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Abstract—We present Neon, a new programming model for
grid-based computation with an intuitive, easy-to-use interface
that allows domain experts to take full advantage of single-
node multi-GPU systems. Neon decouples data structure from
computation and back end configurations, allowing the same user
code to operate on a variety of data structures and devices. Neon
relies on a set of hierarchical abstractions that allow the user to
write their applications as if they were sequential applications,
while the runtime handles distribution across multiple GPUs
and performs optimizations such as overlapping computation
and communication without user intervention. We evaluate our
programming model on several applications: a Lattice Boltzmann
fluid solver, a finite-difference Poisson solver and a finite-element
linear elastic solver. We show that these applications can be
implemented concisely and scale well with the number of GPUs—
achieving more than 99% of ideal efficiency.

I. INTRODUCTION

Structured grids are employed in various applications in-
cluding thermal, mechanical and fluid simulations, computer
graphics, visual effects production and medical imaging. Many
algorithms—including spatial interpolations, resampling, con-
volutions, and numerical schemes to discretize differential
equations—are simpler to realize on structured grids. Despite
their simplicity and potential for cache-friendly data layouts,
fine resolution grid-based data incur a large compute and
memory cost, requiring high-performance computing clusters
and distributed programming models for scalability.

GPUs are increasingly being employed to scale high-
performance applications like machine learning, image pro-
cessing, and scientific visualization. Domain experts in scien-
tific computing could greatly benefit from multi-GPU accelera-
tion of their programs. However, designing, implementing, and
debugging parallel algorithms to leverage multiple GPUs re-
quires mastery of multi-GPU programming concepts—expert
knowledge of new languages like CUDA or OpenCL, un-
derstanding of parallel programming models, handling asyn-
chronous computations, communications and memory transfer.

Consider designing a typical map-stencil pattern on a simple
dense domain e.g., an AXPY followed by a Laplacian filter.
Its execution workflow is shown in Fig. 1, from a naı̈ve
version to an optimized one that aims at maximizing the
overlap between computation and communication (OCC). The
more aggressive an OCC optimization is, the more complex
the code becomes, and a deeper knowledge of multi-GPU
communication is needed. The complexity increases even
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further when considering sparse volumetric representations
because of the lack of a data structure abstraction that supports
a general and portable definition for OCC optimizations.

GPU-based frameworks like TensorFlow [1] for machine
learning, Halide [2] for image processing, and Hadoop [3] for
big-data processing are some examples where programming
multi-GPU and distributed systems have been made easier for
specific applications. It has been argued that these frameworks
have led to rapid scientific and technical advances in many
fields [4]. We aim to bring similar benefits to large-scale grid-
based numerical problems while delivering excellent efficiency
by leveraging automatic OCC optimizations.

We present Neon—a programming model and its C++
implementation that enables scaling of grid-based numerical
problems on single-node multi-GPU systems, without sacrific-
ing ease of programming or requiring parallel programming
knowledge from the user. Using Neon, we are able to achieve
more than 99% ideal efficiency on the analyzed applications
thanks to the automatic OCC optimization. Neon follows a
domain specific approach—it provides an intuitive API to
represent numerical fields over a regularly discretized 3D
domain. As in most engineering problems, the domain is free-
form (i.e., not a cubic). We also provide options for dense and
sparse representations—both optimized for load balance and
minimization of GPU-GPU transfer overhead.

Neon’s computational model derives from the parallel skele-
ton tradition [5] where users describe their applications using
a set of predefined parallel constructs. By design, any Neon
application is described with respect to a back end (CPU
or GPU), the number of available resources (GPUs), a grid
data structure (dense or sparse), layout (Structure-of-Arrays
or Array-of-Structures) and memory properties (alignment,
padding, type of allocator). More importantly, all parameters
can be easily switched without altering application-specific
code. Unlike other skeleton models, Neon treats grid data
structures as first-class citizens which allows for many opti-
mizations. In this paper, we make the following contributions:

• A programming model that abstracts multi-GPU complexity
and exposes an intuitive interface to users. We present a
method to automatically infer the data dependency graph
and introduce OCC optimizations from a sequential code.

• A C++ implementation of our programming model with
an easy-to-use interface for grid-based computations. We
demonstrate how the grid data structure (dense, sparse) and
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Fig. 1: A schematic implementation of a map operation (green) followed by a stencil computation (purple) using two GPUs
with different levels of optimization and complexity: a) The unoptimized implementation does not consider OCC by setting a
global synchronization barrier before the halo update, b) Overlapping part of the stencil operation with memory transfer is a
common technique to improve performance, c) Further overlapping between computation and communication is achieved by
splitting the map operation and initiating memory transfer right after the boundary map computation, potentially leading to
better performance.

back end (multi-core, single GPU, and single-node multi-
GPU) can be changed with no modification to user-code.

• Benchmarks on an 8-GPU system demonstrating excellent
scaling performance on three real-world applications: a
Lattice-Boltzmann fluid solver, a finite-difference Poisson
solver, and a finite-element linear elastic structural solver.
We restrict the scope of our implementation of the Neon

programming model to single node multi-GPU and without
support for out-of-core operations. Our current implementation
and explanation of the system is based on CUDA for simplicity
and only targets Nvidia GPUs. However, the principles of the
system are generic and allow similar implementations using
other frameworks and APIs like OpenCL or Vulkan.

II. RELATED WORK

Since our goal is towards a high-level, generic abstraction
for grid-based computation, we only discuss related work
that allows developers to write simple code for their full
application, while relying on a framework for optimization
across multiple GPUs.

a) Generic Frameworks: Modern generic parallel com-
puting frameworks capitalize on the so-called pattern-based
(or skeleton-based) programming model to offer a high-level
parallel computing abstraction without sacrificing high perfor-
mance. Complex applications are built on top of these patterns
by using them as building blocks, while the low-level details
are hidden from the user. With their concise semantics and
clear functionality, frameworks using parallel patterns strike
a good balance between simplicity, high performance, and
portability [6], [7], [8], [9]. Since these frameworks target
generic applications, the user has to implement and optimize
their data structure for grid-based applications using low-level
primitives (e.g., 1D arrays) offered by the framework—a time-

consuming task especially for sparse domains. Neon follows a
pattern-based programming model, while treating the grid data
structure as a first-class citizen which allows for optimizations
that are very challenging using low-level primitives.

b) Domain-specific Frameworks: Many grid-based
application-specific frameworks have been proposed to
hide the complexity of GPU programming while offering
intuitive abstraction for the application developers [10], [11],
[12]. Grid-based computation can benefit from a higher-level
abstraction where developers can write all their applications in
a single framework and, more importantly, share optimization
techniques across different applications.

Taichi [13] and OPS [14] are the most closely related works
to ours, and develop a domain-specific framework for grid-
based computation. Taichi is a Python framework that relies
on just-in-time compilation to offload compute-intensive tasks
to multi-core CPUs or a single GPU. Similarly to Neon, Taichi
makes it possible to interchange the data structure without a
change in the computation code. However, extending Taichi to
multi-GPU requires extensive user engagement to control each
GPU’s memory. OPS is a domain-specific language and active
library embedded into C/C++/Fortran for expressing compu-
tations on parallel multi-block structured mesh. It allows for a
number of automated communication-pattern optimizations on
a cluster of GPUs or multi-core CPUs using source-to-source
translation, delayed execution, and dependency analysis. Both
Neon and OPS relieve the user from low-level optimization
by performing dependency analysis and automatic partitioning
of the domain into computational resources. However, Neon
is more extensible by allowing users to experiment with
different data structures while OPS uses only a multi-block
data structure with user-managed inter-block halo exchanges.



