hypergraph separator decomposition is a triple
���	�
� where

1. 	 � �, and the removal of 	 separates � into � un-
connected components or disjoint subgraphs ��, . . . ,
��.

2. 
 is a relation over the size of the disjoint subgraphs
����, . . . , ����.

The relation 
 is a balance factor. In our experiments
(following [9]), we used 15%/85%, meaning a disjoint sub-
graph must contain at least 15% and at most 85% of the
nodes in the whole hypergraph.

Once we have the hypergraph representation of a formula
� , the entire formula can be decomposed into smaller sub-
graphs (subproblems) giving a divide-and-conquer strategy.
There is a tradeoff between separator size and the number
and size of the subproblems. In order to generate more and
smaller subproblems, the separator has to be enlarged. Our
hope is that relatively small separators exist in real-world
SAT instances and that the instances can be decomposed
into a large number of similar sized subproblems by the sep-
arator.

3. Dynamic Decomposition and DPLL

The DPLL algorithm is the core of modern SAT solvers.
Algorithm1 shows the original DPLL algorithm. We use �
to denote a propositional formula. � � � � � (� � � � �)
represent the new formula obtained by replacing the vari-
able � with 
���� (����). The Unit Propagation(� ,�) func-
tion returns the simplified formula, where no more unit
clauses exist. In this section, we discuss how to integrate
hypergraph separator decomposition into the DPLL algo-
rithm. We examine two approaches to improve DPLL: En-

Figure 3. Propagation Synchronization

hanced Static Decomposition (ESD) and Dynamic Separa-
tor Decomposition (DSD).

Algorithm 1 DPLL(� )
1: if � is an empty clause set then
2: return ����
3: end if
4: if � contains an inconsistent clause then
5: return 
����
6: end if
7: if � contains a unit clause � then
8: � = Unit Propagation(� ,�)
9: end if

10: choose an uninstantiated variable � in �
11: return DPLL(� � � � �) or DPLL(� � � � �)

ESD is to decompose the CNF before backtrack-
ing search, then dynamically adding variables to the
separator. Given the hypergraph separator decomposi-
tion, we generate a variable group based on the hyper-edges
in the separator. Whenever the next decision vari-
able is needed, an uninstantiated variable is chosen from
this group. The separator variable group is determined be-
fore starting DPLL.We also dynamically add variables to
this variable group. It is well-known that the variable or-
dering can dramatically influence search performance. As
well, according to our experimental results, the first sep-
arator plays an important role in improving the searching
performance. To guarantee that the top level separator con-
tains those variables which are highly ranked by the vari-
able ordering heuristic, variables that are highly ranked
can be added to the top separator if they are not al-
ready present.

Another approach is to dynamically generate the separa-
tor variable group recursively during DPLL (see [3]). Con-



sider the DPLL procedure. Boolean constraint propagation
is the essence of DPLL. When the value of a variable can
be determined because of a unit clause, we can remove it
from the corresponding subproblem. Figure 3 shows a hy-
pergraph �, and its implied hypergraph ��� �. After the
variable � � and all the implied variables of � � are removed
from�, it is possible that the separator decomposition of�
is not a valid decomposition for ��� �. Clearly we can ex-
pect a better separator decomposition if we update the sep-
arator during the search after unit propagation of each vari-
able.

Algorithm 2 DSD DPLL(� ,	,� )
1: if � is an empty clause set then
2: return ����
3: end if
4: if � contains an inconsistent clause then
5: return 
����
6: end if
7: if � contains a unit clause � then
8: � = Unit Propagation(� ,�)
9: end if

10: if 	 is empty then
11: 	=Separator(�)
12: end if
13: if there is no uninstantiated variable in 	 then
14: for each constraint graph partition�� do
15: if DSD DPLL(�� ����)=
���� then
16: return 
����
17: end if
18: end for
19: return ����
20: else
21: choose an uninstantiated variable � from 	

22: return DSD DPLL(� �� � �� 	��) or
23: DSD DPLL(� �� � �� 	��)
24: end if

Algorithm2 takes three inputs: the propositional formula
� , corresponding constraint graph �, and 	, the separator
of �, whose initial value is �. After unit propagation, we
create and maintain a separator of �. We choose the next
variable from 	 until all the variables are instantiated and
� is decomposed into several sub-problems. The separator
created after unit propagation is based on the simplified con-
straint graph. � is ���� when all its subproblems are ����,
otherwise it is 
����.

