

 Patina: Dynamic Heatmaps for Visualizing Application Usage

Justin Matejka, Tovi Grossman, and George Fitzmaurice
Autodesk Research, Toronto, Ontario, Canada

firstname.lastname@Autodesk.com

Figure 1. A side-by-side view of the Patina heatmap overlay showing the usage patterns of both the active user and the user
community on the left, and the standard underlying Microsoft Word interface on the right.

ABSTRACT
We present Patina, an application independent system for
collecting and visualizing software application usage data.
Patina requires no instrumentation of the target application,
all data is collected through standard window metrics and
accessibility APIs. The primary visualization is a dynamic
heatmap overlay which adapts to match the content, location,
and shape of the user interface controls visible in the active
application. We discuss a set of design guidelines for the Pat-
ina system, describe our implementation of the system, and
report on an initial evaluation based on a short-term deploy-
ment of the system.

Author Keywords: Visualization; Social Learning

ACM Classification: H.5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

INTRODUCTION
In today’s software applications, users can be faced with
thousands of menus, dialogs, and interactive widgets, mak-
ing the usage and navigation through those interfaces
overwhelming. These applications typically look the same
regardless of their past usage. A user will be faced with the
exact same user interface, regardless of how many times it
has been used. On the contrary, physical objects give people
a rich set of cues related to their usage history; We can rec-
ognize that a car is brand new by its smell, that a book has
been well read by the deteriorating visual appearance of its
cover, or that a baseball glove has a long history of use from
its feel, and the ease at which it closes.

Pirolli and Card’s information foraging theory [22] intro-
duced the concept of information scent, defined as “the
(imperfect) perception of the value, cost, or access path of
information sources obtained from proximal cues.” Research
has shown that the existence of information scent can aid in

navigation and decision making tasks [27]. Thus, improving
the information scent cues in software application interfaces
could help alleviate the challenges imposed by their over-
whelmingly large feature sets.

One way to provide information scent in a user interface is
to visualize cues related to the history of its usage [27]. In
their Scented Widgets paper, Willett et al. argue that such
social navigation cues can “direct our attention to hot spots
of interest or to under-explored regions.” For example, a user
opening up an advanced preference dialog may be able to
quickly identify settings that users rarely disabled, or param-
eters that are commonly adjusted.

While usage metrics for software applications can often be
collected [17,19], doing so typically requires instrumenta-
tion of the host application. Similarly, supporting scented
widgets [27], or adapting an application to a user’s past be-
haviors [12], requires modification of the application.

In this paper, we present Patina, a new system that collects
and visualizes software application usage data. Our system
adds two core contributions to the existing literature.

First, whereas scented widgets were designed to enhance in-
dividual or groups of widgets, Patina provides visual cues
across an entire application interface using a dynamic graph-
ical overlay. A colored heatmap indicates commonly and
rarely used features in any view of the interface, and adapts
to the current interface layout. Second, Patina is imple-
mented in an application-independent manner requiring no
instrumentation of the host application, both for the collec-
tion and presentation of the usage metrics. This is made
possible using a combination of system window metrics and
accessibility information, available in many of today’s Win-
dows applications.

In the following sections, we provide an overview of the re-
lated research, discuss the design goals of our system, and
present the implementation details of Patina. We also report
on an initial evaluation based on a short-term deployment of
the system, used by 8 users for 1 week.

Our results and experiences indicate three primary scenarios
where the Patina system could be useful: familiarizing new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

	

Session: Information Visualization CHI 2013: Changing Perspectives, Paris, France

3227

users with an application; exposing functionality relevant to
a specific document; and supporting continuous reflection
on personal and community usage patterns.

RELATED WORK

Collecting and Visualizing Usage Metrics

Many commercial software products have customer usage
reporting facilities which log and report usage metrics. The
ingimp project [26] instrumented the open-source image ed-
iting program “the GIMP” to collect real-time usage and
demographic information. As with commercial applications
however, ingimp required modifying the original source of
the application to collect usage data. The Patina system is
designed to require no modifications to the original applica-
tion. The AppMonitor tool [1] from Alexander et al. is a
client side logging tool that records user interactions in un-
modified Windows applications. However, a special DLL
must be loaded into a shared memory space with the target
application. In contrast, the Patina system collects and mon-
itors data only through an external process. Hurst et al.’s
Dirty Desktops [16] identified likely interface targets
through the collection of user click points but relied on a
fixed size and arrangement of UI elements, while the Patina
system is designed to work with resizable UIs.

Semi-transparent heap-maps overlaid over the original con-
tent are frequently used for viewing eye tracking data [28].
Heatmap overlays have also become a popular way for web-
site administrators to view where user’s click on their
website [29]. These displays can be useful, however they are
not robust to changes in the layout of the underlying
webpage. The Mozilla Labs team instrumented the Firefox
browser to collect data on which interfaced regions were
clicked. They then plotted the results over a static image of
the browser [30], whereas the Patina system displays a live-
updating heatmap over a running application.

