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Abstract

Graphical representations consisting of nodes and arcs have proven useful in

many interactive applications. However, as the number of nodes and arcs becomes

large, viewing, editing and understanding the network becomes problematic and

the value of the representation breaks down. We combat this problem by providing

the user the ability to hierarchically structure the network by encapsulating related

nodes into modules. Hierarchical structuring allows the user to collapse portions

of the network into viewable and understandable sized chunks. This reduces the

apparent complexity of the network in a manner similar to top-down structuring in

programming; a top level view gives a concise representation of the network devoid

of unnecessary details. As you descend the hierarchy, details about the internal

structure of modules are revealed.

The intent of this thesis is to explore the use of hierarchical encapsulation by

means of a case study. Our case study is a system for controlling the routing of

audio and control signals among devices in an audio studio. Nodes in our network

are audio devices and the arcs are the paths that interconnect them.

This thesis illustrates the value of user-control over structuring of the network,

level and type of representation. The results have ~pplicability in other applications

and these are discussed along with general principles learned in the course of the

case study.
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Chapter 1

Introduction

The aim of this thesis is to investigate new forms of representation, and interaction

that can improve human performance in certain classes of computer applications.

The basis of the approach investigated involves the explicit hierarchical chunking of

the problem, and the specification of the connection of those chunks. The general

problem involves developing an interface to edit a set of objects and the relationship

among them. An interface for editing a small set of objects and connections is

relatively simple to construct, understand and use. However, as the number of

objects and connections grow, a methodology must be applied to deal with the

resulting complexity.

In this thesis we attempt to reduce the apparent complexity of such systems by

providing a means whereby the user can encapsulate chunks of such networks and

collapse them into a single node. The belief is that such hierarchical encapsulation

will allow the user to bury complexities of the system. By enabling the user to

navigate through the hierarchy, the means is provided whereby the complexity of the

level of representation can be shaped to fit requirements of the task currently being

performed. Figure 1.1 shows an example of how components of a network can be

chunked into a node, thus distributing the complexity of the network over different

levels of the hierarchy. This technique is investigated by means of a case study. In

particular, we look at this technique in terms of the pragmatics of interaction, its

impact on the semantics of the interaction and its effect upon the user's conceptual

1



a) A generic network.

c) The system responds by creating
a module.

b) The user "chunks" a cluster of objects
to be encapsulated into a module.

d) The user has descended into the
new module to reveal its internals.

Figure 1.1: Encapsulating components of a network.
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model.

Hierarchical encapsulation is not a concept novel to this thesis. The value of this

thesis lies in the fact that the methodology of hierarchical encapsulation is examined

in terms of a graphical interface which involves novel techniques of interaction and

graphical representation.

Hierarchical encapsulation is a means to handle complexity; the user encapsu-

lates related pieces of information into manageable "chunks", hiding the details till

th~y are needed. This is especially true in the area of computer science [34]. Tech-

niques of information hiding such as modularization and top down structuring are

proven to be helpful in understanding, designing, building and maintaining complex

systems. It is on this premise that the importance of this thesis lies; surely such

successful methodology, when applied to graphical interfaces, is worthy of investi-

gation.

1.1 Meta Issues

1.1.1 In Defense of a Case Study

This thesis examines the issues of interest through the vehicle of a case study in

computer music. Before proceeding with this study, it seems worthwhile to briefly

discuss the merit of the case study approach in general, and the appropriateness of

our specific application domain, music. There are, at least, two major approaches

to investigating a particular concept in user interface design. One is to study the

concept in the context of a specific application (the case study approach). The other

is to work at a higher level of abstraction, in an application independent manner.

Both approaches have merit and, in reality, both must coexist to a degree. In reality,

differences are a matter of emphasis, often determined by the types of questions that

one is investigating. In this thesis we lean towards "experimental programming",

using the case study approach. The intention is to attempt to obtain, thereby, a

sense of validity of ideas in the large context of a real system with real users. In

3



the following discussion we further motivate this decision.

The construction of a working system allows the general concepts of the interface

to be tested by having real users performing real tasks. In addition, a real system

is a vehicle in which the general properties of the interface can be demonstrated.

Second, by examining the successful features of the interface and distilling them

from the specific application of the case study, we can apply these tested features

to other similar application areas. Third, there exist many similar applications to

our case study. We will now expand on each of these claims.

First is the matter of demonstration and testing. An interactive user interface

is just that: interactive. To attempt to demonstrate an interactive interface design

by description or by static pictures cannot capture the essence of the interaction.

One can describe a fine piece of art, but the display of the actual art piece is far

more effective in demonstrating the properties. As for the matter of testing, user

interface design is not a science and therefore it is difficult to predict the ramifi-

cations of design features "on paper". Designers have recognized the advantages

of prototyping, and "quick and dirty" system construction as part of the design

process. Not only does a real system give the designer a more concrete view of the

system, but the construction of prototype systems allows the designer to test the

interface on real users and redesign based on test results. In effect a real system

allows us to prove, or disprove, the value of our design.

Furthermore, without a real application, reasoning about the interface cannot be

done. For example how can we reason about an int.erface for hierarchical encapsula-

tion and connection if we know nothing about the objects and connections? A real

application provides application specific issues and details which reveal unpredicted

problems and advantages in the broad issues. An example from civil engineering

can be used to demonstrate this point: On paper the design of suspension bridges

seemed perfectly acceptable. It wasn't until July 1 1940 when the Tacoma Narrows

bridge in Puget Sound Washington began to flap in the breeze that a fundamental

design problem was recognized.

Next we can examine the representativeness of our case study. In order to apply

4



the results of a case study to another application area, a designer must be aware of

the general characteristics of the case study and determine if the other application

has the same general characteristics. If, in fact, the other application does share

general characteristics with the case study, the designer can "borrow" successful

design features from those developed in the case study.

With this in mind, we identify the general characteristics of our case study:

. Objects have data flow connections between them.

. The user must be able to specify extremely complex configurations of objects

and connections

. More objects exist than can be viewed at once.

. Objects have functional relationships that lend themselves to logical grouping.

. Objects have parameters associated with them which the user must access.

. More parameters exist than can be viewed at once

. User access to parameters exhibit locality.

. There is a "design" and "operation" (or control) component, or phase, each

requiring the display of different types of information.

Note that these general characteristics apply to a large class of applications.

Essentially the case study deals with visually programming a system where objects

are data sources and sinks, and connections represent data flow among objects.

Any, if not most, of these general characteristics are demonstrated by many other

applications such as VLSI design [31], Recursive Transition Networks [33], Data

Flow Diagrams [12] and Hyper-Text [15].

In VLSI design, the objects being dealt with represent electronic components

and the connections among them. Hierarchical structuring allows components to

consist of other components and connections. Figure 1.2 is a simple example of

Hierarchical structuring in VLSI design.

5



From cpu

Bus interface Address Latch

Collision
detection

Measurement
channel
counter

Address
mux

Line
break
handling

To RAMRAM write
control

To measurement
channel selector

a) A portion of a block diagram of an analog to digital converter controller.

b) The internals of the Address mux block where blocks are basic components such

as NAND gates, counters or multiplexers.

Figure 1.2: Hierarchical structuring in VLSI design.
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a) The basic structure of the recognizer.

"0" <digit>

b) The internal structure of the node "integer part". Which recognizes the integer
part of the number.

Figure 1.3: A simple recursive finite state recognizer for floating point hexidecimal
numbers (for example: Ox34f.Og4).

Recursive transition networks (RTNs) consist of objects which represent a state

of a finite state machine and connections which represent a conditional transition

to another-state. An object may have an internal recursive transition network that

defines its behavior. RTN s are used in applications such as the design specification

of interactive systems based on state transitions and lexical analyzers in language

compilers. Figure 1.3 shows and example of the latter.

Hyper- Text systems allow hierarchical structuring and access to textual objects.

Figure 1.4 shows a hypertext system called NoteCards [15]. NoteCards is intended

to help people formulate, structure, compare and manage ideas by allowing the

user to construct and access a "semantic network" of note cards. Note cards can be

collected into special cards called "FileBoxes", thus imposing hierarchical structure.
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Figure 1.4: The hypertext system NoteCards. The Rationale Browser card displays
a network of note cards. Nodes in the network expand into other cards, which in

turn have keyworks which lead to other networks of cards. Figure from [15].
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Data flow diagrams (DFDs), used for systems analysis and design, are also

similar to our case study application. In DFDs, objects represent processes, data

stores and system interface entities (for example, an employee is an interface to the

system which supplies data). Connections represent information data flow in the

system. An object's internal workings may be described by a data flow diagram,

thus producing a hierarchy of data flow diagrams. Figure 1.5 shows a simple DFD

with hierarchical structure.

. Other application areas also exhibit the characteristic of having objects with nu-

merous parameters and user access these to parameters exhibits locality. Typically

these are computer interfaces to systems in which the user accesses many graphical

control panels by time multiplexing a computer screen. Kantowitz and Sorkin in

[18] describe computer simulated control panels for industrial and power generation

processes which exhibit these characteristics.

1.1.2 Meta Issues Concerning the Interface

The previous section has outlined the general characteristics of the case study in-

terface. In this section meta issues independent of the application are discussed.

To put this discussion in context, a description of the abstract characteristics of the

interface is given. A discussion of meta issues then follows.

The sy~tem implemented consists of resources (referred to as objects) which can

be selected, configured, and grouped into subsets. These subsets can be collapsed,

thereby recursively creating new user defined objects.

The selection operation allows adding an object to a configuration and checking if

an instance of the object is available. Figure 1.6 shows the graphical representation

of a configuration. Objects in the system are represented by icons. Arcs between

icons represent data flow connections between objects. The nature of the data flow

(for example, control or signal) is application dependent.

The user may create new objects by grouping existing ones and their connec-

tions. The grouped objects and connections become the internal configuration of

9



a) The structure of a credit card application system.

convert
to client
record

valid
form form

error note

record

error

log

b) The internals of the "register new client" process

Figure 1.5: Hierarchical structuring of data flow diagrams for system analysis.
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. Con~gur.tlon

