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ABSTRACT 
This paper describes a flexible workflow for generative de-
sign applied to architectural space planning. We describe this 
workflow through an application for the design of a new of-
fice space. First, we describe a computational design model 
that can create a variety of office layouts including locating 
all necessary programs and people using a small set of input 
parameters. We then describe six unique objectives that eval-
uate each layout based on architectural performance as well 
as worker-specific preferences. Finally, we show the use of 
a multi-objective genetic algorithm (MOGA) to search 
through the high-dimensional space of all possible designs, 
and describe several visualization tools that can help a de-
signer to navigate through this design space and choose good 
designs. We conclude by discussing the future of such com-
putational workflows in design and architecture. Our hope is 
that they go beyond basic automation to create an expanded 
role for the human designer and a more dynamic and collab-
orative interaction between computer design software and 
human designers in the future. 
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1 INTRODUCTION 
Computers and computer-aided design (CAD) software have 
had a dramatic impact on architectural practice since the 
emergence of computers in academia in the 1950s, and espe-
cially since the introduction of personal computing in the 
1980s. Although early researchers envisioned a wide-rang-
ing future interaction between computers and human design-
ers [10], the first computer tools to be widely adopted by ar-
chitectural designers were computerized versions of tradi-
tional drafting and rendering tools. While they allowed de-
signers to produce content much faster than with traditional 
methods, they did not fundamentally change the process of 
design.  

1.1 Parametric design 
In the past decade, a new type of design software has 
emerged which is fundamentally changing the way designers 
use computers to develop and refine their designs. Known as 
parametric design software, these tools allow the designer to 
not only define a final geometric solution, but to describe the 
entire system behind how a design is generated. Within this 
larger system description, the designer can expose specific 
parameters, or values that drive different variations of the de-
sign.  

Although such a model takes more work initially to describe, 
it offers the designer many advantages. First, the parametric 
approach makes it easy to create variations and custom ad-
aptations of a design. Instead of manually creating multiple 
versions for different applications, the designer can expose 
the critical parameters that drive different variations and au-
tomatically generate different versions by changing those pa-
rameters. Second, a well-structured parametric model is 
more adaptable to change in the future. Since it is defined by 
a series of operations, the design can be easily adapted to 
changing conditions instead of rebuilding the model from 
scratch each time.  

Most importantly, the parametric approach allows the de-
signer to think through design solutions in a deeper and more 
dynamic way than possible with traditional methods. In a tra-
ditional approach, the designer studies the design problem, 
internalizes all of its constraints and objectives, and then uses 
their skill and experience to craft a single design solution, or 
a handful at most. With the parametric approach, the con-
straints and goals of the design problem can be directly em-
bedded within the parametric model, which can then be used 
to automatically generate a variety of solutions. Instead of 
designing a single solution, the designer can now think of 
designing a multi-dimensional ‘space’ of design. Each di-
mension of this design space represents one of the critical 
parameters exposed by the parametric model, and each indi-
vidual design variation can be found somewhere within this 
hyper-dimensional space.  

1.2 Beyond parametric 
While the parametric approach has broadened the possibili-
ties of design and pushed the boundaries of human-computer 



interaction in the design process, the exploration of the de-
sign space is still limited by the abilities of the human de-
signer. Although some parameters may be set by the con-
straints found explicitly in the design problem, for the most 
part the human designer must investigate different design op-
tions by manually varying individual parameters and evalu-
ating each option using their own criteria and intuition in a 
way not much different than with traditional design methods. 

The concept of generative design, as described in this paper, 
addresses this limitation by tasking a computer with explor-
ing the design space semi-autonomously, and then reporting 
back to the designer which options it considers promising for 
further analysis. Because a computer can process infor-
mation much quicker than a human, such a system allows a 
much deeper exploration of complex design spaces. Tradi-
tionally, such an approach has been used to optimize a given 
model to achieve maximum possible performance based on 
concrete objectives [8]. With a model of sufficient complex-
ity, however, a generative design system can also be used to 
reveal interesting parts of the design space and discover 
novel design solutions that would otherwise be hidden to the 
human designer. 