Information Scent

Many research projects have looked to improve the infor-
mation scent [22] of an interface to assist in the user’s
navigation through or usage of a software application. In
1992, Hill and Hollan [14] introduced the idea of computa-
tional wear by marking up the scroll bar of a text editor with
indications of which parts of the document have been fre-
quently read and/or edited. This idea was also explored more
recently by Alexander et al. [2]. Patina employs the idea of
computational wear by essentially marking up areas of the
UI based on their usage.

Scented Widgets [27] offers visual encodings built into indi-
vidual UI widgets to show community gathered usage data.
In contrast, Patina visualizes social navigation cues over the
entire application, using a dynamically generated heatmap,
and introduces an application independent implementation
of Scented Widget visualizations.

The Phosphor [4] and Mnemonic Rendering [5] systems use
visual feedback to attract the user’s attention to settings or
parts of the screen which have been modified. This might

allow a user to see which parts of the interface are more use-
ful or important, and the Patina system can serve a similar
purpose.

Adaptive UIs
Researchers have explored several ways to address the issue
of a user being overwhelmed by the multitude of options and
tools available in a complicated software application. One
approach has been a multi-layered, or “training wheels” in-
terfaces [3, 6] which only expose new users to a subset of
the available functionality, and gradually expose more func-
tionality as the user becomes more experienced. These
techniques can reduce the number of mistakes made by a
user, but are not applicable for experienced users, or in situ-
ations where the user really does need access to the full
functionality of the system.

To provide the benefits of multi-layered interfaces while still
providing access to the full range of functionality, adaptive
menus [12, 13] have been explored which automatically re-
arrange the items in a menu placing the most frequently used
items at the top. These techniques suffer from rearranging
the items in the interface, requiring the user to “re-find” ele-
ments which have been displaced. Findlater et al.’s
Ephemeral Adaptation [13] addressed this shortcoming of
adaptive menus by maintaining a fixed menu item arrange-
ment where the predicted items appear immediately while
the remaining items fade in after a short (500ms) delay. The
Patina system uses an automatic transient display similar to
Ephemeral Adaptation.

UI Recognition
For a system to augment the interface of an existing applica-
tion without access or modifications to the original source
code, it must be able to recognize the location and properties
of the application’s UI elements. Prefab [10, 11] and Sikuli
[8] use a vision based approach to locate user interface ele-
ments based on their appearance. Systems by Hurst et al.
[15], the PAX framework [7], and Façades [24] combine im-
age techniques with accessibility data collected from the
publicly exposed accessibility APIs. Our system exclusively
uses externally available window and accessibility data but
could be made to take advantage of additional recognition
techniques.

While aspects of our design have been inspired by previous
work, our system is unique and flexible. None of the previ-
ous systems offer an application-independent means of
visualizing software application usage data via dynamic
graphical overlays which adapt to match the content, loca-
tion and shape of the user interface controls.

DESIGN GUIDELINES
Our design of Patina was grounded by a study of related re-
search and theory on information visualization and
information scent. Below we describe the guidelines that we
followed in our design process.

Uniform: Encoding the same data in different ways across
widgets can complicate visual comparison [27]. As such, the
visual encoding should be consistent across the entire user
interface.

Session: Information Visualization CHI 2013: Changing Perspectives, Paris, France

3228

Distinguishable: Information scent encoding should not con-
flict with the conventions of the underlying content [27]. Our
visual encoding should respect and be easily distinguishable
from the underlying interface conventions.

Intuitive: For a visualization to be effective, the user must be
able to understand it. Users should be able to, without train-
ing, see which areas of the interface are heavily used, as well
as which areas are infrequently used. It is therefore important
to use a visual encoding that will be intuitive for users to
comprehend.

Proximal: To aid in navigation of an information space, the
information scent should be provided in the form of a prox-
imal cue [22, 27]. Our visualization should be presented in
the same visual space as the user interface elements so the
mapping between UI element and usage is directly visible.

Non-Disruptive: The information scent should not adversely
impact the user interface design or layout [27]. The data
presentation should strike a balance between providing use-
ful information while not being disruptive.

PATINA SYSTEM DESIGN
Our goal is to design a system that works without any mod-
ifications to the target application, and without any
specialized knowledge about the internal workings of the ap-
plication. Additionally, the system should be designed in a
way that allows it to collect and display usage data from any
application.

The Patina system is implemented in C# as a Microsoft Win-
dows application. The main system is broken down into two
main sections of Data Collection, and Presentation, with a
Data Management block in between (Figure 2).

Figure 2. Organization of the Patina System.

Data Collection
Typical heatmaps collect and visualize static x and y click
points [29] or eye-tracking coordinates [28]. However, to
implement a visualization on a live, resizable, customizable
user interface, our system needs to recognize which user in-
terface controls the user has interacted with. Our
implementation uses Windows-specific libraries for collect-
ing the necessary data, although similar functionality does
exist for other operating systems.

Window-Level Data
Top-level, or main application windows in the Windows op-
erating system are accessed programmatically through a
handle to the window, referred to as an hWnd. Through a
collection of Win32 API calls to functions (including
GetWindowText, GetClassName, and GetWindowThread-

ProcessId hosted in the user32.dll file), a selection of

information about the window and associated process can be
gathered (Table 1).