Microphone

I!~
Monitor

~~~)

Moni'or

~f~)
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SAMPLER

....
RMI!B

Figure 1.6: Graphical representation of a configuration

the module. This operation permits hierarchicly structured configurations. Con-

versely, the user can expand virtually any object to see its contents, or underlying

semantics, in more detail.

The hierarchical structure of a configuration has ramifications in terms of the

interface. Such structuring solves problems associated with complex configurations.

These are considered to be configurations where there exist more objects and con-

nections than can be displayed concurrently on the screen and more objects and

connections than the user can comprehend in a single display. Hierarchical struc-

turing allows the user to reduce the amount of information about a configuration

by hiding details of sub-configurations. Since configurations are created by the

user, it allows them to create layers of complexity in the system which reflect their

understanding of the configuration. The system can a be thought of as an onion

with layers of complexity. As the layers are peeled away, a more detailed view is

presented.

While hierarchical structuring solves problems, it also introduces them. The
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user's access path to the objects involved in a configuration is dictated by the hi-

erarchical structure (the "navigation" problem). In the case study examined in

this thesis, it is demonstrated that once the user has completed specifying the con-

figuration, hierarchical access paths to objects are tedious. This has been shown

true in other systems [23]. Typically, the user specifies a configuration, then re-

quires access to the parameters of various objects within the configuration. If the

user alternates between accessing two objects which are widely separated in the

hierarchical structure, access time and effort become unacceptable.

The navigation problem can be reduced if we recognize three types of reasons

for wanting to access an object: (1) to connect it to some other object ("hook-up"),

(2), to operate its controls ("control"), and (3), to view its function or the context

it is being used in ("context/function"). This is analogous to setting up one's home

stereo; initially you are concerned with connecting the various components ("hook-

up"). Once you are satisfied with the connections, you "hide" the connections

against the wall and only access the front panels ("control"). At some point in the

future you may forget how a component is connected to the system and need to

review its role in the system ("context/function").

While hierarchical access is effective when accessing objects for "hook-up" or

"context/function", in the case of "control" it is not. For example, the user does

not want to have to traverse the object hierarchy each time access to a control panel

is required. The point is some mechanism is needed to support non-hierarchical

access. Thus, a central issue is, given the hierarclpcal access paths to the objects,

how can non-hierarchical access also be supported?

The home stereo analogy can be extended to reveal another issue. Suppose you

purchase a CD player. Many issues arise: is it possible to connect it to the system?

Can this be done without reconnecting the rest of the system? Is there enough room

in the stereo stand for the player? These questions concern system extensibility and

can be applied to the case study: Can new types of objects be added to the system?

How are the various attributes of the object (its icon, connection points, control

panel, etc) specified by the user?

12



A related issue to non-hierarchical access is the phenomena of locality of access

initially defined in the literature by Denning [8], and applied to windowing inter-

faces by Card and Henderson [7]. Card and Henderson reported that windowing

interfaces in office automation applications exhibit locality in terms of access to

windows. Figure 1.7 shows how user access to windows is related to the task being

performed. The case study in this thesis exhibits the same phenomena: access to

object parameters exhibit locality. The user varies the working set of object param-

et~rs being accessed. For example, the user may work for 5 minutes on the mixing

board and effects devices, then transfer to using the synthesizers. Furthermore, over

long time intervals the user may vary the entire configuration of the system plus

the object parameters he is working with. These facts imply that not only must the

system support non-hierarchical access to objects and their parameters, but it must

allow the user to custom build access schemes which can be dynamically changed

to suit their needs. In addition, what kind of tools are effective in helping the user

gracefully change the entire system configuration?

An issue related to customizability is selective views and alternate views of the

configuration and object parameters. Hierarchical structuring, as described previ-

ously, has been used to selectively view objects and connections in a configuration.

The user may also wish to selectively view based on type. For example, in the case

study different types of connections exist. There are times when the user wishes

to view a configuration in terms of a certain connection type. Questions arise as

to how the user specifies what types should be masked. Similar questions can be

asked concerning alternate views of data. What is meant by alternate views is al-

lowing several different types of representations of same data. As an example, in

the case study, a numerical parameter can be viewed as a number or alternately

as a graphical slider. The central issue here is how alternate views are applied by

user. In addition this thesis examines the constructs that must be present in the

implementation to support selective viewing and alternate views.

It has been stated previously that a characteristic of the application is that the

user must control numerous object parameters. This presents two problems. First,
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Figure 1.7: The phenomena of locality in windowing systems: In this example the
user sequentially performs 3 tasks. As the user switches between tasks, the set
of windows being accessed changes. Thus over times access to windows exhibit
phases and transition between phases. In our case study, access to objects and
their parameters exhibit the same phenomena.
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given the fact that there exist m~ny more parameters than input devices, what

sort of scheme can be devised to facilitate linking an input device to a parameter?

Second, even if an input device for each parameter is provided, it is physically

impossible to manipulate all the input devices at once. In view of this, this thesis

addresses schemes for extending control over parameters beyond simple one to one

associations of parameters to input devices. Schemes to support one input device

to many parameters associations, parameter control via functional dependencies

an9. control through automation are investigated. The investigation is in terms of

underlying software constructs that must be devised to support these schemes and

the pragmatics involved in the user specifying associations.

Myers in [22] defines visual programming as referring to any system that allows

the user to specify a program in a two (or more) dimensional fashion. Thus graph-

ical programming languages are considered visual programming systems. The case

study system can be viewed as a visual programming system: by "drawing" a con-

figuration, the user programs the system. This viewpoint raises interesting issues.

Typically, the user is concerned with prototyping configurations, that is, the user

configures objects, checks to see if they operate in a satisfactory manner, then en-

capsulates them in module producing a new type of object. This is an experimental

programming approach which is analogous to conventional programming languages

where a block of code, once tested and proven to work, is placed in a parameterized

subroutine. The issue is: Is this an effective programming technique?

A visual programming approach creates an interesting viewpoint of the interface

pragmatics. Buxton in [4] defines the term pragmatics as the device and kinesthetic

components of a user interface. Pragmatics, therefore, concern the human gestures

of a dialogue and the transducers that capture them. Buxton also points out that

the pragmatics of a user interface affect the learnability, the frequency of and nature

of user errors, the retention of skills and the speed of task performance. If we adopt

the view of the case study being a visual programming system, pragmatics can

be considered the notation of our visual programming language. Notation, in any

domain such as algebra, visual or symbolic programming, can be considered a tool

15



of thought which either helps or hinders the the performance of task. Thus we can

ask the question: what notation best reflects and reinforces the way we think about

the task? In other words: what gestures best suit encapsulation, connection and

modification of object parameters? Furthermore, given the set of gestures used in

the interface, how do these gestures interact with each other in terms of the user's

model and the complexity of the implementation of the interface?

In summary, this chapter has outlined the basic issues surrounding this thesis.

First the issue of investigating broad issues in terms of a case study was discussed.

It was shown viable for three reasons: First, the construction of a working system is

extremely valuable, second, results from the case study can be generalized to other

problems and third, there exist many problems to which the results apply. Next,

the meta-issues concerning the case study itself were outlined. The central issues

consisted of the user interface ramifications of hierarchical structuring of access to

entities, alternate and user customizable access schemes, selective and alternate

views of entities, the effectiveness of experimental programming, pragmatics of in-

teraction, and control over object parameters.
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Chapter 2

Descriptionof the Case Study

Problem

This chapter gives a description of the case study problem. This description is

intended to set the stage for a discussion of solutions to the meta issues described

in the previous chapter and application specific issues presented in the current

chapter.

The case study problem is to make an audio studio controllable from a central

computer. The domain of the case study is a personal audio studio in which a single

user operates the entire system. In recent years, personal audio studios, which are

merely scaled down versions of professional audio studios, have become extremely

popular due to reduced hardware costs and improvements in sound quality; it is now

possible for a user to produce personal recordings of professional quality. The user,

while using a personal audio, assumes the roles of performer, producer, engineer,

instrument builder and composer.

This domain provides a potent testbed for studying the issues of interest dis-

cussed in the previous chapter. In everyday operation the user of a personal audio

studio is faced with the tasks of configuring (or interconnecting) objects and con-

trolling object parameters. Furthermore, the user may spend a great deal of time

probing the the configuration of the system in order to understand or troubleshoot

it. By constructing a system to deal with these problems we directly assault the
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issues described in Chapter 1.

This domain was chosen for two reasons: it restricts the size of problem, thus

making a solution more manageable (it was possible to assemble our own personal

audio studio) and, because a personal studio is a scaled down version of professional

studio, the same problems are encountered; thus ideally, our solutions can be scaled

up and applied to larger professional systems.

The question now to be asked is: why take the computer control approach? In

order to avoid prescribing a cure without a cause, the following sections describe

problem areas that exist in the operation of personal and also professional audio

studios. These problems will shed light on the reasoning and motivation behind

our approach. In order to give context to the discussion of these problems, a more

detailed description of the domain is first given.

2.1 User and Task Profile

Rubenstein and Hersh in [27] stress the importance of identifying and profiling

potential users as part of system analysis. The typical users of personal audio studios

are musicians. In terms of user profile we can address the following questions:

1. how experienced is the user with technology?

2. how experienced is the user with the application area?

3. what is the user's motivation for using the studio?

4. how intelligent is the user?

5. how critical of the system is the user?

6. what are the common tasks performed by the user?

In order to answer questions 1, 2 and 4 we need only look at the hardware

that is commonly used in a personal audio studio. Generally, several types of in-

struments, such as keyboard synthesizers, guitars and percussion, serve as sound
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sources. An audio mixing console is used for blending and processing sound from

various sources. Multi-track tape recorders are used so a single musician can "play"

several instruments on the same recording. Sound effects devices, such as reverber-

ation simulators and harmonizers, allow the musician to simulate different types of

acoustic spaces and enhance sounds. A micro-computer may be used to score pieces

and drive synthesizers.

The point is that the personal music studio is a very complex environment and

the user of this environment is highly experienced with the technology. While users

may not be very aware of how a device in the personal studio works internally, they

are very aware and experienced in what the devices are used for and how to use

them.

The answer to question 3 is related to question 5. The user's motivation for using

a personal studio is generally to produce recordings for personal use or for sale. This

motivation makes the user very critical of the system: musicians generally expect

high quality audio as an intrinsic feature of their work, and music produced for sale

must meet professional quality standards. Furthermore, the user expects or hopes

that the technology will help, not hinder, the creative process of creating music.

These factors make the user very critical of the system and the ease of operating

the system.

The final question is difficult to answer. The activities of a musician in the studio

may vary greatly depending on hardware available, type of music being created and

personal work habits. For example, if a multi-trac1.-: tape recorder is available, some

musicians construct a composition by playing and recording each instrument one at

a time; thus building up tracks until the composition is orchestrated. In contrast,

other musicians record a composition in one "take", using a computer sequencer

which has been programmed to play all synthesized instruments at once. The point

being made is: the user's tasks vary greatly and we can only isolate very general

task types:

. instrument construction
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. composition

. recording

. mix down

By instrument construction we are not referring to carving guitars out of trees,

but to connecting audio devices together in such a manner that another type of

instrument is, in essence, created. It is the design of the audio "chain" of sources,

effects, and combinations, and the settings of each. As an example, the output of a

guitar can be connected to an audio envelope generator device such that strumming

the guitar controls the opening and closing of the envelope generator. The sound

from a keyboard synthesizer may then be passed through the envelope generator.

Thus, strumming the guitar causes the effect of the synthesizer sound cutting in

and out and, in effect, a new strange instrument has been constructed.

Composition refers to the process of creating a "plan" which describes how a

piece of music is to be played. Note that this may not necessarily be the traditional

scribing of music onto paper. The "plan" may also be recorded by entering the

composition into a computer sequencer or actually recording a performance on a

tape recorder.

The task of recording takes place when the user has completed the composition.

Essentially recording is the acoustic realization of the composition. Recording gen-

erally involves the playing and recording of several instruments onto a multi-track

tape recorder as described earlier or the programming of a computer sequencer to

play each instrument part.

The mix down process refers to blending of the various instruments of compo-

sition into a stereo recording. This generally involves the use of an audio mixer,

sound effect processing devices and a stereo tape recorder.

The essential observations to be made about these tasks are that:

. devices serve different roles in different tasks and

. there is no concrete ordering of tasks.
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The main point to be extracted from our task analysis is that the types of tasks

and the ordering of tasks cannot be predicted accurately. Therefore, we must design

a system in which there is provision for variability of task and user tailorability.

2.2 Motivation

Now that we have clearer idea of who the user is and what sort of activities take

place, a discussion of our motivation behind the development of the case study

system can be given. Our motivation falls into three categories:

1. Expertise and interest in the application.

2. There exists a gap in computer tools for personal audio systems.

3. We believe that computer tools could solve certain problems associated with

personal audio studios.

4. The development of the case study system is critical to the success of future

personal audio studios.

The following subsections discuss each of these categories.

2.2.1 Lack of Computer Tools

There exists a definite gap in computer tools for audio engineering. In recent years

there has rapid growth in the use of computer tools for many areas of music produc-

tion. This growth has followed a bottom up pattern. Initially computers were used

in sound synthesis and processing. The next generation of music software consisted

of composition tools aimed at making the composition process more productive. In

the current generation of music software tools we are seeing composition tools in

which the computer generates portions of the composition and tools to assist in

audio engineering. Thus the pattern of growth can be seen going from the low level

activities, such as sound generation, to higher level activities like composition and

audio production.
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Many effective computer tools for sound synthesis/processing and tools for com-

position have been produced and a excellent survey is given by Yavelow in [36]. The

market for sound synthesizers offers numerous synthesizers using a variety of sound

synthesis techniques. Tools, such as voice (or "timbre") editors, are available to

assist the musician or audio engineer in synthesizer programming. Similarly, nu-

merous compositional tools are available which run on a variety of microcomputers.

The development of sound synthesis/processing tools and tools for composition has

undergone several generations and many effective and efficient tools have evolved.

In contrast, we are just seeing the first generation of tools to assist in audio en-

gineering. Based on the success of computer tools in other areas of music, we are

motivated to produce tools which will assist the audio engineer.

The real underlying issue is that while many good hardware and software mod-

ules exist, these modules do not function together as a consistent and integrated

system -integration is the missing component. Ultimately, what is required is a

"meta tool" which brings together all these modules by providing a unified, consis-

tent user interface across modules. This "meta tool" should also be an extendible

system where function can be added by "dropping in" new modules. Furthermore,

communication between modules in terms of audio and control data should be stan-

dard.

2.2.2 Problem Areas

Task Switching

In the process of audio production many software tools may be used. In a typical

modern recording studio you may find a variety of synthesizers each which support

a different synthesis technique and a different style of user interface, several different

types of microcomputers with different voicing programs used for programming the

synthesizers, another microcomputer used for composition and sequencing, and yet

another computer used for mixing console and tape recorder control. A system

consisting of an integrated set of software tools does not exist. A state of the art
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professional studio requires three operators, above and beyond the musicians, to

man the various computers.

The lack of integration among software tools can severly hinder their effective-

ness. This can be traced to two factors: high cognitive load and high cost task

switching. Cognitive load is defined as the amount of knowledge required by the

user to effectively use the tools. The user is already faced with a formidable task

of remembering the functions of the various tools; the fact that the pragmatics

of the interfaces may vary from tool to tool places an additional and unnecessary

cognitive burden on the user. As an example, consider a voicing program and a

sequencer. If the style of the user interfaces between the two varies (ie: one uses

pop-up menus while the other uses pull down menus) the user must not only re-

member the difference in function of the tools, but also the different interaction

technique.

The problem of integration also extends to hardware device interfaces. Typically

an audio studio is a patchwork of numerous hardware devices such as mixing con-

soles, signal processors and tape recorders. Not all the devices are products of the

same manufacturer and therefore the pragmatics of the front panel user interface

are different from device to device (this may even be true for different devices from

the same manufacturer). Differing pragmatics between device interfaces have two

effects: when the user switches between adjusting devices, it may lead to a high

frequency of user input error if the differing pragmatics interfere with each other,

or it may distract the user from the higher level task at hand. The first effect is

costly in terms of time to perform the adjustments. The second effect's cost is more

subtle; a user's current train of thought may be broken and valuable ideas lost if

distracted by a low level task. Austin in [1] refers to this phenomenon concerning

music production. In music production where creativity has high value, such an

effect can be costly.

Not only is the audio engineer burdened by the cognitive load of remembering

the function and how all the devices in the studio operate, but there may be high

cost in task switching. Devices may be connected together in different manners
