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Figure 1: (Left) Our model airplane design tool analyzes the aerodynamic properties of a glider and optimizes while the user interactively
designs the plane. (Center) The user fabricates the airplane. (Right) The airplane actually flies.

Abstract

This paper introduces novel interactive techniques for designing
original hand-launched free-flight glider airplanes which can ac-
tually fly. The aerodynamic properties of a glider aircraft depend
on their shape, imposing significant design constraints. We present
a compact and efficient representation of glider aerodynamics that
can be fit to real-world conditions using a data-driven method. To
do so, we acquire a sample set of glider flight trajectories using
a video camera and the system learns a nonlinear relationship be-
tween forces on the wing and wing shape. Our acquisition system
is much simpler to construct than a wind tunnel, but using it we
can efficiently discover a wing model for simple gliding aircraft.
Our resulting model can handle general free-form wing shapes and
yet agrees sufficiently well with the acquired airplane flight trajec-
tories. Based on this compact aerodynamics model, we present a
design tool in which the wing configuration created by a user is
interactively optimized to maximize flight-ability. To demonstrate
the effectiveness of our tool for glider design by novice users, we
compare it with a traditional design workflow.
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1 Introduction

Humanity has always been fascinated with flight, and most of us
have experienced the joy of creating simple flying machines in
the form of paper airplanes. One only has to take model aircraft
slightly more seriously to discover the wide range of forms that
simple hand-launched gliders can take on (Figure 2). The advent
of personal fabrication devices, such as desktop 3D printers and
CNC cutters, has greatly expanded the ability of individuals to con-
struct precise glider aircrafts. However, it is surprisingly compli-
cated to design a simple glider that will actually fly (let alone fly
well). There are complex constraints between the shapes, positions,
and mass of the various plane components, which must obviously
be satisfied. Without domain knowledge of advanced aerodynam-
ics, or extensive experimentation, novices (such as the authors) find
designing even simple gliders to be quite frustrating. Designing
more complicated free-formed gliders is prohibitively difficult for
novices because the data and required knowledge for estimating
their aerodynamics have not yet been well established.

We introduce a novel computation technique that can model the
aerodynamics of free-flight gliders, and then use that model to auto-
matically optimize a glider to maximize the flight-ability in order to
aid in the free-form glider design process. This optimization is effi-
cient enough to run in real time, providing guidance when using our
interactive glider design tool. Figure 1 illustrates an example of op-
timization during interactive shape editing. After the user sketches
the glider components (wings and fuselage), then our tool optimizes
the design so that it will actually fly. This design and optimization
cycle can be quickly iterated to reach a shape that is both aesthet-
ically appealing and aerodynamically effective. Finally, the tool
outputs a blueprint of the glider, which can be sent to a CNC cutter
or 3D printer. The key technical challenge is efficiently estimating
the aerodynamics forces, which depend on the shape, orientation,

Figure 2: Example of existing hand launched gliders.
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Figure 3: Our overall procedure consists of offline precomputation
and online real-time design session. In the precomputation stage, a
compact physics model that relates the wing’s shape to its aerody-
namics force is represented using radial basis functions (RBFs), in
which the parameters are obtained by fitting the trajectories from
a physics simulation to the acquired actual flights. This compact
physics representation is used in the interactive design session to
optimize the design of the glider in real-time.

and velocity of the aircraft. Although existing 3D computational
fluid dynamics simulations can provide this analysis, they are much
too expensive to compute in real-time.

We present a novel data-driven compact aerodynamics representa-
tion that can be acquired very inexpensively through simple exper-
imentation to create a real-time simulation and optimization. Fig-
ure 3 shows an overview of our approach. First, we construct a set
of actual gliders and take several flight videos for each glider. Then,
we optimize the parameters of our aerodynamics model to minimize
any deviation between the simulated trajectories and the set of ac-
quired trajectories. Encoding the relationship between the planform
(i.e., the wing shape from a top view) and the aerodynamic forces
is difficult because the dimensionality of the shape representation
is inherently high. We slice the wing into wing elements that are
parallel to the streamlines to simplify this problem, and define the
total glider forces as an aggregate of per-element forces. Our wing
elements have a low-dimensional parameterization, and as a result,
a data-driven approach to the entire system becomes tractable.