The Window Title represents the text which appears in the
title bar of the active window. If we are looking at the main
application window, the Application Window Title field will
be the same as Window Title. However, if we are looking at
a dialog box of some other secondary window, the Applica-
tion Window Title will have the text in the title bar of the host
application.

PROPERTY EXAMPLE
Window Title “Modify Style”

Application Window Title “Docu2.docx - Microsoft Word”
Location (x, y) 408, 457

Size (width, height) 532, 545
Module Name WINWORD.EXE

Class Name bosa_sdm_msword

Table 1. Information collected for a top-level window, the
“Modify Style” dialog in Microsoft Word 2010.

In Windows there is also the notion of control windows,
which are not windows in the traditional UI sense, but rather
are sub-elements within a parent window such as scrollbars,
informational status areas, or the main canvas area. Outlines
for all areas defined as nested hWnd’s from a standard view
of Microsoft Word and AutoCAD are shown in Figure 3. The
Class Name, Size, and Location are collected and logged for
each new window activation. Each time the user performs a
click event, we check the hWnd hierarchy to see if there have
been any structural changes, and if so, we log the differences.

Figure 3. Rectangle information collected from HWND
data structures from standard Microsoft Word (A) and Au-
toCAD (B) windows.

It is apparent by looking at Figure 3 that not all of the area
information collected through the interrogation of the nested
control windows corresponds visually with UI elements; for
example, the square in the top left corner of the Microsoft
Word window. Despite the somewhat dirty nature of the data

Data Collection

Accessibility Info
Microsoft Active Accessibility

User Activity Data
Low Level Mouse Hook

Window Info (hWnd)
user32.dll

Generate Heatmap
gdiplus.dll (GDI+)

Displaying Overlay
WPF Transparent Window

Presentation
Data Management

Shared Dropbox Folder

Session: Information Visualization CHI 2013: Changing Perspectives, Paris, France

3229

collected in this way, many elements are detected such as the
scroll bars in Microsoft Word, and the tool pallets and com-
mand line area in AutoCAD.

Accessibility-Level Data
Accessibility APIs are interfaces included in many operating
systems which provide programmatic access to user inter-
face elements and are typically used by assistive
technologies such as screen readers or GUI automation tools.
It generally takes additional work from application develop-
ers to fully support the platform’s accessibility API’s, and as
such, the completeness of accessibility coverage can vary
greatly between applications. Hurst et al. [15] found that
over a dataset of 1335 interface elements from 8 popular ap-
plications, the Microsoft Active Accessibility (MSAA) API
was able to correctly recognize 74% of the UI targets. Our
exploration has found that traditional UI elements such as
buttons, scrollbars, combo boxes, menus, pull-down menus
etc. are relatively well supported by the Accessibility API,
but more specialized or unique controls are less reliably cov-
ered. Figure 4 shows the accessibility regions returned when
querying the same two main windows from Figure 3. We can
see that all of the standard controls have been recognized but
several specialized controls have been missed; For example,
the margin handles in the Word ruler bar, and the document
tabs and in-canvas UI elements in AutoCAD.

Figure 4. Rectangle data collected from the Accessibility
APIs for Microsoft Word (A) and AutoCAD (B) windows.
Yellow rectangles indicate regions which are reported as
“offscreen”.

When pull-down or pop-up menus are posted, new accessi-
bility regions are generated for the individual items in the
menu, and the Patina

Our system gathers accessibility data using the previously
mentioned Microsoft Active Accessibility (MSAA) API

1 mwinapi.sourceforge.net

through the Managed Windows API1 wrapper. Each item ex-
poses a different set of parameters through the API (as
members of the SystemAccessibleObject class), but an ex-
ample of the data available for a combo box is presented in
Table 2.

The Role field contains what type of UI element we are ac-
cessing and the State field reports the current condition of
the control, such as offscreen for items that are not currently
visible, and checked for selected checkboxes. The current
value of a UI element with a user-modifiable component
such as a text field or combo box is reported in the Value
field.

PROPERTY EXAMPLE

Name Font:
Role Combo Box
State None

Value Times New Roman
Description Change the font face.

Shortcut Text null
Location (x, y) 303, 83

Size (width, height) 98, 22

Table 2. Information collected for a UI element with the Ac-
cessibility API, in this case, the font selection combo box in
Microsoft Word 2010.

Querying a single accessibility object can be done without a
noticeable delay, but requesting the entire accessibility ob-
ject tree, which we require, is more intensive, so we perform
this data collection in a background thread. Each time the
user clicks, we query the accessibility API to get a listing of
all available UI elements, and compare against the previ-
ously cached list of elements. If there are any additions or
removals between the two lists, the new list is cached and
saved to disk.

User Activity Data
Besides collecting identifying and structural information re-
lated to the window and UI components on the hWnd and
accessibility levels, the Patina system is also notified of
when a new foreground window is activated. Mouse click
events are captured and the coordinates are saved relative to
the coordinates of the active window.

Data Management and Sharing
Our system architecture utilizes Dropbox2 as a mechanism
to share data among users [19]. Collected window, accessi-
bility, and user data is placed in a shared Dropbox folder and
automatically synced with all other users. This technique
simplifies the deployment and evaluation of the system, in
comparison to commercial cloud based data management
services that would be used for an actual implementation.

