
1

ABSTRACT
This paper presents a scheme for extending an informal,
pen-based whiteboard system (Tivoli on the Xerox Live-
Board) to provide a structured editing capability without
violating its free expression and ease of use. The scheme
supports list, text, table, and outline structures over hand-
written scribbles and typed text. The scheme is based on the
system temporarily perceiving the “implicit structure” that
humans see in the material, which is called aWYPIWYG
(What You Perceive Is What You Get) capability. The
design techniques, principles, trade-offs, and limitations of
the scheme are discussed. A notion of “freeform interac-
tion” is proposed to position the system with respect to cur-
rent user interface techniques.

KEYWORDS: freeform interaction, implicit structure, pen-
based systems, scribbling, whiteboard metaphor, informal
systems, recognition-based systems, perceptual support, list
structures, gestural interfaces, user interface design.

INTRODUCTION
Our goal is to create computational support for the informal
collaborative processes of small groups working together in
real time. We are concerned especially with “generative”
tasks (creating and assessing new ideas and perspectives,
discussing them, playing with them, organizing them, nego-
tiating about them, and so on). Human interaction in such
situations is informal, freewheeling, rapid, and subtle.

Computational systems are typically ill-suited to such situa-
tions, because they force users to create and deal with more-
or-less formalized representations. The overhead of using
such representations inhibits the very processes they are
meant to support [7,12]. One of the big challenges for cur-
rent HCI design is to create systems for informal interaction.

Pen-based systems that allow scribbling on wall-size dis-
plays or notepads can support whiteboard or shared note-
book metaphors for interacting with informally scribbled

material. The free, easy, and familiar expression permitted
by such systems make them a promising class of tools to
support informal interaction.

Our base tool is a large, shared, pen-based electronic display
device called theLiveBoard [4]. We have developed a soft-
ware system, called Tivoli [9], that simulates whiteboard
functionality on the LiveBoard.1 (There is a commercial
version of Tivoli called MeetingBoard.2) This paper pre-
sents and discusses a new scheme that we have designed and
implemented in Tivoli to extend its editing power, while yet
remaining simple, natural, and consistent with the informal
nature of the tool.

This paper begins by proposing the notion of “freeform
interaction” to help pin down what we mean by “informal.”
Then we describe the extended editing scheme, which is
based on the system perceiving the “implicit structure” that
humans see in the material. This is followed by a discussion
of the design principles, trade-offs, limitations, and compar-
ison to other systems.

FREEFORM INTERACTION
The notion of “informal interaction” is somewhat vague,
and so we define a more operational notion. A graphical
editing system allows a user to manipulate graphical objects
(GOs) that have defined positions in a 2-D space. Afree
graphical object (freeGO) is a GO that has no constraints or
structural relations with other GOs; it can be freely operated
upon independently of any other GOs in the space. Any kind
of GO — such as an ink stroke, a text character, an icon, or a
composite GO — can be a freeGO. Typical operations are
drawing, erasing, wiping, dragging, and gesturing (for both
selecting and operating). A representation consisting solely
of freeGOs is afreeform representation. The unconstrained

1. Tivoli is written in C++ and runs under Unix and X Windows
on Sun-based LiveBoards and on Sun workstations.

2. MeetingBoard is being developed and marketed by Xerox’s
LiveWorks, Inc. It runs under Microsoft Windows on PC-based
commercial LiveBoards and on PC workstations.

Implicit Structures for Pen-Based Systems
Within a Freeform Interaction Paradigm

Thomas P. Moran, Patrick Chiu,* William van Melle, Gordon Kurtenbach*

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

{moran,chiu,vanmelle}@parc.xerox.com
gkurtenbach@alias.com

Final version: December 16, 1994

To appear in proceedings of CHI’95

*Patrick Chiu is with LiveWorks, Inc., A Xerox Company, 2040
Fortune Drive, San Jose, CA 95131. Gordon Kurtenbach is now
with Alias Research Inc., 110 Richmond Street East, Toronto,
Canada M5C 1P1.