Based on our aerodynamic force model, we can optimize the design
of a glider to maximize flight characteristics such as long, stable
free flight. We must ensure that the optimized design will fly based
on as many initial conditions as possible, since a hand-launched
glider could have a wide range of initial velocities and orientations.
We propose a novel technique to evaluate the aerodynamic forces
without conducting an actual trajectory simulation, which allows
for the real-time optimization in our interactive design tool, in order
to efficiently consider many launching parameters. We performed a
user study to compare the design experience using our tool with that
of a traditional design workflow, where the user iterates the design
and evaluation several times. Our experiment shows that, using
our tool, even novice users can design original functional free-form
gliders that are difficult to design using a traditional workflow.

To summarize, our contributions include (1) a physics model
that efficiently predicts the aerodynamics forces on arbitrary plan-
forms, (2) a data-driven framework to estimate the parameters
of our physics model from the acquired data, (3) an interactive
optimization-guided glider design tool.

2 Related Work

Airplane design. The study of aerodynamics rapidly advanced
after the Wright brothers’ first successful demonstration of heavier-

than-air flight in the beginning of the 20th century. Modern airplane
design methodology is driven by wing theory, the study of wing per-
formance under different shapes and conditions. Textbooks such as
[Abbott 1959] and [Perkins and Hage 1949] provide good intro-
ductions to this topic, but focus on conventional planforms, such as
the rectangular, ellipsoid, and swept-back wings seen on virtually
all modern aircraft. These simple shapes are empirically known
to perform well, and aerodynamic optimization based on compu-
tational fluid dynamics has enabled these well-understood wings to
be fine-tuned to satisfy various performance goals [Sobieszczanski-
Sobieski and Haftka 1997]. However, these elaborate, computation-
ally intensive optimizations generally focus on small variations in
the conventional shapes. Our goal is not to optimize the perfor-
mance, but rather to enable for the creative exploration of airplane
shapes while ensuring a basic flying capacity.

Functional fabrication. Since desktop fabrication devices such
as 3D printers or CNC cutters have become more widely avail-
able, accessible design tools for functional, easily fabricable ob-
jects are becoming more important [Schmidt and Ratto 2013]. Ad-
vanced computer graphics have assisted recent works in designing
more interesting functional objects such as mechanical contraptions
[Zhu et al. 2012; Coros et al. 2013; Ceylan et al. 2013], bead-
work [Igarashi et al. 2012], pop-up cards [Li et al. 2011]. We as-
semble our gliders out of the interlocking planar sections, a fabrica-
tion technique which has recently been studied in some detail [Mc-
Crae et al. 2011; Hildebrand et al. 2012; Schwartzburg and Pauly
2013]. Other recent works have taken into consideration the op-
timization in the context of a particular fabrication technique, to
satisfy user-defined goals [Chen et al. 2013] or enhance the me-
chanical robustness of 3D-printed objects [Stava et al. 2012; Luo
et al. 2012]. In the field of architecture, there are studies to design
fabricable structure such as [Panozzo et al. 2013; Song et al. 2013].

Interactive design using physical simulation. Various prior
works have incorporated real-time physical simulation into their in-
teractive design tools. Umetani et al.’s system [2011] assists the
user in designing physically viable objects using the real-time visu-
alization of simulation results, while Umetani et al.’s system [2012]
additionally suggests alternative physically-valid designs when the
current design is invalid. In architectural design, Vouga et al. [2012]
and Whiting et al. [2012] used design optimization inside the mod-
eling environment to create feasible masonry structures. Make it
Stand [Prévost et al. 2013] automatically optimizes the shape of a
3D-printed object so that it will be statically balanced when resting
on flat ground. Our work applies a similar approach to a differ-
ent aerodynamics problem domain and also presents a calibration
method for acquiring the parameters necessary for simulation.