Presentation: Dynamic Heatmaps
The Patina system uses dynamic heatmaps as the primary
mechanism for encoding usage information. Heatmaps were
chosen after a consideration of our grounded design goals.
First, heatmaps visualize usage data across the entire inter-
face with a consistent visual encoding (Uniform). Heatmaps

2 www.dropbox.com

Session: Information Visualization CHI 2013: Changing Perspectives, Paris, France

3230

are also capable of being overlaid ontop of the user interface
(Proximal). Furthermore, the organic nature of our heatmaps
are clearly distinguishable from the interface itself (Distin-
guishable). Finally, heatmaps have become a common
method for encoding web analytics [29] since it is intuitive
for users to understand the meaning of the “hot zones” (In-
tuitive).

The presentation layer of the Patina system comprises two
main functions: first, generating the usage pattern heatmap
for the current view, and second, displaying the heatmap
overlay on top of the active window.

Generating the Heatmap
The process of creating the heatmap can be broken down into
four main steps as described below.

1 - COLLECTING RELEVANT CLICK POINTS
Since the Patina system works across applications, only a
subset of previously recorded click points will have occurred
in the current working application. The first step in filtering
the entire set of mouse click points is to find those which
occurred in the current application. We do that by consider-
ing the Module Name and Class Name fields from the
window data which tells us the name of the executable and
the type of window where the click occurred. We only con-
sider clicks which were generated in windows matching the
current Module and Class Name.

Figure 5. Filters dialog to specify parameters to narrow the
data used to generate the heatmaps.

The Filters Dialog (Figure 5) provides an additional level of
control over filtering the data. Users can choose to only con-
sider clicks from a particular user, particular document
(which is implemented as a filter on the Application Window
Title field), or from a particular time frame.

2 - MAPPING CLICK POINTS TO CURRENT INTERFACE
At this point we have a collection of click points which may
be relevant to the current view. The next step is to see which
ones have a mapping to the application’s current view.

In the simplest scenario, the original window where the rec-
orded click occurred, and the current view, will be exactly
the same; that is, they have the exact same dimensions and
they have the exact same content. This could occur for a
fixed-size window without any tabs or dynamic controls
[16]. In this scenario we could simply use a static heat map,
using the originally recorded click points. However, few
such static user interfaces exists, so we look at our logged
control window and accessibility data for a more generalized
solution.

Through the collection of control window and accessibility
regions we have a set of structural and organizational data
about the state of the window at each past click event. We

refer to these control windows and accessibility regions col-
lectively as control regions. Some of these control regions
are quite large and non-specific. For example, the “Home:
property page” accessibility region represents the entire
Home tab of the ribbon. Others are smaller and more precise,
such as the “Bold: push button” which corresponds to the
23x22 pixel Bold button (Figure 6). The system preferen-
tially uses the accessibility region data for UI element
discrimination, and only uses the control windows when no
accessibility information is available.

Figure 6. Overlapping rectangular accessibility regions for
the “Bold: push button”, with the larger areas being the
“Font: toolbar” and “Home: property page”.

Since these areas are nested and overlapping, the location of
each click event could be within multiple control regions. To
determine at the finest granularity which UI element the
click occurred in we look for the smallest control region
which contains the click coordinates, and associate that con-
trol region with the original click event. We then look for a
corresponding control region in the currently active window.
For accessibility regions we do this by looking for a region
with matching Name, Role, and Description fields. If we find
a match, we keep this click point and use it in the next step.

3 - CREATING INTENSITY MAP
At this point we have a collection of click points and associ-
ated control regions in their original context and we need to
map them to the current display. Since the control region in
the original capture and the matching control region in the
current interface might have different locations and/or sizes,
we consider the position of the click within the original con-
trol region relative to the width and height of the region, and
map the same relative values onto the corresponding region
in the current view (Figure 7).

Figure 7. Click point mapping from original control region
to current control region.

This relative positional mapping of click points allows the
heatmap to maintain a correct view of usage patterns when
UI elements have been moved around on the screen, as well
as when the UI controls themselves change between differ-
ent sizes such as resizing icons in a Ribbon toolbar. The
mapping from the original click points to corresponding
points on the current view is recalculated every time the cur-
rent view changes and allows the heap map to update based

Original Region
and original click point

Current Region
and mapped click point

A

A/B = A'/B'

C/D = C'/D'

C

D

C'

D'

B A' B'

Session: Information Visualization CHI 2013: Changing Perspectives, Paris, France

3231

on any changes to the interface layout. An example of this
behavior can be seen in Figure 8.