2

interaction enabled with such a representation isfreeform
interaction.3

Scribbling is a prime example of freeform interaction: In
scribbling, strokes can be created (drawn) anywhere without
affecting existing strokes. Any strokes can be changed or
erased without affecting any other strokes.4

In contrast, traditional text editing is not freeform, because
there is an underlying string structure among the characters;
e.g., deleting a character affects the positions of all charac-
ters later in the string. To be freeform, characters would all
have to be freeGOs, i.e., have no underlying string structure.
Erasing some characters would not cause any other charac-
ters to move. Such a seemingly limited model of text would
have a crucial advantage: characters and strokes could be
freely intermixed.

IMPLICIT STRUCTURES
During freeform interaction, users create material on the dis-
play in order to react to it and see new relationships and to
try new things with it by manipulating the material. There is
— in users’ minds — quite a bit of structure. The structure
may be deliberate or it may emerge from the interaction. It
may be partial and ill-formed. Because interaction is free-
form, there is no constraint to remain within the conventions
of a particular structure. There is often a mixture of struc-
tures on the display. Users’ commitment to particular struc-

3. We are aware that the notion of freeform needs much more
discussion. We present it here briefly to introduce a seemingly use-
ful notion and to position the specific scheme described in the
paper.

4. Strokes also have the property of beingfreehand (being able
to take on arbitrary shapes based on the movement of the creating
instrument). This is not to be confused with their being freeform (a
property of the ensemble), which is the relevant property here.

tures is often tentative and transitory, with the material being
“re-registered” as different kinds of structures.

Such structure isimplicit in the sense that it is perceived by
the user but not by the system, because it is not defined or
declared to the system. Keeping structure implicit is the
essence of freeform interaction. The benefit is that users
have the freedom to treat the material any way they want at
any time; the cost is that the system cannot take advantage
of the implicit structure in supporting the users’ operations.
Therefore, we would like the system to automatically per-
ceive structure in the material in order to support aWYPI-
WYG (What You Perceive Is What You Get) capability [11].
But it is crucial to have the system perceive structure in the
material only when the user needs support, and to keep the
interaction freeform otherwise.

Our experience with LiveBoards and whiteboards is that
list-like structures are ubiquitous. Thus, we set out to sup-
port the manipulation of four kinds of list-related structures:

• lists (vertically aligned sequences of items, which
are horizontally clustered sets of GOs),

• text (horizontally aligned sequences of GOs),
• tables (arrays of elements, which are clustered

GOs, aligned both horizontally and vertically),
• outlines (lists with indented items).5

The system need only perceive enough structure to support
the “naturally expected” behavior of each of these struc-
tures.6

5. Because of space limitations, we will say little about outlines
in this paper. The design principles can be illustrated by our treat-
ment of the first three structures.

6. “Full” recognition, such as handwriting recognition or “pars-
ing” by a “visual grammar” (e.g., [6]), is not required.

Figure 1. The commercial version of Tivoli: the Xerox
LiveWorks MeetingBoard display.

3

The general design technique is to embedephemeral per-
ceptual support within freeform interaction: Whenever the
user takes an action that implies a structural interpretation,
the system temporarily perceives the structure in the mate-
rial, carries out the current operation according to the
expected behavior of that structure, and then returns to free-
form interaction. Before discussing specific design tech-
niques, we illustrate how our scheme works.

HOW THE BASIC SCHEME WORKS
Figure 1 shows the MeetingBoard display on the LiveBoard,
which contains a mix of handwritten and typewritten mate-
rial. The material is freeform, i.e., stroke and character
freeGOs, but you can clearly perceive a lot of structure in it.
It can be seen as a list of five items. Each item is numbered.
After each number is a name. The names can be seen as a
column. Horizontal clusters of characters and of strokes can
be seen as words.

Let us see how to manipulate this material. Figure 2 shows a
freeform move. First, a segment of material is selected by
drawing a loop around it (Figure 2a); then it is dragged
dynamically to a new location (Figure 2b). Because it is a
freeform move, the dragged material stays where it is
dropped, and none of the material around is adjusted. This is
not satisfactory if the material is regarded as a list.

