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ABSTRACT

We present our efforts to build a database of higlality, multiresolution
reconstructions of human bone shapes. We stateratiomale for using laser
scanning as our digitizing process and describe mgonstruction pipeline.
Additionally, we describe the semantic and metadlaas is kept with each digital
sample and our initial efforts to validate our HesuA preview of our database is
available online and will be openly available fesearch in anatomy, education,
and biomechanical simulation.
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INTRODUCTION

Traditionally, osteologists have used as their prinresource large collections of
human bone samples [36], such as the Hamann-Tadtkttwon at the Cleveland
Museum of Natural History. Currently, however, and toward using digitized
bone samples for osteological endeavors is devedopis digital samples are easily
generated from laser scanners or medical imagiogpgols. Although studies show



that shape analyses based on digital bone samgles accurate as those based on
physical samples [27, 15, 29], curated collectiohsligital human skeletons have
yet to appear. In this paper, we present the Gptnly available collection of
digitized bone samples for use in shape analysidazmechanical simulation.

A digital collection offers a number of advantagaser a physical one. It
reduces the need for manipulating the sometimeggldrphysical bone samples and
requires less physical storage. Researchers méy egfer to digital samples on a
laptop or tablet while in the field. Additionalljnany hard to measure properties of
the bone samples are easily calculated numericallythe computer, such as
volume, surface area, and surface curvatures. Ifirdigjital samples enable both
biomechanical simulation and traditional osteolagimeasurements [27, 15, 29],
enabling faster and more direct visualization afmhstatistics.

We have identified three methods to obtain dighaine samples for our
collection: using computed tomography (CT) scanrtersligitize human bodies
(live or dead), using CT on physical bones fromeoklgical collections, or using
laser scanners directly on physical bones.

Scanning human bodies would seem the best soluione the bones would
materialize in their correct anatomical locatiord doth their internal and external
surface could easily be extracted. However, CTnscare used for medical
diagnosis, so ethics and privacy concerns are réiebéo scan access. Also, as CT
is based on X-ray, scans are localized to redutieni@xposure to radiation. The
scans are typically localized in the abdominal amrgd thus it is rare to find full
body scans. As Figure 1 shows, segmentation of lsarfaces is also a challenge.
Thresholding produces artifacts in the digital sk®mpsuch as holes and bone
merging. Surface reconstructions of manually segetk bones also suffer from
terracing artifacts [12], which are hard to remewen after overly smoothing the

FIGURE 1. Output of traditional thresholding algorithms. The center panel shows
the results of applying a thresholding algorithm to the image on the left, and the
right panel shows a 3D reconstruction. The red arrows point to a hole in the
reconstruction caused by less dense bone tissue and the yellow arrows point at
bone surfaces that have been merged together.



shape. These are even evident on higher resolotiom CT scans.

Thus, the best option is to digitize physical bodesctly. In this case, using a
laser scanner makes more sense. Although it carapbtire the internal surface of
the bone, the laser scanner is more portable amtbeaasily relocated to the bone
collection location, reducing the risk of damagethie physical samples. It also
possesses an order of magnitude higher samplirgisime: 35 microns versus 350
microns for CT.

Another feature of our database is determined byirtherent multiscale nature
of anatomical entities such as bone. Bones havergsat cellular, tissue, organ,
and organ system levels. Likewise, a physical sitih of knee biomechanics
requires a different level of detail than a simiolatof the lower limb, or even a
simulation of the entire body. Therefore, we aptite users of our database will
benefit from having available a range of modelsttdd same bone at different
resolutions. Since we tag each shape with anatdérimé@mation, we face the
challenge of storing this information in a resaatindependent way to avoid data
redundancy.

We present here ongoing efforts to build a digdatabase of human bone
samples. Our intention for this database is to idewan online, freely accessible
collection of bones for osteological and morphoioetnalyses as well as
biomechanical simulation. A preview of our data @gailable online at the
Parametric Human Project website, http://www.patsicteuman.org. After
reviewing other similar projects, we discuss ourthnd of data capture, post-
processing, labeling, and archiving.

