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Abstract

Counting the number of shortest paths on a grid is a simple procedure with close ties
to Pascal’s triangle. We show how path counting can be used to select relatively direct grid
paths for AI-related applications involving navigation through spatial environments. Typ-
ical implementations of Dijkstra’s algorithm and A* prioritize grid moves in an arbitrary
manner, producing paths which stray conspicuously far from line-of-sight trajectories. We
find that by counting the number of paths which traverse each vertex, then selecting the
vertices with the highest counts, one obtains a path that is reasonably direct in practice
and can be improved by refining the grid resolution. Central Dijkstra and Central A*
are introduced as the basic methods for computing these central grid paths. Theoretical
analysis reveals that the proposed grid-based navigation approach is related to an existing
grid-based visibility approach, and establishes that central grid paths converge on clear
sightlines as the grid spacing approaches zero. A more general property, that central paths
converge on direct paths, is formulated as a conjecture.

1. Introduction

Computational methods for navigation are essential to many AI-related applications involv-
ing spatial environments, particularly in the domains of video games (Botea et al., 2013),
robotics (Noreen et al., 2016), and architectural design (Pelechano et al., 2008; Nagy et al.,
2017). Some of these methods adhere to a grid-based approach in which (1) the spatial
environment is represented by a regular grid of vertices; (2) the vertices are processed using
some form of graph, tree, or array traversal algorithm; and (3) after processing each vertex,
information is propagated to neighboring vertices. A typical grid-based navigation method
will handle straight-line paths perfectly if they are oriented such that they pass directly
through neighboring vertices, but not if they are oriented at any other angle. The purpose
of this paper is to demonstrate a strictly grid-based approach for approximating straight
path trajectories that head in arbitrary directions. The new approach is based on the simple
and well-known procedure of counting the number of shortest paths on a grid.

The outcome of this work is a practical solution to a common problem in grid path
planning. If there exists a grid path from some vertex A to another vertex B, there are
often many shortest grid paths with the same length. An example of a case involving
multiple shortest grid paths is shown in Figure 1. Typical grid-based implementations of
Dijkstra’s algorithm and A* prioritize grid moves using arbitrary tie-breaking conventions,
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(a) A relatively indirect shortest grid path

(b) A more direct shortest grid path

Figure 1: Two shortest grid paths (purple arrows) are shown alongside illustrations of
corresponding smoothed paths (green curves). Whereas a simple rule for prioritizing moves
might generate a grid path like the one in (a), the grid path in (b) is more direct and should
yield a shorter smoothed path.

which tends to produce relatively indirect paths. For instance, a convention to lead with
diagonal moves would produce the relatively indirect shortest grid path in Figure 1a. The
problem is how to select more direct shortest grid paths like the one in Figure 1b. The first
grid path strays conspicuously far from line-of-sight trajectories as it traverses obstacle-free
regions of the environment. The second grid path adheres reasonably well to sightlines in
open regions. Either grid path could be smoothed in a post-processing step, but the grid
path in Figure 1b should yield a shorter smoothed path than the one in Figure 1a.
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It is possible to select relatively direct grid paths by conducting numerous line-of-sight
tests or performing other geometric calculations. However, we find that decent results can
be achieved using a simple path counting technique. Our solution is to count the number
of shortest grid paths which traverse each vertex en route from A to B, then select the
vertices with the highest counts. The approach still requires a basic grid path planning
method such as Dijkstra’s algorithm or A*, as one must construct a directed acyclic graph
of all shortest grid paths. Once this is done, the counting procedure can be applied. We
refer to this approach as central grid path planning, and introduce Central Dijkstra and
Central A* as specific methods for computing central paths. We also present a theoretical
analysis consisting of (1) observations on the relationship between path counting and an
existing grid-based visibility approach; (2) an argument based on the central limit theorem
that central grid paths converge on clear sightlines as the grid spacing approaches zero; and
(3) a conjecture that central paths also converge on direct paths.

2. Background and Assumptions

We begin by defining terms and reviewing the basic concepts and assumptions used through-
out the paper. The review presents related work on paths, grids, grid paths, grid path
planning, any-angle path planning, and grid-based visibility.

2.1 Paths

A path is a directed curve which stretches from one point to another without intersecting
itself or passing through obstacles. If one imagines a path as a string, then pulling on the
string will generally cause the path to shorten until it is pulled taut. A taut path is a path
that does not get shorter when one “pulls” on the ends (Oh & Leong, 2017). We introduce
the concept of a direct path, which means that a sightline between any pair of points on the
path must be part of the path itself. A direct path is always taut, but a taut path is not
necessarily direct. There is also the well-known concept of a shortest path, a path with the
minimum length of all possible paths between a given pair of endpoints. A shortest path
is always direct, but a direct path is not necessarily among the shortest. Non-taut, taut,
direct, and shortest paths are illustrated in Figure 2.

Applications involving navigation have diverse requirements. Nevertheless, we assume
shortest paths are generally preferred over direct paths, direct paths over taut paths, and
taut paths over non-taut paths. In addition, we assume paths which share the same topology
as a shortest path are preferred over paths which do not. Two paths with the same endpoints
share the same topology if the region between them is free of obstacles. Of the paths in
Figure 2, only the first two have a common topology.

Paths may partially or fully reside on the boundaries of obstacles as long as there is
always a traversable region on at least one side. A taut, direct, or shortest path can only
contact obstacle boundaries at certain places: at the endpoints of the path, at convex
corners encountered along the path, or alongside straight or convex surfaces of obstacles.
Everywhere else, such paths are perfectly straight. Paths may or may not be permitted to
pass through single-point gaps, and the methods and associated theory presented in this
paper should apply regardless of which convention is used. Examples of convex and concave
surfaces and corners, and a single-point gap, are indicated in Figure 2.
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Figure 2: An example featuring a (1) non-taut path, (2) taut path, (3) direct path, and (4)
shortest path between points A and B. The dashed sightline connecting two points on the
taut path illustrates why the path is not direct. Also shown are a (P) convex surface, (Q)
concave surface, (R) convex corner, (S) concave corner, and (T) single-point gap.

While our focus is on grid-based methods, paths can also be computed on a continuous
domain using analytic approaches. One such approach is the visibility graph, where (1) ob-
stacles are represented by polygons, (2) corners of polygons and endpoints of paths become
vertices in a graph, (3) sightlines between those vertices become edges in the graph, and
(4) paths are computed using a graph-based shortest path algorithm. The visibility graph
was introduced by Lozano-Pérez and Wesley (1979), who also describe the useful technique
of enlarging obstacles to enforce a minimum passage width. Analytic methods tend to give
exact results if the analytic representation of the environment is exact. For example, the
visibility graph gives exact shortest paths for environments with no curved surfaces.

2.2 Grids

Conventional grid-based methods employ a regular grid of vertices, and restrict information
flow such that the state of each vertex can directly influence only neighboring vertices. A
neighborhood is a set of offsets that determine which vertices are considered neighbors. In
2D, commonly used neighborhoods include the 4- and 8-neighborhood on a rectangular
grid and the 6-neighborhood on a triangular grid. Rivera et al. (2020) provide a detailed
description of the broader set of 2k-neighborhoods on rectangular grids (k ≥ 2), and an
analogous set of (3×2k)-neighborhoods could be described for triangular grids (k ≥ 1). We
refer to these two sets of neighborhoods collectively as the standard 2D grid neighborhoods.
Examples of these neighborhoods appear in Figure 3.

A move is a vector from one vertex to any of its neighbors. The 4-neighborhood and
the 6-neighborhood include only cardinal moves, which point to the nearest vertices along
the primary axes of the grid. We assume all cardinal moves have a length of one grid
spacing. Each successive neighborhood of the same grid type is constructed by taking each
pair of adjacent moves and inserting a new move between them. Each inserted move is the
vector sum of the original two (Rivera et al., 2020). For example, each diagonal move in
the 8-neighborhood is the vector sum of the two surrounding cardinal moves.
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(a) 4-neighborhood (b) 6-neighborhood (c) 8-neighborhood

(d) 12-neighborhood (e) 16-neighborhood

Figure 3: Examples of standard neighborhoods for rectangular and triangular grids.

Unless otherwise stated, all grid path planning examples and illustrations in this paper
use the 8-neighborhood. This should not be interpreted as an endorsement of 8-neighbor
grids over the other options. The proposed methods and associated theory pertain to all of
the standard 2D grid neighborhoods described above, and should generalize to certain 3D
grids as well. Although grid-based navigation methods with larger neighborhoods tend to
be more challenging to implement, they can be expected to yield shorter paths.

2.3 Grid Paths

A grid path begins at a start vertex, then follows a sequence of moves to other not-yet visited
vertices until reaching a destination vertex. Using a standard 2D grid neighborhood, and
assuming no obstacles, the shortest grid paths between two vertices A and B are sequences
involving at most two distinct bracketing moves. If the vector from A to B is aligned with a
neighborhood move, then that move is the sole bracketing move. Otherwise, the bracketing
moves are the pair of adjacent neighborhood moves that lie on either side of the A-B vector.
To get from [0, 0] to [6, 3] using the 8-neighborhood, for example, the bracketing moves
are [1, 0] and [1, 1] and one needs three of each. More generally, if the vector from A to
B is [x, y], and if the two bracketing moves are u = [ux, uy] and v = [vx, vy], then the
shortest possible grid paths include exactly m moves in the u direction and k moves in the
v direction, where m and k are given by the coordinate transformation below.[

m
k

]
=

[
ux vx
uy vy

]−1 [
x
y

]
The transformation simplifies to the following.

m =
vyx− vxy
uxvy − vxuy

k =
−uyx+ uxy

uxvy − vxuy
(1)
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Adding the lengths of all moves in one of these sequences yields a well-known metric
that we refer to as the standard 2D grid distance, and denote h(x, y).

h(x, y) = m
√
ux2 + uy2 + k

√
vx2 + vy2 (2)

The standard grid distance reduces to what is known as the Manhattan distance for
4-neighbor grids or the octile distance for 8-neighbor grids. Rivera et al. (2020) prove
that h(x, y) is the minimum possible grid path length for all standard rectangular 2D grid
neighborhoods, and provide algorithms which compute this metric for up to 64 neighbors.