Once all the click points have be mapped onto the current
interface layout, the intensity map is created by drawing a
semi-transparent circle at each click location which fades
from its most opaque in the center to transparent at the edges
(Figure 9). The size of the circle is configurable, but we used
a radius of 20 pixels for the prototype. The base opacity for
each click point is 40%, and as points overlap each other,
sections of the intensity become darker, approaching solid
black, indicating high activity. If there are many overlapping
click points, the opacity of each point can be reduced to pre-
vent the heatmap from becoming oversaturated. Initial
testing found that many clicks points occur in the main can-
vas or working area of an application, and have a tendency
to distract from the more useful data related to usage of the
specific UI elements such as buttons. Since our main goal is
to grack usage of interactive widgets, the opacity of individ-
ual click points are reduced for all accessibility regions with
an area greater than 64x64 (4,096 pixels2, which corresponds
approximately to the largest size of buttons found in a Rib-
bon interface) down to 3% for all click points in a region
larger than 90,000 pixels2 (Figure 9A).

Figure 9. Intensity map creation.The intensity mapping
process is done once for the active user’s data and again for
the rest of the community data.

4 - COLORING HEATMAP.

Once the intensity maps are created they are converted into
heatmaps. This conversion is done on a per pixel level map-
ping of the greyscale level of the intensity mask to an
appropriate color (Figure 10). The heatmap for the active
user is generated using the “You” band of colors on the left

while the community heatmap is generated using the “Oth-
ers” band of colors on the right.

Figure 10. Color mapping used for the heatmaps ranging
from low activity to high activity on the vertical axis, and
the active user to the community on the horizontal axis.

This coloring creates the look of blue spotlights being used
for highlighting the active user’s usage data, and orange
lights being used when displaying the community usage pat-
terns (Figure 13). In addition to heatmaps showing only one
of either the active user or community usage data, a third
heatmap is created to create a combined overview. For this
heatmap, the “Both” portion of the coloring chart is used,
with the intensity level taken as the maximum of the two in-
tensity masks at each pixel, and the color chosen as a blend
between the two groups based on relative proportion of ac-
tivity (Figure 11).

Figure 11. Formula for determining the color of a given
pixel in the combined heatmap.

We looked at several different schemes for coloring the
heatmaps and found that this combination gave the best com-
bination of visual appearance and ease of recognition when

Current Window
with mapped click points

Intensity Map

A

Low

High
You Both Others

Users

Ac
tiv

ity

I

color(pixel P) = color_map(x, y)
where:

y = MAX(intensityother(P), intensityyou(P))
x = intensityother(P) - intensityyou(P)

0 intensity(P) 1
and:

y

x-1 1

1

0

Figure 8. Demonstration of Patina overlay persisting on the correct UI elements after a window resizing, even when the target UI
elements change size and position between (A) and (B). During ribbon resizing icons may become hidden (C), however when
those elements are exposed through the fly-out menu, their Patina hotspots are restored.

Session: Information Visualization CHI 2013: Changing Perspectives, Paris, France

3232

looking at the you and others heatmaps individually, as well
as when combined.

Displaying Resulting Heatmap
When a window is activated, a floating panel is positioned
over the top left of the window giving information about the
Patina system (Figure 12) including the state of data collec-
tion, the quality of information available for this
application/window, and indicators to show which heatmaps
are currently being displayed.

Figure 12. Patina information panel.

To maintain our non-disruptive deign goal, the primary
method for viewing the heatmap is manually through hot-
keys, F2 for the “You” heatmap and F3 for the “Others”
heatmap. The “You” and “Others” indicators in the infor-
mation panel can also be clicked. The individual heatmaps
are displayed when only one of “You” or “Others” is se-
lected, and the combined heatmap is displayed when both
are chosen. The heatmaps smoothly fade in over a duration
of 0.3 seconds and are displayed over the entire window at
an opacity of 50%. An example of the three different
heatmap views is shown in Figure 13.

Figure 13. Examples of the different overlay modes.

An alternative visualization we considered was to render the
usage patterns as rectangular overlays covering the extents
of the UI widget (Figure 14). However, we prefer the organic
look of the click-point representation, and believe it better
satisfies our Distinguishable and Intuitive design goals.

Figure 14. Combined usage overlay with rectangular re-
gions matching over UI elements.

Automatic Transient View
Besides the user initiated display of the entire-window
heatmap we have also created a view that is automatically
and temporarily displayed when new UI components be-
come visible (Figure 15). This mode gives the benefits of the
Patina overlay without requiring the user to manually acti-
vate the visualization, and is similar in nature to Ephmeral
Adaptation [13]. To minimize visual distraction, the heatmap
is rendered with a transparent background, and only points
associated with newly visible controls are included. For ex-
ample, in the scenario shown in Figure 15, once the user
clicked on the “Page Layout” tab, new UI elements appeared
on the screen; namely, all of the controls under the “Page
Layout” tab. Only these newly displayed controls are con-
sidered when gathering the points for this transient heatmap
which smoothly fades in and out over a period of 5 seconds.

Figure 15. Visual example and time graph for the automatic
transient Patina view.

This transient overlay view also works well to see which op-
tions are frequently modified when scrolling through large
preference dialogs with many items.

Additional Applications of the Patina System
In addition to the previously described dynamic heatmaps,
we now showcase how Patina can be used for application-
independent implementations of three previously published
research systems: Scented Widgets, Usher, and Communi-
tyCommands.