PREVIOUS WORK

ANATOMICAL DATABASES

Research has generated a fair number of digitalanuamatomical databases to
date. Probably the most well known is The Visiblentin Project from the U.S.
National Library of Medicine [23]. It consists ofilFbody CT, MRI, and digital
photographs of cryosections of a human male subjedta human female subject.
Similar projects exist in China [37] and Korea [25These projects only provide
raw image and volume data and leave all organ staaction to the user.

Anatomical atlases are another form of digital amatal database. The Digital
Anatomist [6] is a web-based atlas providing 2D &bmdviews of human anatomy
with close ties to a semantic database. Anothdr-based system, the Anatomy
Browser [13], displays slices of a medical volumieng with a 3D view of
segmented organs in the region. Both of thesemgstllow the user to click on
regions of the image to identify organs; howeveither provides access to the 3D
shapes directly.

More recent 3D-modeled atlases are able to praaibligrary views of the body.
For example, both the Visible Body [35] web appiima and the Google Body



Browser [14] allow the user to move around the epaed show or hide different
organs and organ systems. Unfortunately, thesesestlare based on "average"
shapes of human organs. Improving in anatomicaliracy is Voxel-Max [28],
which is based on the Visible Human dataset. Algtovery detailed, this atlas is
only based on a single individual and does notaiarany shape variations.

Digital databases of individual bones seem to bigegecommon for specific
studies [19, 10]; however, to our knowledge, vey bf these databases are openly
available for other researchers (see, for exanimre et al.'s collection [22]). In
contrast, our goal is to provide an openly accéssiatabase of documented bone
shapes for applications in anatomical educatioseasch, and biomechanical
simulation.

COLLECTIONS OF DIGITIZED OBJECTS

Only a few large scale collections of digitized exdig currently exist. Also
developed for anthropometric applications, the CARSProject [30] is an

anthropometric database of human scans for sateABy International. It contains
3D laser scans of 2,400 hundred male and femal¢hNemerican subjects aged
18--65 in standing and sitting poses. The datalaés® includes the locations of
various anthropometric landmarks as well as antimgiric measurements
evaluated with standard instruments such as caligera manner similar to our
work, scans from different scan heads were aligaed triangulated using simple
triangulation algorithms built into the scannindte@re [31].

In contrast, the Digital Michelangelo Project [2@Jas designed with an
extensive post-processing pipeline. This projecansed a large number of
Michelangelo's statues and all of the Forma UrlisnRe fragments to a very high
level of accuracy. Since the statues were scaimé&dgments, a lengthy alignment
step found overlapping scans and aligned them ukimgerated closest point (ICP)
algorithm [8, 4]. The surfaces were then reconstdicsing a method developed by
Curless [9] which combines a large number of inpo&ans using a weighted
average. The processing pipeline went furtheramdputed color and reflectance
information for each of the samples in the finalstneOur work builds a similar
processing pipeline, although it is tailored to tlagiation in size and shape of the
objects that we scan.

DATA CAPTURE

The data acquisition step is the most crucial efequr database pipeline. By using
high precision digitization technology, we acquiigital samples of bone shapes at
very high resolution and then have the freedometiuce the sample resolution
depending on the intended application. By storhmeyfaw data of the digitizer, we

are able to revisit our cleanup and reconstrucgipeline in the future and apply

new algorithms as they become available.



FIGURE 2. Scanning a tibia bone. Our scanning setup is visible on the left pane,
showing the bone resting on plasticine supported by the CaesarStone slab and
the FaroArm Quantum and ScanArm mounted to the slab. The right panel shows
the scanning software. Note the red feedback region and the flat regions
generated by the CaesarStone slab.

FIGURE 3. From left to right, the original point scan of a tibia bone (rendered as
splats, 6.7M points), the reconstructed mesh after Poisson reconstruction (1.75M
points), and the final mesh after the remeshing step (105K points). The bottom
row shows a close-up of the proximal tibia showing the different sample densities
at each step.