To take advantage of the possibilities of generative design, 
the basic parametric model must be extended in two ways. 
First, the model must include concrete metrics by which each 
design option can be evaluated. Since the computer does not 
have any inherent intuition about design, the human designer 
must explicitly describe to the computer how to determine 
which designs perform better than others. Second, the model 
needs to be connected to a search algorithm that can control 
the input parameters of the model, get feedback from the 
metrics, and intelligently tune the parameters to find high 
performing designs while also exploring the full possibilities 
of the design space. One of the most promising of these al-
gorithms is the multi-objective genetic algorithm (MOGA), 
which uses principles of evolution to create sequential gen-
erations of designs and evolve them to contain higher per-
forming designs over time [9]. 

The remainder of this paper describes our development of a 
custom workflow for generative design specifically geared 
towards architectural space planning, and our application of 
this workflow to the design of a new office space.  

2 RELATED WORK 
The application of multi-objective optimization towards 
solving complex mechanical design problems is well-known 
in the field of engineering. Marler and Arora [8] provide a 
good overview of various applications. However, being con-
strained to the goals of engineering problems, these applica-
tions are limited to using only structural performance as op-
timization criteria.  

Liggett [7] provides a thorough historical overview of auto-
mated methods for space planning in architecture, including 
the use of genetic search algorithms. Derix [2], Keough and 
Benjamin [6], Chronis et al. [1] and Gerber et al. [3] have 

applied similar optimization methods to a variety of architec-
tural problems. However, their optimization criteria are sim-
ilarly constrained to well-known and easily simulated physi-
cal objectives such as structural and environmental perfor-
mance. In contrast, we propose a more flexible workflow that 
can accommodate a diversity of optimization criteria, includ-
ing those dealing directly with how space is used and expe-
rienced at the occupant level  

The quantification of spatial experience has also been ex-
plored by a variety of authors. Hillier, et al. [4] proposed a 
variety of analytical tools for studying spatial configurations 
which they called ‘space syntax’. Peponis, et al. [11] extend 
this work by proposing a universal method for understanding 
plan topology through linear representation. Turner, et al. 
[12] propose a view-based ray tracing technique for under-
standing and analyzing spatial configurations. While the pro-
posed methods can help the designer derive quantitative data 
about their designs, they are only offered as tools to aid a 
traditional design process. In contrast, we extend these meth-
ods and show how they can be used as measures of spatial 
performance to guide an automated optimization process.  

3 METHODOLOGY 
Our proposed workflow of generative design for architecture 
is organized into four steps: (1) the design of a geometric 
model which can create many design variations, (2) the de-
sign of a series of performance metrics which can be used to 
measure the performance of a single design, (3) the explora-
tion of the model’s design space through a MOGA, and (4) 
the investigation of the resulting design data through statisti-
cal analysis. Furthermore, we propose this method as only 
one component within a broader design process. Thus, there 
are several steps that must be taken both ‘before generative 
design’ in order to establish a design concept to drive the ge-
ometric model and collect necessary data for the perfor-
mance metrics. Similarly, there are a variety of steps that 
must be taken ‘after generative design’ in order to achieve 
other criteria and develop the selected design solution to the 
level of a final constructible design. 