Obstacles have the effect of disallowing moves between certain pairs of vertices. In the
presence of obstacles, a shortest grid path between A and B may be longer than the standard
grid distance, or there may be no grid paths at all between the two points. Given a set of
obstacles defined on a continuous domain, a grid-based approximation of the environment
can be constructed by overlaying a grid of vertices. Moves between two neighboring vertices
are allowed if and only if there is a straight-line path between them.

Sometimes the obstacle geometry itself takes the form of a grid, either because a preexist-
ing continuous representation of the environment was rasterized or because the environment
was originally designed as a grid. Grid-based obstacle geometry can usually be regarded
as an array of square, triangular, or hexagonal cells, where each cell is either blocked or
unblocked. When a rectangular grid of vertices is overlaid on an environment of square
cells, it is common practice to place the vertices on the centers of cells, as in Figure 4a, or
on the corners of cells, as in Figure 4b. We assume that vertices on triangular grids would
be placed on the centers of hexagonal cells or on the corners of triangular cells.

(a) Vertices placed on cell centers (b) Vertices placed on cell corners

Figure 4: Vertex placement with grid-based obstacle geometry.

While theoretical and empirical studies have shown that placing vertices on square
cell corners produces shorter paths (Bailey et al., 2015), the cell center convention may
be more convenient for certain applications such as tile-based video games. The grid-
based methods proposed in this paper work with either convention, and in either case we
treat grid-based obstacles the same as continuous obstacles. If a straight-line path exists
between two neighboring vertices, moves between those vertices are allowed. An important
consideration arises for grid-based obstacle geometry with single-point gaps, such as the
gap between vertices P and Q in Figure 4a or at vertex R in Figure 4b. Paths through such
gaps may be either permitted or prohibited.
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2.4 Grid Path Planning

The classic approach to grid path planning involves setting up a grid-based representation of
an environment, as described in Section 2.3, then applying Dijkstra’s graph-based shortest
path algorithm (Dijkstra, 1959), or its A* variant (Hart et al., 1968), to find one or more
shortest paths.

Grid-based implementations of Dijkstra’s algorithm typically compute a hierarchy of
paths between a source vertex and all accessible vertices in the environment. Every vertex
is assigned an initial grid distance of infinity, except the source which has a grid distance
of zero. The algorithm proceeds by expanding not-yet processed vertices in order of grid
distance. When a vertex is expanded, finite grid distances are computed for its neighboring
vertices making them eligible for expansion. If different grid distances are computed for
the same vertex, the shortest is always selected. Once this search procedure is complete,
shortest grid paths can be generated by retracing moves from any processed vertex to the
source vertex. If needed, paths can be reversed so that they start at the source.

Grid-based implementations of A* are similar, except that vertices are expanded in an
order that more efficiently reaches a pre-selected goal vertex. With A*, vertices are ordered
by their grid distance from the source plus a lower-bound estimate of their distance to the
goal. In this paper, we assume the lower-bound estimate is the standard 2D grid distance
h(x, y) specified in (2), though other heuristics are sometimes used. If the goal is among
the unprocessed vertices with the minimum combined distance, the search procedure is
terminated and a shortest grid path is generated from the goal to the source. The path can
be reversed if needed.

Typical implementations of Dijkstra’s algorithm or A* employ some form of tie-breaking
during the search procedure, thereby selecting a single solution from the multitude of short-
est grid paths that usually exist between the source and goal. One tie-breaking convention
is to generate what are known as canonical paths by prioritizing diagonal moves over car-
dinal moves on an 8-neighbor grid (Sturtevant & Rabin, 2016). The shortest grid path in
Figure 1a is an example of a canonical path, assuming vertex A is the source. The approach
can be generalized to larger neighborhoods by prioritizing moves that are vector sums of
the two surrounding moves (Rivera et al., 2020).

Canonical paths arise out of the work of Harabor and Grastien (2011), who demonstrate
that prioritizing diagonal moves allows the A* algorithm to jump over certain vertices dur-
ing the search procedure. The result is a faster variant of A* called Jump Point Search.
Sturtevant and Rabin (2016) use the same ordering of moves to propose the Canonical Di-
jkstra and Canonical A* methods. Canonical Dijkstra incorporates jumping into Dijkstra’s
algorithm to reduce the number of vertex expansions. Canonical A* avoids jumping, but
demonstrates that canonical ordering alone can reduce the number of neighbors that need
to be visited for each vertex expansion in A*.

For implementations of Dijkstra’s algorithm or A* that do not enforce a canonical order-
ing, the selected shortest grid path is typically determined by other tie-breaking conventions.
These conventions may include a clockwise or counterclockwise ordering of neighborhood
moves, a lexicographical ordering of vertex coordinates, or any tie-break rule for nodes in
a heap-based priority queue. The resulting paths may not be as extreme as the example in
Figure 1a, but they tend to be relatively indirect compared with the path in Figure 1b.
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An alternative to the above tie-breaking conventions is to represent all possible shortest
grid paths leading back to the source vertex. This adaptation of Dijkstra’s algorithm or A*
is largely a matter of recording, for every visited vertex, the set of predecessor vertices that
are traversed by any shortest grid path en route to the source. The result is a directed acyclic
graph of paths, rather than a hierarchy. For A*, a slight change to the termination condition
is also required. To capture all shortest paths, the search procedure must be continued until
the goal vertex is not just one of the unprocessed vertices with the minimum combined
distance, but rather the only unprocessed vertex with the minimum combined distance.
For long, meandering paths, this stricter stopping criterion should not cause a significant
increase in the number of vertices that need to be expanded. Our work shows how the
all-paths variants of Dijkstra’s algorithm and A* can be used to select relatively direct grid
paths, improving quality rather than speed.

2.5 Any-Angle Path Planning

Any-angle path planning methods make use of a path planning grid and typically assume
grid-based obstacle geometry, yet depart in some way from the usual constraints of grid-
based approaches to achieve shorter, more direct paths. Field D* departs from grid-based
constraints by allowing paths to bend at points located between pairs of vertices (Ferguson
& Stentz, 2006). Theta* uses line-of-sight checks to connect grid vertices across distances
far greater than the size of the neighborhood (Daniel et al., 2010). In the Anya method, the
hierarchy that is constructed during the search procedure is not a hierarchy of vertices, but
rather a hierarchy of line segments (Harabor et al., 2016). Whereas most any-angle path
planning methods approximate shortest paths, Anya can be used to find exact shortest
paths assuming the grid-based obstacle geometry is exact.

Some any-angle methods speed up the path planning process by performing a precompu-
tation on the environment before any source or goal vertices are selected. Subgoal Graphs
is an any-angle path planning method that uses a precomputation phase to identify key
vertices, called subgoals, at the corners of grid-based obstacles (Uras et al., 2013). Paths
are found on a graph of these subgoals, similar to the analytic visibility graph method,
and then refined as needed. Block A* uses a hierarchical approach, partitioning grid-based
environments into blocks of, for example, 5-by-5 vertices (Yap et al., 2011). Shortest path
distances are precomputed between the grid vertices on the boundaries of each block, al-
lowing subsequent A* searches to treat blocks rather than vertices as nodes. Block A*
is an any-angle method assuming an analytic or any-angle method is used to precompute
distances within each block. If a strictly grid-based method is used for the precomputation,
then the overall method could also be considered grid-based.

Any-angle path planning is often contrasted with the simple approach of using a classic
grid path planning method, as in Section 2.4, then smoothing the resulting grid path in
a post-processing step. Botea et al. (2004) describe what has become a well-known path
smoothing technique employing a succession of line-of-sight checks. Beginning at a vertex
on one end of a grid path, the procedure is to repeatedly delete the subsequent vertex
as long as the resulting path does not go through an obstacle. This greedy algorithm
is usually successful at straightening and shortening paths, though it sometimes leaves
conspicuous triangle-shaped detours unresolved. Han et al. (2020) propose an enhanced
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“string-pulling” algorithm where line-of-sight checks are used not only to delete points, but
also to insert new points on obstacle corners around which the path is “pulled” taut. Paths
can also be smoothed using relaxation approaches that slightly shift the position of each
point (Richardson & Olson, 2011), or interpolation approaches that replace piecewise linear
intervals with polynomial curves, Bézier curves, or splines (Ravankar et al., 2018). Such
local adjustments can be used to soften sharp turns or increase clearance from obstacles, but
may be inefficient at straightening highly indirect grid paths. Regardless of the approach,
smoothing a path does not change its topology.

2.6 Grid-Based Visibility

Computational methods for visibility have several similarities to those developed for navi-
gation. First, visibility methods are applied in many of the same domains, including video
games (Cohen-Or et al., 2003), robotics (Morini et al., 2010), and architectural design
(Turner et al., 2001; Nagy et al., 2017). They are also formulated in a similar way, with
analytic or grid-based representations of obstacles in a 2D or 3D spatial environment. In
a visibility context, obstacles are interpreted as optical barriers rather than travel barriers,
and the paths of interest are generally straight-line paths called sightlines.

While visibility problems are most often tackled with analytic methods, as reviewed by
Ghosh (2007), or raycasting, as described by Roth (1982), there are also grid-based methods
that will prove closely related to our path counting technique for navigation. Although grid-
based visibility methods appear to enjoy only limited use outside of academia, they offer
similar advantages to grid path planning and other grid-based approaches. They are easy to
implement, and allow the trade-off between speed and accuracy to be conveniently adjusted
by varying the grid spacing.

A grid-based visibility method from the level set community was derived from a partial
differential equation by Tsai et al. (2004) and further validated by Kao and Tsai (2008).
The method approximates the region visible from a source point. The original formulation
assumes implicit obstacle geometry defined on a 4-neighbor grid, but here we adapt the
method to use an explicit representation consistent with Section 2.3. We represent obstacles
using a set of binary values Vrq, where Vrq = 1 means neighboring vertices q and r are
mutually visible and Vrq = 0 means the sightline between them is blocked. The output
of the method is a set of visibility scores ψx,y in the range 0 ≤ ψx,y ≤ 1. If ψx,y ≥ 0.5,
we classify [x, y] as visible. Assuming the source is at [0, 0] and the grid spacing is 1, the
visibility scores for the first quadrant of a 4-neighbor grid are given by (3).