1 Neon::Int3 dim(128, 128, 1);

2 std::vector<int> gpuIDs{0, 1, 2};

3 Neon::Backend backend(Neon::Backend::CUDA, gpuIDs);

4 // Alternatively, user can switch to OpenMP back end

5 // Neon::Backend backend(Neon::Backend::OpenMP);

6 Neon::Grid grid = Neon::Grid(backend, dim,

7 // Specify active grid cells

8 [&](const Neon::Int3& idx) {

9 int radius = 5*5;

10 return idx.x*idx.x + idx.y*idx.y <=radius;

11 });

12 int cardinality = 3;

13 float outsideDomainValue = 0;

14 Neon::Field velocity = grid.newField<float>(
15 cardinality, outsideDomainValue);

Listing 1: Example of creating 2D circular domain.

III. NEON PROGRAMMING MODEL

At a high level, our programming model decouples the data
structure from the computation performed on it. The user
specifies the domain properties (e.g., size, sparsity pattern)
and then defines computation on top of it. The computation
is parameterized by the domain so that the user can change
the domain properties without changing the computation code.
We capitalize on the data-parallel nature of numerical compu-
tation. The user only focuses on specifying what operations
to apply on an active grid cell while Neon takes care of
applying these operations on all active grid cells and performs
optimizations to achieve high performance.

a) Domain: Computational domains are built from two
components: Grid and Field. Grid is the blueprint for orga-
nizing the computational layout. It defines the extent of the
domain, the sparsity pattern, and the runtime back end. Field
stores the physical quantities needed by the application and is
defined by its properties (e.g., cardinality, data type, and data
layout) and the Grid type that creates it. Listing 1 shows how
to define a simple Grid and Field for a 2D domain.

b) Computation: We define three building blocks in our
programming model that can be used to write a wide range of
numerical applications. All our building blocks accept Fields
as input and exhibit different communication patterns, thereby
requiring different types of optimization for high performance.

Map Operation (Neon::MapOp): It updates the data
associated with a grid cell in a Field using data from the
corresponding grid cells in other input Fields, potentially trans-
formed by user-defined operations. Concretely, map operations
are defined as follows where F∗ are all Fields of size K, and
op(·) is a user-defined operation:

Fout[i]← op(F1[i], F2[i], . . . ), ∀i ∈ [0,K).

Examples of Map operations include AXPY, copying a Field
to another, and scaling a Field by a constant.

Stencil Operation (Neon::StencilOp): It allows a
grid cell to gather information from surrounding grid cells
using a user-defined stencil. Similar to Map, the user can

define custom operations and specify how the final results are
aggregated. Formally, stencil operations are defined as follows
where op(·) is user-defined operation and N (i) is the set of
stencil neighbour grid cells around cell i:

Fout[i]← opj∈N (i)(F1[j], F2[j], . . .),∀i ∈ [0,K).

Reduce Operation (Neon::ReduceOp): It applies a
user-defined binary and associative operation on the input
Fields and reduces them to a single value. Examples include
dot product and computing the L2 norm of a Field. The reduce
operation can be defined as

out← op({F1[i], F2[i], . . . | ∀i ∈ [0,K)}).

While these three building blocks are simple, they are
powerful enough to write a wide range of computations such
as solving linear systems, eigenvalue problems and almost all
the functions found in BLAS [15]. The major difference is
how Neon defines matrix operations. While BLAS aims at
general-purpose matrix operations, the majority of grid-based
numerical computations define their matrix operations as a
stencil applied on a well-defined neighborhood around each
grid cell. Thus, Neon performs such operations in a matrix-free
fashion, avoiding the costly assembly step [16]. One limitation
of this approach is that certain matrix operations (e.g., matrix
factorization) must be user-managed.

An example of using these building blocks is shown in
Listing 2 for creating a Laplacian stencil. Neon provides
an opaque data type called Container to wrap one or more
building blocks. The building block type is defined on the Field
itself (line 4 and 5) using the Loader data type (Section IV-B).
Containers allow the user to create complex operations by
combining multiple building blocks. The actual functionality
is implemented as a lambda function (lines 6–17).

In order to construct a useful application, the user defines
a set of sequential steps, where each step is wrapped by a
Container. Neon provides a Skeleton data type that takes the
sequence of Containers, along with the desired back end to
run them, and is responsible for exploiting parallelism when
possible (Section V-B). This is achieved by automatically
building a data dependency graph (Section V-A) from the
Containers. Listing 3 shows a pseudo code implementation of
a conjugate gradient solver [17] using the Neon programming
model. Along with the user-defined building blocks, Neon also
offers a set of well-optimized standard BLAS operations (e.g.,
dot product) with a unified interface for different grid types
to facilitate rapid prototyping.

IV. NEON FRAMEWORK

In this section, we dive into the design of Neon. We aim
to develop a domain-specific programming model with the
following high-level design goals:

Simplicity: We aim to simplify the user experience for
programming grid-based multi-GPU applications. Neon’s tar-
get is to provide a programming model that allows users to
write applications as sequential code while their execution runs
on a multi-GPU back end.



1 Neon::Container LaplacianStencil(const Field& input,

2 Field& output) {

3 return input.newContainer([&](Neon::Loader& loader){

4 auto& inp = loader.load(input, Neon::StencilOp);

5 auto& out = loader.load(output, Neon::MapOp);

6 return [=](const Field::Index& idx){

7 Field::Index direction;

8 for (int c = 0; c < inp.cardinality(); c++) {

9 Field::Type sum = 0;

10 direction = {1,0,0}; //+x

11 sum += inp.neighbourValue(idx, direction, c);

12 direction = {-1,0,0}; //-x

13 sum += inp.neighbourValue(idx, direction, c);

14 // ..... similarly for -y, +y, -z, and +z

15

16 out(idx, c) = (-sum + 6.0 * inp(idx, c));

17 }};});

18 }

Listing 2: User implementation of 7-point stencil operation in
Neon used to compute the Laplacian.

1 Neon::Backend backend;

2 Neon::Grid grid;

3 Neon::Field p, s, x /*unknown*/, r /*residual*/;

4 Neon::Scalar rr0, rr, ps;

5 // initialize backend, grid, fields,

6 // and initial residual (rr)

7 //. . .

8

9 // Create a skeleton from a list of Containers

10 std::vector<Container> CG {

11 LaplacianStencil(p, s), // s := A*p

12 grid.Dot(p, s, ps), // ps := <p,s>

13 UpdateX(rr, ps, p, x), // x := (rr/ps)*p + x

14 UpdateR(rr, ps, s, r), // r := (-rr/ps)*s + r

15 Residual(r, r, rr, rr0), // rr0 := rr

16 // rr := <r,r>

17 UpdateP(rr, rr0, r, p)}; // p := r + (rr/rr0)*p

18

19 Neon::Skeleton skeleton(backend, CG);

20 while(...) { skeleton.run();}

21 backend.sync();

Listing 3: Pseudo code of the conjugate gradient algorithm
using Neon programming model.

Performance: Without sacrificing API simplicity, we
aim to achieve performance that closely matches hardwired
application-specific code. This is done by automatically par-
titioning and distributing user data, minimizing the paral-
lelization overhead (communication and synchronizations),
and ensuring load balancing.

Decouple data structures from computation: Performance
depends heavily on the underlying grid data structure. Thus,
Neon separates the data structure from operations applied on
the data structure. This makes it possible to test different data
structures’ performance without changing user code.

Portability: While we aim to provide high performance
on a multi-GPU back end, debugging of a user’s application on
a serial back end is common practice. Neon allows portability
between different back ends with a focus on high performance
on the multi-GPU back end.

To reach these goals, we need to address four challenges:
Data Challenge: We need a generic multi-GPU data

abstraction to distribute, manage, and access user data across
the available GPUs. The abstraction must also determine data
exchanges between GPUs to support the correct execution of
stencil and reduce operations.

Kernel Challenge: We require a multi-GPU kernel mech-
anism that can transform user sequential kernel code into
GPU-specific functions for the GPU-specific portion of data.

Dependency-graph Challenge: The system needs a mech-
anism to detect what data a multi-GPU kernel is using, its
access type (read or write), and the compute pattern (mapOp,
stencilOp, or reduceOp) in order to build a dependency
graph of the application. We focus only on applications
described as a user-defined sequence of functions—we do not
support dynamic branching.