3.1 Before generative design 
As with any architectural design project, the process begins 
by studying the design problem, understanding its goals and 
constraints, and formulating a vision and concept for the de-
sign. The vision of the project was to create a dynamic and 
highly functional new office space for Autodesk in Toronto. 
Some of the constraints included: 

1. The outline of the three floors of an existing new build-
ing where the office would be located 

2. The programmatic requirements, including specific 
numbers of shared amenities such as meeting rooms 

3. Occupation by up to 300 workers 

4. Diversity of different departments, project teams, and 
workstyles that the office needed to accommodate 



Based on the vision of the project and these constraints (the 
goals of the project were established in a subsequent step), 
we developed an architectural concept around breaking up 
the floorplan into a series of individual ‘neighborhoods’. In 
this concept each neighborhood is a work-area for an indi-
vidual department or project team. The neighborhoods are 
divided by shared amenity spaces, which are contained 
within standalone rooms. These rooms create visual variation 
within the office space as a whole, while providing a degree 
of privacy and uniqueness to each neighborhood. 

Once this basic concept was established, the design problem 
became the arrangement of neighborhoods within the build-
ing floorplan, the location of shared amenity spaces, and the 
assignment and placement of teams and individual workers 
in the neighborhoods. In architecture, this type of problem is 
known as space planning, and deals with the optimal ar-
rangement of programs and spaces within a fixed plan. Be-
cause there are so many possible variations, this type of prob-
lem is traditionally difficult to solve for a human designer, 
and typically relies heavily on intuition and rules of thumb, 
along with iterative design and testing of a large variety of 
solutions before finally choosing the best one. Due to the 
complexity of this problem, it was actually the subject of one 
of the first applications of computing to architectural design 
[5]. For us it was the perfect problem to test the possibilities 
of the generative design process previously described. 

Besides exploring many design options, another advantage 
of the generative design approach is that we can evaluate de-
signs at a much higher level of detail than possible with tra-
ditional approaches, including evaluating some aspects of the 
design which are often ignored or abstracted in typical space 
planning projects. In this case we wanted to judge each de-
sign not only on global architectural goals such as maximiz-
ing the amount of light in the space, but also on local goals 
having to do with the individual preferences of each of the 
office’s future occupants.  

To get information about these preferences we distributed 
surveys to all individuals and teams in the office, asking their 
preferences in terms of which amenities they want to be close 
to, which other teams or individuals they often work with, 
and the office conditions they prefer. Based on this infor-
mation, we were ready to construct the generative design 
model that could generate unique design solutions and eval-
uate each one based on specific performance metrics. 

3.2 Geometric model 
The first step was to create a geometric model that could de-
fine a set of neighborhoods within the two main floors of the 
office building, position shared amenity zones between 
neighborhoods, and then locate specific programs within the 
amenity zones and individual workers within the neighbor-
hoods. To create each individual design, our geometric 
model applies the following algorithm (see Figure 1): 

1. Locate a seed point for every neighborhood  
2. Draw neighborhood boundaries based on edges equi-

distant from the neighborhood seeds (similar to a voro-
noi diagram) 

3. For each neighborhood, choose one of the edges along 
which to place a shared amenity zone 

4. Place shared programs within amenity zones based on 
a greedy fill algorithm 

5. Assign teams to neighborhoods, also based on a greedy 
fill algorithm 

6. Assign people to specific desks in neighborhood based 
on list order. 

To establish the neighborhood seeds, a linear spine is drawn 
over the plan and the seeds are distributed evenly along this 
spine. Then, each seed’s exact location is refined by two in-
dividual parameters – the first defines the distance to move 
along the spine from the initial point, and the second defines 



the distance to move away from the spine in the perpendicu-
lar direction. A third unique parameter chooses the edge 
along which to place the amenity zone by specifying its nor-
malized distance along the neighborhood boundary. The 
placement of individual amenity programs, teams, and indi-
viduals is not parameterized, but is instead directly deter-
mined according to the geometry of the neighborhood 
boundaries. 