To deal with the material as a list (Figure 3a), the user first
indicates the intent by using a structural selection gesture: a
bracket (“[”) gesture at the left of the list item. The system
projects the legs of the bracket to the right to enclose the
whole list item. The resulting rectangular selection enclo-
sure signals that the system regards this as a structural selec-
tion. Then the user makes a wedge (“>”) gesture to tell the
system where to insert the selected item. After the wedge
gesture is made, the system opens up space for the item,
moves the item, and closes the space where the item used to
be (Figure 3b). The system animates all of the movement, so
that the user, and the other people the user is working with,
can easily track and understand the move.

To move a phrase, left and right bracket gestures are made to
select the phrase (Figure 4a). Then a caret (“^”) gesture is
made to indicate a textual insertion. The system animates
the moving of the phrase as well as the closing and opening
up of spaces (Figure 4b).

To move a column, the material must be treated as a table. A
top bracket indicates a column, the legs of the bracket pro-
jecting downward to select it (Figure 5a). A caret gesture
shows where to move the column. Again, the system ani-
mates the move. All of the material to the right of the
selected column is regarded as a column and moves left to
close up the vacated space (Figure 5b).

Figure 2a. Freeform move: User makes a loop ges-
ture to select item 4, then drags the selection to
before item 2.

Figure 2b. Result: The selection remains exactly
where the user left it, with no further adjustments.

➪

Figure 3a. Structured list move: User makes a left
bracket gesture ①, which the system projects right-
ward into a structured selection ②. The wedge ges-
ture ③ indicates the desired destination of the move.

Figure 3b. Result: Items 2 and 3 are moved down-
ward to open up space; item 4 is moved into the
space.

➪
➀

➁

➂

4

Any of the structural moves can also be made by dragging.
To move a list item, the item is selected (as in Figure 3a) and
dragged to a location near to where it is to be inserted (as in
Figure 2b, except with a rectangular selection). Then the
system animates the opening of space for the item, moving
it from its dragged position, and closing the space where it
started (the result being like Figure 3b).

Wedge and caret gestures indicate whether to insert a selec-
tion as an item or as text. In the case of dragging, the type of
insertion is determined by where the selection is dragged to.
If it is dragged to the gap between two lines, it is inserted as
a list item; if it is dragged to a point within an item, then it is
inserted as text.7

DISCUSSION OF DESIGN FEATURES
In developing the implicit structure scheme, we have been
led to many unusual design decisions by our goal of work-
ing within a freeform interaction paradigm. Most of these
decisions were arrived at during a process of iterating and
exploring many alternatives. In this section we discuss some
of the important features of the scheme.

7. The drag “point” is the location of the stylus or cursor at the
end of the drag.

Ephemeral Perception

The defining feature of implicit structure is that the system’s
perception is ephemeral — it is only in force for the duration
of the immediate structural operations. The user interface
issue is how to temporarily evoke the perceptual mecha-
nisms in an effortless manner. Evoking structure is done by
gestural triggering— making a structural selection gesture.
The rectangular shape of the selection enclosure8 makes it
visually apparent that the system is ready to treat the next
operation as a structural operation. After the user operates
on a structural selection (e.g., moves it), the structural selec-
tion remains for further operations. The user can revert to
freeform by simply beginning to draw strokes, and the
selection is “dismissed” as a side effect.

We might argue that these transitional actions are costless
for the user, since the user has to do them in any case. But,
before making a selection the user must decide whether to
make a structural or a freeform selection. The cost is mental
(a choice has to be made [2]); and occasionally users make
errors (e.g., selecting freeform but expecting a structural
move to occur). We feel the benefits outweigh the costs.9

8. In contrast, a freeform selection is enclosed by a freehand
loop.

Figure 4a. Text move: User selects a word by mak-
ing a left bracket gesture followed by a right bracket.
The caret gesture indicates the desired destination
of the move.

Figure 4b. Result: Space is opened up in item 2,
the selected word is moved into the space, and the
vacated space is closed up in item 5.

➪

Figure 5a. Column move: User makes the “top
bracket” gesture, then a caret gesture to indicate
the destination of the move.

Figure 5b. Result: The selected column is moved
to the right, and the space it vacated is closed up
by moving the remaining objects leftward.