Since our goal is to achieve a high level of anaahmaccuracy, we selected
laser scanning as our prime digitization technidi¥e are using a FARO Laser
ScanArm mounted on a FaroArm Quantum measurement[38]. This laser
scanner has a high rate of sample capture (19,200 pnd normal samples per
minute) with very high precision (35 microns betweamples). The scanner arm is
secured to a CaesarStone slab [34] to ensure thiemf the arm does not warp
the scanning surface. The slab itself is securedheavy scanning table.

In order to scan a bone, we place it on the scantable in an elevated,
horizontal position secured by plasticine (see FgR). This ensures that we can
scan the parts of the bone facing away from thketabd some of the parts facing
the table. Once we are satisfied with the scantuwethe bone around 180 degrees
and scan the other side. This procedure ensurdstlieee is enough overlap



between the two scans for appropriate rigid aligmmEor some bones more than
two scan passes are required, and, occasionaltyalhgarts of the bone are
sampled by the scan. For example, parts of theslweat foramina of the lumbar
vertebrae are not accessible by the line of siftite@scanner.

Once we have achieved coverage of the entire bdtte tve scanner, we
proceed to clean up the data in software. As casele® in Figure 2, the scanner
invariably captures part of the scanning surfaak @asticine supporting the bone.
We use Geomagic Studio to remove this unrelated deatnually [17]. Next, we
align all scan passes of the same bone by manutafiging three to four
homologous points visible on each scan and solviag the best rigid
transformation. This alignment is further optimiagging a variant of ICP. We also
apply an outlier removal filter and a noise reduatifilter, all provided by
Geomagic Studio.

Next, we proceed to generate polygonal meshes ofi é&ne at various
resolutions. Generating meshes from point set sesfas a well-studied problem
with many available techniques. We classify thege iwo categories: implicit-
based approaches and Delaunay-based approaches.

Implicit-based approaches work by generating anligingfunction from the
data and then extract an isosurface of this functo generate the surface. The
implicit surface can be algebraic [7] but more gahg is some sort of sampled
distance field [16, 9, 26, 18, 32]. These approadigpically require that normals
are provided or computed, and also require a sadaagorithm such as Marching
Cubes [21] or one of its variants (see the suryefé&wman and Yi [24]).

Delaunay-based approaches do not need normal iafammas they work by
generating the 3D Delaunay triangulation (or somes the dual Voronoi diagram)
of the input points. The mesh is then extractec &D sub-complex of this 3D
simplicial complex [2, 3, 11, 5]. These algorithare very effective as long as the
input samples are evenly distributed, but they memory intensive and do not
work very well for fairly large numbers of inputraples.

Since our scanner provides both point and normfalrimation and our scans
contain millions of points, we have opted to use Boisson Reconstruction [18]
algorithm to generate our surfaces. Aside from gty watertight surfaces, this
algorithm works out of core (i.e., without loadirdl the data to memory) and
therefore can handle our sometimes exorbitant settss The algorithm considers
the normal vector field N as the gradient of thei¢ator function¢ (the indicator
function is the function valued 1 inside the suefamlume and O elsewhere).
Mathematically, this relationship is expressed/és= N. The problem is converted
into a Poisson problem by taking the divergencéhefabove expressioW4p =
V-N) and solving forg. The implementation of this algorithm uses an extto
sample the generated signed distance field anchsgemts the surface using the
standard Marching Cubes algorithm.

Marching Cubes is known to generate meshes witkersiriangles and is not
adaptive to surface properties such as curvature.thgrefore perform a second
remeshing step after the initial reconstructiorinbprove the quality of the mesh
triangles. In particular, we apply the meshing rodtbf Boissonnat and Oudot [5]



as implemented in the CGAL library [1]. As the reshimg algorithm has
parameters for setting average edge distance andtate error, we determine
what the resolution of the reconstruction will i¢has stage. Thus, we perform the
Poisson reconstruction at the highest resolutiossipe and then remesh at the
desired resolution. A result of our reconstrucimshown in Figure 3.