With 15 neighborhoods controlled by 3 unique parameters 
each, the model is completely described by 45 unique param-
eters. Currently, there are no theories or rules for how many 
individual parameters a model should contain to ensure that 
a robust search of the design space is both feasible and com-
plex enough to create a wide variety of design options. In 
general, the current best practice is to make this number as 
small as possible, while ensuring that each critical aspect of 
the design is controlled by a unique, continuous variable. 
The uniqueness of each parameter is important so that the 
algorithm can directly control each aspect of the design in-
dependently while searching for the best combinations. The 
continuity of each parameter is important because the algo-
rithm should be able to fine-tune the parameter settings by 
predicting future results based on past experiences. If each 
setting of a parameter yields completely different results, it 
will be far more difficult for the algorithm to search through 
the design space. 

Finally, in order to take advantage of learning within the au-
tomated search process, the entire model needs to be com-
pletely deterministic, relying only on the input parameters 
exposed to the algorithm to generate each design. No noise 
or random parameters should be utilized in the geometric 
model.  

3.3 Design metrics 
To allow the search algorithm to automatically measure the 
performance of each design generated, we also defined a set 
of unique goals, or metrics, which rate the relative perfor-
mance of each design along a set of criteria. These metrics 
form the set of output values that the search algorithm can 
use to evaluate how well each design option performs, and to 
guide its search of the design space toward discovering 
higher performing designs. 

One apparent limitation of the generative design process is 
that all performance criteria for a given design system must 
be exposed to the search algorithm as a numeric quantity. 
Thus, any performance metric that we want the algorithm to 
consider must be both quantifiable and computable in a reli-
able and efficient way for all solutions within the design 
space.  

In engineering applications where similar optimization 
workflows have been explored for a number of years, the 
metrics are relatively straight forward. For example, the 
strength of a structural component is easy to compute using 
standard finite element analysis (FEA) software. An archi-
tectural design problem, however, often has many competing 

and complex goals, some of which are difficult if not impos-
sible to quantify such as beauty, fairness, quality of space, 
elegance, and novelty. To deal with this potential difficulty, 
we divide the set of all possible architectural performance 
metrics into three groups: 

• Those that can be easily quantified and calculated us-
ing existing tools (e.g. daylight analysis) 

• Those that can theoretically be quantified but cannot be 
computed using existing tools, for which new computa-
tion tools must be developed (e.g. employee work style 
preference and activity hotspots) 

• Those that cannot be quantified and must be addressed 
through other means outside of generative design (e.g. 
beauty) 

While this classification addresses the current limitations of 
the generative design workflow, the conclusion of this paper 
outlines some ideas for future research that suggests machine 
learning as a way to quantify and evaluate goals that are chal-
lenging to compute using direct calculation. In our case, our 
analysis of the project goals along with discussions with the 
managers and individual workers yielded six discrete design 
metrics to evaluate each design (see Figure 2): 

1. Adjacency preference, which measures the travel dis-
tance from each employee to their preferred neighbors 
and amenities 

2. Work style preference, which measures the suitability 
of an assigned neighborhood’s daylight and distraction 
measurements to the assigned team’s surveyed prefer-
ences 

3. Buzz, which measures the amount and distribution of 
high-activity zones 

4. Productivity, which measures concentration levels at 
individual desks based on sight lines to other desks and 
other noise sources 

5. Daylight, which measures the total amount of natural 
daylight entering the space throughout the year. 

6. Views to outside, which measures the ratio of work-
spaces with an unobstructed view to the exterior glass 
façade 

One of these – daylight – is well understood and can be cal-
culated using existing analysis tools. The other five were ei-
ther novel or highly specific to our design goals. For these 
we developed our own custom analysis tools which we built 
directly into the generative design model. 

Each new design project potentially brings with it a unique 
set of goals and performance requirements, which will never 
be fully described in any given design software. Thus, part 
of the responsibility of the designer in the generative design 
workflow is to be able to use computational tools such as 
parametric modeling and custom scripting to describe their 



unique design goals to the computer. Although this some-
times makes the design task more difficult, it also has the 
potential to expand the role of the human designer while 
opening up new opportunities for design though enhanced 
human-computer interaction. 