➪

5

Composite Structural Model

Each of the list-like structures we support has unique fea-
tures; but they also share many common features, such as
horizontal-vertical alignment, sequential elements, compact-
ness (i.e., space preservation between items), and so on.
Thus, we treat these four structures as a singlecomposite
structural model, rather than as four different models. There
are two reasons: uniform selection and delayed commitment.

There is a uniform set of structural selection gestures, brack-
ets and L-shaped gestures (Figure 6). These gestures work
by projecting from their legs to define a rectangular region.
This reduces structural selection to simple geometry, i.e.,
defining a rectangle. The user does not have to commit to a
particular structure when a selection is made; the structure is
not determined until an operation on the selection is
invoked. For example, when an item in a list is selected, it
can be either moved to another position in the list (with
space opened vertically to make room for it) or to a place
within another item (with space opened horizontally to
make room for it).

Character-Based Structure

Characters are freeGOs in this scheme. Characters are cre-
ated either by being imported from a text source or by being
typed in.10 In either case, they align nicely and look like
structured text. But there is no underlying structure. If an
eraser is swept through a neatly-aligned array of characters
(such as those on this page), the characters touched by the

9. There is another important distinction for the user in Tivoli:
The user must press a pen button to indicate that a stroke is a ges-
ture. This sometimes causes errors. The benefit is that the user is
totally free to draw anything without worrying whether some kinds
of ink strokes are “reserved” as gestures.

10. Although it would be consistent with our scheme for charac-
ters to be recognized from handwriting, we do not support this,
because it is not appropriate in the group work context of Live-
Board use.

Figure 6. The eight structural selection gestures. Each
gesture can be used to select the material enclosed by
the projection of the legs, or to modify (extend or shrink)
an existing structural selection.

eraser would be deleted, but none of the other characters
would move; and the text-like appearance would be dam-
aged.

Character freeGOs can be made to behave like text by
invoking implicit structures. Structurally selecting a hori-
zontal sequence of characters and then moving them will
cause space to be opened and closed in a text-like manner.
Typing is treated as an implicit structure operation. Making
an ink dot on the display creates a type-in point; if the dot is
near some characters, it will “snap” into a position so that
the typed characters align with existing characters. If there
are characters immediately to the right of the type-in point,
they are moved to the right to accommodate the newly-
typed characters.11

Generic Commands

Most of Tivoli’s basic editing commands are generic (poly-
morphic); the same commands can be applied, with some-
what different but appropriate results, to different freeGO
types and structures. For example, the same pigtail (delete)
gesture applies to both strokes and characters, in either free-
form or structural selections (in the freeform case the
selected freeGOs are simply deleted, but in the latter case
there is a further side-effect of moving surrounding freeGOs
to close up the space). Erasing is always interpreted to be a
freeform operation, and typing commands (character-creat-
ing and spacing commands) are always interpreted to be
structural operations.

Borders & Multiple Structures

Consider a display in which a sketch is made to the right of a
list. Structural operations are not possible on the list,
because the system cannot perceive how much of the mate-
rial on the display belongs to the list. If a left bracket gesture
is made, it will project all the way to the right into the
sketch. If the resulting “item” is then moved, the sketch will
be altered in a nonsensical way (since it is not a list).

This situation is handled by the concept ofborders. Very
long strokes are considered to be borders that divide the dis-
play into regions. Borders delimit structures. Thus, structure
operations stay within the confines of borders. In the exam-

11. Similarly, the keystrokes Space, Backspace, Tab, and Return
evoke familiar positioning operations. There are, of course, no
“formatting character” (e.g., Space, Tab, Return) freeGOs in this
scheme.

➪

Figure 7. A “border” stroke confines the structural
interpretation of selection and movement commands
to one side of the border.

6

ple above, if a vertical stroke is drawn between the list and
the sketch, then operations on the list are confined to the left
side of the border, and the sketch will not be disturbed.

The most common use of borders is to divide the display
into columnar regions for multiple lists. Structural opera-
tions occur independently in the different regions. For
example, an item can be moved from one list to another
across borders. Figure 7 shows two lists with an item
selected in the left list. When the user moves the item to the
right list, it will be inserted there; and the resulting opening
and closing of spaces will be confined by the border so they
don’t interfere with each other.12

Cleanup Operations

Structures emerge from freeform interaction. Because free-
form interaction is not constrained, material is not always
rendered precisely with respect to a given structure; and thus
the system may not perceive it in the same way as the user
does. This can lead to some unpleasant perplexities.

