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Abstract
A key challenge for reinforcement learning is solv-
ing long-horizon planning and control problems.
Recent work has proposed leveraging programs
to help guide the learning algorithm in these set-
tings. However, these approaches impose a high
manual burden on the user since they must pro-
vide a guiding program for every new task they
seek to achieve. We propose an approach that
leverages program synthesis to automatically gen-
erate the guiding program. A key challenge is
how to handle partially observable environments.
We propose model predictive program synthesis,
which trains a generative model to predict the
unobserved portions of the world, and then syn-
thesizes a program based on samples from this
model in a way that is robust to its uncertainty.
We evaluate our approach on a set of challenging
benchmarks, including a 2D Minecraft-inspired
“craft” environment where the agent must perform
a complex sequence of subtasks to achieve its
goal, a box-world environment that requires ab-
stract reasoning, and a variant of the craft envi-
ronment where the agent is a MuJoCo Ant. Our
approach significantly outperforms several base-
lines, and performs essentially as well as an oracle
that is given an effective program.

1. Introduction
Reinforcement learning has been applied to solving chal-
lenging planning and control problems (Mnih et al., 2015;
Arulkumaran et al., 2017). Despite a significant amount of
recent progress, solving long-horizon problems remains a
significant challenge due to the combinatorial explosion of
possible strategies.

One promising approach to addressing these issues is to
leverage programs to guide the behavior of the agents (An-
dreas et al., 2017; Sun et al., 2020). In this paradigm, the
user provides a sequence of high-level instructions designed
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to guide the agent. For instance, the program might encode
intermediate subgoals that the agent should aim to achieve,
but leave the reinforcement learning algorithm to discover
how exactly to achieve these subgoals. In addition, to handle
partially observable environments, these programs might en-
code conditionals that determine the course of action based
on the agent’s observations.

The primary drawback of these approaches is that the user
becomes burdened with providing such a program for every
new task. Not only is this process time-consuming for the
user, but a poorly written program may hamper learning. A
natural question is whether we can automatically synthesize
these programs. That is, rather than require the user to
provide the program, we instead have them provide a high-
level specification that encodes only the desired goal. Then,
our framework automatically synthesizes a program that
achieves this specification. Finally, this program is used to
guide the reinforcement learning algorithm.

The key challenge to realizing our approach is how to handle
partially observable environments. In the fully observed
setting, the program synthesis problem reduces to STRIPS
planning (Fikes & Nilsson, 1971)—i.e., search over the
space of possible plans to find one that achieves the goal.
However, these techniques are hard to apply in settings
where the environment is initially unknown.

To address this challenge, we propose an approach called
model predictive program synthesis (MPPS). At a high level,
our approach synthesizes the guiding program based on a
conditional generative model of the environment, but in
a way that is robust to the uncertainty in this model. In
particular, for a user-provided goal specification φ, the agent
chooses its actions using the following three steps:

• Hallucinator: First, inspired by world-models (Ha &
Schmidhuber, 2018), the agent keeps track of a condi-
tional generative model g over possible realizations of
the unobserved portions of the environment.

• Synthesizer: Next, given the world predicted by g, the
agent synthesizes a program p that achieves φ assuming
this prediction is accurate. Since world predictions
are stochastic in nature, it samples multiple predicted
worlds and computes the program that maximizes the
probability of success according to these samples.
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Figure 1. (a) An initial state for the craft environment. Bright regions are observed and dark ones are unobserved. This map has two zones
separated by a stone boundary (blue line). The first zone contains the agent, 2 irons, and 1 wood; the second contains 1 iron and 1 gem.
The goal is to get the gem. The agent represents the high-level structure of the map (e.g., resources in each zone) as abstraction variables.
The ground truth abstraction variables are in the top-right; we only show the counts of gems, irons, and woods in each zone and the zone
containing the agent. The two thought bubbles below are abstract variables hallucinated by the agent based on the observed parts of
the map. In both, the zone that the agent is in contains a gem, so the synthesized program is “get gem”. However, this program cannot
achieve the goal. (b) The state after the agent took 20 actions, failed to obtain the gem, and is now synthesizing a new program. They have
explored more of the map, so the hallucinations are more accurate, and the new program is a valid strategy for obtaining the gem.

• Executor: Finally, the agent executes the strategy en-
coded by p for a fixed number of steps N . Concretely,
p is a sequence of components p = c1; ...; ck, where
each component is an option cτ = (πτ , βτ ) (Sutton
et al., 1999), which says to execute policy πτ until
condition βτ holds.

If φ is not satisfied after N steps, then the above process is
repeated. Since the hallucinator now has more information
(assuming the agent has explored more of the environment),
the agent now has a better chance of achieving its goal.
Importantly, the agent is implicitly encouraged to explore
since it must do so to discover whether the current program
can successfully achieve the goal φ.