Along with the geometric model, the design metrics consti-
tute the second half of the full generative design model. This 
model is a closed system that (1) takes in a discrete set of 
input parameters, (2) creates a unique design solution based 
on those parameters, (3) evaluates the design along a set of 
unique metrics, and (4) outputs those metrics as a set of dis-
crete values. When this system is connected to a search algo-
rithm, it can be automatically explored for good design solu-
tions. However, although the algorithm can explore many 
more designs than possible through traditional manual 
means, it can only evaluate them based on the specified met-
rics output by the model. Thus it is crucial that the chosen 
metrics sufficiently capture the priorities of the design prob-
lem, and accurately describe the relative performance of each 
design according to those metrics.  

3.4 Design evolution 
Once we have defined the generative design model, we can 
use a search algorithm to automatically explore the space of 
possible designs and discover novel and high performing de-
sign options. A search algorithm is a subset of a general op-
timization algorithm, which is concerned with discovering 
optimal settings of input parameters of a function which 
maximizes the value of one or more outputs. Although many 
search algorithms exist, the one of particular interest to us is 
the multi-objective genetic algorithm (MOGA).  

This algorithm generates designs in groups called genera-
tions. The first generation is composed of a set of initial de-
signs either randomly or evenly sampled from the design 
space. Subsequent generations are then produced by either 

directly taking high performing designs from the previous 
generation (a process called elitism), or randomly mixing the 
parameters of two high performing designs to create a single 
new design (a process called cross-breeding). Each new de-
sign’s input parameters may also be slightly modified before 
it enters the population (a process called mutation). This pro-
cess is then repeated for multiple generations, either until the 
target number of generations is reached, or performance fails 
to improve for a certain number of generations. In this way, 
a MOGA uses concepts found in natural evolution to gener-
ate new designs based on the input parameters (genome) of 
previous high performing designs, thus gradually promoting 
the best options (survival of the fittest) and ‘evolving’ higher 
performing designs over time. 

This type of algorithm has many advantages in the context of 
generative design. As the name implies, the MOGA can op-
timize designs along any number of output metrics. Further-
more, the user does not need to prioritize or weight the indi-
vidual metrics beforehand. This is because the MOGA deter-
mines relative performance based on the idea of dominance 
rather than the absolute difference in metric values. A design 
is considered better performing than another if it dominates 
or performs better in one or more of the metrics. Thus the 
algorithm will continue to produce designs that are dominant 
in as many of the metrics as possible, and the user can later 
decide how to prioritize the metrics. 

Another advantage of the MOGA is that it works stochasti-
cally by sampling designs from the design space, and trying 
to learn optimal configurations of the input parameters 
through experimentation. Other optimization algorithms 
such as gradient descent rely on computing gradients for 
each objective with respect to each input parameter. This is 
not possible with most parametric design models, which are 



defined by a large number of geometric functions, none of 
which can be easily differentiated. Thus, such model can 
only by optimized through a stochastic experimental process.  

Finally, genetic algorithms have also been shown to be ex-
ceptionally good at finding the overall best performing de-
signs within a design space (the global optimum) while 
avoiding locally high-performing areas that may not be the 
best overall. By recombining high-performing designs from 
different areas of the design space, and slightly mutating de-
signs over time, genetic algorithms can avoid local optimums 
more effectively than simpler, more deterministic algorithms 
such as gradient descent. 

As with any optimization algorithm, the MOGA has hyper-
parameters that need to be set before beginning the search 
process. These hyper-parameters have a significant impact 
on how the algorithm behaves and thus are an important as-
pect of generating good results. However, these settings also 
depend on the nature of the problem, so their tuning is often 
a product of heuristics and previous experience. The MOGA 
hyper-parameters include: 

• The sampling method or the starting population 
• The size of the starting and subsequent populations 
• The termination criteria of the process (run for a set 

number of generations, or continue until no new better 
designs are found for a number of generations?) 