Scented Widgets
Willett, Heer, and Agrawala’s Scented Widgets [27] intro-
duced graphical user interface controls enhanced with
embedded visualizations. These visualizations are imple-
mented as a “Look and Feel” layer extending the standard
Java UI toolkit appearance. However, to implement Scented
Widgets developers would need to modify the application
source code and use that particular UI toolkit. Using the Pat-
ina system we can create an application-independent
implementation of Scented Widgets for standard check and
combo boxes. (Figure 16).

For checkbox controls, a small stacked horizontal bar chart
is overlaid to the left of the checkbox to indicate the relative

Data Collection Status:
Data Quality:

Usage Stats Active Heatmap Indicator

Ready
Low

Working
Medium High

U

A

S
Time

Overlay
Opacity

5s0s
0%

50%

User clicks on
“Page Layout” ribbon tab.

Newly visible UI elements
are found, and transient

heatmap generated.
Maximim heatmap
opacity reached.

Overlay fades out.

Overlay off.

Heatmap is smoothly
faded on top of newly
exposed ribbon items.

Session: Information Visualization CHI 2013: Changing Perspectives, Paris, France

3233

proportion of users who have this option selected. For com-
boboxes, we show a horizontal bar chart showing the relative
frequency of the items which have been selected from the
dropdown. The user’s currently selected value is shown in a
darker shade. For both controls, hovering over the charts
shows a larger version with labels. To minimize visual dis-
traction we only display the small visual scent indicators for
UI close to the cursor position.

Figure 16. Scented interface for check box (A) and combo
box (B) controls.

USHER

The USHER system [9] by Chen et al. is designed to improve
the accuracy of form filling information by learning a prob-
abilistic model of the dependencies between options. Based
on this model, the USHER system augments the user interface
to promote correct user input and alert the user of entries
which may be incorrect.

Besides form filling applications, we believe a system like
USHER could be useful in situations such as preference dia-
logs where there are often many settings that a user can
modify and difficulties can arise if any of them are set incor-
rectly. We prototyped this by placing a warning icon beside
options which may be set incorrectly based on the behavior
of other users. We looked at settings individually, but the ac-
cessibility data used by the Patina system would allow for
creating a probabilistic model for determining outliers in a
similar way as is done in the USHER system.

Figure 17. Warning icon and message for setting which are
possibly set outside of normal bounds.

CommunityCommands

The CommunityCommands system [17, 19] is a recom-
mender system for commands within an application. The
active user’s usage history is compared to the usage patterns
of others in the community, and a list of commands are pre-
sented which might be useful to the user. The
CommunityCommands system relies on in-product instru-
mentation to collect the usage data, but we are able to
provide similar functionality using the data collected from
the Patina system (Figure 18).

Figure 18. Command recommendation interface (left).
Highlighted command in AutoCAD (right).

A list of the UI elements available in the application are pre-
sented in a list view, along with how often they are used by
the active user and by the community. The list can be sorted
to show the commands which the active user uses the
most/least, or to present a list of recommended commands
which is calculated by finding commands which the commu-
nity uses a lot, but the active user does not use at all.
Advanced collaborative filtering algorithms could be used to
generate more robust recommendations.

When the users clicks an item in the list, a rectangular high-
light is drawn over the element in the main interface and if
the accessibility information includes hotkey data, we can
automatically execute the command.

INTERNAL DEPLOYMENT
To get initial feedback of the Patina system, we conducted a
short-term deployment evaluation of the system. Because
Patina is still a prototype system that needs to run at all
times, and collects potentially sensitive data (such as docu-
ment names) the study was run internally. Eight participants
within our organization ran the Patina prototype for 1 week
on their office machines while performing their daily com-
puting tasks. To reduce the system load and the amount of
data being transferred, the system was modified to only col-
lect data when Microsoft Word was the foreground
application.

Usage Data and Feedback
During the deployment the Patina system recorded 8,742 to-
tal click events from the eight users. The heatmap overlay
was activated a total of 285 times: 92 for the personal over-
lay, 130 for the community overlay, and 63 times using the
combined data. Looking at the area of the regions that the
click events occurred in (Figure 19) we can see that 12% of
click events were below our 4,096 px2 threshold where we
display the clicks at full intensity, and 80% were above the
90,000 px2 threshold for events we assume took place in a
main canvas area. Since we render these large-area points
very transparently because we don’t believe they have much
informational value, in the future we could consider ignoring
those data points completely when they are collected to re-
duce the data transfer and rendering costs.

Figure 19. Scatter plot of the region sizes where clicks oc-
curred during the internal deployment.

ar
ea

(p
ix

el
s2)

102

103

104

105

106

80%

12%

90,000 px2

4,096 px2

time

Session: Information Visualization CHI 2013: Changing Perspectives, Paris, France

3234

While using the system the users reported exploring more of
the interface than they usually would because they were cu-
rious to see what parts of the interface the others were using.
Several users discovered interface widgets they were previ-
ously unaware of through the heatmap visualization. For
example, one user discovered the “zoom slider” in the bot-
tom right corner of the window, and has subsequently
adopted the use of that slider for zooming his documents.
Another user mentioned that seeing the heatmap from the
other users made him realize that he uses a much smaller set
of tools than his colleagures. Several of the particiapants
mentioned liking the transient overlay, particularly that it
would appear when a new dialog box was activated.