Similar to Sun et al. (2020), the user instantiates our frame-
work in a new domain by providing a set of prototype com-
ponents c̃, where c̃ is a logical formula encoding a useful
subtask for that domain. For instance, c̃ may encode that
the agent should navigate to a goal position. The user does
not need to provide a policy to achieve c̃; our framework
uses reinforcement learning to automatically train such a
policy c. Our executor reuses these policies c to solve differ-
ent tasks in varying environments within the same domain.
In particular, for a new task and/or environment, the user
only needs to provide a specification φ, which is a logical
formula encoding the goal of that task.

We instantiate this approach in the context of a 2D Minecraft-
inspired environment (Andreas et al., 2017; Sohn et al.,
2018; Sun et al., 2020), which we call the “craft environ-
ment”, and a “box-world” environment (Zambaldi et al.,
2019). We demonstrate that our approach significantly out-
performs existing approaches for partially observable en-

vironments, while performing essentially as well as using
handcrafted programs to guide the agent. In addition, we
demonstrate that the policy we learn can be transferred to a
continuous variant of the craft environment, where the agent
is replaced by a MuJoCo (Todorov et al., 2012) ant.

Related work. There has been recent interest in program-
guided reinforcement learning, where a program encoding
high-level instructions on how to achieve the goal (essen-
tially, a sequence of options) is used to guide the agent.
Andreas et al. (2017) uses programs to guide agents that are
initially unaware of any semantics of the programs (i.e., the
program is just a sequence of symbols), with the goal of
understanding whether the structure of the program alone is
sufficient to improve learning. Jothimurugan et al. (2019)
enables users to write specifications in a high-level language
based on temporal logic. Then, they show how to translate
these specifications into shaped reward functions to guide
learning. Most closely related is recent work (Sun et al.,
2020) that has demonstrated how program semantics can be
used to guide reinforcement learning in the craft environ-
ment. As with this work, we assume that the user provides
semantics of each option in the program (i.e., the subgoal
that should be achieved by that option), but not an actual
policy implementing this option (which is learned using
reinforcement learning). However, we do not assume that
the user provides the program, just the overall goal.

More broadly, our work fits into the literature on combining
high-level planning with reinforcement learning. In particu-
lar, there is a long literature on planning with options (Sutton
et al., 1999) (also known as skills (Hausman et al., 2018)),
including work on inferring options (Stolle & Precup, 2002).
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However, these approaches cannot be applied to MDPs with
continuous state and action spaces or to partially observed
MDPs. Recent work has addressed the former (Abel et al.,
2020; Jothimurugan et al., 2021) by combining high-level
planning with reinforcement learning to handle low-level
control, but not the latter, whereas our work tackles both
challenges. Similarly, classical planning algorithms such as
STRIPS (Fikes & Nilsson, 1971) cannot handle uncertainty
in the realization of the environment. There has also been
work on replanning (Stentz et al., 1995) to handle small
changes to an initially known environment, but they cannot
handle environments that are initially completely unknown.
Alternatively, there has been work on hierarchical planning
in POMDPs (Charlin et al., 2007; Toussaint et al., 2008),
but these are not designed to handle continuous state and ac-
tion spaces. We leverage program synthesis (Solar-Lezama,
2008) in conjunction with the world models approach (Ha
& Schmidhuber, 2018) to address these issues.

Finally, there has broadly been recent interest in using pro-
gram synthesis to learn programmatic policies that are more
interpretable (Verma et al., 2018; Inala et al., 2021), veri-
fiable (Bastani et al., 2018; Verma, 2019), and generaliz-
able (Inala et al., 2020). In contrast, we are not directly
synthesizing the policy, but a program to guide the policy.

2. Motivating Example
Figure 1a shows a 2D Minecraft-inspired crafting game. In
this grid world, the agent can navigate and collect resources
(e.g., wood), build tools (e.g., a bridge) at workshops using
collected resources, and use the tools to achieve subtasks
(e.g., use a bridge to cross water). The agent can only
observe the 5 × 5 grid around its current position; since
the environment is static, it also memorizes locations it has
seen before. A single task consists of a randomly generated
map (i.e., the environment) and goal (i.e., obtain a certain
resource or build a certain tool).

To instantiate our framework, we provide prototype com-
ponents that specify high-level behaviours such as getting
wood or using toolshed to build a bridge. Figure 2 shows the
domain-specific language that encodes the set of prototypes.

For each prototype, we need to provide a logical formula
c̃ that formally specifies its desired behavior. Rather than
specifying behavior over concrete state s, we instead specify
it over abstraction variables that encode subsets of the state
space. For instance, we divide the map into zones that are
regions separated by obstacles such as water and stone. As
an example, the map in Figure 1a has two zones: the region
containing the agent and the region blocked off by stones.
Then, the zone the agent is currently in is represented by an
abstraction variable z—i.e., the states s where the agent is
in zone i is represented by the logical predicate z = i.