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Figure 2.1: Two of many configurations of an audio studio. The first is the config-
uration used for recording vocals and guitar, the second for final mixdown. Figures

from [24].

depending on the task Figure 2.1 shows an example of the various configurations

of the studio. The problem, as outlined in chapter 1, occurs when the user switches

between tasks: what needs to be rewired? Heinbuch, in [16], describes this problem

as "studio headache #1". In addition there is the problem of remembering what

tools (be they software or hardware) were used in the task Typically the user

may want to temporarily change tasks then resume the original task or try a new

configuration with the option of returning to the original. The cognitive and time

costs of reconfiguring the studio can be staggering. Typically, 1/3 of studio time

is consumed in this task, time in which musicians .are idle, yet both musicians and

studio rental are being paid. The user has to manually rewire the studio using a

patch bay. A patch bay is a central switch of inputs and outputs for all the devices

in the studio and, although functionally capable, it provides the user with a less

than adequate tool for the job. Only small labels beside each input/output in a

patch bay indicate the associated device input/output. Thus, it is difficult for a

user to identify which input/output in the patch bay is associated with a particular

device. This results in user confusion and further complicates repatching.

Once the studio is rewired, the tools needed for the task must be acquired.
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For software tools this may mean restarting a program and opening a few files.

Hardware tools may have to be set back to the settings used for the task and also

brought closer if the user requires them to be close at hand.

Thus a possible solution to these problems is to have the computer remember

the way things were set up and be able to restore the set up of the studio automat-

ically. Ideally we desire a magic wand which allows the audio engineer to "change

things back to the way they were" so the real task at hand, creating music, can be

co~centrated on.

Better Interfaces

In the preceding section we discussed the problem of hardware devices having dif-

ferent interfaces and how this can lead to poor user performance in the operation

of these devices. A problem related to this stems from a recent trend in the de-

sign of hardware devices. The problem is simply that in order to reduce a device's

cost, manufacturers produce devices with a minimal number of switches, knobs and

buttons and very small displays. What few buttons remain on the front panel of a

device are generally of the "soft" variety. That is, they are modal-serving different

functions at different times. Figure 2.2 shows the control panel of a popular audio

mixing processor. The device has 205 settable parameters while only 53 physical

inputs exist. A 32 character display is used to display parameter values.

While "clean" front panels give the impression that a device is easy to use, the

modal interface that results from time multiplexing a few buttons, sliders, knobs

and the display may be frustrating to the user. Rubenstein and Hersh [27] report

multiplexing of function (using the same input for more than one purpose) is usually

poor in terms of human performance. Evidence of this can be seen in the prolific

sales of more extensive "add on" control panels and micro-computer programs for

controlling devices with minimal interfaces, and is reported in the literature [36].

Given the fact that a device's parameters can be controlled from a computer,

we are capable of producing "soft" control panels. Since there is no cost involved in

supplying graphical knobs, buttons, sliders and displays, we can avoid the problems
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Figure 2.2: Control panel of the Yamaha DMP7 audio mixer.

involved in multiplexing of function.

Controlling a device from a computer screen control panel has another important

advantage: parameter displays and parameter modification gadgets can be made to

reflect the semantics of the parameter. An example best explains this. Figure 2.3

show the equalization section of a channel module of a sound mixing console. In this

case, the physical knobs and buttons serve as a display of the equalization "setting"

in addition. to being a means to modify the "setting". Figure 2.4 shows another rep-

resentation of equalization used on a computer screen control panel. We conjecture

that Figure 2.4 better reflects the way the user "thinks" of equalization. In other

words, Figure 2.4 is closer to the functional model the user has of equalization. The

point to be made here is that the closer the representation is to the user's concept

of function (that is, their mental model of function) the more effective we expect

the user interface to be in terms of learnability and ease of use. For example, when

the function of an equalizer is taught, generally decibels versus frequency graphs

are used as opposed to knobs and buttons.

The previous point should be qualified. We are not claiming that a "correct"

26



Figure 2.3: The equalization section of a channel module of a Neve V Series sound
mixing console.
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Figure 2.4: The EQ editor of DMP7-Pro.
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representation of certain type of parameter exists; the "correct" representation de-

pends on the user and the situation. The critical point is that soft control panels

allow the option of alternative views of parameters. For example, the user may

prefer the representation used in Figure 2.3 over the representation used in Figure

2.4 in certain situations. Furthermore, certain representations may be good for

visual representation but poor in terms of input. For example, consider the repre-

sentation of equalization using a graph where the user may modify the graph by

drawing it. Although this input technique allows the user to quickly set the entire

equalizer, users cannot "tweak" certain portions of the equalization as they can

with traditional knob controlled equalizers.

More power to the user

Historically, when computers have been used in an application to make a task easier,

they have also been effective in extending the power the user has. An example from

computer aided composition can be used. Not only is it easier for the composer

to get creative ideas recorded on paper, but the computer can perform complex

material enabling the composer to "proof listen" to the material being composed

or edited. Thus the composer's creative power is enhanced. In a similar manner

we are motivated to develop computer aided audio production tools which extend

user power. For example, the user may only be able to operate ten faders on the

audio console at the same time. By having the computer control the faders we can

perform operations that are not physically possible.

As described by Schwarts in [29]:

The issue of physically interfacing a large and complex process with

its human operator has plagued system engineers for over a century. In

the past, a compromise between ease of operation, cost and physical

constraints was inevitable, whether the control panel was for a petro-

chemical plant, nuclear reactor, aircraft or audio mixer. Even in the

best of compromises, large systems still require more that one engineer

for multiple simultaneous operations. In audio, the mixing desk/tape
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transport/signal display devices frequently occupy over 50 square feet

of front panel with on the order of 40 controls and labels/displays per

square foot. A single audio engineer simply cannot reach every control

from one position. Thus we are concerned with developing schemes to

overcome problems of this type.

Extension of the user's control falls into 2 broad categories: first, computer

automation and second, control slaving schemes. In the latter category, the user

specifies to the system that a single control will control more than one parameter in

the system. In this way the user can "grow more hands". In the first category, the

user indicates to the computer that it should "record" the manipulation of controls

versus time or the user can "script" actions or configurations. The recording or

script can be "played back" later, thus freeing the user's hands to adjust other

controls.

Control slaving schemes can be more general. Traditionally, control slaving

schemes have involved simply slaving sets of controls, which the user wishes to ma-

nipulate at the same time, to a single control, which the user actually manipulates

(hierarchical control). A more general scheme is to allow arbitrary slaving of pa-

rameters to other parameters. As an example of the usefulness of a general scheme

of this sort, we can examine a typical "trick" used in the recording of popular music.

The trick ~s to apply an echo to a recording and make the time delay before the

echo is heard some multiple of the tempo of the piece. This trick has the psycho-

acoustic effect of giving the recording livelyness ana bounce. Typically the engineer

determines the tempo of the piece, calculates the amount of time delay needed and

sets the time delay parameter on the echo device accordingly. This technique works

very well when the tempo of the piece is constant; when the tempo of piece varies,

the effect of this trick makes the piece sound out of time. Ideally, what the engineer

wants is a relation that specifies that the delay of the echo is at all times some

fraction of the tempo of the piece. Thus, when the tempo of the piece varies, the

delay shall vary with it and the intended effect will be maintained.

Thus we would like some method of relating controllable parameters in the
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system such that we could "set and forget them" or in other words, apply constraint

relations among parameters. The system would then be in charge of updating the

parameters according to the relationships between them. Hence the user can turn

his attention towards manipulating other parts of the system.

2.2.3 User Interfaces for Digital Audio Workstations

In recent years we have seen much development in computer systems strictly devoted

to audio processing. This class of systems, referred to as Digital Audio Workstations

(DAWs), process all audio signals in digital format. Digital processing has several

fundamental advantages: there is none of the quality loss typically experienced

with analogue processing and more sophisticated processing of audio signals can be

performed. The essential idea, or inspiration, behind DAWs is that they will provide

integrated audio signal processing. A DAW will emulate all the traditional devices

of the personal recording studio plus give the user more power to manipulate these

devices than the traditional analogue systems. Furthermore the user will be able to

control all this power from one single central computer workstation.

DAW systems generally consist of programmable networks of digital signal pro-

cessors in which all processing and routing of audio signals takes place in the digital

domain. Sets of audio devices are emulated by asynchronously running programs

which inp~t digitized audio signals and perform processing on them. Device con-

nections are emulated by interprogram communication of digitized audio signals

and control signals. A central computer, which pervades over device programs, is

used for control and user interface. Control panels for emulated devices appear on

a high resolution graphics screen, where the user may directly manipulate device

settings. A common feature of these systems is the ability of the system to be re-

programmed to perform different audio processing tasks. For example, by loading

different programs into SoundDroid, a DAW developed by The Droid Works [21], it

can be an audio mixer, a music synthesizer, an audio recorder or an outboard signal

processor such as a reverb, £langer or pitch shifter. This feature of "virtual devices"

is extremely powerful. It allows the user to have different types of devices available
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for use, while paying only for the hardware cost of one device. Furthermore, since

devices are software programs, replacing obsolete devices with new ones is extremely

cost effective. These features make systems of this type extremely attractive to the

user-owner and give reason to the belief that these types of systems will be the

personal and professional audio studios of the future.

The complete development of a DAW has not come about yet. While much

research has been done on DAWs, this research has been focused on low-level func-

tionality. Many systems (SoundDroid [21], Compusonics DSP-2000 [29], Wave-

Frame [25], IRCAM's 4X [13] and the Katosizer [19] [3]) have concentrated on low

level problems and advantages of processing digitized audio signals and the type of

hardware architecture needed to support a DAW. Little research has been done on

the user interface requirements of a DAW. It is our belief that research in this area

is critical to the success of DAWs; while quality, powerful function and virtualness

attract musicians, the ultimate success of these systems will depend on the interface

that the musician sees. The interface must be able to present the system's powerful

function in such a manner that the musician can understand and control this power.

Thus the case study focuses on the development of a user interface for systems of

this type.

This motive is not in conflict with the motives previously described; the problems

encountered in a traditional personal audio studio also occur in the realm of DAWs.

In order to be effective, the software tools presented by the DAW must a be an

integrated set. Switching between tasks on a DA'Y still requires "rewiring" of the

connections between devices and reacquisition of the tools for the task. We must

still be concerned about producing high quality interfaces for "soft" devices because

traditional front panel interfaces do not exist. Finally, the potential for enhancing

the user's power is equal, or greater than the potential for power enhancement in

traditional personal audio studios.

Essentially, designing a user interface to a DAW presents a golden opportunity

to develop a system that solves the problems associated with traditional personal

audio studios, and exploits the inherent advantages of a DAW.
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Figure 2.5: A graphical representation of a second order filter. The filter has been
swept by a hand drawn waveform and its output is displayed in a graph. The
icons represent primitive devices, each carries out a simple operation on the audio
signal. The combined op'eration of the primitive devices results in the input audio
signal being filtered on output. Note that control signals are also represented by
connections. Figure from [11].

We have outlined that a major advantage of DAWs is their programmability.

Blythe and Kitamura [3] have showed the tremendous advantage in the ability of the

user to acquire and interconnect devices interactively. In a sense, the user visually

programs the system to emulate a certain set of audio devices with a certain set of

connections among the devices. Galloway, et al. in [11] show how an interactive

graphical language can be used to specify a device's function. Figure 2.5 shows

an digital filter constructed using interactive graphics. By combining these two

techniques, a user could not only specify what devices are to be emulated on the

DAW, but also the internal function of the devices.

This ability has potential far beyond the traditional personal audio studio. In

the traditional case, the function of a device is "locked" inside the device's physical

construction. That is, the function of a device is determined by the designer of the

device, generally the engineer who designed the device for the manufacturer. But

in the DAW case, the user can be the engineer. The advantage is that the user can

custom build devices to suit their personal needs and, in doing so, the user acquires
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a clear understanding of the function of a device and, ultimately, the function of the

system. There are also some inherent problems: device construction is a complex

task; can we produce an interface which allows the user to accomplish it?

As outlined in chapter 1, the approach we take is to allow the user to construct

devices using hierarchical encapsulation. This approach allows the user to bury the

complexity of the system in "chunks". These "chunks" correspond to user built

devices and consist of a collection of devices and connections. At the lowest level

of the device hierarchy, there are primitive devices in the system which represent

small pieces of micro-code. The micro-code of a primitive device, when executed,

carries out a small audio signal processing task. For example, a primitive device

may read an audio signal input, amplify it by multi pIing by a scalar and output the

result .

Figure 2.6 shows the embedded nature of our approach. At the top level, devices

are interconnected to perform a task. These devices may have an internal structure

defining their function. This structure consists of smaller, primitive devices and

other devices plus the connections among them. At the lowest level primitive devices

perform simple functions such as amplifying, delaying or mixing audio signals. Also

note that devices inherit their controls on their control panel from their lower level

devices.

It is important to note that our approach does not view DAW systems and MIDI

module based systems as separate entities. It would be naive to expect a DAW which

cannot interface to existing MIDI modules to b~ popular; many excellent MIDI

modules exist which audio engineers and musicians would be hard pressed to give

up. We see the evolution of the hardware base of our system beginning with strictly

MIDI modules, evolving to a combination of a DAW interfaced to MIDI hardware,

and finally a DAW emulating all modules. The point is that while the hardware

base is changing our interface will not. The fact that a device is a MIDI module or

is emulated by a DAW program should be transparent to the user. Moreover, it is

our vision that MIDI modules should be programmed using the same technique as

DAW modules composed of micro-code. This has two advantages. First, it allows
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MIDI based system users an easy transition to a DAW; programming a DAW will

require the same skills a programming a MIDI system. The second advantage is

more concerned with interface design; by making our approach to designing an

interface to a DAW similar to our approach to MIDI based systems, the techniques

used to solve problems in the latter can be applied to problems in the former.

2.3 The Case Study Environment: Virtual Stu-

dio

The hardware arrangement used for the case study audio studio is shown in Figure

2.7. The audio devices used included a Yamaha DMP7 mixing console, an Akai S900

sampler, a Yamaha TX802 Tone generator, an Akai AX73 keyboard synthesizer, a

Digital Music Systems MIDI mixer/switcher and an Akai DP3200 Audio Patch Bay.

All these devices are controlled from a central computer via MIDI communication

lines. All audio inputs and outputs are connected to the Akai DP3200 audio patch.

Under computer control, the audio patch bay allows routing of any input to any

output and visa versa. Similarly, all device MIDI inputs and output are connected

to the Digital Music Systems MIDI mixer/switcher, thus allowing computer control

over the routing of MIDI control signals.

The cep.tral controlling computer is a Sun 3/50 workstation. The computer

communicates through its RS232 output port to a RS232 to MIDI converter, which

in turn is connected to the MIDI mixer/switcher: The interface, which allows the

user to control the configuration of the system and access "soft" control panels for

each device, is named Virtual Studio. The physical input devices to the interface

consist of the workstation's mouse and keyboard (Chapter 4 discusses using more

and different types of input devices). The display screen is monochrome with a

resolution of 1152 * 900 pixels.

Virtual Studio is implemented in the Smalltalk programming environment. Fig-

ure 2.8 shows a snapshot of a typical screen that appears in the virtual studio. In

this situation the user is accessing a tool to configure the audio connections in the
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Figure 2.8: A typical screen in Virtual Studio.

system.

2.4 Summary

In this chapter a description of the case study environment and the associated

problems were given. The case study environment was identified as the personal

audio studio. The description consisted of a profile of the user and the type of

tasks performed in the personal audio studio, the problems hoped to be solved by

developing the case study system, and a description of the hardware used in the

development of Virtual Studio, the case study system.
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Chapter 3

Survey of Related Systems

In this chapter we examine systems that are related to the case study problem. More

specifically, we survey audio systems which have a central controlling computer and

concentrate on the interface presented by these systems. The systems surveyed

here are not comparable to one another due to the fact that each system was

designed with a different function in mind. Fortunately, we are not concerned with

comparing the systems, but in examining the features of each system which are

related to problems being addressed in this thesis.

The area of computer user interfaces for audio studios is relatively unexplored.

Most research concerning computers and audio has centered around low-level func-

tionality and hardware architecture [21]. The literature reflects this focus; for some

systems very little description or documentation of the interface has been produced.

3.1 The Katosizer

The Katosizer is a digital audio workstation (DAW) developed at the University of

Toronto by John Kitamura [19] [3]. The hardware consists of micro programmable

digital signal processors (DSPs) and utilizes a recently designed architecture which

supports multiprocessing. The Katosizer is modular in design, so that an inexpen-

sive minimum configuration can be expanded into a large and powerful machine.

Micro-code modules loaded into the DSPs emulate the function of conventional
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Figure 3.1: The user's view of the Katosizer.

audio signal processing and synthesis modules. By adding more processors, more

audio devices can be emulated.

The user interface developed for the Katosizer is called Virtual Patch Cords

(VPC) [3]. Figure 3.1 shows a screen dump of the user's view of the Katosizer. It

shows a "patch" (patch is slang for a particular set of connections and devices) in

which icons representing the function of micro-code modules and physical objects

have been _connected by "virtual patchcords". A MIDI keyboard is shown driving

an FM synthesizer (actually consisting of Katosizer software). Its carrier envelope

may be changed with an envelope editor. Preset .envelopes and other parameters