We also consider dynamic subproblem ordering heuris-
tics. When we have several subproblems, we need to de-
cide which subproblem to solve first. Most modern SAT
solvers have a dynamic variable ordering heuristic. For ex-
ample, zChaff uses Variable State Independent Decaying
Sum (VSIDS) heuristic. To combine VSIDS with subprob-

lem ordering, each hyper-edge is given a weight, which dy-
namically changes with VSIDS. Four dynamic subproblem
ordering heuristics were tested in our experiments:

1. MVSF: Subproblem with maximum VSIDS sum first.

2. MASF: Subproblem with maximum VSIDS average
first.

3. SSF: Subproblem with smallest clause number first.

4. MCSF: The most constrained subproblem first[2].

4. Experiment Implementation and Result

In our implementation, a CNF is represented by a dual
weighted hypergraph. Because the problem of comput-
ing an optimal partition of a hypergraph is NP-complete,
a multi-level hypergraph partition algorithm package,
hMETIS [7, 11], is used to find separators. The ba-
sic idea of multi-level algorithms is to construct a sequence
of successively smaller hypergraphs by collapsing appro-
priate vertices, then find a partition of the small coarsened
hypergraph, and finally obtain the approximated separa-
tor of the original hypergraph from the coarsest hypergraph
step by step.

Generally, there are two different ways to merge vertices
together to form single vertices in the next level coarse hy-
pergraph: edge coarsening and hyperedge coarsening. In hy-
peredge coarsening, vertices are grouped together that cor-
respond to hyperedges. In our experiments, we found that
the coarsening scheme was an important factor for produc-
ing high quality hypergraph separator decomposition and
preference was given to hyperedge coarsening.

We enhanced the separator decomposition with subprob-
lem ordering heuristics and dynamic variable adding. Four
subproblem ordering heuristics, MVSF, MASF, SSF and
MCSF, were implemented. Before we instantiate the vari-
ables in the separator (zChaff uses the VSIDS heuristic), a
group of variables with highest scores are added to the cur-
rent separator. After all the variables in the separator of a
hypergraph have been instantiated, the sub-hypergraphs of
the current separator are updated to eliminate variables im-
plied by the instantiations of the variables in the separator.

The benchmark instances presented in this paper are
from the industry category of SAT Competition 2002. There
are 219 typical industrial SAT encoded instances included
in this category [8]. Our experiments were performed on a
PC with a 2.67GHz Pentium 4 processor and 1Gb of RAM.
Each runtime is the average of 10 runs with a 15 minute
CPU cut-off limit. All runs that did not complete in the time
limit did not contribute to the average. The time limit is
longer than the SAT 2002 competition (see [12]).

In Table 1, we compare the runtime of zChaff and en-
hanced static separator decomposition (ESD). The times
shown represent the total time for the instances which were



Table 1: CPU time (sec.) and number of improved instances comparing zChaff and Separator (2-way ESD + MASF + Dy-
namically Adding Variable).

Benchmark zChaff Separator #Solved/#Inst. SAT/UNSAT Improved
bmc1 0 0 4/4 UNSAT 3
bmc2 770 387 5/6 UNSAT 4
Bart 35 44 3/21 SAT 1
Homer 3164 586 9/15 UNSAT 9
Lisa 1782 996 9/14 SAT 6
cmpadd 4 5 8/8 UNSAT 5
Matrix 31 23 2/5 UNSAT 2
fpga routing 27 38 27/32 MIXED 10
Graph coloring 11517 11690 150/300 MIXED 107
onestep rand net 443 125 15/16 UNSAT 9
multistep rand net 180 506 2/16 UNSAT 0
ezfact 1367 1270 31/41 MIXED 18
qg 191 162 10/19 MIXED 7

Table 2: CPU time (sec.) and number of improved instances comparing zChaff+Dtree vs Separator (2-way ESD + MASF +
dynamically adding variable).

zChaff+ Dtree #Solved/ SAT/
Benchmark Dtree Time Separator #Inst. UNSAT Improved
bmc1 0.01 3 0.01 4/4 UNSAT 4
bmc2 0.07 2.5 0.04 1/6 UNSAT 1
Bart 150 2 44 3/21 SAT 3
Homer 216 13 586 9/15 UNSAT 0
Lisa 700 87 1451 11/14 SAT 6
cmpadd 0.76 31 4.57 8/8 UNSAT 8
Matrix 90 6 23 2/5 UNSAT 2
fpga routing 11 2076 8 17/32 MIXED 17
Graph Coloring 40767 230 19761 160/300 MIXED 129
one step randnet 240 380 125 15/16 UNSAT 11
ezfact 759 179 543 31/41 MIXED 22
qg 182 503 162 10/19 MIXED 7

solved within the time limit. Table 2 reports the compar-
ative performance of zChaff+Dtree and zChaff+ESD. The
Dtree Time reports the time of constructing a Dtree and
zChaff+Dtree reports the runtime of zChaff with the vari-
able group ordering from the Dtree. In contrast, the runtime
of finding the graph separator decomposition is included in
the runtime of solving the instances. In Table 1 and Table
2, only those instances which can be solved in 15 minutes
by both programs are included. Our experimental results
also show that the separator decomposition can solve much
harder instances than Dtree decomposition. Among the 11
industrial problems, there is only one case—the multi-step
Rand-net problem—in which zChaff is much faster. How-
ever, most instances of this problem cannot be solved by
any solver we tested.