The prototype components are logical formulas over these
abstraction variables—e.g., the prototype for “get wood” is

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = connected)

∧ (ρ+j,wood = ρ−j,wood − 1) ∧ (ι+wood = ι−wood + 1).

In this formula, bi,j indicates whether zones i and j are con-
nected, ρi,r denotes the count of resource r in zone i, and ιr
denotes the count of resource r in the agent’s inventory. The
+ and − superscripts on each abstraction variable indicates
that it represents the initial state of the agent before the
execution of the prototype and the final state of the agent
after the execution of the prototype, respectively.

Thus, this formula says that (i) the agent goes from zone i
to j, (ii) i and j are connected, (iii) the count of wood in
the agent’s inventory increases by one, and (iv) the count
of wood in zone j decreases by one. All of the prototype
components we use are summarized in Appendix A.

Before solving any tasks, for each prototype c̃, our frame-
work uses reinforcement learning to train a component c
that implements c̃—i.e., an option c = (π, β) that attempts
to satisfy the behavior encoded by the logical formula c̃.

To solve a new task, the user provides a logical formula φ
encoding the goal of this task. Then, the agent acts in the
environment to try achieve φ. For example, Figure 1a shows
the initial state of an agent where the task is to obtain a gem.

First, based on the observations so far, the agent π uses
the hallucinator g to predict multiple potential worlds, each
of which represents a possible realization of the full map.
One convenient aspect of our approach is that rather than
predicting concrete states, it suffices to predict the abstrac-
tion variables used in the prototype components c̃ and goal
specification φ. For instance, Figure 1a shows two samples
of the world predicted by g; here, the only values it predicts
are the number of zones in the map, the type of the bound-
ary between the zones, and the counts of the resources and
workshops in each zone. In this example, the first predicted
world contains two zones, and the second contains one zone.
Note that in both predicted worlds, there is a gem located in
same zone as the agent.

Next, π synthesizes a program p that achieves the goal in
the maximum possible number of predicted worlds. The
synthesized program in Figure 1a is a single component “get
gem”, which is an option that searches the current zone (or
zones already connected with the current zone) for a gem.
Note that this program achieves the goal for the predicted
worlds shown in Figure 1a.

Finally, the agent executes the program p = c1; ...; ck for a
fixed number N of steps. In particular, it executes the policy
πτ of component cτ = (πτ , βτ ) until βτ holds, upon which
it switches to executing cτ+1. In our example, there is only
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C := get R | use T | use W
R := wood | iron | grass | gold | gem
T := bridge | axe
W := factory | workbench | toolshed

Figure 2. Prototype components for the craft environment; the
three kinds of prototypes are get resource (R), use tool (T ), and
use workshop (W ).

one component “get gem”, so it executes the policy for this
component until the agent finds a gem.

In this case, the agent fails to achieve φ since there is no gem
in the same zone as the agent. Thus, the agent repeats the
above process. Since the agent now has more observations,
g more accurately predicts the world. For instance, Figure
1b shows the intermediate step when the agent does the
first replanning. Note that it now correctly predicts that
the only gem is in the second zone. As a result, the newly
synthesized program is

p =

for building axe︷ ︸︸ ︷
get wood; use workbench; get iron; use factory;
use axe; get gem.

That is, it builds an axe to break the stone so it can get to the
zone containing the gem. Finally, the agent executes this
new program, which successfully finds the gem.

3. Problem Formulation
POMDP. We consider a partially observed Markov decision
process (POMDP) with states S ⊆ Rn, actions A ⊆ Rm,
observations O ⊆ Rq, initial state distribution P0, ob-
servation function h : S → O, and transition function
f : S × A → S. Given initial state s0 ∼ P0, policy
π : S → A, and time horizon T ∈ N, the generated tra-
jectory is (s0, a0, s1, a1, . . . , sT , aT ), where ot = h(st),
at = π(ot), and st+1 = f(st, at).

We assume that the state includes the unobserved parts of the
environment—e.g., in our craft environment, it represents
both the entire map as well as the agent’s current position.

Programs. We consider programs p = c1; ...; ck that are
composed of components cτ ∈ C. Each component c rep-
resents an option c = (π, β), where π : O → A is a policy
and β : O → {0, 1}. To execute p, the agent uses the op-
tions c1, ..., ck in sequence. To use option cτ = (πτ , βτ ), it
takes actions πτ (o) until βτ (o) = 1; at this point, the agent
switches to option cτ+1 and continues this process.