• Cross-over rate, which dictates how many of a genera-
tion’s designs are created by combining two designs 
from the previous generations 

• Mutation rate, which dictates the rate at which a de-
sign’s parameters are slightly modified before entering 
the next generation 

In our case, we used generations of 100 designs each and ran 
the process for 100 generations creating 10,000 designs. The 
starting population of 100 designs was generated by ran-
domly sampling from the design space. Through experimen-
tation we settled on settings of 95% for cross-over, and 0.2% 
for mutation. The entire process ran over 5 days on a single 
MacBook Pro with a 2.60GHz Intel Core i7 processor and 16 
GB RAM. 

3.5 Data analysis 
This process generated a data set containing 10,000 designs, 
including the input values for each design and its score along 
the six metrics. One approach at this stage would be to filter 
the dataset by the metric scores and directly select a few 
high-performing designs for further analysis. However, de-
pending on the complexity of the design problem such a se-
lection can be challenging for a number of reasons.  

First, the various metrics might be directly competing with 
each other, which means that there is actually no single best 
design but a range of equally high performing designs along 
the trade-off between competing metrics. For example, when 
designing an industrial component there is typically a trade-
off between the part’s weight and its strength. In this case, 
unless there is a specific weight or strength target, it would 
be difficult to select a single ‘best’ design without first un-
derstanding how this trade-off works.  

Second, as previously mentioned, the hyper-parameters of 
the MOGA have a significant effect on how the search 
works, and proper tuning of these settings depends on the 
particularities of each generative design model (including 
how many and what type of input parameters and output met-
rics are used). Thus, it is rarely enough to run only a single 
search process, and it is helpful if the results of every search 
are studied in depth to determine how the hyper-parameters 
may be tuned for future runs.  

Finally, one of the advantages of a learning-based process 
such as MOGA is that it not only finds high-performing de-
signs but also performs the search in a structured, semi-intel-
ligent manner. By investigating the search process itself, 
more can be learned about the nature of the problem as a 
whole. In order to investigate this process and gain a deeper 
understanding of the design space, we developed a series of 
data analysis tools to aid the designer in exploring the dataset 
of designs generated by the MOGA. 

Inheritance analysis 

In addition to the input and output data for each design, the 
MOGA also outputs a history of how these designs were gen-
erated. Figure 3 shows a plot of this data, with each point 



representing a design, and each column of points represent-
ing a generation of designs. Two colored lines entering a 
point from the left indicates that the design was formed 
through cross-breeding of those two designs. A thin black 
line indicates that the design was carried over directly into 
the next generation.  

In this plot you can see an instance where a newly formed 
design is high performing and thus is consistently carried 
over into future generations (A), as well as a case where a 
new design gets carried over one generation but then dies out, 
likely due to the fact that it was not as high-performing as 
others in its generation (B). Studying such plots helps us un-
derstand how the algorithm explored the design space, how 
dominant design lineages are formed, and helps locate poten-
tial blind spots in the design space missed by the algorithm. 

Input space analysis and clustering 

To analyze how the sampled designs are distributed within 
the design space, we can use principal component analysis 
(PCA) to transform the 45-dimensional input space into a 
new 45-dimensional space where the dimensions are now or-
dered according to the extent to which they describe the var-
iance in the data. Then we can use the first two PCA compo-
nents to create the best-possible two-dimensional projection 
of the high-dimensional design space and see how the sam-
pled designs are organized within that space. 

To further study the distribution of designs in the design 
space we can cluster them based on Euclidean distance in the 
full 45-dimensional design space using the K-means algo-
rithm (see Figure 4). Intuitively, this gives a representation 
of different design typologies or strategies that share similar 

input parameters. Once we have assigned the clusters to each 
design we can study how these design typologies relate to 
performance in the output metrics. For example we can see 
if certain design types perform better in some metrics than 
others. Such tools can help us understand the design problem 
in general and reveal potential design strategies, rather than 
simply picking the single best design. 