may be selected by using a MIDI program-select button. The keyboard's pitch

bend and modulation wheel are also connected to the synthesizer. The synthesizer

output is fed into a distortion box controlled by a foot pedal. This in turn enters a

"tape loop" whose loop gain is controlled by a slider, and whose input gain is set

by another pedal. The result goes to the speaker.

Icons can be interrogated to gain access their internal settings or "control pan-

els". For example, if the user double clicks on the distortion box icon, the control
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Figure 3.2: The control panel for a distortion box in the Katosizer.

panel for the distortion box appears in a window as shown in Figure 3.2. Using this

technique the user can adjust the parameters associated with each device.

Connections (or "patch cords") between devices can be either audio signals

or control signals (which could be MIDI). Furthermore, "patch cords" may exist

between "soft" devices and physical devices. As an example, in Figure 3.1, a "soft"

device, the emulated distortion box, is connected toa physical input device, the

foot pedal.

The Katosizer was a research effort and therefore is not completely developed.

Many more objects need to be added to the system. Many of these are unrelated to

synthesis or processing, such as more sophisticated recorders, sequencers, sampled

sound editing tools, etc. Nevertheless, the Katosizer project developed concepts

and revealed issues that are relevant to this thesis. First, the concept of a user

interface controlling the interconnection of deviceS' was proven to be very effective.

The fact that the implementation of a connection is transparent to a user is intrinsic

to the success of the Katosizer; the user may create a connection between devices

without being aware, or even caring, whether it is a hardware or software connection.

Second, the way in which both graphical input devices and physical input devices

are are used in the system helps in presenting a consistent, easy to use interface to

the user. Finally, from experience it was observed that hierarchical encapsulation,

albeit restricted to two levels, could also be used to collect a set of interconnected

objects and represent them by a single icon. This provided the user with a way
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to unclutter the screen; a major problem with the Katosizer patch cord diagrams

was that their complexity was limited by screen space and the ability of the user to

understand complex diagrams.

While the Katosizer can serve as personal audio studio, the interface does not

address several critical problems outlined in chapter 2:

. No interface to facilitate task switching was developed.

. Interfaces to devices with numerous controls were not explored.

. Complex control slaving schemes were not explored.

. The complexity of device networks was limited by screen space.

. Information about which ports a cord connected was not available.

3.2 SoundDroid

The SoundDroid [21] [30] [2], a development of The Droid Works, is a DAW similar

to the Katosizer, but oriented towards professional audio post production. A block

diagram of the SoundDroid system is shown in Figure 3.3 . The basic SoundDroid

station consists of two computers, one linked to a touch screen and other controls

and another which controls a high speed Audio Signal Processor or ASP. The ASP

controls several hard disk drives and one or more DSP boards which process digitized

sound.

As described in [21], the SoundDroid, like the Katosizer, is capable of emulating

many types of audio devices and configurations of audio devices. Programs can

be loaded into the processors to transform SoundDroid into systems to perform a

variety of tasks such as multitrack recording and mixing, editing of recordings, sound

designing and effects production. Essentially the system emulates an 8 channel

recording console and recorder, a stereo recorder and several effects devices.

The designers of SoundDroid also concentrated on developing the system to take

advantage of storing digitized sound on hard drives. In a traditional multi-track

41



to unclutter the screen; a major problem with the Katosizer patch cord diagrams

was that their complexity was limited by screen space and the ability of the user to

understand complex diagrams.

While the Katosizer can serve as personal audio studio, the interface does not

address several critical problems outlined in chapter 2:

. No interface to facilitate task switching was developed.

. Interfaces to devices with numerous controls were not explored.

. Complex control slaving schemes were not explored.

. The complexity of device networks was limited by screen space.

. Information about which ports a cord connected was not available.

3.2 SoundDroid

The SoundDroid [21] [30] [2], a development of The Droid Works, is a DAW similar

to the Katosizer, but oriented towards professional audio post production. A block

diagram of the SoundDroid system is shown in Figure 3.3 . The basic SoundDroid

station consists of two computers, one linked to a touch screen and other controls

and another which controls a high speed Audio Signal Processor or ASP. The ASP

controls several hard disk drives and one or more DSP boards which process digitized

sound.

As described in [21], the SoundDroid, like the Katosizer, is capable of emulating

many types of audio devices and configurations of audio devices. Programs can

be loaded into the processors to transform SoundDroid into systems to perform a

variety of tasks such as multitrack recording and mixing, editing of recordings, sound

designing and effects production. Essentially the system emulates an 8 channel

recording console and recorder, a stereo recorder and several effects devices.

The designers of SoundDroid also concentrated on developing the system to take

advantage of storing digitized sound on hard drives. In a traditional multi-track

41



(MORE DA. AD, DIGITAL TAPE RECORDERS)

0
0

0

AES/EnU STA~DAHD
FOR SERIAL I!<TERCHANGE

UP TO 256 CHAX'NELS OF I/O

UP TO , PER DSP

(\10RE ON DEMAND)

0
0

0

68000

0

O~I~
tc\l,tJLo

MASTER

PHYSICAL CO!<SOLES

(A PRIVATE ETHEHNH)

Figure 3.3: Block diagram of the SoundDroid. Figure from [21].

tape recorder, tracks are recorded in a linear fashion thus making changes to the

synchronization of one track with respect to another quite difficult and random

access difficult, if not impossible, because winding the tape to right spot takes time.

The advantage in storing tracks of sound on hard drives is that fast random access

of sounds can be supported and tracks, or portions of tracks, can be "slipped" in

time to allow synchronization corrections or special effects.

The user interface to SoundDroid, shown in Figure 3.4, utilizes a high resolution

monochrome touch sensitive monitor, 8 input sliders and buttons and a continuous

knob. Depending on the program which SoundDroid is running, parameters in

the system are controlled by the physical input devices and graphic controls which

appear on the screen. Thus different control panels appear on the screen depending

on what program the user is currently running.

What makes SoundDroid different from Virtual Studio and the Katosizer is that

the designers of SoundDroid make no provision in the interface to allow the user

to program the system. While Moorer claims in [21] that SoundDroid has "several
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Figure 3.4: The interface to SoundDroid. Top: a sample of SoundDroid's "Meter
Screen". Bottom: the console with input devices and video viewing screen. Figures
from [2].
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hundred different processing programs that can be freely intermixed" from which

the user can choose, the user cannot customize the controls, or combine parts of

what is supplied into new "consoles". Devices are pre-programmed by the system

designers. Configurations of the system are in fact large programs which load into

the system at the beginning of the task; there is no concept of a set of tools in

which the user can quickly change from one tool to another or construct new tools.

Graphical control panels and associations between audio device parameters and

physical input devices are determined by the system designer not the user. Thus

SoundDroid is lacking in task tailorability and user customizability.

3.3 CompuSonics DSP-2000

The CompuSonics DSP-2000 [29], a research effort of the Compusonics Corporation,

is a multi-processor audio computer configured as a console for digital recording

and mixing of live music. Figure 3.5 shows the hardware configuration used in

the system. Similar to SoundDroid, the DSP-2000 has an array of DSP boards,

corresponding DAC, ADC converters, a central controlling computer, hard disks

for sound storage, a RGB monitor for display of control panels, a printer, and a

keyboard and track ball array used for input.

The function of the DSP-2000 is similar to SoundDroid. What is different, and

interesting- to this thesis, is the interface. Figure 3.6 shows a schematic of the user

interface for DSP-2000.

The essential idea is to have a "virtual console", rather than a traditional phys-

ical console to the control the system. The "virtual console" is piece of software

that describes the entire mixing console and associated device control panels as the

audio engineer wishes them to be, without any physical constraints in terms of size

and accessibility. The number of channels, style of faders, color on EQ knobs, type

and size of VU meters, layout of tape transport controls, etc are unrestricted.

The actual hardware that the user manipulates is a physical console consisting of

an array of trackballs, a keyboard and a color monitor. Figure 3.6 shows a schematic
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of the interface. The color monitor is a "window" onto the virtual console. This

window can be scrolled vertically and horizontally till the engineer views the desired

portion of the virtual console. The graphic display is automatically coupled to the

trackballs so that when a trackball is moved, the corresponding control is adjusted

on the screen. The keyboard is used for textual input such as names of recordings,

and for programming the system. The method of programming the system is by

traditional construction of "C" programs.

. The interesting aspects of the DSP-2000, relative to this thesis, is that Com-

pusonics recognized (1) the value of graphical control panels over traditional audio

console control panels and (2) the concept of virtual control panels, that is, being

able to navigate from control panel to control panel rather that having a static

display of controls.

The major disadvantage in this approach is the two dimensional navigation

technique and lack of flexibility in the mapping between physical input devices and

graphical controls. For example, suppose a user wishes to view two faders on the

virtual console which are widely separated. This entails scrolling the "window" on

the virtual console back and forth between the two faders. This interaction may be

disturbing and unacceptable to the user who wishes to view both faders at once.

Similar problems occur when the user wishes to simultaneously adjust these same

two faders. Since the tracks balls are remapped to the controls displayed in the

window, i(is impossible to adjust these two faders at once.

Another limitation of the DSP-2000 is that, li~e SoundDroid, the system does

not allow the user to customize the environment to suit the task. The only way

to redesign control panels and the system configuration is by rewriting the "C"

programs which implement the system.

3.4 DMP7-PRO

DMP7-PRO is a program for the Macintosh computer developed by Digital Music

Services [10]. The components of this system consist of the DMP7-PRO program,
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a Macintosh and a Yamaha DMP7 digital mixing console. The DMP7 is an eight

channel to two channel mixing console where all audio signals are digitized on input

and converted to analogue signals on output. Because all processing is done in

digital format, the audio quality is of high standard and it was possible for the

system engineers to design the mixer such that it could be controlled from an

external computer. In addition, the mixer has two multi-effect processors. Thus,

using MIDI, the computer can communicate with a DM~7, changing its controls

remotely. Note that the DMP7 cannot be reprogrammed to perform any other audio

task besides mixing. As described in chapter 2, the DMP7 front panel presents a

minimal user interface. It takes a time-multiplexed modal approach where the

same controls have different mode-dependent effects. The idea behind the program,

DMP7-PRO, is to offer the user of a DMP7 an easy to use interface and extend the

amount of control the user has.

Figure 3.7 shows the main screen display used by DMP7-PRO. Emulating a

traditional mixing console, the software provides an uni-modal space multiplexing

interface for the mixer. In other words, it represents the DMP7 with all its controls

displayed simultaneously. The user can manipulate controls by direct manipulation

using the mouse, but only one at a time. Of course, the tradeoff is that you now

have to time-multiplex the mouse to exercise control over different faders, whereas

on the DMP7 itself, each mode is "space" multiplexed with a number of controls.

There are several aspects of DMP7-PRO that are of interest to this thesis. For

several types of controls there are representations available other than the "front

panel" view. Figure 3.8 shows an alternate representation of a channel equalization

control. DMP7-PRO also supports user customizability features.

Figure 3.9 shows the various tools that can be placed anywhere on the screen

for the user's convenience. Thus, in a limited sense, the user can tailor DMP7-PRO

to suit the task being performed.

DMP7-PRO also provides the user with more extensive control over the DMP7.

While most mixing and automation systems provide grouping of input faders,

DMP7-PRO allows any set of parameters in the DMP7 to be grouped together
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Figure 3.7: The main screen display used in DMP7-PRO.

and slaved, temporarily, to the mouse. For example, a single mouse movement can

cause several channels to fade while others are panning, while others are changing

their effects level sends, while others are changing their EQ settings. The group-

ings can be saved and recalled in an instant, thus greatly extending the amount of

control the user has when compared to the real front panel.

The DMP7-PRO gives us a good example of the effectiveness of some of the

motivating concepts described in chapter 2. Alternate representations, user cus-

tomizability, and extended control are features present in DMP7-PRO because they

were deemed valuable by users and designers. The difference between Virtual Stu-

dio and DMP7-PRO is that DMP7-PRO is designed for a single specific device;

Virtual Studio is a much more general approach. We wish to develop a system in

which interfaces for other devices, besides the DMP7, can be constructed by the

user and used simultaneously. Furthermore, the configuration of these devices can

be specified down to the level that if it was micro-programmable, one could use a

consistent technique right down to the level of designing the functionality of some-

48



,:Dic(;;/.Si,;'/<EQEditor' !'; ,',' '.< .,'.

'...' 1 ' ' '.' 1 ' 1.......
IS

10

S~ ~ ~
d~oj ""'~'"''~'''''''''''y''''~'''''~'''

- S

10

- ---------------

..mm ~.!m~. s ~m';'~E)~:~~i..m
h : H H 0 ~~ E:freq.. B E B E K' (!) ". ~

i .' J:). L J:). L G ~A\ K' 1
gamrQ F,Q F ~V r<..

~ qi '(9' {(!)' ~ ~ ~i'8 ~ :G .' .' .' .1 freq.,0 0,0 0 o,~ o,\::J 0, \.:,! 0, l:! 0, \.:1 O,CI 7chorusa
. ,tI\ t~, rA t~ ~ N ~0 t-!' '1'\ F, t1\ F' G N, "\ t~,~ , .

d gam~v :v ~...: ./ '(J F'\.:--" F, ,C"'"I 'modfreq.,1T6

"'q i'(9"~ i'(9"~ E) ~:G'~ :(9"~ i(9'~ r8~L'e'~ioiOdep~h 50~
1 freq.r ~ ~r~ ~ (!) ~ rB ~r(!) ~:('I ~:0 ~r~ ~rpm dep~h 40~0 ., ffI K, A\ K .0. '

..
'---"

""""

K
, ' "",., 'rl' K. 0 L. .'~A L,

?~.'~..r..':;::' !..\=! '0 :(;~~ :.r..\2 :.;/ : ~..r..\=!F r

; 1 : 0 "i0 "iG ".0 tl Q)":Q)' iE) IE)..:Ef'i";t~;:~~~~h~''''
n 2 :Q) oJo:Q)?:G ,.:e.. ":w .,~W ,.:w ..:w ": 1c~delay24.7
d : --;+~ --;+, : _J: ~ ~ : : left tog 50
s 3 :Q) ":0 -:0 .: 0 ":Q) :Q) . :Q)-: Q)-: rch de la'J 24.7 compr.

.'.:..~~.<i.'~::':~::i"Q:'.':::':(~':~:I:2b:.':'J..~:::''::!:0:.""~'.:;:rQ.'.:L~.:;;~.t~~m ~~ Q) ~

level im?3...I...?3 i...lg~m ~~m.m..~~...m..~~..!:;9 mm?9.m.L..?3 '..m~9.m.i..m.~~ ?~....
0 1£'

I

;;,
I

;;, I ;;,

I

;;, I ;;' I ;;,
I

;;,

I

;;,

I

;;, I ;;,

I

;; I
.1! !C:J *!C:J * iC:J

1

*: o.C:J *.C:J " !C:J O!C:J * IC:J * iC:J * i * C:J

: 'HI:
I

..:
I

..: ..C:J I
' r

I

.
I

.. r

I

..:
I

. r
I

.. r
I

.. rC:J
1

..
I

..
OO~~ ": ": ", y, ": "~ ": ": ": "r " "

IS ,..., , , , ,., , , ,.......
32 so 100 200 ~oo 800 1k 2k ~k 8k l$k Hz

1

I.I JJ""""'H
H

"""I L

Figure 3.8: DMP7-PRO: by double clicking on an EQ control a more detailed editing
window appears.
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Figure 3.9: Various tools' in DMP7-PRO that can be placed by the user anywhere
on the screen for their convenience.

thing like the DMP7 itself, rather than just its controls. Kitamura, Galloway, etc

[11] [19], have demonstrated how this technique can be extended to the design of

digital filters. Our objective is to pursue this direction.

3.5 Q-Sheet

Q-Sheet, a program for the Macintosh, is a MIDI event sequencer and automation

system [26]. Q-Sheet is used in conjunction with .any MIDI controllable device to

automate control over it. By using Q-Sheet, the Macintosh can, by generating MIDI

events, "play" synthesizers and samplers, and control sound processing devices.

MIDI events can be recorded and stored in "tracks" in a manner similar to multi-

track tape recorder. Events can be added and removed from tracks and have the

time of their occurence changed. In effect, Q-Sheet allows the user to assemble

a carefully edited sequence of MIDI events and execute this sequence. Q-Sheet is

intended as a tool for audio post-production and sounds effects assembly.

Figure 3.10 shows the interface supported by Q-Sheet. The window called
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Figure 3.10: A typical screen display in Q-Sheet.

"SMPTE Time" displays information about the system's master clock using stan-

dard time code, which synchronizes all events. In the lower left hand corner is a

window which displays the current modes of the tracks (record, play, muted, etc).

The window called "demo 1: Track 1 Cue List" is a type of window that can be

displayed for each track and displays the events recorded in that track. The large

window with the faders and knobs is a window, associated with each track, in

which the graphical devices are used to trigger MIDI events. These events are then

recorded in the corresponding track. This window type is called an "automation

window". -

Essentially, Q-Sheet allows the user to build control panels in automation win-

dows. The menu on the left of the automation window allows the user to create

and drag new instances of faders, knobs and numerical controls onto an automation

window. Once the graphical device has been positioned, the user can double click

on the device and a dialogue box is popped up. Within this dialogue box the user

can specify the semantics of the device. That is, the user can specify what MIDI

events are generated when the device is adjusted. In effect, the user can construct

custom controls panels to suit their own needs.

It is this feature that makes Q-Sheet relevant to this thesis. Chapter 2 described
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our motivation in giving the user the capability to customize their environment.

User construction of control panels is one method by which the user can tailor the

system to their needs. Q-Sheet is a working example of this concept. Unfortunately

the type of control panels that can be constructed by Q-Sheet are not very sophis-

ticated. Only a few types of graphical controls are available and no group slaving

scheme is supported. Furthermore, as control panels grow large (for example: a 16

channel mixer's control panel), the only methods for dealing with numerous con-

trols are (1) use a control panel from another track or (2) layout a control panel

which is larger than the automation window and scroll the window. Solution (1)

is inconsistent with the user's conceptual model of the system: a control panel is

associated with a single track. If solution (2) is taken, the same problems with

windows on large virtual control panels, as described concerning the Compusonics

DSP-2000, occur.

3.6 Summary

This chapter has presented several systems which are either similar to or have

features relevant to Virtual Studio. For each of these systems the concepts that

contributed to this thesis were identified and relevant problems and features were

discussed. While many useful concepts appear in these systems, no one system

implements all them, thus providing further motivation for the research in this

thesis.
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Chapter 4

The Case Study System: Virtual

Studio

In this chapter we describe and discuss the system developed to explore the problems

presented in the previous chapters. First a general description of the design of

Virtual Studio and our approach to interaction pragmatics is presented. Next,

our description focuses on the configuration process, user navigation and studio

customization features, and how Virtual Studio aids the user in controlling devices.

Finally, we take a step back from these descriptions to discuss what we have observed

and learned from the case study.

4.1 General Approach

Virtual Studio is based on the interface developed for the Katosizer [3]. Figure

4.1 shows a typical screen. The large window is a type of window referred to as

a configuration window. A configuration window displays a diagram of the data

flow in the system. We have adopted the Katosizer technique of having devices

represented by icons and the connections between these devices represented by arcs

between them. Similar to the Katosizer, when a user clicks on an icon, a control

panel window for the device appears. Figure 4.2 shows the control panel for an

equalizer object.
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Figure 4.1: A typical screen in Virtual Studio.
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Figure 4.2: A graphical control panel for an equalizer.

The major difference between the Katosizer data flow diagrams and Virtual Stu-

dio's data flow diagrams is that Virtual Studio diagrams have hierarchical structure.

For example double clicking on a device icon causes a configuration window to be

displayed. This configuration window contains a data flow diagram revealing more

about the internal workings of the device. Figure 4.3 shows the result of double

clicking on the device called EFXs. The new window reveals what devices are used

in the internal function of EFX.

The user may interactively edit an object's configuration window. Devices are

added to a configuration window (hence to the total configuration) by requesting

an instance of a device type from a resource manager. If an instance of the device