Orchestration Challenge: We have to define a correct and
optimized execution strategy for the user-defined sequence of
functions that compose the application. From a dependency
graph and the kernel’s computation pattern, the orchestration
process must automatically reorganize the execution to include
the necessary synchronizations and communication for the
correct execution. Then optimizations that alleviate the par-
allelization overhead, like OCC must be incorporated.

While other tools like OPS [14] or Taichi [13] address
some of the previous challenges by relying on a compiler,
we designed Neon as a self-contained C++ library. Because
of the limited run-time introspection mechanism in C++
the Dependency-graph challenge becomes a non trivial task.
Nevertheless, the C++ language is widely used in the HPC
community [18] and thus a C++ library is amenable to be
integrated into existing HPC code bases.

We designed Neon by defining a hierarchy of abstraction
layers. Each layer extends the previous one with semantically
powerful mechanisms. At the lowest level, the Neon System
(Section IV-A) provides an object-oriented and unified in-
terface for any supported back end. The Set (Section IV-B)
level adds mechanisms to address the Kernel Challenge,
Dependency-graph challenge and partially address the Data
Challenge. The Domain extends and automates the Set by
providing domain-specific mechanisms for grid computation
finalizing our solution for the Data Challenge. Finally, at
the highest abstraction, the Skeleton (Section V) leverages
mechanisms from all previous levels to solve the Orchestration
Challenge. The end result is a programming model that
efficiently hides all multi-GPU complexity.

A. The System Abstraction

The System abstraction shields the rest of Neon from
architecture and hardware-specific mechanisms. It defines an
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Figure 3: Di�erent data views in Neon for a simple two GPU example.

the kernel uses only the bu�er object, and its operations are of
type map. Line 12 seems to be a simple renaming operation that
extracts some information on the relation between the kernel and
the variable. [Nigel: what do you mean by it ’seems to be’? Best to
avoid imprecise language like this]

From a code perspective, the users have the sensation of working
on the continuous logical bu�er. However, the NSetL kernel launch
process works on a partitioned view of the bu�er. This is one of
the core mechanisms Neon is based on. [Nigel: I think it is much
better to lead the section with this explanation]

Indeed, the NSetL runtime calls the lambda at line 12 once for
each available device (two in the speci�c example). At each time,
the provided loader has been initialized for a particular GPU. The
load operation only extracts the information related to a speci�c
GPU from an NSetL multi-GPU object. In other words, myBuff has
a global view of the entire bu�er (even if it is partitioned) while
buf can only access the �rst four elements when run for GPU 0 (in
green in Fig. 3) and only the last three when running on GPU 1 (in
blue).

Because of the similarities of the NSetL kernel abstraction with
the container concept, we use the term Container as short for
Kernel Container. [Nigel: don’t we explain Containers in section
3?]

Fig. 3 shows a simple example of a kernel running on a MemSet_t
that is an Neon abstraction. However, NSetL has been designed to be
extendable so users can specify their multi-GPU data structure and
the associated iterator. Even more, leveraging a template interface
like in Listing , any previously written Containers can run over a
new user-de�ned data structure without any code changes.

4.3 The Grid Abstraction
The Neon Grid level (NGL) is domain-speci�c, and it introduces
abstractions for rectilinear grids. A general introduction to grids
and �elds was provided in section 3. Di�erently from previously
presented multi-GPU objects [Nigel: what are you referring to?
past papers or something in this paper?], grids are responsible for
de�ning the data distribution over the available resources to achieve
load balancing during computation.

1 ...

2 // Allocating a buffer of 7 elements:

3 // 4 on GPU 0, 3 on GPU 1

4 auto backend.newMemSet<int> myBuff({4, 3});

5

6 // Initialization of each element on host side

7 for(int i=0; i<7; i++) myBuff(i)= 33+i;

8

9 ...

10 // Launching a device kernel that adds 1 to each element

11 auto kernel = myBuff.newKernel([&myBuff](Neon::Loader_t& loader){

12 auto buf = loader.load(myBuff, Neon::MAP);

13 return [buf](const decltype(myBuff)::eIdx_t& e){

14 buf(e) += 1;

15 }

16 }

17 kernel.run()

Listing 4: Simple code to explain how data is represented and
managed at the set abstraction level

At the moment, Neon provides two representations: dense, where
the entire cubic [Nigel: cubic?] domain is represented in memory,
and element sparse, where only cells of interest are stored. However,
users can easily extend the framework with a grid of their design.
[Max: How to prove it?]

When dealing with grids, stencil operators are the more chal-
lenging and exciting aspect of the computations. The Listing 4.2.2
showcased an example for a Laplacian case. Neon provides an
opaque representation of a stencil so that each grid can hide its spe-
ci�c implementation. Therefore, as for the Neon Set Level, users can
easily change the multi-GPU object, in this case, the grid, without
any change to the business code.

In the dense grid, access to neighbours leverages the direct map-
ping between grid coordinates and memory layout. Instead, the
element-sparse grid relies on a connectivity table where the neigh-
bour’s indexes are stored for each cell. The size of the table depends
on the user stencil provided during the grid initialization. Such
stencil should be the union of all the stencil the user intends to

6

Fig. 3: Neon Set Abstraction: different data views in Neon are used; a continuous logical view for the host and partitioned
local view for the GPU. Operations on the data are defined using Container with index-based user implementation.

by one. The loading lambda function (lines 8–13) stores the
Multi-GPU data objects used by the Container through a
loader object which returns the local partition representations
of the Multi-GPU data objects. The representations are then
accessed by the compute lambda function (lines 10–12) con-
taining the user’s actual computation.

The loading lambda function acts as a bridge from the
global view to the partition view of Multi-GPU data objects.
Moreover, it collects information about the Multi-GPU data
used by a certain Container. The loading lambda function
is the mechanism that fills the gap between a compiler and
a library approach. In the former, the transformation from
global to local or the tracking of the data dependencies can
be accomplished by analyzing the syntax tree. In our library
approach, this information is lacking and provided by the user
with the loading lambda function.

The Container hides its SPMD nature in the loading lambda
function and its input parameter the Loader object. During
execution, the Loader takes a parameter that directs the code
to run on a specific GPU. This is illustrated by the pseudo-
code in Listing 4.

Neon loops over all the available GPUs to launch a CUDA
kernel for each GPU (Listing 4, lines 2–6). It starts by ini-
tializing a GPU-specific Loader object, which is then used to
extract the compute lambda function from the user Container
(Listing 4, line 4). The function getComputeLambda is
exactly the compute lambda written by the user Container
(e.g. Fig. 3, lines 10–13). Since the Loader object used in
the loading process is GPU specific and the user compute
lambda depends on the loading step, the user compute lambda
itself is GPU specific. Neon then computes the index space
from the user Multi-GPU data object that was used to create
the Container (the mybuff in line 8 of Fig. 3) to determine
the CUDA grid parameters and runs the lambda on the target
device.

Additionally, the runtime can defer a Container execution
since all the required data has been captured. This is a useful
feature as we can inject the orchestration process, which is in
charge of scheduling kernels and synchronizations, between
the Container definition and its actual launch (see Section V).

void Container::run(){ 1

for(auto gpu_i : allGPUs) { 2

Loader loader_i(gpu_i); 3

auto compute_i = getComputeLambda(loader_i); 4

auto indexSpace_i = getIndexSpace(gpu_i); 5

gpu_i.execute(indexSpace_i, compute_i); 6

}} 7

Listing 4: Simplified pseudo code showing how Neon pro-
cesses a Container for execution.

3) A parametric run-time model: Finally the Set abstrac-
tion extends the queue-based run-time model defined by the
system level to a multi-GPU environment. Following CUDA
nomenclature, the Set level provides multi-GPU extension for
CUDA Streams and CUDA Events. A multi-GPU Stream is
simply a vector storing one CUDA Stream for each of the
GPU used by the user. Similarly for multi-GPU Events. At
this abstraction level, users can manually manage multi-GPU
Streams and multi-GPU Events to manage the execution of
Containers, however higher levels in Neon will manage them
automatically.