User-provided prototype components. Rather than have
the user directly provide the components C used in our pro-
grams, we instead have them provide prototype components

Hallucinator
(C-VAE)

Synthesizer

Executor
(Modular Network)

Action

Program

* * * * * * * * * 

Figure 3. Architecture of our agent (the blue box).

c̃ ∈ C̃. Importantly, prototypes can be shared across closely
related tasks. Each prototype component is a logical formula
that encodes the expected desired behavior of a component.
More precisely, c̃ is a logical formula over variables s− and
s+, where s− denotes the initial state before executing the
option and s+ denotes the final state after executing the
option. For instance, the prototype component

c̃ ≡ (s− = s0 ⇒ s+ = s1) ∨ (s− = s2 ⇒ s+ = s3)

says that if the POMDP is currently in state s0, then c should
transition it to s1, and if it is currently in state s2, then c
should transition it to s3.

Rather than directly define c̃ over the states s, we can instead
define it over abstraction variables that represent subsets
of the state space. This approach can improve scalability of
our synthesis algorithm—e.g., it enables us to operate over
continuous state spaces as long as the abstraction variables
themselves are discrete.

User-provided specification. To specify a task, the user
provides a specification φ, which is a logical formula over
states s; in general, φ may not directly refer to s but to other
variables that represent subsets of S. Our goal is to design
an agent that achieves any given φ (i.e., act in the POMDP
to reach a state that satisfies φ) as quickly as possible.

4. Model Predictive Program Synthesis
We describe the architecture of our agent, depicted in Figure
3. It is composed of three parts: the hallucinator g, which
predicts possible worlds; the synthesizer, which generates a
program p that succeeds with high probability according to
worlds sampled from g; and the executor, which uses p to
act in the POMDP. These parts are run once every N steps
to generate a program p to execute for the subsequent N
steps, until the user-provided specification φ is achieved.

Hallucinator. First, the hallucinator is a conditional gen-
erative model trained to predict the environment given the
observation so far. For simplicity, we assume the observa-
tion o on the current step already encodes all observations
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so far. Since our craft environment is static, o simply en-
codes the portion of the map that has been revealed so far,
with a special symbol indicating parts that are unknown.
To be precise, the hallucinator g encodes a distribution
g(s | o), which is trained to approximate the actual dis-
tribution P (s | o). Then, at each iteration (i.e., once every
N steps), our agent samples m worlds ŝ1, ..., ŝm ∼ g(· | o).
We choose g to be a conditional variational auto-encoder
(CVAE) (Sohn et al., 2015).

When using abstract variables to represent the states, we can
have g directly predict the values of these abstract variables
instead of having g predict the concrete state. Intuitively,
this approach works since as described below, the synthe-
sizer only needs to know the values of the abstract variables
to generate a program.

Synthesizer. The synthesizer aims to compute the program
that maximizes the probability of satisfying the goal φ:

p∗ = argmax
p

EP (s|o)[p solves φ for s]

≈ argmax
p

1

m

m∑
j=1

1[p solves φ for ŝj ], (1)

where the ŝj are samples from g. The objective (1) can
be expressed as a MaxSAT problem (Krentel, 1986). In
particular, suppose for now that we are searching over pro-
grams p = c1; ...; ck of fixed length k. Then, consider the
constrained optimization problem

argmax
ξ1,...,ξk

1

m

m∑
j=1

∃s−1 , s
+
1 , ..., s

−
k , s

+
k . ψj , (2)

where ξτ and sδτ (for τ ∈ {1, ..., k} and δ ∈ {−,+}) are
the optimization variables. Intuitively, ξ1, ..., ξk encodes
the program p = c1; ...; ck, and ψj encodes the event that p
solves φ for world ŝj . In particular, we have

ψj ≡ ψj,start ∧

[
k∧
τ=1

ψj,τ

]
∧

[
k−1∧
τ=1

ψ′j,τ

]
∧ ψj,end,

where

ψj,start ≡ (s−1 = ŝj)

encodes that the initial state is ŝj ,

ψj,τ ≡
(
(ξτ = c̃)⇒ c̃(s−τ , s

+
τ )
)

encodes that if the τ th component has prototype c̃, then the
τ th component should transition the system from s−τ to s+τ ,

ψ′j,τ ≡ (s+τ = s−τ+1)

encodes that the final state of component τ should equal the
initial state of component τ + 1, and

ψj,end ≡ φ(s+j )

encodes that the final state of the last component should
satisfy the user-provided goal φ.

We use a MaxSAT solver to solve (2) (De Moura & Bjørner,
2008). Given a solution ξ1 = c̃1, ..., ξk = c̃k, the synthe-
sizer returns the corresponding program p = c1; ...; ck.

We incrementally search for longer and longer programs,
starting from k = 1 and incrementing k until either we find
a program that achieves at least a minimum objective value,
or we reach a maximum program length kmax, at which point
we use the best program found so far.

Executor. The executor runs the synthesized program p =
c1; ...; ck for the subsequent N steps. It iteratively uses
each component cτ = (πτ , βτ ), starting from τ = 1. In
particular, it uses action at = πτ (ot) at each time step t,
where ot is the observation on that step. It does so until
βτ (ot) = 1, at which point it increments τ ← τ + 1.