ψ0,0 = 1

ψx,0 = ψx−1,0Vx,0x−1,0 x > 0

ψ0,y = ψ0,y−1V0,y
0,y−1 y > 0

ψx,y =
(
xψx−1,yVx,yx−1,y + yψx,y−1Vx,yx,y−1

)
/(x+ y) x, y > 0

(3)

The calculation in (3) can be applied using a standard array traversal algorithm (e.g.
[x, y] = [0, 0], [1, 0], [2, 0], ..., [0, 1], [1, 1], [2, 1], ...). It can be extended to the other three
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quadrants by negating the x coefficient, the y coefficient, or both. It can be generalized to
3D by adding the obvious z terms to the numerator and denominator of the quotient.

Although the original level set formulation assumes the 4-neighborhood, we can extend
the method to employ any of the standard 2D grid neighborhoods in Section 2.2. Recall from
Section 2.3 that every vertex [x, y] is bracketed by at most two moves u and v. Having
identified these vectors, the coordinate transformation in (1) can be used to obtain the
number of moves m and k in the respective directions. These move counts can then be
substituted into the extended formula below. The effect of these steps is to transform the
coordinate space such that u is mapped to [1, 0], v is mapped to [0, 1], and [x, y] is mapped
to [m, k]. This linear transformation allows the validated 4-neighbor formula to be applied
with [m, k] in place of [x, y].

ψ0,0 = 1

ψm,0 = ψm−1,0Vm,0m−1,0 m > 0

ψ0,k = ψ0,k−1V0,k
0,k−1 k > 0

ψm,k =
(
mψm−1,kVm,km−1,k + kψm,k−1Vm,km,k−1

)
/(m+ k) m, k > 0

(4)

Consider applying this extended method to the 8-neighborhood, specifically within the
cone between the positive x axis and the x = y diagonal. Any vertex [x, y] in this region is
bracketed by the moves [1, 0] and [1, 1]. Substituting these vectors into (1) yields m = x−y
and k = y, and substituting these expressions into (4) yields the formula below. Similar
equations could be derived for all 8 convex cones generated by pairs of adjacent moves.

ψx,y =
(

(x− y)ψx−1,yVx,yx−1,y + yψx−1,y−1Vx,yx−1,y−1

)
/x 0 < y < x

Formulating this method for all 3D neighborhoods would require a 3D coordinate trans-
form analogous to the one in Section 2.3, but let us focus on the 26-neighborhood and
consider just the convex cone generated by [1, 0, 0], [1, 1, 0], and [1, 1, 1]. The visibility
scores for vertices in this region are computed as follows, and similar equations exist for all
48 tetrahedral regions.

ψx,y,z =

 (x− y)ψx−1,y,zVx,y,zx−1,y,z

+ (y − z)ψx−1,y−1,zVx,y,zx−1,y−1,z

+ zψx−1,y−1,z−1Vx,y,zx−1,y−1,z−1

 /x 0 < z < y < x

Another grid-based visibility method was proposed by Fisher-Gewirtzman et al. (2013)
for the urban design community. Formulated specifically for 3D voxel grids using the 26-
neighborhood, their method is similar to the 26-neighbor variation of the adapted level set
method discussed above. However, instead of performing linear interpolations on sets of
three neighboring vertices within 48 tetrahedral regions, Fisher-Gewirtzman et al. perform
bi-linear interpolations on sets of four neighboring vertices within 24 pyramidal regions.

We refer to our adaptation of the level set visibility method as the linear grid-based
visibility approach, and suggest that the 26-neighbor algorithm of Fisher-Gewirtzman et al.
be called the bi-linear grid-based visibility approach. The linear approach has a particularly
strong relationship to our proposed use of path counting for grid-based navigation.
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3. Central Grid Path Planning

We now demonstrate how path counting can be used to select relatively direct grid paths,
and explain how the technique can be implemented as an extension to Dijkstra’s algorithm
or A*. An empirical study compares the proposed Central A* method to A* and Theta*.

3.1 Path Planning with Counting

Our path planning approach is inspired by Pascal’s triangle, the famous number pattern
illustrated in Figure 5. In Pascal’s triangle, a 1 is placed at the apex and repeated along the
two diverging sides. Every other number is generated by adding two preceding numbers.

Figure 5: The top several rows of Pascal’s triangle.

It is widely understood that the recursive procedure which generates Pascal’s triangle is
also a path counting procedure. The apex of the triangle can be viewed as a source vertex
on a standard 2D grid, and every integer is the number of shortest grid paths leading to
that vertex from the source. For example, there are 70 shortest grid paths between the top
of the triangle in Figure 5 and the vertex in the middle of the bottom row.

The relevance of Pascal’s triangle to our path planning problem is most easily seen on a
grid with no obstacles. Consider the task of selecting a relatively direct shortest grid path
from vertex A to vertex B on the obstacle-free grid in Figure 6a. Figure 6b shows all of the
shortest grid paths, which collectively form a parallelogram. To obtain a path that heads
through the middle of the parallelogram, a first attempt might be to label each vertex with
the number of paths from A. As shown in Figure 6c, this yields a parallelogram-shaped slice
of Pascal’s triangle. Prioritizing vertices with higher Pascal numbers would produce a path
that heads relatively directly from A to the vertex labeled 70, and then proceeds toward B.
The goal is a grid path that heads from A to B as directly as possible.

The key to approximating a direct path is to perform the counting procedure from both
ends. As shown in Figure 6d, the path counts from B form the same Pascal number pattern
as the path counts from A, except flipped across both axes. The next step is to multiply
the two opposing sets of path counts to produce another type of path count. By taking
the number of paths from A to a vertex, then multiplying by the number of paths from
the vertex to B, one ends up with the number of paths which traverse the vertex en route
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(a) An obstacle-free grid (b) All shortest grid paths between A and B

(c) The path counts from A (d) The path counts from B

(e) The traversal counts (f) The central path

Figure 6: The central path approach on a grid with no obstacles.

from A to B. We refer to this type of path count as a traversal count. Multiplying the path
counts in Figure 6c and Figure 6d yields the traversal counts in Figure 6e. The final step is
to generate a relatively direct grid path by starting at one end and selecting, for each move,
the next vertex with the highest traversal count. Figure 6f shows the selected path for this
obstacle-free example. We refer to such a path as a central grid path, or central path.

If obstacles are present in the environment, one cannot use Pascal’s triangle directly. Yet
it is still possible to employ the recursive counting procedure on which the famous number
pattern is based. To illustrate, consider the scenario in Figure 7a. The task is to identify
a relatively direct shortest grid path that circumnavigates the travel barriers. First, one
must find all shortest grid paths from A to B, as shown in Figure 7b. Next, path counts
are computed from one end, as in Figure 7c, and then the other, as in Figure 7d. Similar
to Pascal’s triangle, the path counting procedure begins by assigning 1 to the first vertex,
then populating each succeeding vertex by adding the path counts of its predecessors. The
remaining steps are the same with or without obstacles. Each vertex has two path counts,
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(a) A grid with obstacles (b) All shortest grid paths between A and B

(c) The path counts from A (d) The path counts from B

(e) The traversal counts (f) The central paths

Figure 7: The central path approach on a grid with obstacles.

one from A and one from B, and multiplying them yields the traversal counts in Figure 7e.
One then selects the highest traversal counts, starting at A and proceeding toward B.

As indicated by the fork near the top right of Figure 7f, there are actually two central
paths in this example. The reason for the two possible solutions is that, as can be seen in
Figure 7e, one must choose between two vertices that both have a traversal count of 54. If
there are multiple central grid paths, an implementation can choose any one of them. In
general, central paths account for a small subset of all shortest grid paths between a pair of
vertices. The purpose of the central path approach is to obtain a relatively direct shortest
grid path by ensuring the selected path is a member of this subset.

Figure 8 shows what a central grid path may look like in practice. The path, which was
generated using the architectural space analysis tool described by Goldstein et al. (2020),
remains reasonably close to line-of-sight trajectories as it traverses obstacle-free regions of
the environment. It is a considerably more direct path than one would expect from a typical
grid-based implementation of Dijkstra’s algorithm or A* with no path counting.
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Figure 8: A central path computed on a building floor plan using a grid spacing of 25 cm.

3.2 Central Dijkstra and Central A*

Conceptually, the central path approach is as simple as finding all shortest grid paths,
counting the numbers of paths that traverse each vertex, and selecting the vertices with the
highest traversal counts. Implementing the approach is also reasonably simple, though the
steps involved deserve some discussion.

Due to the need to count all shortest grid paths, it makes sense to begin with an all-
paths implementation of Dijkstra’s algorithm or A*. Extending these classic algorithms
with path counting yields the Central Dijkstra and Central A* methods, which can be
contrasted with the Canonical Dijkstra and Canonical A* methods reviewed in Section 2.4.
Both the canonical and central approaches restrict the final output to a small subset of
shortest grid paths. But whereas the canonical methods will likely yield somewhat shorter
runtimes, the central methods offer more direct paths. The grid path in Figure 1a was
previously identified as a canonical path. The grid path in Figure 1b is a central path.

Recall from Section 2.4 that an all-paths implementation of Dijkstra’s algorithm or A*
will record, for each visited vertex, the set of predecessor vertices that are traversed by any
shortest grid path en route to the source. This directed acyclic graph of predecessors makes
it easy to count paths from the goal vertex to the source, but not the other way around.
Fortunately, when counting paths from the goal to the source, one can simultaneously
construct a directed acyclic graph of successors pointing in the opposite direction. These
successors can then be used to count paths from the source vertex to the goal.