is available, for example, the physical or logical resources are available, the resource

manager allocates it for use. Deleting a device from configuration window causes it

to be returned to the resource manager.

Devices have input/output ports or "jacks" into which connections or "cables"

can be plugged. When a cable is plugged between two jacks, two constraints must be

satisfied before the resource manager creates the connection: (1) is the connection
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Figure 4.4: The pen and paper metaphor: when the user depresses the mouse button
and moves the mouse, an ink trail is left by the cursor.

physically possible? and (2) does the connection make sense versus application

constraints. As an example of the type of constraint specified by (2), a connection

from an input to an input may be physically possible, but application-wise makes

no sense.

4.2 Pragmatics of Interaction

Virtual Studio utilizes gestures as a means of interaction. The style in which gestures

are used is metaphorical to pen and paper. An example is given in Figure 4.4. The

mouse is used as the pencil; moving the mouse, when a mouse button is pressed,

leaves an ink trail which represents the user's gesture. Releasing the mouse button

terminates the gesture.

Other systems have used gestures as a means ofjnteraction, but the gesture tech-

nique used in Virtual Studio is unique in several aspects and represents a refinement

of the gesture interaction technique.

Unlike the system developed by Hosaka and Kimura [17], gestures in Virtual

Studio are recognized interactively. The command associated with a gesture is

carried out immediately after the termination of the gesture. In contrast, the Hosaka

and Kimura system allows the user hand sketch an engineering diagram, then input

this hand sketch a into batch program which performs recognition on the hand

sketch and outputs a cleaned up and properly annotated diagram. Figure 4.5 shows
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Figure 4.5: Use of hand written drawings for the definition of objects in CAD: (a)
handwritten drawing is input to the system to define an object. (b) the system
"cleans up" the handwritten drawing and redraws it. Figure from [17].

an example of this process.

Gestures in Virtual Studio are not used to roughly draw icons. In a system

developed by Hornbuckle, an interactive flow chart drawing program, the user adds

flow chart icons by roughly drawing an outline of the icon using a stylus and tablet.

The outline of the icon is then recognized by the system and a "real" icon replaces

the outline. We have avoided this approach for three reasons: (1) the icons in our

diagrams are not of unique shape (they are all square), therefore a set of gesture

symbols based on icon outlines was not possible, (2) we allow the user to define

new devices, therefore new device icons. Thus, if the gesture symbols were used

for adding new devices, the user would have to specify new gesture symbols for

new device icons. Since designing a set of non-ambiguous gestures symbols is even

difficult for designers of systems that use gesture recognition [32], it was felt this

was beyond the ability and patience of the average user and (3) our input device is a
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mouse and therefore drawing small outlines of icons would be tedious and difficult.

What makes the gesture technique used in Virtual Studio unique from these

other systems is the application of the notion of "tension". This notion is defined

and the advantages of its application are described by Buxton in [5]. Buxton ob-

serves that a gesture is preceded by a state of muscular neutrality, followed by the

performance of the gesture and upon completion or closure is followed by a neutral

state. The performance of the gesture involves a short period of muscular movement

or ,tension and there is evidence that such periods of tension are accompanied by

a heightened state of attentiveness and improved performance. Buxton conjectures

that tension can be used as a "glue" to hold together the sub-tasks which must be

performed in the specification of a command. Gluing sub-tasks together results in

reduced user error in command syntax and therefore better performance.

In Virtual Studio, we have adopted the use of tension to improve user perfor-

mance. Certain commands, which are composed of several sub-tasks, can be invoked

by a single gesture. This approach differs from approaches used in other gesture

based systems. In a gesture driven system described by Konneker in [20],a gesture

is used to invoke a command without explicit initiation or closure. In other words,

gestures are drawn in a continuous trace without the use of buttons; the system is

constantly scanning for a gesture corresponding to a command. Rhyne and Wolf

report [28] on a prototype spread-sheet program which uses gestures for editing. In

this system, a single gesture may not always correspond to a complete command

(for example, a "+" gesture, used to add two colu:rp.ns of numbers, actually consists

of two small gestures). The inherent disadvantage in both these approaches is the

ambiguity in determining when the gesture-command is complete. In the Konneker

approach, the user can never be entirely sure as to when the gesturef command has

begun or ended. In contrast, the Rhyne and Wolf system, in certain cases, can never

be sure when the command is complete; in attempt to overcome this problem, the

system waits for pause in user input to determine if the command complete. This

of course produces a processing delay for all commands and forces the user to pause

between two gestures which may possibly be interpreted as a single command.
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In Virtual Studio, by using the tension involved in a single gesture (the depress-

ing of a mouse button, the movement of the mouse, and the release of the button),

the initiation and closure of commands is obvious to both the user and the system.

It is also important to note that gestures in Virtual Studio are integrated with

other interaction techniques such as direct manipulation, menus and textual input.

We have not attempted to have a gesture for every function of the system; we have

attempted to use gestures where they are well suited to the function. Section 4.6

discusses the integration of gestures with other interaction techniques in further

detail.

4.3 Managing Configurations

As outlined in section 4.1, the user configures the system by editing icons and the

connections among them in a configuration window. Essentially the user "draws"

a diagram of the desired configuration. As each portion of the drawing is created,

the hardware is automatically programmed. We now describe how this "drawing"

is created and edited.

4.3.1 Adding and Deleting Devices

The interaction involved in adding a device to a configuration is menu based. It can

be initiated by pressing the middle or right mouse button over an empty spot in a

configuration window. A menu of all devices that can be added to the configuration

window is displayed. Once a selection is made, an icon for the device appears at

the location the cursor was at when the command was initiated. Thus the add

command has two arguments. The first is the location of the new icon and the

second is its type.

The menu displayed when adding an object is actually a list of available device

resources constructed by a software entity called the Resource Manager. Resources

are subject to physical limits of the system and the Resource Manager is responsible

for keeping track of the number of devices of a given type that are available or
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Figure 4.6: Deleting a device from a configuration by drawing a "scratch" through
it.

allocated for use. The menu displayed in adding a device is actually a list of device

types that are available for use in the current configuration. A selection from the

menu causes the Resource Manager to allocate an instance of the selected type of

device for use in the current configuration.

A device may be deleted from a diagram by drawing through it a horizontal

"scratch it" gesture. Figure 4.6 shows a monitor device being deleted. In this case,

the icon and any incident connections are automatically deleted from the diagram.

In terms of the underlying semantics, deletion of a device from a configuration

returns the allocated device to the Resource Manager and causes the hardware

connections to the device to be broken.

Devices may also be deleted in groups by a gesture similar to the international

"not allowed" gesture. Figure 4.7 shows an example of this gesture.

4.3.2 Adding and Deleting Connections

A connection between two devices can be made by simply "drawing" the connection

using a gesture. The left and right sides of a device icon are designed to be hot

spots; the left hot spot corresponds to the input jacks for a device and the right

hot spot corresponds to its output jacks. To initiate drawing a connection, the user

presses the mouse button over a hot spot, then gestures the path they would like

the connection to follow and the other device's hot spot they wish to connect to.

Figure 4.8 shows this process. If the connection is valid (for example, a connection
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KeyBoard-
Figure 4.7: Deleting several devices at once: the user circles the devices and finishes
the circle with a stroke through it. The gesture is metaphorical to the international
"not allowed" symbol.

drawn from an output hotspot to another output hotspot implies an output jack

to output jack connection and is therefore not valid), the system then erases the

hand drawn connection and replaces it with a Manhattan version of the gesture

(the Manhattan process will be described in detail later ).

Note that the exact pair of jacks to be connected has not been specified by

the user. In effort to answer this question, the system displays a table of possible

connections that the gesture implies. The user can then select the exact jacks to be

connected. Figure 4.9 shows this process. If there is only one possible connection

(for example, the source device has only one output jack and the sink device has

only one input jack), no table is displayed and the connection is immediately made

by the system.

The table displayed during the connection interaction is a mechanism which

allows the user to specify which jacks the connection runs between and also provides

a display which describes the state of connections between two devices. A table is

constructed as follows: the jacks represented by the hot spot picked first correspond

to the rows of the table. The jacks represented by the hot spot picked last correspond

to the columns of the table. The i,j element in the table corresponds to a possible
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Figure 4.8: Making a connection: in a) the user "draws the cable"; in b) the system
replaces the hand drawn cable with a cleaned up version.
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Figure 4.9: Specifying the details of a connection: a table is displayed showing all
possible connections between the two devices given the endpoints of the cable. The
user can select the exact jacks to be connected.

connection between row i's jack and column j's jack. If an connection does exist,

the word "Connected" appears in the element. If no connection currently exists,

the element is blank. Figure 4.10 shows a table in which a connection exists.

When used to specify a connection, the user interacts with a table in a manner

similar to a traditional pop-up menu. While a mouse button is pressed the user

may move the cursor from element to element. Similar to a menu, the elements

are displayed in inverse video when the cursor is within them. Releasing the mouse

button in an element selects the element and indicates to the system the connection

just drawn- represents a connection between the two jacks associated with the row

and column of the element. Releasing the mouse button outside of any element

causes the connection transaction to be aborted. .

When the user gestures a connection, they are also indicating graphical infor-

mation about the connection. That is, the user gestures the path of connection

in the configuration diagram. In order to improve the appearance of the gestured

connection it is replaced by a Manhattanized version. The Manhattanizing process

maps the gesture to a 2D grid where only vertical or horizontal lines are allowed.

Figure 4.8 gives an example of a Manhattanized connection.

Connections may be deleted in the same manner as icons are deleted. The user
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Figure 4.10: An example of a connection table which indicates an connection be-
tween the KeyBoard's Midi Thru and the Reverb's Midi In jacks already exists.

can make a horizontal "scratch out" gesture through some portion of the connection

to delete it or the user ~ay circle a group of connections using the "not allowed"

gesture in order to delete several connections at once.

The connection interaction is discussed further in Section 4.7.1.

4.3.3 Layout Commands

Layout commands operate only on the graphical layout of a configuration diagram

and do not affect the hardware configuration. The only layout command supported

in Virtual Studio is the icon move command which comes in two flavors: move

one icon at a time or move a group of icons. Icons can be moved one at time by

pressing a mouse button down over the label bar of. an icon and dragging it to a new

location. The interaction is similar to the icon dragging technique utilized in the

Apple Macintosh with the exception being that icons in Virtual Studio may have

connections. Connections are not "dragged" along while an icon is being moved,

but are "moved" after the icon is dragged to its final location.

Icons can also be moved in groups. A gesture, as shown in Figure 4.11, can be

used to chunk icons into a group and indicate a new location for the group. Unlike

moving single icons, groups of icons are not dragged, but moved in one jump to

the new location. Once the icons are moved, their connections are automatically
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Figure 4.11: Moving groups of devices: in a) the user gestures the devices to be
move and where to move them; in b) the system responds by moving them.

rerouted.

4.3.4 Copying

Using the copy command, chunks of configuration can be duplicated. The inter-

action required to invoke the command is identical to the group move command

except the "copy" gesture terminates with a "C". An example of the copy gesture

is shown in Figure 4.12. Using the circled chunk of the configuration as an example,

the system allocates, connects and lays out another instance of this chunk. Note

that inherent in the semantics of the copy command is the rule that connections to
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Figure 4.13: Encapsulation: in a) the user gestures the devices to be be encapsu-
lated; in b) the system responds by shrinking them into a module.

devices external to the chunk are not copied.

4.3.5 Encapsulating

Chunks of a configuration may be encapsulated into module. As shown in Figure

4.13, by circling a group of icons the user indicates to the system that a chunk

of the configuration should be collapsed into a module. The chunk of icons and

connections are replaced by a module icon and the connections from the chunk

to devices outside the chunk are replaced by connections from the module to the

external devices. The system automatically creates a module with input and output
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Figure 4.14: The internal configuration of the module produced by encapsulation
in Figure 4.13.

jacks according to the external connections of the chunk.

The chunk of icons and connections become the internal configuration of the

module icon. By double clicking on a module icon the internal configuration is

revealed in a configuration window. Figure 4.14 shows the internal configuration of

the module created in Figure 4.13. The internal configuration of the module has

the same layout and devices as the chunk, with exception of external ports. The

external port icons represent the input/output jacks of the module.

4.3.6 Saving and Restoring

Virtual Studio can save and restore configurations in a manner similar to the way

a text editor handles files. By moving over a title bar of a configuration window

a menu can be popped up which contains the "save" and "restore" commands.

Selection of the save command causes Virtual Studio to make a copy of the state of

the configuration and store it in a global list of configurations. The configuration is

stored under the name given in the title bar of the configuration window. Selection

of the restore command causes the system to be reconfigured to the state it was in

at the time of the most recent save command. The configuration window is also
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updated to reflect the changes in the configuration.

Since we have a method for saving configurations in a list, a tool must be avail-

able for the user to gain access to this list and browse through the configurations. A

configuration browser is such a tool. The browser is a window which contains a list

of names of the different configurations in systems. When a name is selected, the

browser displays the root configuration window of a configuration. Since the user

is only browsing configurations, the displayed configuration is not applied to the

hardware. Only if the user selects the restore command from title bar of the config-

uration window will the configuration be applied to the hardware. Thus, using the

browser, the user can search for a desired configuration, preview it without altering

the current configuration of the system, and if they desire, automatically reconfigure

the entire system by restoring the previewed configuration to the hardware.

4.4 Information Hiding in Configurations

In Chapters 1 and 2 we presented the advantages of using hierarchical structure to

hide information associated with a configuration. The application of this technique

involves the user deliberately hiding information about certain chunks of the con-

figuration in modules. In Virtual Studio, we are also concerned with another type

of information hiding which involves connections between objects. Anyone who has

dealt with -complex audio systems generally practices, although not consciously, a

methodology in connecting components; first the .:\.C power connections are made,

next, perhaps the MIDI cables are plugged in and, finally, the audio connections

are made. Although different people may follow different methodologies, the point

is that in effort to reduce the complexity of the task, the user likes to group the

connection of cables into tasks based on the type of connection. Furthermore, in

trouble-shooting or trying to understand a configuration, the user once again applies

this methodology. For example, typically when some component is not functioning

correctly, the user will first check the AC connections, then the audio connections

and finally the MIDI connections.
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In Virtual Studio we have attempted to apply this methodology and have de-

signed configuration windows such that the display of objects can be filtered. For

example, if the user is viewing a configuration and has the "MIDI" filter on, only

the MIDI connections are shown. Alternatively, the user may have the "audio"

filter on and see only audio connections.

The concept of a filtered view can be generalized such that the user has the abil-

ity to filter his view of the configuration using arbitrary constraints. For example,

the user may want to view the configuration without viewing the mixer icon and

all its connections, or view only the devices connected directly to another device.

In order to design a system which features this type of constraint based display,

two problems must be dealt with: (1) what sort of underlying software structures

are needed and (2) what sort of user interface can be designed so the user can

easily express constraints. In terms of problem (2), Virtual Studio supports the

expression of popular constraints by having a menu item which represents "show all

devices and MIDI connections" (the MIDI filter) and "show all devices and audio

connections" (the audio filter). Currently there is no way of expressing arbitrary

constraints and future work could examine this problem.

Although the interface currently does not support user expression of arbitrary

display constraints, we have designed mechanisms in the underlying data structures

for configurations and configuration windows such that arbitrary display constraints

can be supported. Furthermore, because of the generality of these mechanisms,

they are used to implement the MIDI and audiC? filters. Figure 4.15 shows the

architecture of the software design to implement constrainted based display. A

configuration window is actually a display of a data structure called a ConfigFilter

which consists of a list of objects or object types that are allowed to be displayed

and two other data structures called Config and ConfigLayOut. Config is a list

of devices and connections in the configuration and completely describes how the

hardware is configured. ConfigLayOut describes the graphical presentation of the

devices and connections in Config when displayed in a configuration window. When

a configuration window is called upon to display all or a portion of a configuration
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Figure 4.15: Software architecture of constraint based display. A configuration
window is a display of a data type called ConfigFilter. A ConfigFilter consists
of data types Config and ConfigLayOut, and a list of objects or object types that
are allowed to be displayed.
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it consults the ConfigFilter data structure. Each object to be displayed is tested

versus the list of displayable objects and object types. If the object passes "the

tests", it is displayed.

As an example of the filter mechanism in action, we can examine the method by

which the MIDI filter is implemented. The ConfigFilter has two objects in it in

this case: the class Device and the class MidiConnection. Before each object in

a configuration is displayed, the system checks to see if the object passes through

the filter. In this case the system recognizes both objects in the filter as classes

and therefore checks the class of the object about to be displayed. If the object is

neither a type of Device or a type of MidiConnection, it is not displayed.

Another advantage in our choice of architecture stems from the separation of

the description of the configuration from the description of the layout of the config-

uration. In doing this, it allows us the option of having different layouts for same

configuration. Thus the user can use different layouts for the same configuration to

emphasize certain properties of a configuration and improve their understanding of

the system. The implementation of the interface to allow alternate layout schemes

is considered future work.

4.5 Navigation and Alternate Access

In this section we examine how the user in Virtual Studio may navigate through

the hierarchy of devices and device control panels ~nd how alternate access schemes