Finally, it continues until either it has completed running the
program (i.e., βk(ot) = 1), or after N time steps. In the for-
mer case, by construction, the goal φ has been achieved, so
the agent terminates. In the latter case, the agent iteratively
reruns the above three steps based on the current observation
to synthesize a new program. At this point, the hallucinator
likely has additional information about the environment, so
the new program has a greater chance of achieving φ.

5. Learning Algorithm
Next, we describe our algorithm for learning the parameters
of models used by our agent. In particular, there are two
parts that need to be learned: (i) we need to learn parameters
of the conditional variational auto-encoder (CVAE) halluci-
nator g, and (ii) we need to learn the components c based
on the user-provided prototype components c̃.

Hallucinator. We choose the hallucinator g to be a condi-
tional variational auto-encoder (CVAE) (Sohn et al., 2015)
trained to estimate the distribution P (s | o) of states given
the current observation. First, we obtain samples (ot, st)
using rollouts collected using a random agent. Then, we
train the CVAE using the standard evidence lower bound
(ELBo) on the log likelihood (Kingma & Welling, 2013):

`(θ, θ̃) = EP (s,o)

[
Ehθ̃(z|s,o)[log gθ(s | z, o)] (3)

−DKL(hθ̃(z | s, o) ‖ N (z; 0, 1))
]
,

where hθ̃ is the encoder and gθ is the decoder:

hθ̃(z | s, o) = N (z; µ̃θ̃(s, o), σ̃θ̃(s, o)
2 · I)

gθ(s | z, o) = N (s;µθ(z, o), σθ(z, o)
2 · I),

where µθ, σθ, µ̃θ̃, and σ̃θ̃ are neural networks, and I is the
identity matrix. We train hθ̃ and gθ by jointly optimizing
(3), and then choose the hallucinator to be g = gθ.
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Executor. Our framework uses reinforcement learning to
learn components c that implement the user-provided pro-
totype components c̃. The learned components c ∈ C can
be shared across multiple tasks. Our approach is based on
neural module networks for reinforcement learning Andreas
et al. (2017). In particular, we train a neural module π
for each component c. In addition, we construct a mon-
itor β that checks when to terminate execution, and take
c = (π, β).

First, β is constructed from c̃—in particular, it returns
whether c̃ is satisfied based on the current observation o.
Note that we have assumed that c̃ can be checked based only
on o; this assumption holds for all prototypes in our craft
environment. If it does not hold, we additionally train π to
explore in a way that enables it to check c̃.

Now, to train the policies π, we generate random initial
states s and goal specifications φ. For training, we use
programs synthesized from the fully observed environments;
such a program p is guaranteed to achieve φ from s. We use
this approach since it avoids the need to run the synthesizer
repeatedly during training.

Then, we sample a rollout {((o1, a1, r1), ..., (oT , aT , rT ))}
by using the executor in conjunction with the program p and
the current options cτ = (πτ , βτ ) (where πτ is randomly
initialized). We give the agent a reward r̃ on each time step
where achieves the subgoal of a single component cτ—i.e.,
the executor increments τ ← τ + 1. Then, we use actor-
critic reinforcement learning (Konda & Tsitsiklis, 2000) to
update the parameters of each policy π.

Finally, as in Andreas et al. (2017), we use curriculum
learning to speed up training—i.e., we train using goals that
can be achieved with shorter programs first.

6. Experiments
In this section, we describe empirical evaluations of our
approach. As we show, it significantly outperforms non-
program-guided baselines, while performing essentially as
well as an oracle that is given the ground truth program.

6.1. Benchmarks

2D-craft. We consider a 2D Minecraft-inspired crafting
game based on the ones in Andreas et al. (2017); Sun et al.
(2020) (Figure 1a). A map in this domain is an 8× 8 grid,
where each grid cell either is empty or contains a resource
(e.g., wood or gold), an obstacle (e.g., water or stone), or
a workshop. In each episode, we randomly sample a map
from a predefined distribution, a random initial position
for the agent, and a random task (one of 14 possibilities,
each of which involves getting a certain resource or building
a certain tool). The more complicated tasks may require

the agent to build intermediate tools (e.g., a bridge or an
axe) to reach initially inaccessible regions to achieve its
goal. In contrast to prior work, our agent does not initially
observe the entire map; instead, they can only observe grid
cells in a 5× 5 square around them. Since the environment
is static, any previously visited cells remain visible. The
agent has a discrete action space, including move actions
in four directions, and a special “use” action that can pick
a resource, use a workshop, or use a tool. The maximum
length of each episode T = 100.

Ant-craft. Next, we consider a variant of 2D-craft where
the agent is replaced with a MuJoCo (Todorov et al., 2012)
ant (Schulman et al., 2016) (illustrated in Figure 5a). For
simplicity, we do not model the physics of the interaction
between the ant and its environment—e.g., the ant automati-
cally picks up resources in the grid cell it currently occupies.
The policy needs to learn the continuous control to walk
the ant as well as the strategy to perform the tasks. This
environment is designed to demonstrate that our approach
can be applied to continuous control tasks.