PRIMARY USAGE SCENARIOS
Based on the results and feedback from our evaluation, and
in addition to our own experiences with the system, we see
three primary ways in which the Patina system can be bene-
ficial to users.

Familiarizing New Users with an Application’s Interface
New users of complex applications can often be over-
whelmed by the number of user interface elements presented
on the screen. This can also be a problem for users experi-
enced in one facet of the program when they start exploring
a new area of functionality. The Patina system helps in these
cases by highlighting areas of functionality which are fre-
quently used, and potentially, the most relevant to begin
exploring.

Exposing Single Document Usage Patterns
The relevant application interface elements may be highly
dependent on the current working document. By filtering on
a per-document basis, users can quickly locate commonly
used widgets for that document, or obtain an understanding
of what commands and settings other users have used to cre-
ate or modify a specific document, in collaborative
situations.

Continuous Learning and Reflection
For experienced users of an application, the Patina system
supports continuous learning by highlighting interface ele-
ments which others are using, which could lead to a better
overall understanding of the type of task others perform with
the software. Personal reflection is supported by highlight-
ing those elements most often used by the active user and
comparing that set with the community usage data, provid-
ing a way for the user to notice patterns in their own usage
behavior that they would otherwise be unaware of.

DISCUSSION AND FUTURE WORK
We have developed an application independent system to
collect and display historical usage information within the
context of a software user interface. An internal deployment
provided some initial insights into the nature of the data that
would be collected.

While this internal deployment was valuable at our current
stage of research, an important next step will be to perform
more formal evaluations. It would be interesting to study
how the system would be received and used in a larger scale

external deployment. Further designs may need to be con-
sidered to handle data from a larger user base. Focused
laboratory studies could also be used to evaluate aspects of
the design space presented in this paper. For example, we
could evaluate the differences between various visual
schemes, such as the light and dark background heatmaps,
or compare organic heatmap shapes to a rectangular high-
lighting technique. We could also study the effectiveness of
the color schemes used for the heatmaps.

In terms of gerneralizability, one limitation of our work is
that it does depend on the accessibility data for an optimal
experience. In the absence of such data, it could be useful to
explore augmenting our system with pixel-based image anal-
ysis techniques. Projects such as Sikuli [7, 8], Prefab [10,
11], and Hurst et al.’s automatic target identification system
[15], are all impressive demonstrations of how vision can be
used to interpret interface layout and usage and could be
used in concert with Patina to recognize UI widgets without
sufficient accessibility information present.

Future Work
We have only begun to explore how usage metrics can be
displayed within the context of software application user in-
terfaces. There are still a number of interesting design
opportunities that could be topics of future work.

One important topic which we have not explored is the de-
pendency of usage information between elements in the
interface. Similar to how USHER learns dependencies be-
tween data entry fields [9], Patina could be extended to learn
dependencies between user interface parameter values and
options. The heatmaps and scented widget values could be
updated to show most likely options to be used based on a
user’s current context.

Alternatively, when working in a preference or configuration
dialog, the Patina system could provide a mechanism to view
or restore previous states of the entire dialog. This could al-
low users to quickly review how combinations of parameters
have been used in the past, either from their own use, or by
other users on their team or from the community.

Another way user interface dependencies could be used is to
incorporate command recommender system technology into
Patina [17, 19]. A user’s usage patterns could be compared
to the community’s, and the other user heatmaps could be
generated from the most similar users. Heatmaps could also
be used to show the next most likely elements a user will
click on, based on their past sequence of interactions. This
could guide users through a correct workflow when setting
up multiple parameters in a dialog.

Patina could also be bundled with tutorials to help establish
which tools in the interface are used to complete the tutorial
task. This would be similar to the AdaptableGIMP project
[18], which provides custom tool pallets for individual tuto-
rials, but with Patina the layout of the interface would not
need to be changed.

Another domain of usage we have not explored is webpage
navigation. Typical webpages are composed of rectangular

Session: Information Visualization CHI 2013: Changing Perspectives, Paris, France

3235

components [25], similar to that of graphical user interfaces.
Such data can be accessed through accessibility APIs
through some browsers, or through their Document Object
Model. Patina could potentially be used to track and show
usage information of a website without integration of special
tracking software [29].

Finally, Patina currently visualizes only the usage infor-
mation of mouse clicks. Because accessibility information
does often contain keyboard hotkey associations, hotkey us-
age information could also be collected and overlaid on the
associated icons.

CONCLUSION
The complexity of today’s graphical user interfaces exposes
users to large information spaces they must navigate to use
the software efficiently. The Patina system can aid this pro-
cess by visualizing usage information in the context of the
associated user interface elements. Our application inde-
pendent implementation allows such information to be
collected and generated for any application that provides ac-
cessibility data, without instrumentation or modification of
the actual application. We believe our data collection and in-
teractive UI overlay approach will be useful for future work
in application independent desktop services.

REFERENCES
1. Alexander, J., Cockburn, A., and Lobb, R. (2008).

AppMonitor: a tool for recording user actions in
unmodified Windows applications. Behavior Research
Methods 40, 413-421.