// Allocating a buffer of 7 elements: 1

// 4 on GPU 0, 3 on GPU 1 2

MemSet<int> myBuff = backend.newMemSet<int>({4, 3}); 3

// Initialization of each element on host side 4

for(int i=0; i<7; i++) myBuff(i)= 33+i; 5

... 6

// Launching a device kernel to add 1 to each element 7

Container addOne = 8

myBuff.newContainer([&](Neon::Loader& loader){ 9

auto buf = loader.load(myBuff, Neon::Map); 10

return [=](const MemSet<int>::Index& e){ 11

buf(e) += 1; 12

} 13

} 14

addOne.run() 15

Listing 5: Simple code to explain how data is represented and
managed at the set abstraction level
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Figure 3: Di�erent data views in Neon for a simple two GPU example.

the kernel uses only the bu�er object, and its operations are of
type map. Line 12 seems to be a simple renaming operation that
extracts some information on the relation between the kernel and
the variable. [Nigel: what do you mean by it ’seems to be’? Best to
avoid imprecise language like this]

From a code perspective, the users have the sensation of working
on the continuous logical bu�er. However, the NSetL kernel launch
process works on a partitioned view of the bu�er. This is one of
the core mechanisms Neon is based on. [Nigel: I think it is much
better to lead the section with this explanation]

Indeed, the NSetL runtime calls the lambda at line 12 once for
each available device (two in the speci�c example). At each time,
the provided loader has been initialized for a particular GPU. The
load operation only extracts the information related to a speci�c
GPU from an NSetL multi-GPU object. In other words, myBuff has
a global view of the entire bu�er (even if it is partitioned) while
buf can only access the �rst four elements when run for GPU 0 (in
green in Fig. 3) and only the last three when running on GPU 1 (in
blue).

Because of the similarities of the NSetL kernel abstraction with
the container concept, we use the term Container as short for
Kernel Container. [Nigel: don’t we explain Containers in section
3?]

Fig. 3 shows a simple example of a kernel running on a MemSet_t
that is an Neon abstraction. However, NSetL has been designed to be
extendable so users can specify their multi-GPU data structure and
the associated iterator. Even more, leveraging a template interface
like in Listing , any previously written Containers can run over a
new user-de�ned data structure without any code changes.

4.3 The Grid Abstraction
The Neon Grid level (NGL) is domain-speci�c, and it introduces
abstractions for rectilinear grids. A general introduction to grids
and �elds was provided in section 3. Di�erently from previously
presented multi-GPU objects [Nigel: what are you referring to?
past papers or something in this paper?], grids are responsible for
de�ning the data distribution over the available resources to achieve
load balancing during computation.

1 ...

2 // Allocating a buffer of 7 elements:

3 // 4 on GPU 0, 3 on GPU 1

4 auto backend.newMemSet<int> myBuff({4, 3});

5

6 // Initialization of each element on host side

7 for(int i=0; i<7; i++) myBuff(i)= 33+i;

8

9 ...

10 // Launching a device kernel that adds 1 to each element

11 auto kernel = myBuff.newKernel([&myBuff](Neon::Loader_t& loader){

12 auto buf = loader.load(myBuff, Neon::MAP);

13 return [buf](const decltype(myBuff)::eIdx_t& e){

14 buf(e) += 1;

15 }

16 }

17 kernel.run()

Listing 4: Simple code to explain how data is represented and
managed at the set abstraction level

At the moment, Neon provides two representations: dense, where
the entire cubic [Nigel: cubic?] domain is represented in memory,
and element sparse, where only cells of interest are stored. However,
users can easily extend the framework with a grid of their design.
[Max: How to prove it?]

When dealing with grids, stencil operators are the more chal-
lenging and exciting aspect of the computations. The Listing 4.2.2
showcased an example for a Laplacian case. Neon provides an
opaque representation of a stencil so that each grid can hide its spe-
ci�c implementation. Therefore, as for the Neon Set Level, users can
easily change the multi-GPU object, in this case, the grid, without
any change to the business code.

In the dense grid, access to neighbours leverages the direct map-
ping between grid coordinates and memory layout. Instead, the
element-sparse grid relies on a connectivity table where the neigh-
bour’s indexes are stored for each cell. The size of the table depends
on the user stencil provided during the grid initialization. Such
stencil should be the union of all the stencil the user intends to

6

Fig. 3: Neon Set Abstraction: different data views in Neon are used; a continuous logical view for the host and partitioned
local view for the GPU. Operations on the data are defined using Container with index-based user implementation.

by one. The loading lambda function (lines 8–13) stores the
Multi-GPU data objects used by the Container through a
loader object which returns the local partition representations
of the Multi-GPU data objects. The representations are then
accessed by the compute lambda function (lines 10–12) con-
taining the user’s actual computation.

The loading lambda function acts as a bridge from the
global view to the partition view of Multi-GPU data objects.
Moreover, it collects information about the Multi-GPU data
used by a certain Container. The loading lambda function
is the mechanism that fills the gap between a compiler and
a library approach. In the former, the transformation from
global to local or the tracking of the data dependencies can
be accomplished by analyzing the syntax tree. In our library
approach, this information is lacking and provided by the user
with the loading lambda function.

The Container hides its SPMD nature in the loading lambda
function and its input parameter the Loader object. During
execution, the Loader takes a parameter that directs the code
to run on a specific GPU. This is illustrated by the pseudo-
code in Listing 4.

Neon loops over all the available GPUs to launch a CUDA
kernel for each GPU (Listing 4, lines 2–6). It starts by ini-
tializing a GPU-specific Loader object, which is then used to
extract the compute lambda function from the user Container
(Listing 4, line 4). The function getComputeLambda is
exactly the compute lambda written by the user Container
(e.g. Fig. 3, lines 10–13). Since the Loader object used in
the loading process is GPU specific and the user compute
lambda depends on the loading step, the user compute lambda
itself is GPU specific. Neon then computes the index space
from the user Multi-GPU data object that was used to create
the Container (the mybuff in line 8 of Fig. 3) to determine
the CUDA grid parameters and runs the lambda on the target
device.

Additionally, the runtime can defer a Container execution
since all the required data has been captured. This is a useful
feature as we can inject the orchestration process, which is in
charge of scheduling kernels and synchronizations, between
the Container definition and its actual launch (see Section V).

void Container::run(){ 1

for(auto gpu_i : allGPUs) { 2

Loader loader_i(gpu_i); 3

auto compute_i = getComputeLambda(loader_i); 4

auto indexSpace_i = getIndexSpace(gpu_i); 5

gpu_i.execute(indexSpace_i, compute_i); 6

}} 7

Listing 4: Simplified pseudo code showing how Neon pro-
cesses a Container for execution.

3) A parametric run-time model: Finally the Set abstrac-
tion extends the queue-based run-time model defined by the
system level to a multi-GPU environment. Following CUDA
nomenclature, the Set level provides multi-GPU extension for
CUDA Streams and CUDA Events. A multi-GPU Stream is
simply a vector storing one CUDA Stream for each of the
GPU used by the user. Similarly for multi-GPU Events. At
this abstraction level, users can manually manage multi-GPU
Streams and multi-GPU Events to manage the execution of
Containers, however higher levels in Neon will manage them
automatically.