can be constructed by the user.

4.5.1 Traversing the Hierarchy

The most simple method a user has of navigating through the hierarchy of devices

is by following the hierarchical structure of a configuration. As described earlier,

double clicking on a module icon causes a window with the module's internal con-

figuration to be displayed. In this manner a user may access the devices which are

internal to a module. The configuration window of a module's internal configuration
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is displayed "on top" of the window containing the module's icon, thus maintaining

a "child of the hierarchy on top" relation among over lapping configuration win-

dows (although the windowing system does allow any window to be brought to the
"
)"top.

A user is not constrainted to close a configuration window before another can

be opened and, therefore, the persistence of windows can a be utilized by the user

to construct alternate access schemes. In other words, the user can traverse the

hie,rarchy of device configuration windows, by double clicking on modules, till they

have opened the desired window, then close all the windows opened by the traversal

which are not needed. The desired window can then be "set aside" on the screen.

The user can repeat this process till they have collected all the windows they de-

sire for performing a task. Essentially this process allows the user to override the

hierarchical access scheme by allowing a random access scheme, restricted to a set

of user selected windows, to be constructed.

4.5.2 Rooms

While the two access schemes described in the previous section provide a well defined

and customizable access scheme, they both have drawbacks. Hierarchical access, as

described in chapter 1, can become extremely awkward if the user must toggle

between u~ing two windows widely separated in the hierarchy. The random access

scheme, described in the previous section, is limited by the size of screen; the screen

can only concurrently display a few windows at once, thus restricting the number

of windows the user can access quickly.

In the application being studied, the ability to provide quick access to numerous

control panel windows is critical to success of the system. In effort to satisfy this

need we have adapted a windowing system technique from an office automation

technology called Rooms. This technique, described in detail in [7], was developed

by Card and Henderson and is designed to help users switch among tasks on which

they are currently working. Rooms accomplishes this by providing the user with

a number of screen-sized workspaces called Rooms. Figure 4.16 shows two typical
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Figure 4.16: Two examples of Rooms from [7]. On the left, a Room used for reading
mail. On the right, a Room used for programming. Note that there are windows
common to both Rooms.

Rooms.

In each Room, there 'are a number of small icons called Doors. When a Door

is selected with the mouse, the user has the illusion of transferring to a new Room

containing other windows. By collecting the windows needed to perform a certain

tasks in different Rooms, the user can easily switch between tasks by switching

between Rooms. When a user enters a Room, he finds it in the same state it was

when he left it and, therefore, no time or effort is wasted reacquiring windows.

Figure 4.17 shows a typical Room in Virtual Studio. The little window in the

lower left corner is tool associated with Rooms itself and its label shows the current

room the user is in. In this case the user is in the "Mixing Room". Note in the

lower right hand corner are door icons which lead 'to other Rooms.

Windows can be added to a Room in Virtual Studio by three methods. First,

the window can be invoked, or displayed in the Room. For example, a configuration

window of a module may added to a Room by clicking on a module icon in another

configuration window, or a window may be displayed by means of textual command

given by the user in a command window. Second, a window may be explicitly

"carried" from one Room to another. The carrying operation is supported by a

Room's mechanism called Baggage. By selecting the Baggage icon, (shown in the

lower left of the screen of Figure 4.17), the user is placed in a special mode in which
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Figure 4.17: A "mixing" Room in Virtual Studio. In this Room the user has
acquired and organized device control panels needed for the task of mixing.
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they can select windows to be placed in their Baggage. When the user transfers

to another Room, his Baggage is automatically unpacked. That is, the windows in

Baggage are automatically added to and displayed in the new Room (the windows

in Baggage also remain in the old Room). The user can also have a constant piece

of Baggage called a Pocket. The icon in the lower left of the screen operates in

the same manner as the Baggage icon. Whichever windows are placed in the user's

Pocket are automatically displayed in each and every Room the user visits. Thus,

the Pocket provides the user with global set of windows which appear in all rooms

at the same location. For example, the window which contains the Baggage and

Pocket icons is a window which is in the Pocket.

Windows which are shared between Rooms can have independent placements.

In other words, a window may simultaneously be displayed with a different location

and shape in different Rooms.

The user is also capable of constructing their own Rooms and Doors. By pressing

the mouse button over the background of a Room a menu is displayed featuring

commands to "add a Room", "add a Door", "teleport to a Room" and "delete a

Room". When adding a Room, the user is prompted for name of the new Room.

When adding a Door, the user selects which Room the Door is to from a menu.

The command "teleport to a Room" allows the user to move to Room without

constructing a Door to it. In both commands, "teleport to a Room" and "delete a

Room" , the user selects the desired Room name from a menu. Once a new Room is

created, it can be populated by adding windows a~ described above. In the future,

we hope to add the ability to save and restore Rooms.

4.6 Control

In this section we describe how the user can control devices within Virtual Studio.

Since we have elected to represent device control panels graphically, the question is:

what sorts of techniques can be used to manipulate the graphic controls? We are also

faced with the input device bottleneck; while graphical control panels have numerous
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knobs, sliders, etc. how can we, with just the keyboard and mouse, facilitate in some

reasonable manner the manipulation of these gadgets? The answer to this question

lies in a control slaving schemes. One control slaving scheme might be to allow

the user to slave sliders to the mouse, as demonstrated in the DMP7-PRO system

described in chapter 3. Another method is to allow graphical controls to be slaved

to other graphical controls, then directly manipulate the master control with the

mouse. Each of these schemes is a solution to a specific case. What we focused our

attention on in the development of Virtual Studio was not specific slaving schemes,

but a general and extensibl~ scheme that could solve most or all the input control

problems and an interaction technique to make slaving schemes easy to specify.

4.6.1 Direct Manipulation

Most obvious way a user can manipulate controls in Virtual Studio is by direct

manipulation. Direct manipulation in Virtual Studio follows the common approach

shown in numerous other graphical applications. For example, a user manipulates

a graphical slider by selecting the wiper with the mouse then moving the mouse up

or down. Figure 4.18 shows the types of graphical controls that are available for

the construction of control panels in Virtual Studio.

Among the "standard" types of direct manipulation graphical gadgets we have

special gadgets designed to solve some of the problems encountered in Virtual Stu-

dio. For example, a gadget called the "numerical slider" (developed by Buxton

[6]), and the "virtual slider" are designed to give"'the user effective feedback and

control over the value of a parameter while consuming little display space. Since

display space is limited and our application has the property of having numerous

parameters to be displayed, having gadgets with small display "footprints" is criti-

cal. Another advantage of these types of gadgets is their large "hit" area. That is,

the region that has to be selected before the control can be manipulated is large.

In both the "numerical slider" and the "virtual slider" the hit area is the entire

footprint. In contrast, in a typical graphical slider which models a real slider, the

hit area is only the wiper and, therefore even if this type of graphical slider is twice
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Figure 4.18: Parts used in constructing control panels. Top row: 2 types of ON/OFF
buttons, a slider, a numerical slider, a virtual slider, and vertical continuous wheel.
Bottom row: a user settable label, a control panel icon (used to reveal sub-control

panels), a horizontal continuous wheel, a horizontal virtual slider, and a blank
control panel.

the size of a numerical slider or virtual slider, its hit spot is still smaller.

Both the virtual slider and the numerical slider operate such that once the user

selects the gadget, by pressing a mouse button over the gadget, vertical movement of

the mouse increases/decreases the value of the parameter. While the mouse button

is pressed the gadget's value is linked to the mouse even if the cursor moves outside

the display box of the gadget. This feature gives the user the feeling he is adjusting

a long throw high resolution slider; unlike a typical graphical slider, he does not

have to worry about slipping off the wiper or moving past the end of the wipers

run (an example of this irritating feature is the implementation of scroll bars in the

Suntool programming environment). In effect, the user can have the feel of a long

throw high resolution slider without the consumption of display space.

Thus, using these types of innovative gadgets, we can pack more displays of

parameters into a fixed area than we can with traditional graphical gadgets, without

making selection and manipulation of the gadgets difficult or reducing the amount

of feedback concerning the value of parameters.
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4.6.2 Slaving Software Architecture

Our goal in Virtual Studio was to develop and implement a general slaving scheme

which allows arbitrary controls to be slaved to one another. In other words, we

desired a general sort of system where graphical controls can be slaves to physical

input devices, or slaved to other graphical controls, or both. We wanted to be able

to construct arbitrary networks of slaves; for example, a master graphical slider

may, in turn, be slaved to an physical input device and graphical knob. Essentially,

we' desired the ability to create master-slave relations between any "parameter" in

the system. A parameter, as defined in Virtual Studio, is a variable. For example,

a slider is really a graphical display of some parameter's value, or the y location of

the cursor is a parameter. A master-slave relation between two parameters is really

a dependency relation. That is, the value of the slave parameter depends on the

value of the master parameter.

The relationship between a master and slave parameter is more complex than

simply "the slave follows the master's value". There are an infinite number of rela-

tionships that could exist: the slave's value could be some fraction of the master's;

it could be the log of master's value; it could be the master's value plus some con-

stant, etc. What was desired was a method in which different functions, describing

the relationship of the slave's value to the master, could be "plugged in".

The master slaving scheme in Virtual Studio is based on the above reasoning.

We have developed a scheme in which any two parameters in the system can be cast

in a master-slave relationship with an arbitrary function defining the relationship.

A class of objects called Parameter playa central role in this scheme. The formal

definition of the class Parameter, using a Smalltalk like language, is:

Object subclass: Parameter

instanceVariableNames: 'value name changeAction

masterSlaveRelations dependents'

The instance variable value is an object representing the value of the Param-

eter. In general the value is some sort of number, although it can be any type of

object (for example, the string 'OFF'). name allows a Parameter to be given a
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textual name. changeActionis a block of executable code which is executed each

time the value of a Parameter changes. masterSlaveRelations is a list of all

the relations in which the Parameter is a slave. dependents is list of all other

objects in the system that depend on the Parameter. Note that the objects in this

list may not all be Parameters; for example, a graphical display of a Parameter

also depends on the value of the Parameter.

The object class used to represent relations is called MasterSlaveRelation

and is defined as:

Object subclass: MasterSlaveRelation

instanceVariableNames: 'master slave function'

master and slave are the two Parameters involved in the relation. function

is a block of code which, when evaluated, produces a value for the slave and thus

serves as a description of the functional relation between the master and slave.

function uses the master Parameter's value and the slave Parameter's value

as arguments.

In order to understand the procedures that maintain a master slave relation, we

can describe flow of control in the life cycle of a master slave relation. Initially the

user indicates somehow that a Parametershould be slaved to another Parameter.

This causes the system to invoke a procedure called enslave. This procedure adds

the slave to the master's list of dependents and creates a MasterSlaveRelation

describing -the relationship and adds it to the masterSlaveRelations list of the

slave.

Due to external events, the master Parameter may have its value changed. In

order to change the value of a Parameter, a procedure called value must be called

with the new value as an argument. After the instance variable value is set to the

new value, the update procedure for each dependent is called. If the dependent is

a Parameter and therefore a slave, it obtains the proper MasterSlaveRelation

from its masterSlaveRelations list, and evaluates it, assigning this value to its

own value instance variable. Thus the master slave relation is maintained.

Eventually the user may indicate that a master slave relationship should be
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broken. In this case the procedure free is called which removes the slave from the

dependents list of the master Parameter and removes the corresponding Mas-

terSlaveRelation from the slave's masterSlaveRelations list.

Clearly this scheme is very general. There is no restriction on which Param-

eters can be involved in a master slave relation. Thus networks of master slave

relations can be implemented. Furthermore, as a result of the functional relation

between two Parameters being described by a replaceable block of code, differ-

ent functions can be easily implemented. For example, the function in which the

slave follows the master value is implemented by setting function, in the Master-

SlaveRelation for the two Parameters, to:

function ~ [master value]

Thus when the slave evaluates function, it returns the master's value.

Similarly a relative relationship is expressed by:

function ~ [slave value + master value]

or a 2:1 ratio is expressed:

function ~ [master value / 2]

Ultimately, function can be any Smalltalk expression. For example:

function ~ [clock time inhours < 12 iITrue: [slave value] ifFalse:

[master value]]

creates a master slave relation where the slave only follows the master in the

afternoon and evenings.

4.6.3 Interaction Pragmatics

Although the previous section has presented an elegant and general scheme for

slaving parameters, if the user is given an awkward or non-existent method of

specifying master slave relationships, our elegant scheme is of little or no use to the

user. Thus, in this section we examine the interaction techniques used in Virtual

Studio which allow the user to specify master slave relations.

The basic interaction used in expressing a master slave relationship is very sim-

ple: the user indicates the slaves followed by the master. This approach models the
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. Mouse Wheel.

Figure 4.19: A graphical gadget which emulates a continuous wheel. The user can
"move the wheel" by selecting it with the mouse and moving the mouse up or down.

way users think about slaving: "these controls, slave them to this control".

Borrowing a technique from recording studio console design, graphical controls

exist in Virtual Studio to act purely as master controls. We extend this technique

by allowing the user to create their own master controls. Furthermore, Virtual

Studio master controls are relative controllers and therefore nulling problems, which

plague recording console technology, are avoided. Figure 4.19 shows a graphical

master control which emulates a continuous wheel. The user "moves" the wheel by

selecting it with the mouse and moving the mouse up or down.

In Virtual Studio, the user specifies master slave relations using gestures. Figure

4.20 shows the basic "slaving" gesture. The user circles the controls to be slaved and

then points to the control which should be master. Figure 4.21 shows the freeing

gesture. The user circles the controls to be freed and indicates they have no master.

Virtual Studio can be extended to incorporate other physical input devices be-

sides the mouse and slaving to these devices is specified in the same manner as

slaving to graphical controls. Icons are used to represent alternate physical input

devices. In order to slave controls to a physical input device, the user circles the

controls to be slaved and points to the icon of the physical input device. For ex-

ample, Figure 4.22 shows the icon used to represent a two slider four button input

device in Virtual Studio. Controls are slaved to a particular button or slider on this

device by circling the controls to be slaved and pointing to the appropriate button
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Figure 4.20: An example of the slaving gesture.

Figure 4.21: An example of the freeing gesture.
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Figure 4.22: The icon used to represent a real four button, two slider input device.

or slider on the icon.

By repeated use of the slaving gesture, networks of master slaves can be setup.

For example, graphical master controls can be slaved to other controls, thus creating

master controls which are also slaves, or a single control may be slaved to several

masters.

Currently no interaction is available for the user to specify the functional rela-

tionship between master and a slave (for example: "the slave follows the master at

a 3 to 1 ratio"). A functional relationship is selected from a set of default functions

by the system depending on the types of the two parameters involved. The default

functions are designed to provide such things as :-elativejabsolute conversion and

reasonable control:display (C:D) ratios between different types of parameters. The

burden of specifying the functional relationship for each master slave relation is

alleviated from the user by providing "smart" default relationships. In the future,

we hope to give the user the power to interrogate master controls, access a list the

functional relations to slaves and the ability to modify these functional relations.

A feature missing in our current implementation of Virtual Studio is the ability

to display information about what master slaving relations are in effect. Future

work could be done on developing diagrams which display the network of masters
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and slaves. Another effective tool would be one which answers queries such as:

. Who is slaved to this control?

. Who controls this parameter?

This problem is discussed further in Chapter 5.

4.7 Discussion

The previous sections of this chapter have given a description of the system which

is the object of the case study. In this section we take a step back to discuss and

justify the design decisions made in the development of Virtual Studio and highlight

issues revealed by the case study.

4.7.1 Interaction Pragmatics

Central in the development of Virtual Studio is the use of gestures as a means of

interaction. We made a decision to avoid the approach of "use a gesture for every

command" based on the fact that gestures, like most interaction techniques, are

more suitable for certain types of tasks than others. This, of course, gave rise to the

issue of the side effects brought about from the integration of gestures with other

interaction techniques such as direct manipulation and menus. The major side effect

revealed by the case study was the interference of direct manipulation commands

on the initiation of gesture commands. This interference is best described by an

example.

Suppose the user wishes to delete a device from a configuration window. The

interaction involved begins by pressing down the mouse button and then drawing a

horizontal line through the device's icon. But suppose the user begins the gesture

by pressing down the mouse button over a device icon label; this action corresponds

to the initiation of the direct manipulation move command and, thus, the wrong

command is invoked and the user ends up moving the icon horizontally according

to their gesture. We conjecture that this type of error results from a belief that
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users have about gestural interfaces. This belief can be described informally from

the user's view as: "Gestures are like using a pencil and paper. You don't directly

manipulate objects by picking them with the mouse, you indicate to the system

the manipulation and it carries it out, just like a typist carries out a proof reader's

penciled in corrections". For example, when a person points with a pen to a char-

acter on a piece of paper and then makes a horizontal stroke, they do not expect

the character to "move" along with the pen. The problem is that giving the user

gesture-commands which are based on this kind of pencil and paper metaphor pro-

duces errors when the metaphor breaks down. The metaphor, in the case of Virtual

Studio, breaks down due to the inclusion of direct manipulation as an interaction

technique.

However, this problem is not fatal to the success of the integration of gestures

and direct manipulation., After the user has made this type of error several times

they learn quickly that there are such things as direct manipulation "hot spots"

and what they thought was the initiation of a gesture command was, in fact, clearly

a direct manipulation command. Based on this, we feel that a training tool could

be implemented which would allow first time users to enter an interactive training