Algorithm 1 formalizes the above strategy for generating a central grid path using data
from an all-paths Dijkstra or A* search. Line 2 computes path counts from the goal vertex
using predecessors from the all-paths search. Line 3 computes path counts from the source
vertex using successors retrieved from the first path counting operation. Lines 4 to 14
generate the central path by starting at the source and selecting, for each move, a successor
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vertex with the highest traversal count. Each traversal count is calculated on line 10 as the
product of the path counts from the source and from the goal.

Algorithm 1: Generate a central path using data from an all-paths search

1 function generate path(source, goal, predecessors, costs):
2 counts from goal, successors← count paths(goal, predecessors, costs)
3 counts from source, ← count paths(source, successors, costs)
4 path← list()
5 path.append(source)
6 while path.last() 6= goal do
7 best successor← none
8 highest count← −∞
9 foreach successor ∈ successors[path.last()] do

10 count = counts from source[successor]× counts from goal[successor]
11 if count > highest count then
12 best successor← successor
13 highest count← count

14 path.append(best successor)

15 return path

The costs argument in Algorithm 1 contains the grid distance from the source to each
vertex, as computed by the initial all-paths search. For A*, these travel costs are referred to
as g-values to distinguish them from the heuristics, or h-values, used to estimate distances
to the goal. We suggest supplying these costs to the function that counts paths, as done on
lines 2 and 3. While travel cost information is not strictly necessary for path counting, it
provides a convenient way to ensure vertices are processed in a viable order.

Algorithm 2 defines the function that starts at a given source vertex and counts shortest
grid paths represented by the supplied successors. Recall from above that this function is
first invoked with the goal and predecessors of the initial path planning problem, which
causes paths to be counted in the opposite direction as the initial search. Lines 2 and 3
initialize the path counts to 0 for all vertices except the source, which gets a path count of 1.
Line 4 initializes all predecessors to the empty set. These predecessors may ultimately serve
as successors in a subsequent invocation of the function. Lines 5 to 7 prepare a priority
queue of unprocessed vertices, ordered using the travel costs from the initial all-paths search.
If the cost of the source vertex is 0, the traversal is assumed to be from source to goal, so
vertices with lower costs are processed first; otherwise, the traversal is assumed to be from
goal to source, so vertices with higher costs are processed first. Either way, the source
vertex and its cost are pushed onto the queue. Lines 8 to 15 repeatedly process the highest
priority vertex in the queue by adding its path count to those of its successors.

The time complexity of Algorithm 2 is O(N2log(N)), where N is the size of the spatial
environment measured in grid spacings along one axis. The N2 factor is proportional to
the number of vertices that must be processed, and the log(N) factor assumes that the pop
operation on line 10 is performed on a typical heap-based priority queue. Since an all-paths
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Algorithm 2: Count paths using shortest path successors and costs

1 function count paths(source, successors, costs):
2 counts← array(costs.dimensions(), 0)
3 counts[source]← 1
4 predecessors← array(costs.dimensions(),∅)
5 prioritize lowest cost← (costs[source] = 0)
6 queue← priority queue(prioritize lowest cost)
7 queue.push(source, costs[source])
8 while ¬ queue.empty() do
9 vertex← queue.top()

10 queue.pop()
11 foreach successor ∈ successors[vertex] do
12 if counts[successor] = 0 then
13 queue.push(successor, costs[successor])

14 counts[successor]← counts[successor] + counts[vertex]
15 predecessors[successor]← predecessors[successor] ∪ {vertex}

16 return counts, predecessors

grid-based Dijkstra or A* search procedure is also O(N2log(N)), introducing a subsequent
path counting step does not increase the time complexity of the overall approach. In fact,
since the counting procedure traverses a subset of the vertices visited during the initial
search, intuition suggests that the additional runtime imposed by the counting step may be
modest. This reasoning is explored experimentally in Section 3.3.

To ensure the central path methods are implemented efficiently and robustly, close atten-
tion should be paid to the data types used for predecessors (and successors), grid distances,
and path counts. On a rectangular grid, one can keep track of a vertex’s predecessors using
an unsigned integer of one bit per neighborhood move. On an 8-neighbor grid, for example,
recording all predecessors would require 8 bits, or one byte, per vertex. The successors
would require another byte per vertex.

Since the exact length of a diagonal move is usually an irrational number, it may seem
intuitive to represent grid distances using floating-point numbers. However, rounding errors
characteristic of floating-point arithmetic will then produce small differences in the com-
puted lengths of equally short paths. One can treat floating-point path lengths as equal if
they differ by at most some small positive ε, but a simpler approach is to represent grid dis-
tances using fixed-point numbers or integers. On an 8-neighbor grid, cardinal and diagonal
moves could be prescribed integer lengths such as 5 and 7, or 408 and 577. It was known
long ago that 577/408 ≈

√
2 (Kraft & Washington, 2014). Alternatively, one could assign

all cardinal moves an arbitrary integer length such as 1000, then round the lengths of all
other moves to the nearest integer.

Although integers should be preferred over floating-point numbers for grid distances, the
opposite is true for path counts. Because they grow exponentially with distance, path counts
will quickly overflow if they are implemented using any standard integer data type. Even
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with floats, overflow remains an issue. Path counts can exceed the maximum representable
value of a standard 64-bit floating-point number, a value greater than 10308, after as few as
1030 moves. Note that restricting the width of an 8-neighbor grid to 1030 vertices or fewer,
in both dimensions, does not necessarily avoid the problem; obstacles may cause shortest
grid paths to meander around the environment and potentially surpass 10308 in number.

A solution to the overflow problem is to use 64-bit floating-point numbers to calculate
and store logarithms of path counts rather than representing path counts directly. This
technique requires a few changes to the above algorithms, though the changes can be en-
capsulated by a custom data type if desired. On lines 2 and 12 of Algorithm 2, the default
path count of 0 is replaced with the asymptotic limit of log(x) at x = 0, which is −∞. On
line 3, the path count of the source vertex is replaced with log(1), which is 0. On line 14, the
sum of two path counts a and b must be replaced with an operation that combines log(a)
and log(b) to obtain log(a+ b). No part of the operation can be vulnerable to overflow. As-
suming all logarithms are base 2, a mathematical expression that meets the requirements is
derived in (5). To ensure the subexpression 2log(b)−log(a) does not overflow, the two operands
must be sorted such that log(a) ≥ log(b).

log(a+ b) = log(a(1 + b/a))

= log(a) + log(1 + b/a)

= log(a) + log(1 + 2log(b/a))

= log(a) + log(1 + 2log(b)−log(a)) log(a) ≥ log(b)

(5)

The operation on the last line of (5) suffices to compute log path counts from the goal
and from the source. The next step is to obtain the traversal counts, which can also be
handled using logarithms. Instead of multiplying a vertex’s path counts a and b to yield its
traversal count ab, as indicated on line 10 of Algorithm 1, one adds the two log path counts
log(a) and log(b) to produce the log traversal count log(ab).

log(ab) = log(a) + log(b)

Since taking the log of a set of numbers preserves their ordering, central paths can be
generated by selecting the vertices with the highest log traversal counts. It is not necessary
to produce the traversal counts themselves. Due to rounding errors, a central path computed
using logarithms may differ slightly from one based on exact path and traversal counts.

3.3 Empirical Comparison

Intuition suggests that the central path approach could serve as a relatively simple upgrade
to Dijkstra’s algorithm or A* for applications demanding higher quality paths in exchange
for modest increases in runtime. To investigate the extent to which the approach meets this
expectation, at least for certain conditions, we retrieved a copy of the open source any-angle
path planning C++ library by Uras and Koenig (2015), and extended it with a Central A*
implementation. We then collected statistics for the four basic methods below:

• Regular A*: The existing grid-based A* implementation in which a shortest grid path
is arbitrarily selected by way of various tie-breaking conventions.
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• Smoothed A*: The Regular A* method followed by a smoothing operation that pro-
duces a shorter path with the same topology. We used the smoothing function included
in the library, an implementation of the greedy algorithm reviewed in Section 2.5 that
deletes path vertices as dictated by a succession of line-of-sight checks.

• Smoothed Central A*: The new Central A* implementation followed by smoothing.

• Regular Theta*: A basic any-angle path planning method included in the library.

To ensure an apples-to-apples comparison of runtimes, the all-paths A* search within
the new Central A* implementation repurposes the existing data structures and Regular A*
code where possible. Aside from details such as the library’s use of floating-point numbers
for distances, the subsequent path counting procedure closely reflects the algorithms and
guidelines in Section 3.2. The A* and Central A* methods employ the standard grid distance
heuristic reviewed in Section 2.3, which is also the octile distance since our study is limited
to the 8-neighborhood.

The tests were conducted using benchmark sets from the repository of Sturtevant (2012).
Each set is a collection of maps containing 2D grid-based obstacle geometry, and each
map has an associated list of path planning problems specifying start and end vertices.
We selected the following benchmarks: video game maps from Baldur’s Gate II, scaled
to 512 × 512 grid cells; game maps from Dragon Age: Origins, ranging from 22 × 28 to
1260×1104; game maps from StarCraft, ranging from 384×384 to 1024×1024; and randomly
generated maps with 10%, 20%, 30%, and 40% blocked cells, at 512×512 resolution. These
are the same maps tested by Uras and Koenig (2015) and Harabor et al. (2016), though
the problem sets were updated in 2018. The C++ library processes the maps by placing
vertices on the corners of cells and permitting passage through single-point gaps.

Table 1 reports the average suboptimality of the paths produced by each method. Path-
length suboptimality, the quality metric employed by Uras and Koenig (2015) and others,
is the difference in length between the computed paths and the shortest possible paths ex-
pressed as a percentage of the latter. Lower values indicate shorter, more desirable paths.
We calculate suboptimality scores by averaging path lengths across all problems associated
with the same map, then calculating the suboptimality for each map, then averaging subop-
timalities across all maps in the benchmark set. The shortest possible paths are computed
using the library’s Anya implementation. Suboptimality scores for Central A* without
smoothing are not shown, as they are identical to those of Regular A*. Shortest grid paths
produced by any method are necessarily equal in length, and must therefore be smoothed
before they can be compared with one another using this metric.