Box-world. Finally, we consider the box-world environ-
ment (Zambaldi et al., 2019), which requires abstract rela-
tional reasoning. It is a 12× 12 grid world with locks and
boxes randomly scattered throughout (visualized in Figure
5b). Each lock occupies a single grid cell, and the box it
locks occupies the adjacent grid cell. The box contains a
key that can open a subsequent lock. Each lock and box
is colored; the key needed to open a lock is contained in
the box of the same color. The agent is given a key to get
started, and its goal is to unlock the box of a given color.
The agent can move in the room in four directions; it opens
a lock for which it has the key simply by walking over it,
at which point it can pick up the adjacent key. We assume
that once the agent has the key of a given color, it can un-
lock multiple locks of that color. We modify the original
environment to be partially observable; in particular, the
agent can observe a 7× 7 grid around them (as well as the
previously observed grid cells). In each episode, we sample
a random configuration of the map, where the number of
boxes in the path to the goal is randomly chosen between
1 to 4, and the number of “distractor branches” (i.e., boxes
that the agent can open but does not help them reach the
goal) is also randomly chosen between 1 to 4.

6.2. Baselines

End-to-end. An end-to-end neural policy trained with the
same actor-critic algorithm and curriculum learning as dis-
cussed in Section 5. It uses one actor network per task.

World models. The world models approach (Ha & Schmid-
huber, 2018) handles partial observability by using a gener-
ative model to predict the future. It trains a V model (VAE)
and an M model (MDN-RNN) to learn a compressed spa-
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Figure 4. (a,b) Training curves for 2D-craft environment. (c,d) Training curves for the box-world environment. (a,c) The average reward
on the test set over the course of training; the agent gets a reward of 1 if it successfully finishes the task in the time horizon, and 0 otherwise.
(b,d) The average number of steps taken to complete the task on the test set. We show our approach (“Ours”), the program guided agent
(“Oracle”), the end-to-end neural policy (“End-to-end”), world models (“World models”), and relational deep RL (“Relational”).

(a) (b)

Figure 5. (a) The Ant-craft environment. The policy needs to con-
trol the ant to perform the crafting tasks. (b) The box-world envi-
ronment. The grey pixel denotes the agent. The goal is to get the
white key. The unobserved parts of the map is marked with “x”.
The key currently held by the agent is shown in the top-left corner.
In this map, the number of boxes in the path to the goal is 4, and it
contains 1 distractor branch.

tial and temporal representation of the environment. The V
model takes the observations at each step t and encodes it
into a latent vector zt. The M model is a recurrent model
that takes the latent vectors z1, ..., zt as input and predicts
zt+1. The latent states of the M model and the latent vectors
zt from the V model together form the world model features,
which are used as inputs to the controller (C model).

Program guided agent. This technique uses a program
to guide the agent policy (Sun et al., 2020). Unlike our
approach, the ground truth programs (i.e., a program guar-
anteed to achieve the goal) is provided to the agent at the
beginning; we synthesize this program using the full map
(i.e., including parts of the map that are unobserved by the
agent). This baseline can be viewed as an oracle since it is
strictly more powerful than our approach.

Relational Deep RL. For the box-world environment, we
also compare with the relational deep RL approach (Zam-
baldi et al., 2019), which replaces the policy network with a
relational module based on the multi-head attention mecha-
nism (Vaswani et al., 2017) operating over the map features.

(a) (b)

Figure 6. Comparison of behaviors between the optimistic ap-
proach (left) and our MPPS approach (right), in a scenario where
goal is to get the gem. (a) This state is the point at which the
optimistic approach first synthesizes the correct program instead
of the (incorrect) one “get gem”. It only does so after the agent
has observed all the squares in its current zone (the green arrows
show the agent’s trajectory so far). (b) The initial state of our
MPPS strategy. It directly synthesizes the correct program, since
the hallucinator knows the gem is most likely in the other zone.
Thus, the agent completes the task much more quickly.

The output of the relational module is used as input to an
MLP network that computes the action.

6.3. Implementation Details

2D-craft environment. For our approach, we use a CVAE
as the hallucinator with MLPs (a hidden layer of dimen-
sion 200) for the encoder and the decoder. We pre-train
the CVAE on 100 rollouts with 100 timesteps in each
rollout—i.e., 10,000 (s, o) pairs. We use the Z3 SMT solver
(De Moura & Bjørner, 2008) to solve the MAXSAT syn-
thesis formula. We set the number of sample completions
m = 3, and the number of steps to replan N = 20. We
use the same architecture for the actor networks and critic
networks across our approach and all baselines: for actor
networks, we use MLP with a hidden layer of dimension
128, and for critic networks, we use MLP with a hidden layer
of dimension 32. We train each model on 400K episodes,
and evaluate on a test set containing 10 scenarios per task.