// Allocating a buffer of 7 elements: 1

// 4 on GPU 0, 3 on GPU 1 2

MemSet<int> myBuff = backend.newMemSet<int>({4, 3}); 3

// Initialization of each element on host side 4

for(int i=0; i<7; i++) myBuff(i)= 33+i; 5

... 6

// Launching a device kernel to add 1 to each element 7

Container addOne = 8

myBuff.newContainer([&](Neon::Loader& loader){ 9

auto buf = loader.load(myBuff, Neon::Map); 10

return [=](const MemSet<int>::Index& e){ 11

buf(e) += 1; 12

} 13

} 14

addOne.run() 15

Listing 5: Simple code to explain how data is represented and
managed at the set abstraction level
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1 // Allocating a buffer of 7 elements:

2 // 4 on GPU 0, 3 on GPU 1

3 MemSet<int> myBuff = backend.newMemSet<int>({4, 3});

4 // Initialization of each element on host side

5 for(int i=0; i<7; i++) myBuff(i)= 33+i;

6 ...

7 // Launching a device kernel to adds 1 to each element

8 Container addOne =

9 myBuff.newContainer([&](Neon::Loader& loader){

10 auto buf = loader.load(myBuff, Neon::MapOp);

11 return [=](const MemSet<int>::Index& e){

12 buf(e) += 1;

13 }

14 }

15 addOne.run()

Listing 5: Simple code to explain how data is represented and managed at the set abstraction level
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Fig. 2: Data view model where different grid cells are categorized based on their dependencies.

Neon::Skeleton Sk(backend,
{ // Y = alpha * X + Y          
  AXPY(alpha,X,Y)
  // X = Laplace(Y)
  Laplace(Y,X)
  // alpha = dot(X, Y)   
  Dot(X,Y,alpha)
});

(a) User Skeleton Code

Dot
Standard

AXPY
Standard

Laplace
Standard

(b) Data Dependency Graph
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StandardSync Halo 

Update

(c) Multi-GPU Graph with No OCC

Dot
Internal
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Internal

Sync Halo 
Update
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(d) Multi-GPU Graph with Two-way Extended OCC

Fig. 3: From a sequential user code (3a), Neon creates a data
dependency graph of the application (3b) that ensures a correct
execution. Then, Neon creates a multi-GPU graph based on the
selected optimization, for e.g., No OCC (Fig. 3c) or Two-way
Extended OCC (Fig. 3d). Green blocks are map computations,
purple blocks are stencil operations, and blue blocks are
reductions. Red blocks are multi-GPU synchronizations e.g.,
barriers and halo updates. Gray arrows are data dependencies,
and dotted yellow arrows are scheduling hints.

a) Optimizations: While constructing the multi-GPU
graph, we support the following optimizations:

• Standard OCC is a well-known technique that works by
splitting stencil computation into two different Containers:
one on internal cells, the other on boundaries. Since only the
boundary cells depend on data from neighbouring partitions,
we can overlap the halo update communications with the
internal computation.

• Extended OCC where the stencil split is propagated to all
map nodes preceding the stencil node. As a result, commu-
nication can be overlapped with the internal computation of
both the map and the stencil operations.

• Two-way Extended OCC where the stencil split strategy
also includes map or reduce nodes after the stencil node
(Fig. 3d). When splitting a reduction node (e.g., the dot
product in our example), a data dependency is also added
between the internal and the boundary computations. In
our example, the halo update for the stencil operation can
potentially be overlapped with the internal map, internal
stencil, and internal reduce operations nodes.

The potential overlap between memory transfers and compu-
tation becomes a concrete optimization only if the scheduling
process detects it and produces an execution plan accordingly.
For example, in Fig. 3d, the internal map operations should
only be launched after the boundary map operation, otherwise
no overlapping is possible. We leverage the knowledge of the
computation structure during the optimization of the multi-
GPU graph, where Neon adds scheduling hints to the graph
(orange dotted arrows). While a data dependency forces a node
to be completed before the dependent one starts, a scheduling
dependency is a hint to launch a node before another one. For
example, in the multi-GPU graph in Fig. 3d, we provide two
hints to the scheduler to launch the internal stencil operation
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Fig. 2: In Neon Set abstraction, different data views are used:
a continuous logical view for the host, and partitioned local
view for the GPU. Operations on the data are defined using
the Container with for-each interface (line 11).

object-oriented interface to manage resources and requires the
following back end capabilities:
• Memory Management. This allows Neon to create device

buffers and move data between devices or the host.
• Queue-based Run-time Model. Neon uses a queue-based

model to abstract asynchronous kernels running on the same
device. It is a generic model widely used at the hardware
level e.g., in CUDA, Streams represent command queues,
while Events are the mechanism to inject dependencies
between different queues.

• Lambda Functions. Neon leverages the expressiveness of
lambda functions to lessen the complexity of authoring
multi-GPU applications.

Therefore, only the Neon System abstraction must be imple-
mented to port Neon to a new accelerator that exposes the
previous mechanisms. All the higher levels are not impacted.

We model single node, multi-core CPU systems with the
same accelerator interface defined for GPUs. However we limit
the system to only one kernel at the time.

B. The Set Abstraction

The Set abstraction offers solutions for both our Data Chal-
lenge and Kernel Challenge by defining rules to automatically
transform a single sequential user kernel into a semantically
equivalent multi-GPU kernel execution. Here we model a
multi-GPU system by parametrizing all its mechanisms with
respect to the available resources i.e., data and kernels are
described as vectors where the i-th entry stores the information
associated with the i-th GPU.

1) Multi-GPU Data: The Set abstraction defines a C++
template abstract interface for Multi-GPU data to man-

age data that is partitioned, distributed, and stored over the
available GPUs. Any implementation of the Multi-GPU data
interface will create a partition for each GPU and provide
an interface to access it. However, the interface does not
impose any restriction on the partition structure, layout or
implementation.

In Neon, MemSet is the simplest example of an object
implementing the Multi-GPU data interface. MemSet is one
of Neon’s memory allocators for multi-GPU buffers. Given
allocation requests for each GPU, it allocates distributed
buffers on the target GPUs, and optionally mirrors the set
of buffers on the CPU (see example in Fig. 2). MemSet also
creates a mapping from the host buffers to the GPU buffers and
provides methods to transfer between the host and device. The
actual allocations and memory updates are operated through
the System abstraction. Note that MemSet does not handle
automatic partitioning or load balancing; these mechanisms
are introduced at the Domain abstraction level.

The Neon Multi-GPU data provides:
• Host Logical View. When accessed from the host side, a

Multi-GPU data object exposes a contiguous logical view of
its data. An example for MemSet is shown in Fig. 2, line 5
where we interact with the MemSet object as a contiguous
buffer.

• Partition Local View. When queried by the accelerators,
a Multi-GPU data object exposes an interface to read and
write elements of any of its partitions. The interface is index-
based, where both the index space for each data partition and
the index type are accessible to Neon.
2) Containers - Kernels for Multi-GPU: In a multi-GPU

environment, we are looking for a new kernel concept which
we call Container. Its design goals are 1) to provide users
with mechanisms to write a single code computing on Multi-
GPU data, and 2) to enable the framework to generate GPU-
specific versions of the code where Multi-GPU data objects are
replaced with their local GPU partition. While this would be
a trivial task with the support of a custom compiler, we only
leverage standard C++ mechanisms that can generate code
such as templates and lambda functions.

Fig. 2 shows an example of Container code. A Container
is created from a Multi-GPU data object (newContainer
method, line 9) which provides the information for the index
space for each partition. The GPU-specific generated code is
a lambda function, called Compute Lambda, which is written
by the user and works on local partitions of Multi-GPU data
objects captured by value (lines 11–13).

The signature of the Compute Lambda is constrained to
one input parameter so that the system can easily generate
template-based lambda executors at compile-time for both
CUDA and OpenMP back ends. The input parameter is an
index-based iterator provided by Multi-GPU data object used
to create the Container. Defining the compute lambda with
a single input parameter does not limit the flexibility of the
approach as any required values for the kernel can be captured.

As a C++ library, Neon does not have any parsing capa-
bilities to automatically detect what or how Multi-GPU data



are used by the Compute Lambda. Thus the Container design
includes a loading process (Fig. 2, line 10) and a Loader object
for the users to explicitly 1) extract the local view from the
Multi-GPU data, and 2) express what type of computation the
Multi-GPU data will be used for (mapOp, stencilOp, or
reduceOp). The loading process and the generation of the
Compute Lambda must be executed by the system for each
GPU. Therefore, the two components are embedded into a
second lambda function called Loading Lambda (Fig. 2, lines
9–14), which returns the generated Compute Lambda.