The results in Table 1 support the expectation that one can obtain shorter paths by
smoothing a central grid path than by smoothing the output of a typical grid-based A*
implementation. For the game maps, Smoothed Central A* yielded suboptimality averages
roughly ten times lower than those of Smoothed A*, and only about 50% higher than those
of Theta*. The path planning errors that arise with such maps are discussed further below.
For the random maps, where the effectiveness of path counting is compromised by numerous
single-cell passages and single-point gaps, Smoothed Central A* yielded suboptimalities
closer to the geometric average between those of Smoothed A* and Theta*.
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Average Suboptimality (%)

Benchmark # of # of Regular Smoothed Smoothed Regular
Set Maps Problems A* A* Central A* Theta*

Baldur’s Gate II 75 122600 4.8735 0.6686 0.0643 0.0421
Dragon Age: Origins 156 155620 4.6526 0.8935 0.1072 0.0642

StarCraft 75 211390 5.3018 1.1842 0.1091 0.0941
Random-10% 10 17970 4.5915 1.9175 0.4106 0.1446
Random-20% 10 19150 4.4357 2.2955 0.6336 0.2121
Random-30% 10 20780 4.4795 2.4990 0.7691 0.2421
Random-40% 10 36370 4.4051 2.1822 0.7092 0.2369

Table 1: Average path-length suboptimality for the four tested methods.

Average Runtime (ms) Average # of Expansions

Benchmark Smoothed Smoothed Regular Smoothed Smoothed Regular
Set A* Central A* Theta* A* Central A* Theta*

BG II 3.07 4.71 9.25 13226 13868 11945
DAO 1.24 1.69 3.39 5667 5870 5734
SC 12.55 15.96 43.42 50706 51450 50046

R-10% 3.41 7.85 2.88 12518 14335 5812
R-20% 3.37 5.71 4.45 11768 12863 9951
R-30% 3.82 4.76 6.30 13081 13516 15058
R-40% 3.71 4.18 5.78 14358 14404 15658

Table 2: Average runtime and average number of expansions per search.

Table 2 reports the average runtime for generating a single path, as well as the number of
expansions during the main search procedure of each method. The runtime and expansion
statistics are calculated by averaging first across all problems associated with the same
map, and then across all maps in the benchmark set. Runtimes for A* and Central A*
without smoothing are not shown, but smoothing grid paths took only about 1% as long as
generating them. Tests were run on a 2.7GHz Intel Core i7 laptop with 16GB of RAM.

The results in Table 2 mostly support the expectation that Central A* imposes only
modest increases in runtime compared with a typical implementation of A*. For the game
maps, Central A* took roughly 30% to 50% longer than A* as a result of (a) a small
increase in the average number of expansions, as shown in the table; (b) a small increase
in the time required to process each expansion; and (c) the additional step of counting
paths. The additional expansions can be explained by the stricter termination condition
associated with the all-paths A* search, as described in Section 2.4. Compared with A*, the
central path approach introduced only a 13% increase in average runtime for random maps
at 40% obstacle density; however, the additional counting step became progressively more
significant at 30% density, 20% density, and 10% density where path counting was as costly
as the initial search. Central A* achieved shorter runtimes than Theta* for all benchmark
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sets except for the 10% and 20% random maps. Runtimes were roughly 2-3 times shorter
for the game maps.

Several qualitative advantages and disadvantages of the central path approach are re-
vealed by examining individual scenarios such as the one in Figure 9. For this problem,
the A* solutions in Figure 9a clearly exhibit the flaws that central paths are intended to
address. First, typical A* grid paths feature artifacts such as the pronounced terraces near
label P, though these particular terraces are resolved by the smoothing operation. Second,
it is relatively common for an arbitrarily selected grid path to pass an obstacle on a side that
is unmistakably suboptimal, as seen near label Q. These topology errors cannot be resolved
by smoothing. A third issue in the example, also near label Q, is that the greedy smooth-
ing algorithm overshoots a corner of an obstacle and causes a conspicuous triangle-shaped
detour to appear in the smoothed path.

(a) A* (thin purple line) and Smoothed A* (thick green line)

(b) Central A* (thin purple line) and Smoothed Central A* (thick green line)

(c) Theta*

Figure 9: A section of map “ost000a” from the Dragon Age: Origins benchmark set, dis-
tributed by the Moving AI Lab with permission from BioWare. The paths are solutions to
instance 800 (numbering from 0) of the 2018 problem set. The source is on the left.
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The Central A* grid path in Figure 9b avoids the artifacts near P and the topology error
near Q. The greedy smoothing algorithm still overshoots obstacles, particularly near label
R, but the relative directness of a central grid path limits the severity of these smoothing
defects. Because central paths are nearly direct to begin with, they should accommodate
relaxation- or interpolation-based smoothing techniques that avoid line-of-sight checks and
are capable of producing more curved paths. Alternatively, applying the “string-pulling”
algorithm of Han et al. (2020) to a central path should yield a smooth path that is taut, or
nearly taut, and highly direct.

Although Theta* outperforms 8-neighbor Central A* in terms of average path length,
we submit that defects in a basic Theta* path may be more noticeable when they do occur.
One such defect appears in Figure 9c near label S, where an unfortunate confluence of
factors leads Theta* to skip certain line-of-sight checks that would have revealed a more
direct trajectory. With its natural tendency to prioritize vertices near sightlines, the central
path approach avoids such conspicuous errors. Central paths can be suboptimal, however,
when there are two plausible path topologies and no sightline to clarify the better option.
A case in point occurs at label T, where the optimal topology found by Theta* has no
shortest grid path and is hence inaccessible to A* and Central A*. Our impression is that
topology errors of this nature are less obvious to the human eye than defects involving a
severe deviation from a sightline. Nevertheless, one might consider using a 16-neighbor
Central A* implementation for applications that demand even higher quality paths.

4. Theoretical Analysis

A curious feature of the central path approach is that it tends to produce grid paths with
nearly straight sections spanning arbitrary distances at any angle, yet the only vectors or
line-of-sight tests required are between neighboring vertices. Here we pursue a theoretical
understanding of why the approach works. We begin by observing a relationship between
path counting and grid-based visibility. Next, we confirm that central grid paths converge
on clear sightlines. Finally, we conjecture that central paths converge on direct paths.

4.1 Visibility by Counting

The fact that central grid paths tend to approximate straight-line paths suggests that
shortest grid paths are typically concentrated around sightlines. Intuitively, this implies
that if a sightline from point A to point B is not blocked by an obstacle, then the number
of shortest grid paths between A and B is likely close to the maximum possible number.
On the other hand, if the sightline is blocked, then the number of shortest grid paths is
likely closer to zero. This idea can be used to develop a visibility method based on path
counting. The visibility by counting method turns out to be mathematically equivalent to
the linear grid-based visibility approach adapted from Tsai et al. (2004) in Section 2.6, but
we present it here to shed light on the theoretical properties of central grid paths.

Recall from Section 2.3 that on an obstacle-free grid, shortest grid paths are sequences
of at most two distinct bracketing moves. In Section 3.1, we observed that the number of
such paths from a source vertex to any other vertex is the number at the corresponding
position of Pascal’s triangle. As shown in Figure 10 below, counting the number of shortest
grid paths heading outward from a source vertex on an λ-neighbor grid will generate λ
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copies of Pascal’s triangle. The triangles will overlap by one vertex in directions for which
there is only one shortest grid path to each vertex.

Figure 10: Vertices labeled with the number of shortest grid paths heading outward from a
source vertex on a 6-neighbor grid (left) and an 8-neighbor grid (right). The numbers form
overlapping copies of Pascal’s triangle, one of which is highlighted in each example.

The idea is now to compute the fraction of shortest grid paths heading outward from a
source vertex that are not obstructed by obstacles. This fraction is the visibility score for
each vertex. The region visible from the source is approximated as the set of vertices with
at least 50% of the paths unobstructed.

To illustrate, consider the scenario in Figure 11a. The task is to evaluate sightlines from
the source vertex A to all other vertices in the environment. Figure 11b shows all of the grid
paths heading outward from A that are not obstructed by obstacles. Observe that unlike
the counting approach proposed for navigation, the paths used for visibility do not wrap
around obstacles but continue to advance from the source according to the bracketing moves.
Figure 11c shows the path counts for these outward grid paths. Because the paths always
head outward from the source, the path counts can be computed using a standard array
traversal (e.g. [x, y] = [0, 0], [1, 0], [2, 0], ..., [0, 1], [1, 1], [2, 1], ...). Figure 11d shows the
path counts, or Pascal numbers, for all shortest grid paths ignoring any obstacles. Dividing
the path counts in Figure 11c by those in Figure 11d yields the fractions, or visibility scores,
in Figure 11e. Figure 11f highlights the vertices with visibility scores of at least 0.5, which
happen to be exactly the set of vertices that are truly visible from A.

Like all grid-based visibility methods, it is possible for a vertex with a visibility score of
0.5 or higher to be occluded, perhaps only by a small obstacle. Similarly, it is possible for a
vertex with a score below 0.5 to be visible, perhaps only through a small opening between
obstacles. The accuracy of the method can be improved by choosing a larger neighborhood
or by decreasing the grid spacing.

Similar to the central path approach, path counts computed for visibility can be stored
and manipulated using logarithms to avoid overflow. Whereas the final counting step of the
navigation approach involved adding two log path counts to obtain a log traversal count,
here we must subtract two log path counts to obtain a log visibility score. If needed, it is
always safe to exponentiate a log visibility score to obtain the fraction itself.
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(a) A grid with obstacles (b) All outward grid paths from A

(c) The path counts from A (d) The Pascal numbers from A

(e) The visibility scores (f) The points visible from A

Figure 11: The visibility by counting approach.

Another way to avoid overflow is to restrict the size of any visibility analysis to fewer than
1030 grid moves from the source. When represented using 64-bit floating-point numbers,
path counts for visibility will never overflow on 4-neighbor grids smaller than 515 vertices in
both dimensions, or 8-neighbor grids smaller than 1030 vertices. Note that we cannot make
the same guarantee for the navigation approach, where paths meander around obstacles.