Ant-craft. We first pre-train a goal following policy for the
ant: given a randomly chosen goal position, this policy con-
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Avg. reward Avg. finish step

End-to-end 0.49 60.7
World models 0.50 59.3

Ours 0.93 26.7
Oracle 0.93 25.9

Table 1. Average rewards and average completion times (i.e., num-
ber of steps) on the test set for Ant-craft environment, for the best
policy found for each approach.

trols the ant to move to that position. We use the soft actor-
critic algorithm (Haarnoja et al., 2018) for pre-training. The
executor in our approach, as well as our baseline policies,
outputs actions that are translated into the goal positions as
inputs to this ant controller. We let the ant controller run for
50 timesteps in the simulator to execute each move action
from the upper-stream policies. We initialize each policy
with the trained model from the 2D-craft environment, and
fine-tune it on the Ant-craft environment for 40K episodes.

Box-world. Following Zambaldi et al. (2019), we use a one-
layer CNN with 32 kernels of size 3× 3 to process the raw
map inputs before feeding into the downstream networks
across all approaches. For the programs in our approach,
we have a prototype component for each color, where the
desired behavior of the component is to get the key of that
color. The full definition of the prototype components we
use for box-world is in Appendix B. For the hallucinator
CVAE, we use the same architecture as in the craft environ-
ment with a hidden dimension of 300, and trained with 100k
(s, o) pairs. For the synthesizer, we set m = 3 and N = 10.
We train each model for 200K episodes, and evaluate on a
test set containing 10 scenarios per level. Each level has a
specific number of boxes in the path to the goal (i.e., the
goal length). Our test set contains four levels with goal
lengths between 1 to 4.

6.4. Results

2D-craft. Figures 4a & 4b show the training curves of each
approach. As can be seen, our approach learns a substan-
tially better policy than the unsupervised baselines; it solves
a larger percentage of test scenarios as well as using shorter
time. Compared with program guided agent (i.e., the oracle),
our approach achieves a similar average reward with slightly
longer average finish time. These results demonstrate that
our approach significantly outperforms non-program-guided
baselines, while performing nearly as well as an oracle that
knows the ground truth program.

Ant-craft. Table 1 shows results for the best policy found
using each approach. As before, our approach significantly
outperforms the baseline approaches while performing com-
parably with the oracle approach.

Box-world. Figure 4c & 4d shows the training curves. As

Avg. reward Avg. finish step

Optimistic 0.60 53.7
Ours 0.79 41.8

Oracle 0.79 37.7

Table 2. Comparison to optimistic ablation on challenging tasks
for the 2D-craft environment.

before, our approach performs substantially better than the
baselines, and achieves a similar performance as the pro-
gram guided agent (i.e., the oracle).

6.5. Optimistic Ablation

Finally, we compare our model predictive program synthesis
with an alternative, optimistic synthesis strategy: it consid-
ers the unobserved parts of the map to be possibly in any
configurations, and synthesizes the shortest program as long
as it works on any of these possibilities. We compare on
the most challenging tasks for 2D-craft (i.e., get gold or
get gem), since for these tasks, the ground truth program
depends heavily on the map. We show results in Table 2.
As can be seen, our approach significantly outperforms the
optimistic synthesis approach, and performs comparably to
the oracle. Finally, in Figure 6, we illustrate the difference in
behavior between our approach and the optimistic strategy.

7. Conclusion
We have proposed an algorithm for synthesizing programs to
guide reinforcement learning. Our algorithm, called model
predictive program synthesis, handles partially observed en-
vironments by leveraging the world models approach, where
it learns a generative model over the remainder of the world
conditioned on the observations thus far. In particular, it
synthesizes a guiding program that accounts for the uncer-
tainty in the world model. Our experiments demonstrate that
our approach significantly outperforms non-program-guided
approaches, while performing comparably to an oracle that
is given access to the ground truth program. These results
demonstrate that our approach can obtain the benefits of
program-guided reinforcement learning without requiring
the user to provide a guiding program for every new task
and world configurations.
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A. Prototype Components for Craft
In this section, we describe the prototype components (i.e.,
logical formulas encoding option pre/postconditions) that
we use for the craft environment. First, recall that the
domain-specific language that encodes the set of prototypes
for the craft environment is

C := get R | use T | use W
R := wood | iron | grass | gold | gem
T := bridge | axe
W := factory | workbench | toolshed

Also, the set of possible artifacts (objects that can be made
in some workshop using resources or other artifacts) in the
craft environment is

A =

{
bridge, axe, plank, stick, cloth,

rope, bed, shears, ladder

}
.