To deal with this problem, we providecleanup operations,
which neaten up the alignment of material. In carrying out a
cleanup operation, the system must decide whether elements
are aligned or not. It is not so important what the system
decides; what is important is that it makes the system’s per-
ception clear to the user. The user can then adjust those ele-
ments that were misperceived.

For example, the horizontal cleanup operation is useful for
tables. Consider the table in Figure 8a, which is taken from
our user test data. The user created the table column-wise,
and hence the rows are not well-aligned horizontally. Note
that it is impossible to select the first row of the table
because it dips and the elements are crowded. The horizon-
tal cleanup operation analyzes a table column by column,
identifying the items in each column, finds correspondences
between the items in the different columns, and decides

12. We also permit selections to be extended across borders. For
example, in a table with vertical lines delimiting its columns, a
“[”gesture selects up to the nearest border. Then a “]” gesture on
the other side of the border extends the selection across it. In carry-
ing out the operation on the extended selection (such as moving a
row of the table), the border lines are treated as “ambient” in that
they remain fixed during the operation.

what is in each row; it then respaces the elements to make
the spacing between rows clear. The result in this example is
shown in Figure 8b, where it can be seen that the first row is
now easily selected.

Animation

Structural operations, especially moves, cause not only the
selected material to move but also some of the non-selected
material. It can be confusing when many objects are jump-
ing to new locations. This is especially critical in the Live-
Board situation, where one person is making the edits and
other people are watching (the “demo phenomenon”). The
operations on the display need to besocially perceptible.
Our solution to this is toanimate all the movements so that
anyone watching can visually track the changes. (See [3,10]
for a more detailed rationale for the utility of animation.)

Undo

The implicit structure scheme has evolved to be quite simple
and natural. But this does not mean that anyone can walk up
and use it without any practice. There are a lot of subtleties
of interaction that must be learned through experience. Our
experience is that it takes users about 10 minutes of practice
to learn the basic Tivoli gestures plus about 15 minutes more
to feel confident and comfortable with the implicit structure
scheme. In LiveBoard situations, where users are in meet-
ings when they first decide to use the structural operations,
they cannot take time out to practice. Therefore, there is
often a lot of initial fumbling. In these situations, we have
found our unlimitedUndo operation makes a huge differ-
ence. Even experienced users are occasionally surprised
when the system perceives materials differently than they do
(an inherent issue in this kind of technique), and the Undo
reduces these potential disasters to manageable glitches.

THE SYSTEM’S PERCEPTUAL MECHANISM
The whole implicit structure scheme rests on the ability of
the system to quickly perceive structure. The mechanism we
use is based on computing a “projected ink profile.” Figure
9 shows graphically the profile computed in both horizontal
and vertical dimensions for the material from Figures 2
through 5. The peaks and valleys of the profile curves are
analyzed to identify the structural elements and the spaces
between them. While more sophisticated clustering tech-
niques could also be used, this computational technique is

Figure 8a. This hand-drawn table has evolved to
the point where the rows are too skewed and
crowded to be selectable by a structured gesture.

Figure 8b. After applying a “table cleanup” opera-
tion, the rows have been straightened out and
spread apart, making them easily selectable.

➪

7

well suited to our purposes and has served us well. It is good
at picking up the alignment relations that are inherent in list-
like structures, while tolerating some degree of overlap
between elements (e.g., the strokes in items 3 and 4 in Fig-
ure 9). It is efficient enough that structures can be computed
on demand, which is critical for supporting ephemeral per-
ception.

DESIGN HISTORY
Designing and iteratively refining the implicit structure
scheme took place during a period of a little over two years.
A variety of empirical tests were employed: experiences of
the developers and close colleagues, independent user tests,
and real use situations.

At first we implemented a “lined paper” method for han-
dling lists (which is what other pen-based systems, such as
[1,8], do). We set aside that scheme when we were satisfied
that we could recognize lists on a blank surface. It took
almost a year of iteration and refinement, with lots of testing
within the Tivoli group before we had a version without
“obvious” flaws. There were many design issues at this
point that needed empirical evidence to help us address.