Metric space analysis 

Once we have understood the distribution of designs in the 
input space, we can study how the designs perform along the 
six performance metrics. Since there are usually less output 
metrics than input parameters, the space of outputs is not typ-
ically as high-dimensional as the input design space. Never-
theless, if there are more than 3 or 4 metrics it can be difficult 
to represent the results on a single plot. Our typical approach 
is to do a pairwise plot of all the output metrics to find com-
binations of metrics that have an interesting relationship or a 
clear trade-off. We can then study the tradeoffs in greater de-
tail by plotting them against each other on a scatter plot (see 
Figure 5).  

Once we have studied the performance of the whole set of 
designs, we can select a subset for further manual analysis. 
As a baseline the MOGA will provide us with a set of designs 
which are statistically dominant called the Pareto designs. To 
narrow it down further we can look for designs that occur at 
different points along the trade-offs, which can help us to see 
the effect of those trade-offs on the design solution. We can 
also use the cluster information generated earlier to identify 
cases where similar performance was achieved by different 
typologies of designs. 



3.6 After generative design 
Once a set of interesting designs is selected, they can be fur-
ther analyzed by the human designer, discussed with the 
stakeholders, and developed into a final design. It is im-
portant to note that since the MOGA follows a stochastic pro-
cess based on sampling a limited number of designs from the 
design space, the overall optimal design will not necessarily 
be found through the search process. Furthermore, as dis-
cussed previously, not all aspects that are important to an ar-
chitectural design can necessarily be represented as a metric 
in the generative design model. Some aspects, such as 
beauty, cannot be quantified, and thus need to be considered 
once the generative design process is complete.  

Finally, most generative design models including the space-
planning model presented in this paper are fairly abstract and 
oversimplified, providing only rough geometry, boundary, 
and location information. After a basic space-planning strat-
egy is selected, there is still much refinement and design 
work to be done, including selecting architectural materials 
and designing connection details, to get it to the level of a 
final constructible design. 

Therefore, the process does not end with choosing one of the 
designs found by the algorithm. Instead, a deep analysis of 
various high performing designs and their trade-offs should 
suggest potential design strategies that the designer can fur-
ther explore to achieve a final best design.  

4 CONCLUSION 
This paper described our development of a generative design 
workflow for architecture, and our application of it for the 
design of a new office space for Autodesk in Toronto.  

Although the results of this investigation have been very en-
couraging, the process also has some limitations. Currently, 
the placement of programs and individual people in the plan 
depends on the neighborhood geometry, and thus cannot be 
directly controlled by the MOGA. To get a better and more 
targeted search we would need to develop methods to di-
rectly parameterize this placement and expose those param-
eters to the algorithm. 

Another limitation is that the calculation of each design is 
still relatively slow – about one minute for each design – 
which limits the amount of exploration we can do. Automat-
ically analyzing 10,000 designs already dramatically im-
proves the capacity of a human designer, but is relatively 
small considering it is sampled from a 45-dimensional design 
space. Distributing the execution of designs within a single 
generation over several computers in a network would allow 
many more designs to be evaluated.  

Finally, the workflow can be improved by integrating other 
types of modelling, particularly machine learning, for quan-
tifying aspects of the designs that are difficult or impossible 
to compute through direct calculation. This is particularly in-
teresting because it might allow the computer to develop 
knowledge of various design factors such as comfort, beauty, 

or novelty that are crucial to good design but have tradition-
ally been difficult to relate to a computer. 

As these types of workflows continue to develop in the fu-
ture, it is our hope that they not only allow designers to de-
velop high performing design options, but also help them un-
derstand their design problems better through a more collab-
orative human-machine design interaction. This will allow 
us to move far beyond the basic automation of tasks evident 
in early CAD tools, and leverage the full potential of true 
computer-aided design.  
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