We define the following abstraction variables:

• Zone: z = i indicates the agent is in zone i

• Boundary: bi,j = b indicates how zones i and j are
connected, where

b ∈ {connected,water, stone, not adjacent}

• Resource: ρi,r = n indicates that there are n units of
resource r in zone i

• Workshop: ωi,r = b, where b ∈ {true, false}, indi-
cates whether there exists a workshop r in zone i

• Inventory: ιr = n indicates that there are n objects r
(either a resource or an artifact) in the agent’s inventory

We use z−, b−, ρ−, ω−, ι− and z+, b+, ρ+, ω+, ι+ to de-
note the initial state and final state for a prototype com-
ponents, respectively. Now, the logical formulae for each
prototype components are defined as follows.

(1) “get r” (for any resource r ∈ R). First, we have the
following prototype component telling the agent to obtain a
specific resource r:

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = connected)

∧ (ρ+j,r = ρ−j,r − 1) ∧ (ι+r = ι−r + 1) ∧Q.

Here, Q refers to the conditions that the other fields of the
abstract state stay the same—i.e.,

(b+ = b−) ∧ (ω+ = ω−) ∧ (ι+\r = ι−\r)

∧ (ρ+\(j,r) = ρ−\(j,r)),

where ι\r means all the other fields in ι except ιr, and
similarly for ρ\(j,r). In particular Q addresses the frame
problem from classical planning.

(2) “use r” (for any workshop r ∈ W ). Next, we have a
prototype component telling the agent to use a workshop to
create an artifact. To do so, we introduce a set of auxiliary
variables to denote the number of artifacts made in this
component: mo = n indicates that n units of artifact o is
made, the set of artifacts that can be made at workshop r as
Ar, and the number of units of ingredient q needed to make
1 unit of artifact o as ko,q , where q ∈ R∪A; note that {Ar}
and {ko,q} come from the rule of the game.

Then, the logical formula for “use r” is

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = connected)

∧ (wj,r = true) ∧

(∑
o∈Ar

mo ≥ 1

)
∧

∑
o/∈Ar

mo = 0


∧

(
∀q ∈ R, ι+q = ι−q −

∑
o∈Ar

ko,qmo

)

∧

(
∀q ∈ A, ι+q = ι−q −

∑
o∈Ar

ko,qmo +mq

)

∧

(
∀o ∈ Ar, ¬

(∧
q

ι+q ≥ ko,q

))
∧Q,

where

Q = (b+ = b−) ∧ (ω+ = ω−) ∧ (ρ+ = ρ−).

This formula reflects the game setting that when the agent
uses a workshop, it will make the artifacts until the ingredi-
ents in the inventory are depleted.

(3) “use r” (r = bridge/axe). Next, we have the following
prototype component for telling the agent to use a tool. The
formula for this prototype component encodes the logic of
zone connectivity. In particular, it is

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = water/stone)

∧ (b+i,j = connected) ∧ (ι+r = ι−r − 1)

∧
(
∀i′, j′, (b+i′,j′ = connected)⇒(

(b−i′,j′ = connected) ∨ X
))

∧
(
∀i′, j′, (b+i′,j′ 6= connected)⇒ (b+i′,j′ = b−i′,j′)

)
∧Q,

where

X = (b−i′,i = connected ∨ b−i′,j = connected)

∧ (b−j′,i = connected ∨ b−j′,j = connected)

Q = (ω+ = ω−) ∧ (ρ+ = ρ−) ∧ (ι+\r = ι−\r).
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B. Prototype Components for Box World
In this section, we describe the prototype components for
the box world. They are all of the form “get k”, where
k ∈ K is a color in the set of possible colors in the box
world. First, we define the following abstraction variables:

• Box: bk1,k2 = n indicates that there are n boxes with
key color k1 and lock color k2 in the map

• Loose key: `k = b, where b ∈ {true, false}, indicates
whether there exists a loose key of color k in the map

• Agent’s key: ιk = b, where b ∈ {true, false}, indi-
cates whether the agent holds a key of color k

As in the craft environment, we use b−, `−, ι− and
b+, `+, ι+ to denote the initial state and final state for a
prototype components, respectively. Since the configura-
tions of the map in the box world can only contain at most
one loose key, we add cardinality constraints Card(`) ≤ 1,
where Card(·) counts the number of variables that are true.

Then, the logical formula defining the prototype component
“get k” is

X ∨ Y,

where

X = `−k ∧ ι
+
k ∧ (Card(l+) = 0) ∧ (b+ = b−)

Y = (Card(ι−) = 1) ∧ ι+k ∧ ¬ι
−
k ∧ (l+ = l−)∧(

∀k1 . ι−k1 ⇒
(
(b+k,k1 = b−k,k1 − 1) ∧ (b+\(k,k1) = b−\(k,k1))

))
In particular,X encodes the desired behavior when the agent
picks up a loose key k, and Y encodes the desired behavior
when the agent unlocks a box to get key k.