The apparent convergence of the approach can be observed in Figure 12, where each
pixel is colored based on the visibility score of the associated vertex. Fully obstructed
vertices with scores of 0 are colored black, perfectly visible vertices with scores of 1 are
colored white, and areas of uncertainty with scores between 0 and 1 are colored on a dark-
to-light, cyan-colored spectrum. The solution on the 501 × 501 grid exhibits a certain
degree of uncertainty around the edges of the shadows. When the resolution is increased to
5001× 5001 vertices, these uncertain regions are reduced to thin slivers.

939



Goldstein, Walmsley, Bibliowicz, Tessier, Breslav, & Khan

(a) 501× 501 vertices (b) 5001× 5001 vertices

Figure 12: Plots of the visibility scores produced by the path counting approach at two grid
resolutions. The yellow boxes are obstacles and the source vertex is in the middle.

Observe that both solutions in Figure 12 feature two almost perfectly sharp shadow
edges near the bottom center and bottom right of the field. This is due to the fact that
two obstacles have been deliberately placed so that their corners line up with the source
vertex in a cardinal or diagonal direction. In these exact directions there is one possible
outward grid path, and in the vicinity of these locations there are not enough outward paths
to produce the same tapering effect that occurs throughout most of the environment. This
lack of isotropy is typical for grid-based visibility methods with explicit geometry, though
view points and obstacles will not normally align as precisely as in Figure 12.

We now show that visibility by counting is mathematically equivalent to the linear grid-
based visibility approach described in Section 2.6. The first step is to formally define the
outward path counts, taking obstacles into account. We employ the notation established
in Section 2.6 for any standard 2D grid neighborhood, where m and k are the numbers of
bracketing moves required to get to any vertex from the source. In this case, however, m
and k are not explicitly used in the calculations and need not be evaluated. The path count
cm,k of each vertex is given by (6) below.

c0,0 = 1

cm,0 = cm−1,0Vm,0m−1,0 m > 0

c0,k = c0,k−1V0,k
0,k−1 k > 0

cm,k = cm−1,kVm,km−1,k + cm,k−1Vm,km,k−1 m, k > 0

(6)
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Recall from Section 2.6 that Vrq = 1 means there is a straight-line path between neigh-
boring vertices q and r, and Vrq = 0 means the path is blocked by an obstacle. Ignoring
all obstacles (Vrq = 1 everywhere), the same procedure generates the Pascal numbers Cm,k.
Dividing each path count cm,k by the corresponding Pascal number Cm,k produces the
visibility score ψm,k.

ψm,k =
cm,k
Cm,k

(7)

Having listed the equations of the path counting approach, we now seek an alternative
way of calculating the same scores. Instead of generating two sets of path counts and later
dividing them, the division operations could be performed on the fly. This would allow one
to store only the final visibility score for each vertex. Additionally, instead of computing the
Pascal numbers Cm,k recursively, one could treat them as if they were calculated using the
explicit formula in (8). The formula expresses the number of ways to reorder a sequence of
m items of one type and k items of another, which is equivalent to the number of sequences
of bracketing moves comprising shortest paths on an obstacle-free grid.

Cm,k =
(m+ k)!

m!k!
(8)

To derive the alternative way of calculating ψm,k, we begin with (7), then substitute in
the expression of (8), then incorporate the recursive step of (6), then simplify to remove all
factorials. At the end of the analysis, we arrive at an alternative expression for ψm,k that
is identical to the calculation in (4) from Section 2.6, the formula for the linear grid-based
visibility method. Thus we find that, ignoring rounding errors, the linear and counting
approaches will produce the same results.

ψm,k =
cm,k
Cm,k

=
(

m!k!
(m+k)!

)
cm,k

=
(

m!k!
(m+k)!

)(
cm−1,kVm,km−1,k + cm,k−1Vm,km,k−1

)
=

(
m!k!

(m+k)!

)
cm−1,kVm,km−1,k +

(
m!k!

(m+k)!

)
cm,k−1Vm,km,k−1

= m
m+k

(
(m−1)!k!
(m+k−1)!

)
cm−1,kVm,km−1,k + k

m+k

(
m!(k−1)!
(m+k−1)!

)
cm,k−1Vm,km,k−1

= m
m+k

cm−1,k

Cm−1,k
Vm,km−1,k + k

m+k
cm,k−1

Cm,k−1
Vm,km,k−1

=
(
mψm−1,kVm,km−1,k + kψm,k−1Vm,km,k−1

)
/(m+ k)

Although the two approaches are mathematically equivalent, it is worth noting that each
involves a particular set of operations that may be more convenient for certain applications.
The linear approach requires a division operation to be performed for each vertex during the
grid traversal. With the counting approach, the division operations are deferred to the end
of the method, and can sometimes be avoided entirely. If one requires only the classification
of each vertex as visible or not visible, then the final calculation cm,k/Cm,k ≥ 0.5 can be
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replaced with 2cm,k ≥ Cm,k. On the other hand, the counting approach requires that (a)
two floating-point numbers are calculated and stored for each vertex, instead of just one;
or (b) the Pascal numbers Cm,k are precomputed, then retrieved.

Aside from the minor practical trade-offs outlined above, the significance of visibility
by counting is that it reveals a relationship between grid-based visibility and the proposed
counting approach for grid-based navigation. Consider the scenarios in Figure 13. In the
first scenario, a sightline between points A and B passes through a gap in a wall, clearing
the obstacles by some small yet positive distance δ. It appears that the wall will block most
of the possible shortest grid paths between A and B, thereby producing a visibility score
less than 0.5. However, the work of Kao and Tsai (2008) suggests that the linear grid-based
visibility score will converge on the correct result of 1 as the grid spacing approaches zero. It
follows that the visibility by counting score will also converge on 1, and this in turn implies
that nearly all possible shortest grid paths will go through the gap at a sufficiently fine
grid resolution. In the second scenario, the sightline passes through the middle of a small
circular obstacle of positive radius δ. Although the obstacle may appear to block only a
small fraction of possible shortest grid paths, the fact that the visibility score converges on
0 assures us that nearly all of these paths will become blocked by the obstacle at a sufficient
resolution. These insights about grid-based visibility support a theory that central grid
paths converge on sightlines where possible and direct paths in general.

Figure 13: Two challenging scenarios in which grid-based visibility methods will nevertheless
evaluate the sightlines correctly if the grid spacing is sufficiently small.

4.2 Convergence on Clear Sightlines

The relationship between path counting and grid-based visibility suggests that shortest grid
paths become increasingly concentrated around sightlines as the grid spacing approaches
zero. We now provide an explanation for this effect by analyzing the distribution of path
and traversal counts between endpoints A and B on an obstacle-free grid. We first relate
these path counts to the binomial distribution, then approximate this distribution with a
normal distribution, then appeal to the central limit theorem to argue that central grid
paths converge on the A-B sightline as the grid resolution is increased. We then observe
that the convergence property holds even if obstacles are introduced into the environment,
provided these obstacles neither contact nor block the sightline.

Our analysis can be extended to all of the standard 2D grid neighborhoods using the
transformation in (1), but for simplicity we consider an 8-neighbor grid with start vertex A
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located at the origin and end vertex B at [N,K]. Given 0 < K < N , all shortest grid paths
from A to B are sequences of the two bracketing moves u = [1, 0] and v = [1, 1]. We are
interested in the relative proportion of these shortest grid paths that, after n moves, pass
through some vertex [n, k]. This formulation of the problem is illustrated in Figure 14.

Figure 14: Endpoints A and B are separated by N moves, of which N −K are in direction
u and K are in direction v. A point en route is reached after n moves from A, of which
n−k are in direction u and k are in direction v. The illustration depicts an 8-neighbor grid
with u = [1, 0] and v = [1, 1], but the analysis can be extended to other neighborhoods.

The number of ways to travel from A to [n, k] is n!
k!(n−k)! = 2nfn(k), where fn(k) is the

probability mass function of a binomial distribution with success probability p = 1/2. Since
we are interested in relative proportions, we drop the constant 2n and focus on the binomial
distribution. The distribution is defined for 0 ≤ k ≤ n, but what matters for our analysis
is that it accurately captures the relative proportions of path counts from A to any [n, k]
within the parallelogram of shortest grid paths. For each n ∈ {1, 2, 3, ..., N − 1}, we now
approximate the binomial distribution using a normal distribution with matching mean
µA and variance σ2

A, as defined in (9). Depicted in Figure 15a, this normal distribution
approximates the relative proportion of shortest grid paths that end at [n, k] after n moves
forward from A.

µA =
n

2
σ2

A =
n

4
(9)

Similarly in the other direction, the number of ways to travel from B to [n, k] is
2N−nf(N−n)(K − k). Dropping the constant 2N−n, we are left with a transformed bino-
mial distribution that accurately captures the relative proportions of path counts from B to
any [n, k] in the parallelogram. For each n ∈ {1, 2, 3, ..., N − 1}, we once again approximate
the binomial distribution using a normal distribution. The transformed mean µB and vari-
ance σ2

B are given in (10). Depicted in Figure 15b, this normal distribution approximates
the relative proportion of shortest grid paths that end at [n, k] after N −n moves backward
from B.

µB = K − N − n
2

σ2
B =

N − n
4

(10)

As indicated in Section 3.1, the number of ways to travel from A to B passing through
[n, k] is the product of the number of paths from A to [n, k] and the number of paths from
[n, k] to B. For each n ∈ {1, 2, 3, ..., N − 1}, we therefore approximate the proportion of
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(a) Normal distribution for paths from A (b) Normal distribution for paths from B

Figure 15: Visualizations of the normal distributions which approximate the proportion of
shortest grid paths (a) forward from A and (b) backward from B. The red lines indicate
where the distribution peak would be located for various n between 0 and N . The distri-
butions extend into the region outside the parallelogram where there are no relevant paths.
However, since we are only interested in relative proportions within the parallelogram, the
unused portions of the distributions do not impact the quality of the approximation.