session where they can learn the interaction "vocabulary" of the system through

exploration.

It is interesting to note that the interference of gesture commands and direct

manipulation commands can be avoided by the use of a double button mouse:

one button can be used for direct manipulation a:p.dthe other for gestures. When

the "gesture button" is pushed the system only interprets gesture-commands and

similarly for the "direct manipulation button". Unfortunately the user may still

make errors by confusing which button does what. In Virtual Studio we used a

single mouse button approach for two reasons: (1) we wanted to avoid the problems

associated with confusion caused by "which button does what" and (2) we felt a

single button approach would be a good acid test for the integration of gestures and

other interaction techniques (which was an underlying interest in the study).

The case study has also revealed that even though both gesture commands
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and direct manipulation commands are used in Virtual Studio, the kinesthetics

of the interface are consistent. This consistency is due to the use of the concept

of "tension" in the design of command interactions. As we have described earlier,

gesture commands are invoked by a short uninterrupted period of tension. All direct

manipulation commands and menu based commands behave in a similar manner.

For example, the adjustment of a numerical slider requires the tension of keeping

the mouse button pressed while the adjustment is being made.

,Another major issue concerning gesture-commands used the case study revolves

around gestures as "tools of thought". As described in chapter 1, interaction prag-

matics are essentially the notation of our visual programming language and the

choice of notation can either help or hinder the user in expressing himself. The case

study shows how gestures and the consistent way they are used to invoke commands

reflect (and therefore reinforce) the semantics of the commands. For example, the

grouping gesture is used in many commands such as device encapsulation, slav-

ingjfreeing groups of controls, moving, copying and deleting devices. While each

one of these commands carries out a different operation, the way the user specifies

the scope of the operation is identical. Furthermore, the grouping gesture reflects

the way the user thinks about scoping objects. Rhyne and Wolf and also Gould and

Salaum have shown, in a studies presented in [35]and [14], that a popular free hand

scoping gesture is the "circling" gesture as used in Virtual Studio. Thus, by using

gestures in Virtual Studio, commands are invoked in a manner which reflects the

way the user "thinks" about the command. This 'ltPproach is not only apparent in

the way scoping is done, but also in other commands. For example, the deletion of

objects involves the "scratch out" gesture or the addition of a connection involves

"drawing" the connection.

The case study has shown how simple gestures can be used to relate a large

amount of information to the system. A chronic problem, in applications which

utilize diagrams with icons and data flow connections among them, is in how the

user specifies a connection. A "make a connection command" may require many

arguments: the two icons involved, the type of the connection and the path the con-
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nection should follow. Generally the interaction involved in invoking the command

is a series of menu selections and mouse points. Because of the fragmented nature

ofthe interaction, the possibilityof user error is high. In contrast, the interaction to

add a connection in Virtual Studio involves one continuous gesture which specifies

the objects involved, the type of the connection and the path of the connection.

There is no fragmentation in the interaction so the possibly of error is reduced.

Continuity of the interaction also leads to better time-motion performance. The

connection operation essentially consists of many simple subtasks: selection of out-

put jack, selection of input jack, indication that a connection should be made, and

specification of the path of the connection. If we perform a button-stroke analysis

of our connection interaction, we find it consists of a button down, a drag, a button

up, then a selection from the connection table (button down, up). In contrast, the

connection interaction in,the Katosizer system requires selection of the input (but-

ton down, up), selection of the output (button down, up), then specification of the

connection path (button down, drag, button up). Thus our connection interaction

requires one less button up and button down. Furthermore, we also display infor-

mation about other connections that exist between the two objects thus aiding the

user in making the correct connection and masking out information not related to

the connection.

Many popular systems use accelerators to provide expert users with "short cuts"

to invoke commands. Unfortunately, accelerators may involve the use of awkward

control key sequences or non-intuitive interaction(3 and may appear to user as af-

terthought retrofits to the interface which are difficult to learn and hard to remem-

ber. Essentially, hard to use accelerators make the transition from a novice to expert

user difficult. This problem has two solutions: (1) provide the user with an easy

to learn set of accelerators or (2) provide the user with commands that require no

"acceleration". Approach (2) is ideal, since it eliminates the transition from novice

to expert user, although difficult to implement. The case study has shown how

gestures fit nicely into this approach.

Generally, accelerators allow the user to bypass menu selections or "object picks"
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Figure 4.23: The "upside down T" gesture, left, results in the creation of a master
controller, right.

by replacing the entire interaction by one single gesture (for example, a control key

sequence). Gestures in Virtual Studio allow you to do just that. For example,

issuing the encapsulate command does not involve individually picking each device

then selecting the command from a menu; it involves one single gesture. Thus the

novice benefits from the fact that not only are gesture commands easy to learn

and remember, but they are also intrinsically efficient and therefore no special

accelerators are needed.

Related to the issue of gestures as accelerators, is the ability in Virtual Studio

to "chunk" several gestures commands into one "macro" command. For example,

Figure 4.23 shows the "upside down T" gesture used to create a master controller.

This gesture can be combined with the slave gesture into a single gesture which

allows the user to group a set of controls controls to be slaved, and create and

specify the location of the master control. Figure 4.24 and Figure 4.25 show an

example of this "macro gesture" .

Once again, gestures demonstrate the ability to relate a large amount of infor-

mation to the system with very little user effort. This example also points out how

gestures can be used to minimize the amount of effort required from the user to

issue a command. Using this fact, we make use of gestures in Virtual Studio for

commands which are performed with high frequency. The success of Virtual Studio

was dependent on the how easily slaving could be performed. Thus gestures were

developed which allow the user to quickly perform slaving commands.
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Figure 4.24:
gesture.

The combination of the "upside down T" gesture and the slaving
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Figure 4.25: The result of the gesture in Figure 4.24: the system responds by
creating a master controller and slaving the circled controls to it.
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4.7.2 Rooms

The adoption of the Rooms model to Virtual Studio solves several problems. Essen-

tially, Rooms is required for the operation of the Virtual Studio: while hierarchical

access is effective in setting up and understanding the configuration of the stu-

dio, once the studio is configured, non-hierarchical access is better suited to the

operation of the studio.

Why is Rooms effective? There are several answers to this question which we

will now discuss.

The Rooms model increases the amount of virtual display space available to the

user. Thus the user can have more windows virtually displayed over all Rooms than

can be displayed on a single screen. This greatly increases the number of windows

the user can quickly access without having to traverse the configuration hierarchy.

Since Virtual Studio is populated by numerous control panels windows, a method

which increases display space greatly aids the user.

Grouping of windows (most likely device control panel windows), into Rooms

has several advantages. First, windows can be grouped into Rooms according to

the task they are associated with. Thus, when a user enters a Room to perform a

certain task, all the tools needed for the task will be on hand. For example, the

control panels for the mixer, associated effects units and the tape recorder can be

placed in a "Recording Room". Associated to this, is the property that when a

user reenters a Room, his "tools" appear just as he left them. Thus the time for

the user to refamiliarize himself with the Room is very small. In effect, Rooms

models a traditional studio. The set of control panels that is within arms reach in

a traditional studio correspond to the set of control panel windows displayed in a

Room and in the traditional studio, when a user moves back to a "spot", he finds

things as he left them.

While Rooms models a traditional studio, it also goes beyond it. Ideally, in a

traditional studio, the user collects around him all the devices needed to accomplish

some task. Unfortunately, it is not always physically possible to bring the control

panels for every device needed within arms reach. In contrast, in Virtual Studio,
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every control panel is either directly accessible on the screen or only a few mouse

clicks away. Thus, all control panels are within arms reach.

On the other hand, even though all control panels are "at arms reach", the user

in not inundated by the display of every control panel at once. The use of Rooms

allows the user to keep all control panels close at hand, yet hide the control panels

which are not associated with the task. If the user's wishes to temporarily suspend

their current task and access a hidden a control panel, the process of suspension

an<;lresumption ("knocking on a door") is painless.

The feature of sharing windows between Rooms enhances the user's power. In

a traditional studio there are many situations where a control panel is needed in

two places. For example, the transport control panel for tape deck may be needed

when the user is sitting at the console and also when at a synthesizer keyboard.

Generally, only one physical control panel exists, so the user must make some sort of

compromise, such as moving the synthesizer close to the console. In Virtual Studio,

windows (and therefore control panels) can be shared among Rooms, thus giving

the user an infinite number of convenient "remote control panels".

Inherent in the success of the adoption of the Rooms model into the Virtual

Studio, is the fact that Rooms can be easily customized by the user. Setting up

new Rooms allows the user to construct their own workspaces specialized to a task.

Allowing the user to construct their own doors permits them to set up navigation

paths through Rooms which are suitable to their work habits. Furthermore, we can

think of a group of Rooms and Doors like a housej.the person that builds their own

house, clearly understands it and can find their way around it.

Finally a word should be said about the effectiveness of the concepts of Baggage

and Pocket. Both Baggage and Pocket are effective mechanisms in aiding the user

in the distribution of windows into Rooms where they are needed. The Pocket

mechanism implements the "this window in every Room" notion. This fits in very

well with the notion of having certain control panels in the studio, such as a tape

transport controls, always accessible. The Baggage mechanism implements "put

this window in this Room as well" notion and is used to selectively place windows
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in Rooms such that a Room can be customized to suit a task. Furthermore, Baggage

can also be used to temporarily bring a window into a Room in a sort of mini task

interruption; no matter how organized the user is in setting up his Rooms according

to task, inevitably there will be times when the user thinks: "I just need this control

panel temporarily". Because of the simplicity of the Baggage mechanism, the user

can easily move into a Room where the control panel needed is, "bag it" and return

to Room where they are working. The point is that Baggage is another feature of

Rooms which aids the user in the face of unpredicted task switching.

4.7.3 Control

In terms of the software architecture, the beauty of Virtual Studio's master-slaving

scheme is that problems such as conflicting C:D ratios between input devices and

parameters, complex relations between parameters, and alternate views are solved

by the generality of the approach. Conflicting C:D ratios between input device and

parameters are solved by specifying a master-slave relation between the input device

parameter and the slave parameter such that the converting function produces a

reasonable C:D ratio. As we have shown earlier, a relation function may be a

complex Smalltalk expression and therefore complex relations between master and

slave parameters can be supported. Finally, Virtual Studio's master slaving scheme

can also be used produce alternate views of parameter values. As a simple example,

a numerical slider can be made slave to vertical slider. Now the numerical slider is

in fact an alternate way of displaying the value of the parameter associated with the

vertical slider. We feel slaving as it relates to alternate views has great potential.

For example, in the future, we imagine things like envelope display gadgets being

slaved to a set of numerical sliders to produce a graphical view of several parameters.

A minor drawback in our master slaving scheme is that elements of the system,

which could potentially be a master or slave, must be declared as Parameters. In

other words, the implementor of a piece of software must predict what elements of

software the user might want to use as a master or slave. For example, suppose an

implementer constructs a sequencer for the Virtual Studio. What elements of the
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sequencer does he declare as parameters? One obvious one is tempo and perhaps the

sequencer transport controls. The point is that elements which are not implemented

as Parameters can never involved in master slave relations. Thus, the implementor

is forced to "predict the future" when deciding what elements the user will desire

as slaves or masters.

The use of a single gesture to express master slave relations has many advantages.

First, the interaction for slaving/freeing one control is that same as slaving/freeing

many controls, thus related commands have consistent syntax. Second, and most

importantly, this technique is extremely time efficient; our approach to solving

our control bottleneck (that is, having many graphical controls and just few input

devices to manipulate them) has been to slave sets of controls to input devices.

During a typical session using Virtual Studio the user may invoke the slaving/freeing

commands numerous times and, thus, the efficiency of these commands are critical.

We believe our approach gives the user the same amount of control as they

would have in a traditional studio and, in some aspects, Virtual Studio provides

more control. This can be proven by examining the amount of control a user has in

a traditional recording studio. Our proof has 3 cases. Case (1): the user wishes to

manipulate a single control. In this case the user simply reaches out and adjusts the

control. In Virtual Studio the interaction is equivalent; the user just points to the

control and manipulates it with the mouse. Case (2): the user wishes to manipulate

eight or fewer controls at once. In this case an the user can push each control with

a finger. In order to adjust this many controls at ~:mce, the controls generally have

to be adjacent faders. In effect, two sets of four faders each are slaved to each

hand and the faders in a set all increase and decrease the same amount. In Virtual

Studio, in order to imitate this type of manipulation, the user could slave 4 faders

to a graphical master control, and 4 faders to another physical input device. Now

using two hands the user can adjust the faders. In this case, setting up the two

slave groups requires two gestures, after which the effort required to adjust them is

similar to the traditional studio. Case (3): the user wishes to manipulate more that

8 controls at once. In the traditional studio this generally requires slaving faders
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to master faders. In Virtual Studio the requirements are similar: the user must use

gestures to group controls together to be slaved to master controls.

We have shown that Virtual Studio can roughly handle all the types of control

interactions encountered in the traditional studio but it also extends the amount

of control the user has. Generally, in a traditional studio, the user can only slave

recording console input faders. In Virtual Studio, the user can slave any Parameter

in the system. Although, in the traditional studio has many knobs, sliders and

buttons serving as input devices, the user only has two hands and, therefore, can

only manipulate a few at a time. By allowing the user to slave any parameter,

Virtual Studio effectively provides the user with extra hands.

Finally, a comment should be made regarding our experience using graphical

master controls. First, it was critical that master controls were relative controllers.

Not only does the use of absolute controllers introduce typical nulling problems, but

the limited range of an absolute controller introduces problems. Suppose a fader

is slaved to an absolute controller at a ratio of 1:2. In this case, the user cannot

manipulate the slave control over its entire range because the range of the master

is limited. Making master controllers relative eliminates this problem; a relative

controller has no limit on its range.

4.8 Summary

The first six sections of this chapter described the system developed as a case

study. After this description the remaining sections discussed what was observed

and learned from the case study. Central to this discussion was the use of gestures

in Virtual Studio, the adoption of the Rooms model to facilitate operation of the

studio, and the master-slaving scheme developed to aid the user in device control.
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Chapter 5

S.ummary

The general approach of this thesis has been to investigate how new forms of rep-

resentation and interaction can enhance user performance for a broad class of com-

puter applications. The basic problem faced in this class of application is editing

a network of objects and the relationships among them. As the network becomes

denser, the user must have a methodology for dealing with the resulting complexity

or face information overload. We have focused our attention on a representation

which uses hierarchical chunking of the network in attempt to reduce its apparent

complexity. With this representation in mind, we took the approach that the inter-

actions used in editing the representation were just as important as the representa-

tion itself: interaction should help, not hinder, the user in editing and understanding

the representation. Using this concept as our mandate, we attempted to create in-

teractions in which the pragmatics reinforced the. semantics of the representation

and the interaction itself. To facilitate our investigation into representation and

interaction, we elected to use a particular application as a case study: a computer

interface to a personal audio studio. Although this thesis deals with particular ap-

plication area, we felt our choice of application was representative of a large class

of applications and therefore our results can be generalized and applied to many

other areas.

Chapter 1 attempts to more clearly identify the class of application being ad-

dressed in this thesis and the associated problems. Initially, the general charac-
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teristics of the case study problem were presented: networks of objects with data

flow connections, these networks are generally large and complex, and hierarchical

chunking of the network is a meaningful method of reducing complexity. In addi-

tion, we observed that objects in our case study had parameters associated with

them and that the characteristics concerning parameters were: more parameters ex-

ist than can be viewed on the screen at once and user access to parameters exhibits

locality. We then proceeded to present examples of other applications which exhibit

the,se same characteristics in order to demonstrate that our case study was repre-

sentative of many other applications. The examples used included VLSI design,

Recursive Transition Networks, Data Flow Diagrams and Hyper-Text. Next, the

general issues surrounding the case study were identified. First, hierarchical access

was seen as a disadvantage in some cases. The question was what sort of scheme

could be developed to support both hierarchical access and user customizable ac-

cess? The phenomena of locality of reference in terms of user access to parameters

was seen as a key concept in the solution of this problem. Next, the value of selec-

tive and alternate views of the network using other information hiding techniques

in addition to hierarchical structuring was presented. The central issues were the

type of data structures needed to support alternate views, and how alternate views

could be applied by the user. We then proceeded to the issue of providing the user

with the means to control numerous object parameters. It was noted that some

sort of scheme which permitted slaving parameters to input devices and to other

parameters was a possible solution. Finally, we fo~used on viewing our case study

system as a visual programming system. Given this viewpoint, the pragmatics of

interaction could be considered the notation of the language. The question then

became what form of notation best suited our representation?

A description of the case study problem was presented in chapter 2. The case

study problem was identified as making a personal audio studio controllable from a

central computer. In following sections a description was provided by first presenting

a system analysis of problem in terms of user and tasks performed, and then by

identifying the problems encountered by users in the performance of their tasks.
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The major problems concerned lack of integration of software tools, inefficient task

switching, manual reconfiguration of the studio, poor control panel interfaces to

devices and limitations in the number of devices that can be controlled by a single

