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ABSTRACT 

We present our efforts to build a database of high quality, multiresolution 
reconstructions of human bone shapes. We state our rationale for using laser 
scanning as our digitizing process and describe our reconstruction pipeline. 
Additionally, we describe the semantic and metadata that is kept with each digital 
sample and our initial efforts to validate our results. A preview of our database is 
available online and will be openly available for research in anatomy, education, 
and biomechanical simulation. 
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INTRODUCTION 

Traditionally, osteologists have used as their primary resource large collections of 
human bone samples [36], such as the Hamann-Todd collection at the Cleveland 
Museum of Natural History. Currently, however, a trend toward using digitized 
bone samples for osteological endeavors is developing, as digital samples are easily 
generated from laser scanners or medical imaging protocols. Although studies show 



2   

 

that shape analyses based on digital bone samples are as accurate as those based on 
physical samples [27, 15, 29], curated collections of digital human skeletons have 
yet to appear. In this paper, we present the first openly available collection of 
digitized bone samples for use in shape analysis and biomechanical simulation. 

A digital collection offers a number of advantages over a physical one.  It 
reduces the need for manipulating the sometimes fragile physical bone samples and 
requires less physical storage. Researchers may easily refer to digital samples on a 
laptop or tablet while in the field. Additionally, many hard to measure properties of 
the bone samples are easily calculated numerically on the computer, such as 
volume, surface area, and surface curvatures. Finally, digital samples enable both 
biomechanical simulation and traditional osteological measurements [27, 15, 29], 
enabling faster and more direct visualization of shape statistics. 

We have identified three methods to obtain digital bone samples for our 
collection: using computed tomography (CT) scanners to digitize human bodies 
(live or dead), using CT on physical bones from osteological collections, or using 
laser scanners directly on physical bones. 

Scanning human bodies would seem the best solution, since the bones would 
materialize in their correct anatomical location and both their internal and external 
surface could easily be extracted.  However, CT scans are used for medical 
diagnosis, so ethics and privacy concerns are a barrier to scan access.  Also, as CT 
is based on X-ray, scans are localized to reduce patient exposure to radiation.  The 
scans are typically localized in the abdominal area and thus it is rare to find full 
body scans.  As Figure 1 shows, segmentation of bone surfaces is also a challenge.  
Thresholding produces artifacts in the digital samples such as holes and bone 
merging.  Surface reconstructions of manually segmented bones also suffer from 
terracing artifacts [12], which are hard to remove even after overly smoothing the 

   

   

FIGURE 1. Output of traditional thresholding algorithms. The center panel shows 
the results of applying a thresholding algorithm to the image on the left, and the 
right panel shows a 3D reconstruction. The red arrows point to a hole in the 
reconstruction caused by less dense bone tissue and the yellow arrows point at 
bone surfaces that have been merged together. 
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shape.  These are even evident on higher resolution micro CT scans. 
Thus, the best option is to digitize physical bones directly.  In this case, using a 

laser scanner makes more sense.  Although it cannot capture the internal surface of 
the bone, the laser scanner is more portable and can be easily relocated to the bone 
collection location, reducing the risk of damage to the physical samples.  It also 
possesses an order of magnitude higher sampling precision: 35 microns versus 350 
microns for CT. 

Another feature of our database is determined by the inherent multiscale nature 
of anatomical entities such as bone. Bones have features at cellular, tissue, organ, 
and organ system levels. Likewise, a physical simulation of knee biomechanics 
requires a different level of detail than a simulation of the lower limb, or even a 
simulation of the entire body. Therefore, we anticipate users of our database will 
benefit from having available a range of models of the same bone at different 
resolutions. Since we tag each shape with anatomical information, we face the 
challenge of storing this information in a resolution-independent way to avoid data 
redundancy. 

We present here ongoing efforts to build a digital database of human bone 
samples. Our intention for this database is to provide an online, freely accessible 
collection of bones for osteological and morphometric analyses as well as 
biomechanical simulation. A preview of our data is available online at the 
Parametric Human Project website, http://www.parametrichuman.org. After 
reviewing other similar projects, we discuss our method of data capture, post-
processing, labeling, and archiving.  