A-B paths that traverse [n, k] using the pointwise product of the probability density func-
tions of the two normal distributions described above. Given any two normal distributions
N (µA, σ

2
A) and N (µB, σ

2
B), it is known that the pointwise product of their density func-

tions is proportional to the density function of a new normal distribution N (µAB, σ
2
AB), the

parameters of which are defined as follows (Bromiley, 2014).

µAB =
µAσ

2
B + µBσ

2
A

σ2
A + σ2

B

σ2
AB =

σ2
Aσ

2
B

σ2
A + σ2

B

(11)

If we substitute the parameters of (9) and (10) into the formula for µAB in (11), most
of the terms cancel and we are left with the following.

µAB =
K

N
n (12)

The result in (12) reveals that the mean value of the combined normal distribution,
which is depicted in Figure 16, falls exactly on the straight line between vertex A at [0, 0]
and vertex B at [N,K]. Since the density function of this distribution is approximately
proportional to the traversal counts computed by the central path approach, we observe
that the highest traversal counts should occur relatively close to the A-B sightline. This
explains why central grid paths tend to adhere to line-of-sight trajectories, at least in the
absence of obstacles. We further observe that, according to the central limit theorem, the
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corresponding binomial and normal distributions converge as N →∞. It follows that if the
grid resolution is successively refined, the proportion of paths traversing any region within
the parallelogram will become increasingly consistent with the normal approximation. We
therefore claim that a central path between two points in a 2D obstacle-free environment
will converge on the sightline as the grid spacing approaches zero.

Figure 16: Visualization of the normal distribution which approximates the proportion of
shortest grid paths between A and B. The red line indicates that the distribution peak
coincides with the A-B sightline for all n between 0 and N .

We now consider the case of an obstacle somewhere within the parallelogram of shortest
grid paths, but neither contacting nor blocking the A-B sightline. By cutting off some of
the paths on one side of the sightline, the obstacle may cause the highest traversal counts
to shift toward the opposite side. Figure 17 depicts an extreme case of this effect, where an
obstacle spanning the full length of the path is offset from the sightline by only some small
positive distance δ. As illustrated, the obstacle will induce a bulge in the central path.

Figure 17: An illustration of an obstacle inducing a bulge in a central path.
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To better understand the effect of obstacles on central paths, we now derive the stan-
dard deviation σAB of the combined normal distribution. This parameter characterizes the
extent to which all possible A-B grid paths are spread out on either side of the sightline.
Substituting the parameters of (9) and (10) into the formula for σ2

AB in (11), and taking
the square root of both sides, we obtain the result in (13) below. The last step is based on
the fact that n(N − n) reaches its maximum value at n = N/2.

σAB =

√
σ2

Aσ
2
B

σ2
A + σ2

B

=
1

2

√
n(N − n)

N
≤
√
N

4
(13)

Suppose now that the grid spacing is repeatedly halved by inserting new vertices among
the existing vertices. After η such subdivisions, the grid resolution is increased by a factor of
ρ = 2η. Point B is then found at [ρN, ρK], and all features of the map grow linearly with ρ
when measured in grid spacings. In particular, there are now ρ times as many grid spacings
between the clear sightline and some obstacle on one side. Yet the maximum standard
deviation in (13) increases only from

√
N/4 to

√
ρN/4 grid spacings, or by a factor of

√
ρ.

This implies that after a sufficient number of subdivisions, only an arbitrarily small faction
of all possible A-B grid paths will deviate from the sightline to the extent that they are
blocked by the obstacle. Thus in the limit, obstacles at any distance from the sightline have
no impact on the resulting central path. This theory is tested in Figure 18, where a set of
central paths can be seen converging on a clear sightline despite a nearby obstacle spanning
its length.

Figure 18: A plot of 11 central paths (solid lines) between [0, 0] and [64δ, 32δ], where δ is
the distance to an obstacle (dashed line) running parallel to the sightline (not rendered).
The grid spacing is 32δ for the first path, and is divided by 2 for each subsequent path.
The final path (closest to the sightline) has a grid spacing of δ/32. At resolutions for which
there were multiple central paths, only the furthest from the sightline is plotted.

Since our theory pertains to the limiting behavior of central paths as the grid spacing
approaches zero, we should also consider how obstacles may affect central paths in realistic
scenarios where the grid spacing is fixed. The example in Figure 19 attempts to recreate the
worst-case scenario in Figure 17, but using an actual architectural model with a reasonable

946



Path Counting for Grid-Based Navigation

grid spacing of 25 cm. As expected, a wall that is not aligned with the grid induces a bulge
in a central path running alongside it. Yet the bulge is arguably quite subtle. By contrast,
a grid path produced by a typical Dijkstra or A* implementation using the same endpoints
might well pass through point P in the figure. The central path is significantly more direct
even in this example, and in general the bulging effect tends to go unnoticed.

Figure 19: A central path traveling alongside a wall. Shown from different perspectives, the
obstacle induces only a subtle bulge. Vertex P indicates how far a shortest grid path with
the same endpoints can stray from the line-of-sight trajectory.

4.3 Convergence on Direct Paths

The convergence theory in Section 4.2 pertains only to scenarios in which a sightline exists
between the endpoints of a desired path. Even in those cases, the sightline must be clear of
obstacles within some positive distance δ on both sides. We now propose a generalization of
the theory that overcomes these limitations and applies when paths are forced to veer around
obstacles. Recall from Section 2.1 that a direct path is one that must follow any sightline
between any pair of points on the path. We conjecture that if the central path approach is
applied to the general 2D path planning problem, then reapplied using successively shorter
grid spacings, the resulting central paths will converge on a direct path. In essence, central
paths are direct in the limit.

Since the notion of convergence can have multiple interpretations in the context of
paths, we base our conjecture on a measure of path similarity devised by Fréchet (1906).
The Fréchet distance δF(s, t) between paths s and t can be understood as the minimum
length of leash needed to connect a human traversing s to a dog traversing t (Alt & Godau,
1995). The human and the dog are allowed to independently vary their speeds, but are
not allowed to go backwards. We say that a sequence of paths sn converges on path t if
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δF(sn, t)→ 0 as n→∞. We also introduce a deviation-from-directness metric that accounts
for the fact there can be multiple direct paths between a pair of endpoints. Defined in (14),
the directness deviation δD(s) of path s is the minimum Fréchet distance between s and
any path t ∈ Ds, where Ds is the set of all direct paths with the same endpoints as s.

δD(s) = min
t∈Ds

(δF(s, t)) (14)

We conjecture that central paths converge on direct paths regardless of whether obstacle
geometry is continuous, as described in Section 2.1, or grid-based, as described in Section 2.3.
In either case, we assume that the endpoints A and B of the desired path are vertices
on a standard rectangular or triangular 2D grid of spacing D, which is overlaid on the
environment. To induce convergence, the grid spacing is repeatedly halved by inserting
new vertices among the existing vertices. After η such subdivisions, the grid spacing is
D/2η. The navigation grid at each resolution level is constructed as outlined in Section 2.3,
where moves between neighboring vertices are allowed if and only if there is a straight-line
path between them. We assume that for sufficiently large η, any topology that contains a
direct path also contains at least one grid path.

The above sets up a path planning problem for each η ∈ {0, 1, 2, 3, ...}. Applying the
central path approach will yield a solution s ∈ Cη, where Cη is the set of all possible central
grid paths between A and B at resolution level η. The upper bound on the directness
deviation of a central path is therefore the maximum value of δD(s) over all of these possible
solutions. The conjecture that central paths converge on direct paths can thus be formally
stated as the property that this upper bound approaches zero as η →∞.

lim
η→∞

(
max
s∈Cη

(δD(s))

)
= 0 (15)

While a formal proof of (15) is a challenge for future research, we believe the conjecture
holds for all 2D path planning scenarios that satisfy our assumptions. Our reasoning is that
if there is a sightline between any two points P and Q on a central path, and if that sightline
is not part of the path, then that portion of the central path should prove unstable as the
grid spacing decreases. Specifically, we expect at least one of the following three effects to
occur:

• Centralization effect: If P and Q are on an obstacle-free stretch of the path, then the
distribution of traversal counts along the entire stretch should increasingly conform
with the normal approximation based on the central limit theorem; as a result, that
stretch of the central path will converge on a sightline.

• Attraction effect: If P and Q are on a stretch of the path that veers around a convex
corner, a convex curve, or in some cases a straight surface of an obstacle, then a
concentration of sightlines on the inside of the turn will pull the central path closer
to the obstacle.

• Shortcutting effect: If P and Q are mutually visible through an unutilized shortcut
between obstacles, then an increase in the traversal counts along the sightline will
cause the path to be rerouted through the shortcut at a sufficiently fine grid resolution.
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The centralization and attraction effects cause central paths to converge on taut paths,
whereas the shortcutting effect causes central paths to transition to topologies for which
these taut paths are also direct paths. Note that central paths do not necessarily converge
on shortest paths. Even at extremely fine grid resolutions, shortest grid paths and shortest
smooth paths may have different topologies. Figure 2 shows a case where central paths on
an 8-neighbor grid may converge on a direct path that is not a shortest path.

The remainder of this section focuses on the special cases illustrated in Figure 20, which
serve to illuminate the nuances of the conjecture. We use the [n, k] notation of Section 4.2,
where vertex A is at [0, 0] and vertex B is at [N,K]. We assume 0 < K < N .

(a) An obstacle spanning a sightline (b) Two obstacles creating a single-point gap

Figure 20: Two scenarios in which obstacles contacting a sightline will block most of the
possible shortest grid paths between A and B. The curves illustrate possible topologies for
central paths.

We first consider the case in Figure 20a, where the A-B sightline is clear on one side
and blocked on the other. As illustrated, the obstacle will induce a bulge in any central
path from A to B. The scenario is similar to the ones discussed in Section 4.2, except in this
case there is no clearance between the obstacle and the sightline. The question is whether
central paths will still converge on the sightline as the grid spacing approaches zero.