1 void Container::run(){

2 for(auto gpu_i : allGPUs) {

3 Loader loader_i(gpu_i);

4 auto compute_i = getComputeLambda(loader_i);

5 auto indexSpace_i = getIndexSpace(gpu_i);

6 gpu_i.execute(indexSpace_i, compute_i);

7 }}

Listing 4: Pseudo code of how Neon processes a Container
for execution.

Listing 4 illustrates how Neon leverages the Container de-
sign for code execution as called in Fig. 2, line 15. Neon loops
over all the available GPUs and starts by initializing a GPU-
specific Loader object. The Loader is passed as input to the
Loading Lambda to extract the generated Compute Lambda
(line 4). The GPU-specific Loader object hides the SPMD
nature of the Container, acting like the rank mechanism in
MPI. Neon then computes the index space from the Multi-GPU
data object that was used to create the Container (myBuff in
Fig. 2, line 8) to determine the CUDA grid parameters and
runs the lambda function on the target device.

3) Application Graph: The Container also solves the
Dependency-graph Challenge by leveraging the Loader ab-
straction. As by design users explicitly extract the Multi-
GPU data partition local view from a Loader object during
the loading process, the Loader can store information about
all the Multi-GPU data used in a Container. Therefore from
a sequence of Containers, a data dependency graph can be
defined. This capability is then leveraged by the Skeleton
abstraction (see Section V).

4) A parametric run-time model: Finally the Set abstraction
extends the queue-based run-time model defined by the System
level to a multi-GPU environment. Following CUDA nomen-
clature, the Set level provides multi-GPU extension for CUDA
Streams and CUDA Events. A multi-GPU Stream is simply
a vector storing one CUDA Stream for each of the GPU.
The same is for multi-GPU Events. At this abstraction level,
users can manually manage multi-GPU Streams and multi-
GPU Events to manage the execution of Containers, however
higher levels in Neon will manage them automatically.

C. The Domain Abstraction

The Domain abstraction introduces the Grid, and Field
models, which together allow grid-specific automation and
optimizations. This level relies on the Set abstraction to define

user computations but it also contributes to the last missing
aspect of the Data Challenge—automatically managing GPU-
GPU data transfers.

1) Grid: Grid is an abstraction for rectilinear domains and
provides a blueprint for defining data on top of it. The abstrac-
tion automatically manages the partitioning of the rectilinear
domain over the available GPUs. To efficiently handle stencil
operations, the Grid defines a data view model that is inspired
by MPI optimizations where cells are categorized by their
data dependencies with respect to a stencil operation (Fig. 3).
Internal cells (green) can be computed by accessing only
the local partition data. Boundary cells (red) require access
to the halo data received from neighbouring partitions. The
Standard view is the union of internal and boundary cells.
Neon determines which cells are boundary or internal based
on the user-provided stencils at initialization. When launching
a Container, a data view parameter specifies which view the
Container should work on i.e., internal, boundary, or standard.
As presented in the next session, this option enables a higher
abstraction level in Neon to automatically inject essential
scheduling optimizations for OCC.

2) Field: Field represents scalar or vector metadata associ-
ated with each cell of the Grid. The Field extends the Set
abstraction Multi-GPU data interface (Section IV-B1) with
domain-specific capabilities—the Partition view of the Field
allows users to read and write cell metadata as well as to read
metadata of neighbouring cells (Listing 2, lines 16 and line
11, respectively). For the Field abstraction, we follow the own-
compute rule model and therefore neighbour cell metadata can
not be modified. To support metadata access for cells that
are not local to a Partition, the Field abstraction includes an
explicit a halo coherency model—a haloUpdate asynchronous
mechanism that updates halo data with respect to a remote
Partition. The size of the halos are computed based on the
union of all the stencils.

Neon provides two types of Grid representations: dense,
where the entire domain is represented in memory, and
element-sparse, where only cells of interest are stored with
their connectivity table. The Grid API also provides a way to
specify the layout for vector metadata by supporting Structure-
of-Arrays (SoA) or Array-of-Structures (AoS) organizations
without impacting the application code. Listing 2 showcases
a 7-point stencil operation with Grids and Fields.

The Grid and Field define abstraction interfaces and do
not impose any restriction on implementations. In particular,
on modern shared-memory multi-GPU systems there are two
main solutions to implement a halo coherency model:
• Explicit Memory Transfer: Each Partition allocates extra

memory (i.e., halo regions) to store remote metadata and
the haloUpdate method executes explicit memory transfers
between GPUs. The required number of transfers depends
on the partitioning schema and the Partition memory layout.
Data marshaling may be needed to reduce the required
memory transfers.

• Unified Memory: Partitions do not allocate halo regions
and, instead, rely on the device driver to automatically
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Fig. 3: Data view model where different grid cells are categorized based on their dependencies.

manage the coherency of the memory between different
GPUs. While the unified memory system simplifies the
implementation, it comes with a performance penalty due
to page faults that could only be mitigated by guiding
the unified memory driver to eventually achieve the same
performance as explicit memory transfer [19].

The dense and element-sparse Grids provided by Neon lever-
age the explicit transfer strategy since it provides full control
over memory management which is essential for OCC opti-
mizations (Section V). In shared-memory multi-GPU systems,
the number of GPUs is relatively low, both Grids decompose
the Cartesian domain only on one dimension so that each GPU
communicates only with two other neighbour GPUs. For scalar
Fields, both Grids layouts organize Boundary cell metadata
in contiguous segments—for each Partition the haloUpdate
executes only two memory transfers and no marshaling is
needed. The same is true for vector Fields with an AoS
organization. For n-component vector SoA Fields, Boundary
cells metadata is organized in contiguous regions for each
component—for each Partition the haloUpdate executes 2n
transfers, no marshaling is needed.

V. THE SKELETON ABSTRACTION

The Skeleton abstraction represents the highest abstraction
in Neon and is the level at which users will write their
code, as presented in Section III. In the previous abstractions,
a lot of complexity is still left with a parallel computing
background to manage—requesting halo updates, multi-GPU
synchronizations, and optimally organizing the execution.

The Skeleton is Neon’s orchestrator. Starting from se-
quential user code (e.g., Listing 3), the Skeleton automatically
composes an execution graph, and optimizes it for efficient
execution on the target back end. Our primary optimization
objectives are to fully leverage the application concurrency
and to schedule the entire multi-GPU execution to best overlap
computation and communication. Under the hood, the Skele-
ton abstraction level operates with three main steps with a
focus on a multi-GPU back end:

• Extracting a data dependency graph from the user code
• Creating a multi-GPU optimized version of the graph
• Identifying a scheduling strategy for the execution

All three steps are automatically managed within Neon, and
no user intervention is required. In the following, we use an
example code snippet in Fig. 4a and track it through each of
the three stages of the Skeleton. The code snippet is composed
of three Containers: a map operation (axpy), a user-defined
stencil operation (laplace), and a reduce operation (dot).

Neon::Skeleton Sk(backend,
{ // Y = alpha * X + Y          
  AXPY(alpha,X,Y)
  // X = Laplace(Y)
  Laplace(Y,X)
  // alpha = dot(X, Y)   
  Dot(X,Y,alpha)
});

(a) User Skeleton Code

Dot
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Laplace
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(b) Data Dependency Graph
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Update

(c) Multi-GPU Graph with No OCC
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(d) Multi-GPU Graph with Two-way Extended OCC

Fig. 4: From a sequential user code (a), Neon creates a
data dependency graph of the application (b) that ensures
a correct execution. Then, Neon creates a multi-GPU graph
based on the selected optimization e.g., No OCC (c) or Two-
way Extended OCC (d). Green blocks are map computations,
purple blocks are stencil operations, and blue blocks are
reductions. Red blocks are multi-GPU synchronizations e.g.,
barriers and halo updates. Gray arrows are data dependencies,
and orange arrows are scheduling hints.