2. Alexander, J., Cockburn, A., Fitchett, S., Gutwin, C., and
Greenberg, S. (2009). Revisiting read wear: analysis,
design, and evaluation of a footprints scrollbar. ACM CHI,
1665-1674.

3. Bannert, M. (2000). The effects of training wheels and
self-learning materials in software training. Journal of
Computer Assisted Learning 16, 336-346.

4. Baudisch, P., Tan, D., Collomb, M., Robbins, D.,
Hinckley, K., Agrawala, M., Zhao, S., and Ramos, G.
(2006). Phosphor: explaining transitions in the user
interface using afterglow effects. ACM UIST, 169-178.

5. Bezerianos, A., Dragicevic, P., and Balakrishnan, R.
(2006). Mnemonic Rendering: An Image-Based Approach
for Exposing Hidden Changes in Dynamic Displays. ACM
UIST, 159-168.

6. Carroll, J. M., and Carrithers, C. (1984). Training wheels
in a user interface. Comm. ACM 27, 800-806.

7. Chang, T.-H., Yeh, T., and Miller, R. (2011). Associating
the Visual Representation of User Interfaces with their
Internal Structures and Metadata. ACM UIST, 245-256.

8. Chang, T.-H., Yeh, T., and Miller, R. C. (2010). GUI
testing using computer vision. ACM CHI, 1535-1544.

9. Chen, K., Hellerstein, J., S., and Parikh, T. S. (2010).
Designing Adaptive Feedback for Improving Data Entry
ACM UIST, 239-248.

10. Dixon, M., and Fogarty, J. (2010). Prefab: Implementing
Advanced Behaviors Using Pixel-Based Reverse
Engineering of Interface Structure. ACM CHI, 1525-1534.

11. Dixon, M., Leventhal, D., and Fogarty, J. (2011). Content
and Hierarchy in Pixel-Based Methods for Reverse
Engineering Interface Structure. CHI, 969-978.

12. Findlater, L., and McGrenere, J. (2004). A comparison of
static, adaptive, and adaptable menus. CHI, 89-96.

13. Findlater, L., Moffatt, K., Mcgrenere, J., and Dawson, J.
(2009). Ephemeral Adaptation: The Use of Gradual Onset
to Improve Menu Selection Performance. ACM CHI, 1655-
1664.

14. Hill, W. C., Hollan, J. D., Wroblewski, D., and
McCandless, T. (1992). Edit wear and read wear. ACM
CHI, 3-9.

15. Hurst, A., Hudson, S. E., and Mankoff, J. (2010).
Automatically Identifying Targets Users Interact with
During Real World Tasks. ACM IUI, 11–20.

16. Hurst, A., Mankoff, J., Dey, A. K., and Hudson, S. E.
(2007). Dirty desktops: using a patina of magnetic mouse
dust to make common interactor targets easier to select.
ACM UIST, 183-186.

17. Li, W., Matejka, J., Gossman, T., Konstan, J.A., and Fitz-
maurice, G. (2011). Design and Evaluation of a Command
Recommendation System for Software Applications. ACM
TOCHI.

18. Lafreniere, B., Bunt, A., Lount, M., Krynicki, F., and
Terry, M. (2011). AdaptableGIMP: designing a socially-
adaptable interface. UIST Adjunct, 89-90.

19. Matejka, J., Grossman, T., and Fitzmaurice, G. (2011). IP-
QAT: In-Product Questions, Answers, & Tips. ACM UIST,
175-184.

20. Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G.
(2009). CommunityCommands: command recommend-
ations for software applications. ACM UIST, 193-202.

21. Nakamura, T., and Igarashi, T. (2008). An application-
independent system for visualizing user operation history.
ACM UIST, 23-32.

22. Pirolli, P., and Card, S. (1999). Information Foraging.
Psychological Review 106, 643-675.

23. Shneiderman, B. (2003). Promoting universal usability
with multi-layer interface design. CUU, 1-8.

24. Stuerzlinger, W., Chapuis, O., Phillips, D., and Roussel, N.
(2006). User interface facades: towards fully adaptable
user interfaces. ACM UIST, 309-318.

25. Talton, J. O., and Klemmer, S. R. (2011). Bricolage:
Example-Based Retargeting for Web Design. ACM CHI,
2197-2206.

26. Terry, M., Kay, M., Vugt, B. V., Slack, B., and Park, T.
(2008). ingimp: Introducing Instrumentation to an End-
User Open Source Application. ACM CHI, 607-616.

27. Willett, W., Heer, J., and Agrawala, M. (2007). Scented
Widgets: Improving Navigation Cues with Embedded
Visualizations. IEEE Transactions on Visualization and
Computer Graphics 13, 1129-1136.

28. Wooding, D.S. (2002). Fixation Maps: quantifying eye-
movement traces. ETRA. 31-36.

29. CrazyEgg. http://www.crazyegg.com/ (Sept 2012).

30. Mozilla Heatmap. https://heatmap.mozillalabs.com/ (Sept
2012

Session: Information Visualization CHI 2013: Changing Perspectives, Paris, France

3236