PREVIOUS WORK 

ANATOMICAL DATABASES 

Research has generated a fair number of digital human anatomical databases to 
date. Probably the most well known is The Visible Human Project from the U.S. 
National Library of Medicine [23]. It consists of full-body CT, MRI, and digital 
photographs of cryosections of a human male subject and a human female subject.  
Similar projects exist in China [37] and Korea [25].  These projects only provide 
raw image and volume data and leave all organ reconstruction to the user. 

Anatomical atlases are another form of digital anatomical database.  The Digital 
Anatomist [6] is a web-based atlas providing 2D and 3D views of human anatomy 
with close ties to a semantic database.  Another web-based system, the Anatomy 
Browser [13], displays slices of a medical volume along with a 3D view of 
segmented organs in the region.  Both of these systems allow the user to click on 
regions of the image to identify organs; however, neither provides access to the 3D 
shapes directly. 

More recent 3D-modeled atlases are able to provide arbitrary views of the body.  
For example, both the Visible Body [35] web application and the Google Body 
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Browser [14] allow the user to move around the space and show or hide different 
organs and organ systems.  Unfortunately, these atlases are based on "average" 
shapes of human organs.  Improving in anatomical accuracy is Voxel-Max [28], 
which is based on the Visible Human dataset.  Although very detailed, this atlas is 
only based on a single individual and does not contain any shape variations. 

Digital databases of individual bones seem to be quite common for specific 
studies [19, 10]; however, to our knowledge, very few of these databases are openly 
available for other researchers (see, for example, Moore et al.'s collection [22]). In 
contrast, our goal is to provide an openly accessible database of documented bone 
shapes for applications in anatomical education, research, and biomechanical 
simulation. 

COLLECTIONS OF DIGITIZED OBJECTS 

Only a few large scale collections of digitized objects currently exist.  Also 
developed for anthropometric applications, the CAESAR Project [30] is an 
anthropometric database of human scans for sale by SAE International. It contains 
3D laser scans of 2,400 hundred male and female North American subjects aged 
18--65 in standing and sitting poses. The database also includes the locations of 
various anthropometric landmarks as well as anthropometric measurements 
evaluated with standard instruments such as calipers. In a manner similar to our 
work, scans from different scan heads were aligned and triangulated using simple 
triangulation algorithms built into the scanning software [31].  

In contrast, the Digital Michelangelo Project [20] was designed with an 
extensive post-processing pipeline. This project scanned a large number of 
Michelangelo's statues and all of the Forma Urbis Romae fragments to a very high 
level of accuracy. Since the statues were scanned in fragments, a lengthy alignment 
step found overlapping scans and aligned them using the iterated closest point (ICP) 
algorithm [8, 4]. The surfaces were then reconstructed using a method developed by 
Curless [9] which combines a large number of input scans using a weighted 
average.  The processing pipeline went further and computed color and reflectance 
information for each of the samples in the final mesh. Our work builds a similar 
processing pipeline, although it is tailored to the variation in size and shape of the 
objects that we scan. 

DATA CAPTURE 

The data acquisition step is the most crucial step of our database pipeline.  By using 
high precision digitization technology, we acquire digital samples of bone shapes at 
very high resolution and then have the freedom to reduce the sample resolution 
depending on the intended application. By storing the raw data of the digitizer, we 
are able to revisit our cleanup and reconstruction pipeline in the future and apply 
new algorithms as they become available.  
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Since our goal is to achieve a high level of anatomical accuracy, we selected 
laser scanning as our prime digitization technique. We are using a FARO Laser 
ScanArm mounted on a FaroArm Quantum measurement arm [33]. This laser 
scanner has a high rate of sample capture (19,200 point and normal samples per 
minute) with very high precision (35 microns between samples). The scanner arm is 
secured to a CaesarStone slab [34] to ensure the motion of the arm does not warp 
the scanning surface. The slab itself is secured to a heavy scanning table. 