The dynamic separator decomposition constructs a new
separator each time whenever a new decision is made. Be-
cause of the overhead of propagation synchronization, the
runtime of the dynamic separator decomposition is very

slow. 70% of instances cannot be solved in 15 minutes.
However, the solver using dynamic separator decomposi-
tion often makes many fewer decisions and implications
than zChaff and the static separator decomposition (see Ta-
ble 3).

In the reported experiments, the MASF heuristic was
used as the subproblem ordering heuristic. Our experimen-
tal results show that it is better than the other subproblem
ordering heuristics, but more work is needed to confirm this
conclusion.

5. Discussion

Compared with the completely recursive dynamic de-
composition, enhanced static decomposition is more practi-
cal and easy to implement. After adding high ranking vari-
ables into the separator and instantiating them, the long im-
plication chains are “started” at the very beginning. In Fig-
ure 2, 4, and 5, independent subproblems are naturally oc-



Table 3: Max decision level, decision number and implication number comparing zChaff vs Separator (2-way DSD + MASF)

zChaff Dynamic Separator
Benchmark Max Level Decision# Implication# Max Level Decision# Implication#
lisa19 3 a 65 181568 36789189 43 61296 9359648
lisa19 99 a 75 262798 55335471 39 31149 4925937
lisa20 99 a 62 99361 19340591 43 85672 14808291
homer06 124 56754 1071432 103 17713 212052
homer07 124 110607 2126296 107 29398 420020
homer08 141 134769269 8053 123 73096 642087
homer09 178 237750 5176136 150 139264 1666138
homer10 197 283545 7590761 203 387330 7285721
homer11 156 121239 2412764 133 46633 672700
homer12 162 242994 4871283 140 123244 1871968
homer13 173 300403 6093351 154 137859 246163
homer14 194 588502 13377128 170 315076 5790068
homer15 258 1127302 31367313 239 629895 16626020
homer16 198 369264 7156381 156 193118 2441261
homer17 203 394490 7980266 170 291448 5691210
Hanoi4 39 4696 309408 30 1508 153196

Figure 4. dp05s05 problem at decision level
10.

curring. Lead by zChaff’s Variable State Independent De-
caying Sum Ordering, a small separator is constructed based
on the simplified structure. In the process of complete
dynamic decomposition, the runtime depends on both the
problem size and the number of separators created. At the
same decision level, the more decisions we make, the more
times we need to update old separators. We use the decision
distribution diagram (DDD) to show that the solving pro-

Figure 5. decomposed dp05s05 problem at
decision level 10.

cess of real-world instances may have an influence on the
complexity of dynamic dicomposition. The diagram is gen-
erated by recording the number of decision made at every
decision level of dynamic decomposition. Figure 6 is the
DDD of a random circuit checking problem. This diagram
shows that the separator needs to be updated frequently at
the root of the search tree. In the contrast, Figure 7 shows
that BART11, an instance of circuit model checking, has a
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Figure 6. Decision distribution diagram of
randnet50401

very easy decision making process at the beginning. Gen-
erally, the second case is more welcome since the easily
solvable variables simplify the problem right before the dy-
namic decomposition.
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6. Conclusions

We presented dynamic decomposition methods based on
hypergraph separators. Integrating the hypergraph separator
based decomposition into the variable ordering of a modern
SAT solver led to speedups on large real-world satisfiabil-

ity problems. Compared with Dtree, our approach does not
need time to construct the full tree decomposition, which
sometimes needs more time than the solving process. The
dynamic separator decomposition shows promise in that it
significantly decreases the number of decisions for some
real-world problems. However, the work we have presented
here represents a first step and better techniques and imple-
mentation are still needed to improve its running time. Fi-
nally, experimental results show that for certain problems,
a specific subproblem ordering heuristic is required to effi-
ciently solve large problem instances.

For future work, we intend to examine how the tech-
niques discussed in this paper can be applied to the prob-
lem of counting the number of satisfying assignments (or
models).
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