Occasional anomalies do appear in the reconstructio many cases, our
physical bone samples have damaged exterior ssifapgosing their internal
trabecular architecture. In these cases, the t&semer cannot correctly sample the
surface, leading to reconstruction artifacts. Teuent such anomalies, we take
photographs of each of our samples which we caityeafer to later when the
samples are no longer physically available.

ADDING SEMANTIC DATA AND METADATA

Our database would not be complete if it did novehinformation about the
subjects we scanned. We therefore store metadatméh of our subjects and link
it to each individual bone sample. The metadataedtdere includes the age at
death, sex, and geographic origin of the subject.

Additionally, for an individual subject, we stordet relative position and
orientation of each bone with respect to a fixedrdmate system. We use these
coordinates to align the skeleton in its correcitamical position. We select the
fixed coordinate system to be the ground plane, @lade and rotate each bone
according to its centroid and PCA orientation axes.

Further, we document each reconstruction as iteisetpted. We include the
details of the algorithms used, such as the nurobectree levels in the Poisson
reconstruction or the desired average edge lenytthé remeshing step. This
ensures that the procedure is reproducible anavsllss to modify the pipeline if
new, improved algorithms are developed.

Finally, we add semantic data by labeling bonyuezg and landmarks on each
of the samples. Since we build many reconstructiarswould like to only store

FIGURE 4. Comparison of a bone sample next to its 3D printout. Note on the
right panel the damaged cortical surface and the resulting artifact on the printed
object.



the label information once per sample and not peonstruction. This allows the
label information to apply to the original pointtsas well to any further
reconstructions of the shape, even if they aremesthes but other surface types.

To do this, we define a canonical parameterizaflanthe mesh and store
landmark information in terms of the parameterimatcoordinates. We specify
regions for larger landmarks (say, the tibial taséy) and lines for edges and
borders (tibial anterior border). Note that anatahifeatures are hierarchical (the
femoral head contains the fossa capitis), so theggiens will overlap.

As mentioned previously, occasionally there willdemaged parts of the bone
surface which the scanner cannot capture well. #8erve a special label for these
regions to ensure that shape analysis algorithmslisztard certain features of the
bone if the reconstructed surface does not matlotiginal. The region labels for
the damaged locations are stored in the canon@ralhpeterization space.

VALIDATION

In order to ensure the accuracy of our bone reoactsins, we have validated our
pipeline qualitatively, with a quantitative validat under way. We have shown a
number of our reconstructions to expert anatonftevaluation, and in general
they have been impressed by the quality of theasad (usually rendered in
Lambertian grey). In fact, we are now receiving sneequests for models from the
Biomedical Communications department at our inttitu

A second qualitative validation we performed invalvproducing a physical 3D
model of one of our scans using a 3D printer. Téwilts can be seen in Figure 4.
The two physical samples (the original bone andpttirtout) were then compared
by expert anatomists to determine if any of thet@m&ally relevant landmarks
were missing or altered. Again, the general consengas that the reproduction
very accurately represented the original bone.

We are currently researching ways to provide qtethte evidence to support
these qualitative results. For example, computhg dverage distance between a
sample point in the original scan and its closestbtpon the reconstructed surface
may be a valid measure of reconstruction erroroAlge can perform osteological
measurements between landmarks on both the phyaiahldigital samples to
calculate the correlation between them. We expget we will use a combination
of these and other measures to quantify the reaantistn errors.

CONCLUDING REMARKS

We have presented our pipeline for generating negiilution digital samples of
human bone shapes for use in education, biomediarsonulation, and
osteological studies. We described our metadata audstrategy for storing
semantic, anatomical data and for delineating ahmumsafeatures in each sample.



Although some of our work is still preliminary, weve made a preview of our
open-access database available at http://www.paraménan.org. Our vision is to
provide a space for other researchers to contrithéie own high-quality data and
thus create a sizable repository of shapes foouaruman populations.

As physical human samples are becoming harderduirgs we believe more
anatomical and osteological collections will findspace in the digital world.
Therefore, we hope our initial efforts to build mithl repository of shapes will
inspire others to make digital repositories of thadta for use by the academic
community as well.
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