We conducted a small set of tests with independent users. In
each session of about an hour, a user was trained until he/she
was confident; then the user was given a range of tasks by
playing the role of “scribe” in a simulated meeting. It took
only four users before enough major problems were raised
that we had to address. The problems involved confusion
among the various structures (rows, columns, segments,
blocks), which at that time were treated as different kinds of
selection. During the next few months we redesigned and
reimplemented the conceptual model and user interface: The
structures were simplified to the composite structural model,
and dragging and animation were added.

Another example of a problem raised in the user tests was
that our early design for L-gestures was much too confusing
to users. The original L-gestures are shown in Figure 10.
The L-gestures were powerful operations for opening and
closing spaces. Their design was perfectly logical: the order
in which an L was drawn was significant; the first leg of an
L indicated where the space was to be adjusted, and the sec-

Figure 9. The projected-ink profile graphs at
the left and top show the system’s measure of
the ink density in the x and y dimensions.

ond leg indicated the direction and extent of the adjustment.
But users could not remember this abstract logic. Therefore,
we abandoned these operations13 and made all L-gestures be
simple projective selection gestures (Figure 6). Users have
no trouble with these.

Once these changes were made, we had an opportunity to
use the system in support of a series of real meetings, whose
function was to collaboratively reorganize the priorities
among large sets of items. To do this they used the ability to
manipulate multi-column lists. These meetings went on for
several months, and prompted the refinement of several
minor aspects of the interface and the workings of the
underlying recognition algorithms.

Finally, a subset of the implicit structure scheme (most of
the aspects described in this paper) was chosen to be “hard-
ened” and incorporated into LiveWorks’ MeetingBoard
product.

RELATION TO OTHER SYSTEMS
There are hints of implicit structure in current user inter-
faces, although the principles are not articulated or devel-
oped. For example, most word processors implicitly
recognize words, and yet allow users to deal with text at the
level of characters. Emacs [14] carries this idea the farthest.
Emacs uses the character string as the base representation
(analogous to freeGOs), and allows modes to be applied to
the base (e.g., text, Lisp, or C++ modes). The structures are
embedded in recognition routines and not data structures,
and thus different modes can be applied to the same text.
Lakin took inspiration from Emacs and extended this idea to
the visual realm [6]. But structure in Emacs is not ephem-
eral; the user must explicitly declare modes. Further, modes
are applied wholistically to the entire character string.

Pen-based systems promise informal interaction. Yet they
mostly use the pen to input characters and then treat the text
in the standard way. That is to say, they are not freeform in
the sense defined in this paper. Perhaps the most notorious
pen-based system today is the Apple Newton MessagePad
[8]. The Newton uses two basic structures, character strings
and structured graphics. However, once handwriting or
drawing is interpreted, the interpretation is permanent. Thus

13. There are other ways to open and close spaces.

Figure 10. A set of structured command gestures,
no longer used in the present system.

8

handwritten text cannot be treated in a structural manner,
and strings of characters generally cannot be freeform. Also,
characters and graphics cannot be manipulated together in a
structural manner; e.g., a graphic object located within a
character string will not be moved when characters prior to
it are deleted.

The aha! InkWriter [1] is perhaps the closest system to ours
in its basic objectives. Its main goal is to treat handwriting
as text. It supports text paragraphs and lists of handwriting
or characters. Graphics are treated as separate paragraphs.
The system compromises on freeform interaction, because it
uses a “lined paper” background. Strokes are interpreted as
handwriting only if they occur between the lines, and
strokes are interpreted as graphics only if they are more than
two lines high (and at least one space from a handwritten
paragraph). Once input is interpreted, it remains as either
text or graphics. Neither system exhibits the fluidity or flexi-
bility that we feel is necessary for a truly usable informal
(i.e., freeform) system.

LIMITS OF THE IMPLICIT STRUCTURE APPROACH
We should put the notion of implicit structure within free-
form interaction in perspective. Freeform interaction is
appropriate only in situations where constraints would
inhibit rather than support a process. There are times when
constraints are helpful. We would not be against “freezing”
(making explicit) an implicit structure in such a situation.
What seems needed is a way to transition from freeform to
structured interaction [12]. Treating structure implicitly and
ephemerally is useful in early, formative stages of a process.