In order to scan a bone, we place it on the scanning table in an elevated, 
horizontal position secured by plasticine (see Figure 2). This ensures that we can 
scan the parts of the bone facing away from the table and some of the parts facing 
the table. Once we are satisfied with the scan, we turn the bone around 180 degrees 
and scan the other side. This procedure ensures that there is enough overlap 

  

FIGURE 2.  Scanning a tibia bone. Our scanning setup is visible on the left pane, 
showing the bone resting on plasticine supported by the CaesarStone slab and 
the FaroArm Quantum and ScanArm mounted to the slab. The right panel shows 
the scanning software. Note the red feedback region and the flat regions 
generated by the CaesarStone slab. 

   
 

   

FIGURE 3.  From left to right, the original point scan of a tibia bone (rendered as 
splats, 6.7M points), the reconstructed mesh after Poisson reconstruction (1.75M 
points), and the final mesh after the remeshing step (105K points). The bottom 
row shows a close-up of the proximal tibia showing the different sample densities 
at each step. 
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between the two scans for appropriate rigid alignment. For some bones more than 
two scan passes are required, and, occasionally, not all parts of the bone are 
sampled by the scan. For example, parts of the vertebral foramina of the lumbar 
vertebrae are not accessible by the line of sight of the scanner. 

Once we have achieved coverage of the entire bone with the scanner, we 
proceed to clean up the data in software. As can be seen in Figure 2, the scanner 
invariably captures part of the scanning surface and plasticine supporting the bone. 
We use Geomagic Studio to remove this unrelated data manually [17]. Next, we 
align all scan passes of the same bone by manually tagging three to four 
homologous points visible on each scan and solving for the best rigid 
transformation. This alignment is further optimized using a variant of ICP. We also 
apply an outlier removal filter and a noise reduction filter, all provided by 
Geomagic Studio. 

Next, we proceed to generate polygonal meshes of each bone at various 
resolutions. Generating meshes from point set surfaces is a well-studied problem 
with many available techniques. We classify these into two categories: implicit-
based approaches and Delaunay-based approaches. 

Implicit-based approaches work by generating an implicit function from the 
data and then extract an isosurface of this function to generate the surface. The 
implicit surface can be algebraic [7] but more generally is some sort of sampled 
distance field [16, 9, 26, 18, 32]. These approaches typically require that normals 
are provided or computed, and also require a surfacing algorithm such as Marching 
Cubes [21] or one of its variants (see the survey by Newman and Yi [24]). 

Delaunay-based approaches do not need normal information as they work by 
generating the 3D Delaunay triangulation (or sometimes the dual Voronoi diagram) 
of the input points. The mesh is then extracted as a 2D sub-complex of this 3D 
simplicial complex [2, 3, 11, 5]. These algorithms are very effective as long as the 
input samples are evenly distributed, but they are memory intensive and do not 
work very well for fairly large numbers of input samples. 

Since our scanner provides both point and normal information and our scans 
contain millions of points, we have opted to use the Poisson Reconstruction [18] 
algorithm to generate our surfaces. Aside from generating watertight surfaces, this 
algorithm works out of core (i.e., without loading all the data to memory) and 
therefore can handle our sometimes exorbitant data sets. The algorithm considers 
the normal vector field N as the gradient of the indicator function ϕ (the indicator 
function is the function valued 1 inside the surface volume and 0 elsewhere). 
Mathematically, this relationship is expressed as ∇ϕ = N. The problem is converted 
into a Poisson problem by taking the divergence of the above expression (∇2ϕ = 
∇·N) and solving for ϕ. The implementation of this algorithm uses an octree to 
sample the generated signed distance field and reconstructs the surface using the 
standard Marching Cubes algorithm. 

Marching Cubes is known to generate meshes with sliver triangles and is not 
adaptive to surface properties such as curvature. We therefore perform a second 
remeshing step after the initial reconstruction to improve the quality of the mesh 
triangles. In particular, we apply the meshing method of Boissonnat and Oudot [5] 
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as implemented in the CGAL library [1]. As the remeshing algorithm has 
parameters for setting average edge distance and curvature error, we determine 
what the resolution of the reconstruction will be at this stage. Thus, we perform the 
Poisson reconstruction at the highest resolution possible and then remesh at the 
desired resolution. A result of our reconstruction is shown in Figure 3. 