Collectively, they represent the three building blocks used for
application authoring in Neon.

A. Data Dependency Graph

The Skeleton generates a data dependency graph of the
user application where nodes are Containers, and edges are
dependencies between Containers that read or write the same
Multi-GPU data objects. Here we rely on the solution for the
Dependency-graph Challenge provided by the Set abstraction
(Section IV-B3). Once the dependency graph is fully popu-
lated, each node is initialized with a reference to its Container
and a set of flags—operation type (MapOp, StencilOp,
ReduceOp), data view model (Standard, Internal and Bound-
ary) and, a coherency flag. The coherency flag is used to track
Containers that need a halo update for stencil operations.

In our example, the resulting graph (Fig. 4b) shows the
generated dependency (gray arrows) between axpy and
laplace Containers on the X and Y Multi-GPU data with
write-after-read (WaR) and read-after-write (RaW) types,
respectively. Similar dependency is generated between the
laplace and dot Containers. axpy is marked as MapOp,



laplace as StencilOp, and the dot as ReduceOp. All
nodes in the graph are associated with a Standard data view.
Only the laplace Container is flagged as incoherent since
it requires a halo update operation on X.

B. Multi-GPU Graph

The next step is to transform the data dependency graph
into a multi-GPU graph that takes into consideration halo
updates, synchronizations, and possible optimizations. Fig. 4c
shows the resulting multi-GPU graph with no optimizations
applied. Neon adds halo update nodes to ensure the stencil
operation nodes operate on the latest halo data values. At last,
the dependency between the map and the dot product nodes
is removed as redundant for the execution.

Optimizations: While constructing the multi-GPU graph,
we support the following optimizations:
• Standard OCC is a well-known technique that works by

splitting stencil computation into two Containers—one on
internal cells, the other on boundary cells. Since only the
boundary cells depend on data from neighbouring partitions,
we can overlap the halo update communications with the
internal cells computation.

• Extended OCC where the stencil split is propagated to
all map nodes preceding the stencil node. As a result,
communication can be overlapped with the internal cells
computation of both the map and the stencil operations.

• Two-way Extended OCC where the stencil split strategy
also includes map or reduce nodes after the stencil node
(Fig. 4d). When splitting a reduction node (e.g., the dot
product), a data dependency is also added between the in-
ternal and the boundary cells computations. In our example,
the halo update for the stencil operation can potentially
be overlapped with the internal map, internal stencil, and
internal reduce operations nodes.

The potential overlap between memory transfers and compu-
tation becomes a concrete optimization only if the scheduling
process detects it and produces an execution plan accordingly.
For example, in Fig. 4d, the internal map operations should
only be launched after the boundary map operation, otherwise
no overlapping is possible. We leverage the knowledge of the
computation structure during the optimization of the multi-
GPU graph, where Neon adds scheduling hints to the graph
(orange arrows). While a data dependency forces a node to
be completed before the dependent one starts, a scheduling
dependency is a hint to launch a node before another one. For
example, in the multi-GPU graph in Fig. 4d, we provide two
hints to the scheduler to launch the internal stencil operation
node and the reduce internal node before the synchronization
node to ensure communication/computation overlap.

C. Scheduling a Multi-GPU Graph

The scheduling process computes a plan to execute the
multi-GPU graph i.e., how to concurrently launch and syn-
chronize all the kernels on each GPU and to satisfy any data
dependency. The scheduling algorithm defines a set of opera-
tions for the specific queue-based execution model defined by

the System level and extended to multi-GPU environments by
the Set level. The Skeleton scheduling algorithm outputs a list
of tasks to be processed in the specified order by the host when
the graph is executed. Each task is associated with one multi-
GPU graph node and it includes the following information:
• A target multi-GPU Stream
• A wait list of multi-GPU Events that must be completed

before executing
• A reference to a multi-GPU graph node
• A multi-GPU Event to signal the completion of the task

The execution of a task works by enqueuing asynchronous
commands in the task multi-GPU Stream. Firstly, we request
the task stream to stop dispatching any operation until other
multi-GPU Streams have processed all the multi-GPU Events
in the event list. The barrier enforces the data dependencies
between concurrent multi-GPU graph nodes. Then, we request
the stream to process the multi-GPU graph node operation
(computation, memory transfer, or synchronization). Finally,
we enqueue the completion Event to signal the completion
of the multi-GPU graph node operation asynchronously. For
efficiency purposes, some synchronizations are skipped when
two dependent nodes are executed on the same stream.

To build our ordered list of tasks, we rely on a greedy ap-
proach composed of three phases: mapping nodes to streams,
organizing Events to ensure data dependencies, and finally
defining the task list order.
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Fig. 5: BFS levels for stream mapping based on Fig. 4d.

a) Mapping Nodes to Streams: We visit the multi-GPU
graph (only the data dependency arrows) in a breadth-first
search (BFS) fashion while tracking node data dependencies—
a node can be added to the BFS frontier only if all its parents
have already been processed (Fig. 5). The result is an ordered
sequence of levels, where each level contains independent
nodes, and so they can be run concurrently on different
streams. The maximum number of nodes per level determines
the number of streams needed to execute the graph. We then
process level by level by matching one of the allocated streams
to each multi-GPU node. If possible, we give a node the same
stream used by one of its parents located in previous levels.
This operation reduces Events synchronization overhead.

b) Organizing Event Synchronization: In a second pass
of the graph, we add the needed synchronizations through
Events. Given a node and its parents, we first compare their
streams. If the streams do not match, synchronizations are
added by allocating a completion Event for the parent task
and inserting it into the child task event wait list.

c) Task List Order: We perform a new BFS traversal on
the graph containing both data dependencies and scheduling
hints (Fig. 6). We finally order the tasks starting from the first
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Fig. 6: BFS levels for task ordering based on Fig. 4d.

level to the last—tasks at a level should come before any task
in the following level. We do not impose any specific order
for tasks in the same level.

Size Neon (LUPS) Taichi (LUPS) Speedup

4096× 1024 33346.73 29304.42 1.14
8192× 2048 33740.24 33979.88 0.99
16384× 4096 34001.84 34729.78 0.98
32768× 8192 206079.33 206127 0.999

TABLE I: Neon’s speedup over Taichi on the 2D Kármán Vor-
tex Street LBM application using LUPS metric. Experiments
were run on a single GPU of a DGX A100 server.

D. Compiler Approach v.s. Library Approach

To build a multi-GPU programming framework, a compiler-
based approach has more powerful code analysis and gen-
eration capabilities that are beneficial for single-GPU opti-
mizations. We argue that a library approach did not impact
Neon’s capabilities for multi-GPU-specific optimizations (i.e.,
OCC) since the execution of the multi-GPU computation graph
is a runtime operation. The only limitation that this design
decision incurs is the inability to optimize the single-GPU
performance (e.g., via kernel/container fusion and tiling). We
leave exploring integrating Neon as a runtime for a compiler to
future work. In order to provide a better insight towards Neon
single GPU performance against a compiler-based alternative,
we compare against Taichi [13] using 2D Kármán Vortex
Street LBM application (Table I) where the two systems’
performance closely match.

VI. RESULTS

We selected three real-world applications to test Neon’s
performance, each also highlighting different aspects of Neon.
A Lattice-Boltzmann Method (LBM) application compares
Neon’s performance against both a well-known CUDA bench-
mark and an implementation that leverages a high level parallel
abstraction recently introduced in C++. A finite-difference
Poisson solver shows Neon closely matching the performance
of a plain CUDA implementation. It also showcases the im-
pact of different OCC optimizations. Finally, a finite-element
linear-elastic solver explores the trade-off between dense and
sparse data structures—a user controlled parameter. We use
strong scalability as the primary performance metric for all
applications. Scalability results are presented according to par-
allel efficiency defined as: Efficiency(n) = tbaseline/(n tn),
where n is the number of GPUs used, tn is the time for a
benchmark running on n GPUs, and tbaseline is the baseline
implementation running on a single GPU.