But it should be understood that there are limits to the
implicit structure approach.14 Given the inherent freedom of
expression in freeform interaction, it is difficult for users to
stay within the confines defined by particular “visual gram-
mars.” Even if users mentally stick to particular structures,
there are the manual problems of neatness, in which users
vary considerably. These make system perception difficult
in general. That is why we have chosen not to implement
elaborate recognition grammars, but rather to “perceive”
simple visual features (e.g., alignment) that are useful across
different structures.

We could mitigate the perceptual problems in several ways.
The most heavy-handed way is a structure editor (like an
Emacs mode). This is not acceptable. We could provide
guidelines (like “lined paper”). This would be acceptable if
the user were not confined in rigid ways to them. We have
taken the “softest” approach: the use of cleanup operations.

In any case, this approach requires a spirit of cooperation
between the user and the system. The users have to follow
good-faith “interactional maxims” (analogous to the conver-
sational maxims [5] that people naturally follow) if implicit
structure is to work. We suggest a Maxim of Appropriate-
ness, which says that users will only invoke operations that
are appropriate given the material at hand (e.g., they will not

14. In fact, these limits are probably inherent in all recognition-
based systems.

try to do a list move on a sketch of a face). With experience,
the user becomes more attuned to what to expect of the sys-
tem (i.e., the sense of “appropriateness” becomes highly
refined), and the interaction becomes skillful. The user can
then have the benefits of structural support as well as free-
dom of expression.

ACKNOWLEDGMENTS
We would like to thank many colleagues — Eric Saund, Frank
Halasz, Kim McCall, Steve Harrison, Sara Bly, and other members
of the Collaborative Systems Area at PARC — for trying out and
discussing this work as we iterated through various designs.

REFERENCES
[1] aha! InkWriter Handbook (1993). Mountain View,

CA: aha! software corporation.

[2] Card, S. K., Moran, T. P., & Newell, A. (1983).The
Psychology of Human-Computer Interaction. Hills-
dale, NJ: Lawrence Erlbaum Associates.

[3] Chang, B. W., and Unger, D. (1993). Animation: from
cartoons to the user interface.Proceedings of
UIST’93, 45-55. New York: ACM.

[4] Elrod, S., Bruce, R., et al. (1992). LiveBoard: A large
interactive display supporting group meetings, pre-
sentations and remote collaboration.Proceedings of
CHI’92. New York: ACM.

[5] Grice, H. P. (1975). Logic and conversation. In P.
Cole & J. Morgan (Eds.),Syntax and semantics 3:
speech acts. New York: Academic Press.

[6] Lakin, F. (1987). Visual grammars for visual lan-
guages.Proceedings of AAAI’87, 683-688.

[7] Moran, T. P. (1993). Deformalizing computer and
communication systems. Position Paper for theInter-
CHI’93 Research Symposium.

[8] Newton MessagePad Handbook (1993). Cupertino,
CA: Apple Computer, Inc.

[9] Pedersen, E. R., McCall, K., Moran, T. P., & Halasz,
F. G. (1993). Tivoli: An electronic whiteboard for
informal workgroup meetings.Proceedings of Inter-
CHI’93, 391-398. New York: ACM.

[10] Robertson, G. G., Card, S. K., MacKinlay, J. D.
(1989). The cognitive co-processor architecture for
interactive user interfaces.Proceedings of UIST’89.
New York: ACM.

[11] Saund, E., & Moran, T. P. (1994). A perceptually-sup-
ported sketch editor.Proceedings of UIST’94. New
York: ACM.

[12] Shipman, F. M., & Marshall, C. C. (1993). Formality
considered harmful: experiences, emerging themes,
and directions. Technical Report, Department of
Computer Science, University of Colorado.

[13] Shipman, F. M., Marshall, C. C., & Moran, T. P.
(1995). Finding and using implicit structure in
human-organized spatial information layouts.Pro-
ceedings of CHI’95. New York: ACM.

[14] Stallman, R. (1985).GNU Emacs Manual. Cam-
bridge, MA: Free Software Foundation.