user. These problems provided our motivation in "computerizing" the audio studio;

we felt by migrating all device control panels and the configuration process to a

computer these problems could be solved and, thereby, improving user performance

and the state of the art in user interfaces to personal audio studios. Our final

m~tivating factor was than our work could be elegantly extended to systems of

future, such as DAWs.

With chapter 1 and 2 providing a description of the types of problems being

addressed by the case study, chapter 3 examined other systems which faced some of

these problems. For each system we described how it was related to Virtual Studio:

what problems it did solve and what problems it failed to solve. Furthermore,

we identified the features of other systems that influenced the design of Virtual

Studio. Among the systems described, the Katosizer was by far the most influential.

Finally it was concluded that no system solved all our problems and therefore the

development of Virtual Studio was justified.

Chapter 4 describes the system developed in an attempt to solve the problem

and then discusses what has been observed and learned from the case study. The

key design features of Virtual Studio were the adoption of configuration diagrams

to control1he configuration of the hardware in the studio, the Rooms model and

the development of a general master slaving sche~e. The discussion of what was

observed and learned from the case study was broken into three categories: ges-

tures, Rooms and control. Our main observations concerning gestures were: (1)

gestures can be successfully integrated with other interaction techniques (2) in this

class of application, gesture interactions can be developed that reflect the semantics

of the representation and the interaction itself and (3) this, plus the efficiency of

the pragmatics of gesture commands, may improve user performance. In terms of

Rooms, it was observed that it was key in solving many of our problems concerning

non-hierarchical access and user customizability. In terms of control the combina-
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tion of gestures as a means to specify enslavement/freedom of controls, plus the

general nature of slaving scheme not only provides the user with the same amount

of control as they have in the traditional studio but extends their control.

5.1 Conclusions and Contributions

The results of our case study can be divided into two groups: results that can be

gen.eralized to other applications and results that contribute to solving application

specific problems. While generalizable results are important because they can be

applied to solve problems in other application areas, we feel our application specific

results are equally important because our case study application area exists in the

real world and exhibits problems which affect real users.

The generalizable results of this thesis fall into two categories: representation

and interaction. In terms of representation, this thesis demonstrates the effective-

ness of a representation which uses hierarchical encapsulation as a means to reduce

the apparent complexity of networks of objects and relations. This representation

technique not only allows the user to bury the complexities of a system, but it

provides the user with a hierarchical access scheme to objects in the system. This

hierarchical access scheme can then be used to the user's advantage to permit nav-

igation through the system and control over the level of complexity being viewed.

In tenus of interaction, we have developed and demonstrated interaction tech-

niques which not only permit the construction of t~ese hierarchical representations,

but, by virtual of their pragmatics, are easy to learn and perform. Furthermore,

and most importantly, our interaction techniques reinforce the semantics of the

interaction and the representation. We believe that this cooperation between rep-

resentation and interaction can improve user performance.

As spin off from the development of these interaction techniques, the case study

has also shown that gestures can be successfully integrated with other interaction

techniques. By application of the notion of "tension" , a unified feel to the kinesthet-

ics of all types of interaction techniques was accomplished. Not only is tension used
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as the "glue" to bind the subtasks of the command together, but it serves as the

common feature between gesture, direct manipulation and menu based commands.

Thus interactions with the system have a consistent feel.

While our case study has demonstrated the effectiveness of hierarchical encap-

sulation as a means to reduce complexity and provide structure to the problem,

it has also addressed the problem that, in actual operation, hierarchical access to

objects is unsuitable. Once again we can return to our stereo metaphor: "when

the, user is done configuring the system, they no longer care about the connections

and only want to deal with control panels". In other words, hierarchical structuring

is, in fact, the wrong representation to use when the user is done configuring the

system, and wishes to deal only with the control panels of objects. The solution to

this problem, demonstrated by the case study, is the adoption of the Rooms model

which allows the user to construct their own access schemes based on personal needs

and tastes.

A critical observation made in developing Virtual Studio was the realization

that access to control panels in traditional studios demonstrates the phenomenon

of locality of reference. When we first began our systems analysis of personal audio

studios we were faced with several serious questions: How can we present all the

physical controls available in a studio on one screen? Can we help reduce the

information overload the user encounters when using numerous controls? In the

endeavor to answer these questions, we realized that user access to device control

panels is based on the task being performed and t:qerefore, given the fact that users

switch between many tasks, we reasoned that the locality of reference concept could

be applied to control panel access. The realization of this concept's applicability to

our case study problem and the fact that the Rooms model exploited this concept

in order to support task switching led to the adoption of the Rooms model. We feel

that the adoption of the Rooms model is key to the success of Virtual Studio.

In terms of application dependent results, the heart of this thesis is that we

have developed and demonstrated the value of: (1) the framework of an integrated

environment to serve as the interface to a personal audio studio and (2) a general
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master-slaving scheme to enhance the amount control the user has over devices in

the studio. Our framework is designed such that the user can "hang" all his tools in

it. For example, not only does the interface supply tools for configuring devices and

controlling them, but other tools such as sequencers, text editors, voicing programs,

etc. can be introduced. Thus, all tools exist under the same "roof". The integration

of all device control panels and software tools into a single interface solves the

problems described in chapter 2. First, all the tools the user needs are on hand plus

th<::computer can assist the user in switching between tasks and tools and second,

consistent interfaces between different device controls panels and other tools can

be supported. Furthermore, since the design of controls is not limited by physical

constraints, more meaningful displays and controls can be presented to the user.

Finally, once the connections among devices are under computer control, we can

use the power of the computer to remember and restore complex configurations.

Our generalized master-slaving scheme was developed to solve two problems.

First, by virtue of our "graphical control panel" approach, we were faced with

an input device bottle neck: How could the user with just a few input devices

manipulate numerous graphical controls? Second, we saw Virtual Studio as a prime

opportunity to enhance the user's control over devices. The question was: what sort

of scheme was needed to provide this extended control? We feel our generalized

master-slaving scheme solves both these problems. The first problem is solved by

allowing tlie user to slave graphic controls to physical devices. We also developed

an intuitive and efficient technique which allows .the user to specify master-slave

relations. The second problem was solved by allowing any parameter in the system

to be "slavable" to any other parameter. Using this mechanism, the user can exercise

control over parameters in the system that is not possible in the traditional studio.

5.2 Future work

Virtual Studio is a vision of the future. While we have done much of the ground

work there still exists many areas for invention and enhancement.
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We feel the Rooms model can be further adapted to our application. We would

like to provide the user with an "Overview" Room which shows the user a diagram

of how the Rooms and Doors are laid out. The Overview Room is intended to help

users get their bearings and assist them in navigation through and in the layout

of Rooms. We would also like to adapt the "suite of rooms" concept. The "suite

of rooms" concept corresponds nicely to the project concept of a studio. Different

projects have different objectives and tasks, and therefore each require their own

set:ups. Giving the user the ability to painlessly switch between projects would

be a god-send. A Suite is a set Rooms which can be saved and restored at any

time. In addition, the user can also edit Suites by copying new Rooms from other

Suites. Thus, by saving and restoring Suites, the user could quickly switch between

projects.

The virtualness of the system could be further exploited. In the current version

of Virtual Studio, when a user switches Rooms, the configuration of the hardware

remains the same. We would like to incorporate the ability of the system to re-

configure itself upon entry into a Room. For example, suppose the user has the

hardware configured for performing the mixing down task. Suddenly, the user has

an inspiration for a new song and needs to capture the idea by playing his synthe-

sizer. Unfortunately, the system isn't configured such that the synthesizer can be

played. The ideal situation would be for the user to transfer into a practice Room,

where he knows the synthesizer is hooked up to play. Upon entry to the practice

Room, the system reconfigures the hardware to ~ts practice Room configuration.

Once the user's creative burst is over, he returns to the mixing Room where upon

entry the mixing configuration is restored.

Currently we have developed the fundamentals of a parameter control scheme.

The real power of control over parameters lies not in user control, but in a combina-

tion of computer and user control. Using the master slaving architecture of Virtual

Studio, tools could be constructed which would allow the computer to record and

playback the control manipulations of the user. In effect, the computer could act

as the user assistant, operating a set of controls while the user manipulates an-
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other set. The success of automated mix down in professional recording studios

is testimony to the effectiveness of the computer as an audio engineers assistant;

what makes computer automation so attractive in Virtual Studio is that while only

input faders are under computer control in a professional studio, every parameter

in Virtual Studio can be controlled by computer.

We would also like to incorporate the notion of a "snapshot" of the system.

By taking a snapshot, the user could record the state of the entire system at any

mo.ment and always have the option of returning to that state. We feel this would

promote user experimentation; many times users are so relieved to finally get the

system configured to a workable state, that they are afraid to experiment with

different configurations. Thus, snapshots would allow the user to always go back

to a safe state and hence promote experimentation. Currently, Virtual Studio can

save the state of its configuration and its Rooms, but it cannot save the state of its

devices. We would like to develop a scheme which allows the state of all objects, be

they hardware or software, to be saved and restored.

A major hole in the interface of Virtual Studio exists concerning the display

master slave relations and connections between devices. Concerning master slave

relations, there is no visual method of determining who is slaved to whom. Similarly

with connections between devices, a MIDI connection appears the same as an audio

connection. We feel that the use of color would be an elegant solution to each of these

problems. -For the latter problem, different connection types could be displayed in

different colors. For the master slaving problem,. we feel a scheme where a slave

inherits the color of its master would be an elegant solution. Since the prototype

version of Virtual Studio was developed on a monochrome display, these schemes

could not be explored.

Another problem area in Virtual Studio concerns integrating new types of MIDI

controllable devices into the system. The problem is: many MIDI controllable

devices have hundreds of parameters; when a new type of MIDI device is added

to the system, how can the user specify to the system the MIDI message which

should be sent to the device when a knob, slider, etc. on the device's control
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slider max value status byte channel # parameter #

data MIDI
Event
Generator

slider min value

Figure 5.1: A MIDI "circuit": a graphical slider is being used to generate MIDI
events. The slider outputs a value between 0 and 1000. This value passes through a
multiplier which scales it to the range 0 to 127. The MIDI event generator requires
a status byte, a channel number, a parameter number and data to compose a
"parameter value" event.

panel changes? Currently only the implementer of Virtual Studio is capable of

"installing" new devices, due to the complexity of the specification of the required

MIDI protocol. This task is even difficult for the implementer. We feel there is

great potential in developing a graphical language to specify how control panels.
operate. A graphical MIDI event specification language would integrate elegantly

into our hierarchical structure scheme; double clicking on a control panel would

reveal its internal configuration diagram which would be a MIDI event generator

diagram. Figure 5.1 shows a simple example of this type of diagram. The MIDI

"circuit" generates controller number 7 values on MIDI channel 2 when the slider

is adjusted.

Finally, we feel that Virtual Studio has laid the user interface ground work for a

DAW which emulates a "studio in box". The only difference, from a user interface
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perspective, between Virtual Studio based on MIDI devices and a version based on a

DAW, is that in the DAW case, when a user double clicks on a control panel, rather

than revealing a MIDI event generator diagram, a diagram which shows how the

device is emulated in software is shown. Thus, we feel the Virtual Studio interface

could be ported and extended to provide an interface which reflects the quality of

functionality offered by DAWs.

5.-3 Final Remarks

It is hoped that the research in this thesis will assist others in developing systems

based in the same class of application as our case study or in pushing further the

state of the art concerning audio studio user interfaces. Historically, quality of

functionality has precede,d quality of user interface in the development of systems.

We hope that our research will assist in eliminating this time lag. It is clear that

personal audio studios of the future, such as DAWs, will have powerful functionality;

we hope our research, by contributing to state of the art in user interfaces, will

uftimately assist musicians, composers and audio engineers in harnessing this power.
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A ppendix A

Gesture Recognition

This appendix describes the gesture recognition algorithms used in Virtual Studio.

As described in Chapter 4, gestures are input by depressing a mouse button, moving

the mouse and then releasing the mouse button. In our system, we consider a gesture

to be the motion that occurs between the mouse button down and button up. There

are no commands which require more than one gesture to invoke. Thus, once mouse

button up is detected, the system analyzes the gesture, and if it corresponds to a

command, carries out that command.

A.I Gathering Input
-

When a mouse button is pressed in Virtual Studio, the system checks if the cursor

is over a direct manipulation hot spot. If it is, then the routine to handle direct

manipulation for that hot spot is called. Otherwise, the gesture handler is called.

The gesture handler begins sampling the x,y position of the mouse cursor at ap-

proximately 100Hz. If the location of the cursor changes between samples, the new

location is recorded in a list of x,y positions called RawPoints and a black line is

drawn on the screen from the previous location of the cursor to the new location.

Thus giving the effect that the cursor is leaving an "ink trail". Once the user re-

leases the mouse button, the gesture handler stops sampling, recording and "ink

trailing" the cursor location, and passes the list of points, RawPoints, to gesture
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the preprocessor.

A.2 Preprocessing the Gesture

The gesture preprocessor is responsible for:

. Filtering out "noise" in the gesture.

. Reducing the amount of data to be analyzed.

. Creating from the data a list of line segments.

Filtering the gesture involves resampling RawPoints according to distance between

points. A new point is added to list called FilteredPoints if it is at least 16 pixels

from previous point add~d to FilteredPoints. The filtering process is started by

placing the first point in RawPoints into FilteredPoints. This process effectively

removes noise in the data caused by small "jitters" in the cursor's movement and

reduces the number of data points.

The next step is to create a list of line segments. Each pair of points in Fil-

teredPoints is considered as a line segment: its slope is calculated and stored in

a list of called Slopes, and its approximate direction is recorded in a list called

Direction. The direction of the line segment is quantized to 6 values: right, left,

upRight, upLeft, downRight and downLeft.

Finally the gesture preprocessor records information about the gesture such as

its starting and ending points, and its extent. Figure A.I shows an example of

preprocessmg.

A.3 Analyzing the Gesture

The essential process used to recognize gestures is scanning the line segments for

articulation points based on direction and position. A gesture is scanned from the

first point sampled. The analyzer algorithm first checks if the gesture begins with
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The circle and point gesture as seen
by the user.

The points recorded in
list RawPoints.

The points placed in
list FilteredPoints.

Figure A.l: Preprocessing a gesture before analysis. Preprocessing removes jitters
in the user's movement and reduces the amount of data. The slope and approximate
direction of each line segment is then computed and recorded for later use by the
gesture analyzer.
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scoping circle. In reality, we begin scanning the gesture for a polygon of some

minimum size. The algorithm is:

. Starting at the first point, scan forward till we are the minimum polygon size

away from the first point.

. Continue scanning until a point very close to the first point is found.

. Extract this part of the gesture as the scoping polygon. Extract the remaining

part of the gesture as the "tail".

If a polygon is indeed found, the "tail" part is analyzed:

. If there is no tail, then the gesture is marked as a "circling gesture" .

. Otherwise, if there is a tail:

- If the tail terminates within the scoping polygon, then the gesture is

marked as a "circle tail in" gesture.

- Otherwise, if the tail is shaped like the letter C at its end, it is marked

as a "circle with C tail" gesture.

- Otherwise, if the tail has an inverted letter T at its end, the gesture is

marked as a "circle with inverted T tail" gesture.

- Otherwise, we do not expect any other special tails, so we mark the

-gesture as the "circle with tail" gesture.

If no polygon is found, then it is possible the .gesture is a simple symbol such

as a delete or "inverted T" gesture. In this case the gesture is checked once for

each symbol recognized. The general approach of the recognition process is to first

analyze the size of the gesture (for example, symbols are generally not terribly large,

or small), then the shape of the gesture. For example, when testing for the "inverted

T" gesture, the list of line segment directions, Direction, is scanned as follows:

. Scan Direction while the line segments are going down left or down right:

If the line segment slope's absolute value is less than 0.5, this can't be a

"inverted T" gesture -exit.
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. Scan Direction while the line segments are going left, down left or up left:

If the line segment slope's absolute value is greater than 0.5, this can't be a

"inverted T" gesture -exit.

. Scan Direction while line segments are going right, down right or up right:

If the line segment slope's absolute value is greater than 0.5, this can't be a

"inverted T" gesture -exit.

. Mark as "inverted T" gesture.

Finally, if the gesture is not recognized as a symbol or a circling gesture, it is

marked as "unknown". If it is recognized, it is marked according to its symbol type

and passed to the gesture interpreter

A.4 Interpreting Gestures

The interpretation of a gesture depends on the context of the gesture. For example,

the "circle with tail" gesture may imply different commands depending on what is

circled and pointed to. If the user circles a group of device icons in configuration

window, this gesture then implies a "move" command is required. Alternatively,

if the user circles a group of controls and points to another control, this implies a

slave command is required.

The general algorithm for interpreting gestures is as follows: First, gestures

which are independent of context by definition have there corresponding command

carried out directly. Otherwise, depending on the type of the gesture, a gesture's

scope and arguments are determined. The combination of the gesture's type, scope

and arguments are used to determine the command called. Essentially, a case

statement which checks for all possible command types is used. For example, the

check the for "slaving" command type is:

. If the gesture is a "circle with tail".

. And there are controls in the circle.
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. And the tail ends in another control.

. Then call the slave command with the circled controls and the pointed to

control as arguments.
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