Size cuboltz stlbm stlbm Neon
AA twoPop twoPop

1283 4045 3553 (-12%) 3085(-23%) 4019 (-0.6%)
1923 4268 3689 (-13%) 3488(-18%) 4114 (-0.3%)
2563 4356 3708 (-14%) 3636(-16%) 4206 (-0.3%)
3203 4390 3705 (-15%) 3646(-16%) 4224 (-0.3%)

TABLE II: LBM performance reported in MLUPS, followed
in parenthesis by the gain with respect to cuboltz. Experiments
were run on a single GPU of a DGX A100 server.
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Fig. 7: Neon’s parallel efficiency of twoPop LBM using 8
GPUs on DGX A100 server. As reference for the efficiency,
Neon twoPop on single GPU is used.

We conducted our experiments on two systems. The first one
is an Nvidia DGX A100 with 8 GPUs (40GB HBM2e) and
NVLink fast interconnect, running DGX OS 5 (Nvidia docker
image cuda:11.4.1-devel-ubuntu20.04). The second system is
a two-socket Intel Xeon (E5-2640) with 8 Nvidia Quadro
GV100 GPUs (32GB HBM2) connected to a Gen 3 PCIe,
running Centos 7 (GCC 8.3 and CUDA 11.3).

A. Lattice-Boltzmann Fluid Solver

LBM is composed of two main operations: collide and
streaming. The former works on cell local data, the latter
computes a stencil operation over the 19 point lattice structure
(D3Q19). Both collide and streaming work on input and output
fields with 19 components per grid cell. Collide and streaming
steps are fused into a single kernel to reduce memory transfers.
In the project stlbm, Latte [20] analyzes the performance of
an LBM lid-driven-cavity flow benchmark on C++17 parallel
algorithms (CPA). A strong contribution of stlbm is testing
CPA performance portability. CPA allows code to be executed
on both CPUs and GPUs since both Nvidia and AMD provide
CPA-enabled compilers for their GPUs. The authors also
compared against cuboltz—a CUDA native LBM benchmark.

Stlbm has three variants of LBM (AA, twoPop, Swap) and
we implemented the twoPop variant in Neon with some minor
changes. The selected variant works on two buffers, one used
as input the other as output. At the end of each iteration the
two buffers are swapped.

Table II reports the number of million lattice updates per
seconds (MLUPS) achieved by the different implementations



running on a single Nvidia A100 GPU. Neon’s twoPop per-
forms close to the cuboltz CUDA benchmark, with less than
1% performance degradation. Neon’s twoPop outperforms
both stlbm’s AA and twoPop variants and it can run on multi-
GPU systems without changing the user code.

Since twoPop LBM is composed of a single kernel, only
Standard OCC could be applied. We analyzed the performance
on the Nvidia DGX A100 machine for different domain sizes.
In Fig. 7, we report Neon twoPop parallel efficiency running
on 8 GPUs using the single GPU implementation as the
baseline. Standard OCC yields better parallel efficiency over
all domain sizes. Thanks to the fast GPU interconnect, the
No OCC version reaches 93% efficiency with 8 GPUs on
the biggest domain. The recorded trends are explained by
the fact that the bigger the domain, the lower the impact of
the communication overhead—with No OCC, 8 GPUs and
a 1923 domain, the communication time is around 49% of
the iteration. With a 5123 domain, this drops down to 10%,
therefore, communication has a lower impact on efficiency.

B. Finite-difference Poisson Solver

We implemented the Poisson solver using a standard finite-
difference discretization [21] on a Cartesian grid. We used
a standard 7-point stencil (Listing 2) to approximate the
Laplacian operator and a matrix-free conjugate gradient solver
(Listing 3). In order to enable the Two-way Extended OCC,
we moved the last map operation (UpdateP) to be at
the start of the Container followed by the stencil operation
(LaplacianStencil). Such a change does not impact the
correctness of the computation.

We implemented the same solver using CUDA and cuBLAS
and considered it as a baseline (tbaseline). We used cuBLAS to
implement the dot product and DAXPY to obtain best-in-class
performance for these operations. Our implementation of the
stencil for the baseline matches that we have implemented in
Neon. Our baseline implementation achieves more than 95%
of the GPU’s peak effective bandwidth. Fig. 8 (top) shows that
Neon incurs a minimal overhead compared to the hardwired
application-specific implementation. This overhead is mainly
due to Neon’s checks to prevent out-of-bound accesses when
applying the stencil operations which were not necessary for
the baseline implementation. With increased computation, this
overhead decreased even further. Given enough parallelism,
Fig. 8 (bottom) shows that our different OCC optimizations
are effective and can reach ideal efficiency.

The impact of different OCC optimizations are shown in
Fig. 8 (top) that emphasizes the importance of the different
OCC configurations. We observe that there is no single OCC
optimization that always outperforms the others—Standard
OCC is the best with 4 GPUs or less, Extended OCC is
better for 5 GPUs, and Two-way Extended OCC excels with
6 GPUs or more. This emphasizes the importance of having a
system where switching between different optimizations is as
simple as changing a single parameter. Neon allows the user
to explore different possibilities depending on the problem and
system configurations.
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Fig. 8: Poisson solver: impact of different OCC configurations
on a 3203 grid with increasing number of GPUs (top). Parallel
efficiency on different grid sizes on 8 GPUs (bottom).

C. Finite-element Linear Elastic Solver

We implemented a matrix-free finite-element linear elastic
solver [22] using a 27 point stencil based on the conjugate
gradient method (Listing 3). The selected benchmark is based
on a solid cube domain with Dirichlet boundary conditions
fixing displacements to 0 in the z = 0 plane, and Neumann
boundary conditions on the rest of the boundary such that the
z = N − 1 plane had outward pressure applied.

Thanks to the ease of changing the data structures without
changing the computation code, we were able to compare the
performance of the dense and sparse gird on different grid
sizes and sparsity ratios as shown in Fig. 9. The ratio of the
solid cube’s size to the grid size was tuned to obtain different
sparsity levels—fully dense (1.0) and sparse (0.2). The benefits
of the element-sparse data structure was clear once the sparsity
ratio dropped below 0.8. On the other hand, the dense grid
performed better and used less memory when the domain was
fully dense as evident on grid size 5123 and sparsity ratio of
1, where the sparse data structure ran out of memory. This
illustrates how the modular structure of Neon can facilitate
exploration and optimization of different data representations
for user applications.

VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We presented Neon, a programming model and C++ frame-
work for grid-based multi-GPU computation. The system
allows the user to compose their applications in terms of
a sequence of building blocks. Neon parses these building
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data structure running time on the FEM solver using different
sparsity ratios and grid sizes. Negative values mean dense grids
performs better.

blocks, builds a dependency graph, and injects the neces-
sary optimizations for best scalability. We have shown the
importance of these automatic optimizations on real-world
applications. Thanks to Neon’s hierarchical abstraction, it is
possible to switch between different data structures and back
ends allowing for rapid prototyping and experimentation. We
have shown that the framework can match the performance of
a well-optimized CUDA implementation.

We highlight some limitations of the presented approach:

• Our data structures only support local operations, however
some applications, like ray-tracing, require global accesses.

• We do not support automatic Container fusion, instead we
rely on the user’s implementation. This is a restriction that
comes from a library-based approach.

There are several avenues for future work:

• We plan to support multi-resolution grid to allow even
higher precision where required.

• We wish to implement more multi-GPU graph optimiza-
tions, particularly loop unrolling which would extend the
applicability of OCC optimization and reduce the synchro-
nization between iterations.

• Distributed systems are a natural extension for Neon. We are
evaluating previous research on the concept of cluster-as-
accelerator [23] to fully hide the MPI SPMD programming
model from the users.
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