It was argued in Sections 4.1 and 4.2 that the fraction of unobstructed shortest grid
paths, or equivalently the grid-based visibility score, converges on 1 if the sightline is clear
of obstacles within some positive distance δ on both sides. Similarly, the visibility score
converges on 0 if any obstacle crosses the sightline. If a sightline is merely contacted by
an obstacle, however, the theory in Sections 4.1 and 4.2 does not predict how the visibility
scores will converge. Such scenarios must instead be examined on a case-by-case basis.

The grid-based visibility score for Figure 20a can be estimated by observing its relation-
ship to the generalized ballot problem (Takács, 1962). In simplified terms, ballot problems
are concerned with the probability ψ that the ratio of votes for two candidates never falls
below some constant κ at any point during the ballot counting process. It is known that
this probability can be interpreted as the fraction of shortest grid paths that never pass
below a line L (Humphreys, 2010). If κ in the ballot problem is exactly the ratio of the
total number of votes for each candidate, then L is the sightline in our scenario and ψ is
the visibility score. Meng (2009) reports upper and lower bounds for ψ in the generalized
ballot problem, and one can use the lower bound as an estimate ψ̂N for the visibility score
in our scenario.

ψ̂N =
1

N
(16)
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The proof of (16) is based on a technique first applied to the ballot problem by Dvoretzky
and Motzkin (1947). Consider any shortest grid path s from A to B, ignoring the obstacle.
If s passes below the sightline at any point, then select some vertex [n, k] on the path that is
at the maximum distance below the sightline in the perpendicular direction. Now construct
a cyclic permutation of s by (1) translating the entire path such that the point at [n, k] is
moved to [0, 0]; (2) trimming off the first n moves that are now between [−n,−k] and [0, 0];
and (3) inserting those same n moves in order onto the end of the path. It is easy to see
that this cyclic permutation is also a shortest grid path from A to B, but one that never
passes below the sightline. It follows that at least one of the N cyclic permutations of any
possible shortest grid path s will not be blocked by the obstacle, and hence 1/N is a lower
bound of ψ. Meng (2009) also provides an upper bound of ψ and an associated proof, and
it can be shown that the upper bound is strictly less than double the lower bound for our
conditions. It is therefore clear that if the sightline from the source to [N,K] is completely
blocked on one side, the visibility score converges on 0.

Because the obstacle in Figure 20a blocks the vast majority of possible shortest grid
paths at fine resolutions, we may not invoke the argument of Section 4.2 that the obstacle
becomes increasingly irrelevant as the grid spacing approaches zero. Yet the conjecture in
this section applies to all direct paths, including any sightline that is contacted but not
blocked by an obstacle. As the grid spacing approaches zero, the attraction effect should
steadily reduce the bulge illustrated in Figure 20a and cause central paths to converge on
the sightline.

Finally, we consider the special case illustrated in Figure 20b. Here the previous example
is augmented with a square obstacle of small but positive width δ, placed such that one of
its corners creates a single-point gap at the midpoint of the sightline.

It was stated in Section 2.1 that paths may or may not be permitted to pass through
single-point gaps, and that the theory presented in this paper should apply regardless. If
passage through these gaps is prohibited, then all paths follow the outer topology illustrated
in Figure 20b. The straight line from A to B is neither a path nor a sightline in that case,
and consequently the only direct path is the taut path with a sharp bend at the outermost
corner of the square obstacle. As the grid spacing is repeatedly halved, the attraction effect
will cause the distance between successive central paths and this convex corner to converge
on zero. At the same time, the centralization effect will cause these central paths to converge
on the sightlines on either side.

If paths are permitted to traverse single-point gaps, then the straight line from A to B
is both a direct path and a sightline. The taut path on the outside of the square is then
disqualified from being a direct path, since it does not utilize the sightline. A technicality
arises here as to whether the single-point gap is positioned such that any grid paths are
able to go through. Due to its location, the gap in this scenario is accessible to grid-based
solutions, and so the conjecture applies. The conjecture suggests that as the grid spacing is
repeatedly halved, the number of shortest grid paths that pass through the gap will grow
large compared with the number that go around the outside of the square obstacle. Thus
even if central grid paths initially follow the outer topology, the shortcutting effect will
eventually reroute them through the gap. The attraction effect will thereafter cause the
central paths to converge on the sightline. We believe these effects will indeed occur, and
submit that the generalized ballot theorem may be useful in proving this point.
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5. Discussion and Conclusions

We introduced central grid path planning, a grid-based navigation approach in which Di-
jkstra’s algorithm or A* is extended with a path counting step to produce relatively direct
shortest grid paths. The approach avoids line-of-sight checks between non-neighboring ver-
tices, yet still approximates straight path trajectories of arbitrary length and direction. We
also proposed the notion of a direct path, and argued that central paths converge on clear
sightlines and likely converge on direct paths as the grid spacing approaches zero.

The central path approach represents a natural solution to the problem of selecting a
relatively direct path from the multitude of shortest grid paths that typically exist between
two endpoints. Even if a smooth path is ultimately desired, generating and then smoothing
a central grid path will yield more optimal results on average than generating and then
smoothing an arbitrarily selected shortest grid path. We submit that for a typical applica-
tion involving navigation on a grid-based environment, a logical strategy for upgrading a
conventional A* implementation is as follows:

• If A* paths are noticeably indirect, and slightly longer runtimes can be tolerated, one
can adopt Central A* by switching to an all-paths search and computing logarithms
of path counts from both ends. Empirical results suggest that Central A* followed by
smoothing could be an attractive alternative to the Theta* any-angle method. For the
game maps included in our experiment, Smoothed Central A* achieved path lengths
nearly as short as those of Theta* with runtimes closer to A*.

• If A* paths are of acceptable quality, but runtimes are somewhat too long, one can
adopt a canonical path method such as Canonical A* or Jump Point Search by re-
stricting vertex visits and expansions. An open question is whether a preliminary
canonical path search could accelerate the computation of a central path.

• If A* is found lacking in both speed and quality, one might consider any-angle methods
like Subgoal Graphs or Block A* that perform a precomputation on the environment
to accelerate subsequent searches. Additional research would be needed to incorporate
subgoals or blocks into a central path solver.

Future empirical studies could compare the central path approach to alternative path
planning methods using a wider selection of maps, smoothing algorithms, and grid neighbor-
hoods. The 16-neighborhood deserves particular attention, as it would improve the quality
of the resulting central grid paths while also reducing the number of vertices for which log
traversal counts need to be computed. Rather than using path length suboptimality as the
sole measure of path quality, it is worth considering additional metrics to more fully capture
the notion of relative directness. The directness deviation in Section 4.3 may be difficult to
compute, but alternative metrics could include (a) the area or maximum deviation between
the path being evaluated and the taut path with the same topology, or (b) the fraction of
scenarios in which the topology of the evaluated path contains a shortest path. Whereas the
conventional path length suboptimality metric requires shortest grid paths to be smoothed
before they can be compared, these alternative metrics could be applied to grid paths and
smooth paths alike.
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Future theoretical work could include a formal proof of (15), the conjecture that central
grid paths converge on direct paths provided the direct paths have topologies accessible to
grid-based solutions. A first step might be to prove the conjecture for grid-based obstacle
geometry. Another line of investigation would be to generalize the theory of central grid
paths to 3D environments and higher dimensional spaces.

The finding that linear grid-based visibility scores can also be computed by path counting
reveals that the existing visibility approach and the proposed navigation approach share a
common theoretical basis. The relationship between the approaches is striking, as linear
grid-based visibility was originally (a) based on implicit level set geometry instead of explicit
geometry; (b) derived from differential equations instead of graph theory; (c) formulated
using cardinal neighbors only instead of a variety of grid neighborhoods; (d) specified using
normalized direction vectors instead of integer coefficients; and (e) validated using numerical
analysis instead of probability theory. Differences in conventions may obscure a number of
relationships between level set methods and methods derived from the concept of a grid path.
For example, it is common practice in the level set community to perform path planning
by solving the Eikonal equation on a 4-neighbor grid. When the method is modified to use
the 8-neighborhood (Danielsson & Lin, 2003), the resulting formula is equivalent to one of
the interpolations performed by Field D*.

We close with a few remarks about the use of the word “central” in naming the new grid-
based navigation approach and the resulting paths. First, there is no intended connection
between the central paths described here and those in linear programming and optimization
(Nemirovski & Todd, 2008). The central paths in this work should therefore be referred
to as “central grid paths” if the context is not clear. Our work is related, however, to the
concept of centrality in graph theory (Borgatti & Everett, 2006), particularly betweenness
centrality that quantifies the extent to which a vertex is between all others (Freeman, 1977).
Betweenness centrality is computed using traversal counts similar to those in this paper,
except that the shortest paths are between all pairs of vertices in a graph. Our use of the
word “central” was also motivated by the central limit theorem, which clarifies how the
simple counting procedure of Pascal’s triangle can make straight lines, of any angle, appear
on a grid.
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Takács, L. (1962). A generalization of the ballot problem and its application in the theory
of queues. Journal of the American Statistical Association, 57 (298), 327–337.

Tsai, Y.-H. R., Cheng, L.-T., Osher, S., Burchard, P., & Sapiro, G. (2004). Visibility and
its dynamics in a PDE based implicit framework. Journal of Computational Physics,
199 (1), 260–290.

Turner, A., Doxa, M., & O’Sullivan, D. Penn, A. (2001). From isovists to visibility graphs:
A methodology for the analysis of architectural space. Environment and Planning B:
Planning and Design, 28 (1), 103–121.

Uras, T., & Koenig, S. (2015). An empirical comparison of any-angle path-planning al-
gorithms. In Proceedings of the Symposium on Combinatorial Search (SoCS), pp.
206–210, code available at: http://idm-lab.org/anyangle.

Uras, T., Koenig, S., & Hernandez, C. (2013). Subgoal graphs for optimal pathfinding in
eight-neighbor grids. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), pp. 224–232.

Yap, P., Burch, N., Holte, R., & Schaeffer, J. (2011). Block A*: database-driven search with
applications in any-angle path-planning. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pp. 120–125.

955