Occasional anomalies do appear in the reconstruction. In many cases, our 
physical bone samples have damaged exterior surfaces, exposing their internal 
trabecular architecture. In these cases, the laser scanner cannot correctly sample the 
surface, leading to reconstruction artifacts. To document such anomalies, we take 
photographs of each of our samples which we can easily refer to later when the 
samples are no longer physically available. 

ADDING SEMANTIC DATA AND METADATA 

Our database would not be complete if it did not have information about the 
subjects we scanned. We therefore store metadata for each of our subjects and link 
it to each individual bone sample. The metadata stored here includes the age at 
death, sex, and geographic origin of the subject.  

Additionally, for an individual subject, we store the relative position and 
orientation of each bone with respect to a fixed coordinate system. We use these 
coordinates to align the skeleton in its correct anatomical position. We select the 
fixed coordinate system to be the ground plane, and place and rotate each bone 
according to its centroid and PCA orientation axes. 

Further, we document each reconstruction as it is generated. We include the 
details of the algorithms used, such as the number of octree levels in the Poisson 
reconstruction or the desired average edge length in the remeshing step. This 
ensures that the procedure is reproducible and allows us to modify the pipeline if 
new, improved algorithms are developed. 

Finally, we add semantic data by labeling bony features and landmarks on each 
of the samples. Since we build many reconstructions, we would like to only store 

  

FIGURE 4.  Comparison of a bone sample next to its 3D printout. Note on the 
right panel the damaged cortical surface and the resulting artifact on the printed 
object. 
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the label information once per sample and not per reconstruction. This allows the 
label information to apply to the original point set as well to any further 
reconstructions of the shape, even if they are not meshes but other surface types. 

To do this, we define a canonical parameterization for the mesh and store 
landmark information in terms of the parameterization coordinates.  We specify 
regions for larger landmarks (say, the tibial tuberosity) and lines for edges and 
borders (tibial anterior border). Note that anatomical features are hierarchical (the 
femoral head contains the fossa capitis), so these regions will overlap. 

As mentioned previously, occasionally there will be damaged parts of the bone 
surface which the scanner cannot capture well. We reserve a special label for these 
regions to ensure that shape analysis algorithms can discard certain features of the 
bone if the reconstructed surface does not match the original. The region labels for 
the damaged locations are stored in the canonical parameterization space. 

VALIDATION 

In order to ensure the accuracy of our bone reconstructions, we have validated our 
pipeline qualitatively, with a quantitative validation under way. We have shown a 
number of our reconstructions to expert anatomists for evaluation, and in general 
they have been impressed by the quality of the surfaces (usually rendered in 
Lambertian grey). In fact, we are now receiving many requests for models from the 
Biomedical Communications department at our institution. 

A second qualitative validation we performed involved producing a physical 3D 
model of one of our scans using a 3D printer. The results can be seen in Figure 4. 
The two physical samples (the original bone and the printout) were then compared 
by expert anatomists to determine if any of the anatomically relevant landmarks 
were missing or altered. Again, the general consensus was that the reproduction 
very accurately represented the original bone. 

We are currently researching ways to provide quantitative evidence to support 
these qualitative results. For example, computing the average distance between a 
sample point in the original scan and its closest point on the reconstructed surface 
may be a valid measure of reconstruction error. Also, we can perform osteological 
measurements between landmarks on both the physical and digital samples to 
calculate the correlation between them. We expect that we will use a combination 
of these and other measures to quantify the reconstruction errors. 

CONCLUDING REMARKS 

We have presented our pipeline for generating multiresolution digital samples of 
human bone shapes for use in education, biomechanical simulation, and 
osteological studies. We described our metadata and our strategy for storing 
semantic, anatomical data and for delineating anomalous features in each sample. 
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Although some of our work is still preliminary, we have made a preview of our 
open-access database available at http://www.parametrichuman.org. Our vision is to 
provide a space for other researchers to contribute their own high-quality data and 
thus create a sizable repository of shapes for various human populations.  

As physical human samples are becoming harder to acquire, we believe more 
anatomical and osteological collections will find a space in the digital world. 
Therefore, we hope our initial efforts to build a digital repository of shapes will 
inspire others to make digital repositories of their data for use by the academic 
community as well. 
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