Measurement-based parameter fitting. Directly simulating
complex physical phenomena such as the deformation of the mi-
crostructures of heterogeneous material is often prohibitively ex-
pensive for computer graphics applications. A standard way to
handle this problem, pioneered in computer graphics by Pai et
al. [2001], is to propose a simpler physical model and fit its pa-
rameters to the empirical data. The frameworks to capture complex
physical phenomena using inexpensive experimental setups have
been widely studied. Recent works have acquired images of de-
formed cloth and then used optimization techniques to fit the pa-
rameters of their simulation models to this acquired data to replicate
the physically-realistic cloth behavior [Wang et al. 2011; Otaduy
et al. 2012]. These sorts of approaches can be extended to quite
complex situations, such as the history-dependent plastic deforma-
tion of clothing [Miguel et al. 2013]. Similarly, Bickel et al. [2009;
2010] have modeled the complex nonlinear deformation behavior



of isotropic, heterogeneous materials based on captured experimen-
tal data. In aerodynamics applications, controllable birds’ flapping
motions are synthesized by capturing their flights and modeling the
aerodynamics of their flapping motion [Ju et al. 2013]. In this
study, the true airflow around an airplane is too complex to sim-
ulate in real-time, we must use a simpler physical representation
of the aerodynamic forces, and therefore, also use this approach of
measurement-based parameter fitting.

3 User Interface

This section motivates the development of our simulation tech-
niques described in the following sections with a brief description
of our interactive glider design tool. Please see the video materi-
als for an interactive demonstration. As seen in the screen capture
shown in Figure 4, the glider consists of wings and a fuselage con-
structed from rigid planar sections of a predefined thickness and
material. The user can edit the wings and fuselage by dragging
the polyline boundaries using as-rigid-as-possible curve manipula-
tion [Igarashi et al. 2005]. Several simulated flight trajectories (§ 4)
are displayed below the shape view using a 2D height/distance plot
to show how a glider should fly. We show the possible trajectories
for six different angle/velocity launch conditions (velocity 7m/s,
9.0m/s and 11m/s horizontally and 10◦ vertically) to provide the
user with a sense of the flight characteristics of the current design.
As the wings and fuselage are manipulated, these trajectories are
updated in real-time.

simulated
 trajectories

glider’s design

Figure 4: Screen shot of our design tool.

The most difficult task in the design process is adjusting the an-
gle and position of the wings (§ 6), because the aerodynamic ef-
fect of changing each parameter can be unintuitive. So, if the
current design would not fly, our tool automatically optimizes the
mounting angles and positions of the wings without changing their
shape. This optimization also happens at interactive rates, and
therefore, the design space is effectively constrained to the func-
tional, physically-viable regions. However, from the users’ per-
spective, there is complete freedom to change the design and exper-
iment with corrections that our tool suggests to ensure flyability.

4 Aerodynamic Model

In this section, we explain how free-flights of gliders are simulated
given their design. During flight, the airflow interacts with the outer
shape of the glider and generates a stress distribution on the glider
surface. The aggregate of these stresses produces lift force, making
flight possible. In addition to the lift forces, there is drag force that
resists the airflow, and torque force, which changes the orientation
of the glider. Stable flight is possible only when these aerodynamic
forces are in balance. Therefore, glider design involves manipulat-
ing the shape to balance the relationship between these forces.

Obtaining aerodynamic forces through 3D fluid simulation is too

expensive for real-time use, so we leverage wing theory, which is
an empirical method to estimate the aerodynamic forces on a wing.
We briefly review wing theory in § 4.1. The original wing theory
is limited to simple planforms (the wing configuration as viewed
from above), and cannot be directly applied to free-form planforms.
We extend wing theory to more complex shapes by introducing the
wing element in § 4.2. In § 4.3, we explain how to simulate glider
flight based on these wing forces.

(a) local coordinate (b) side view of a wing

flight
 direction

wing

Figure 5: (a) Glider configuration. The center of gravity is placed
at the origin, and the XY-plane is the plane of symmetry. (b) Aero-
dynamic forces on mounting position P: fd, fl and torque τz .

Glider local coordinates. Most gliders are mirror-symmetric
around the fuselage, and we follow this convention. We orient the
glider so that the XY-plane is the plane of symmetry, and the glider
flies in the direction of the X axis, and Y is the vertical axis (Fig-
ure 5-(a)). The origin is placed at the center of gravity of the glider.
The rotation of the glider about the Z-axis is called the pitch. We
assume that the glider is a combination of rigid planar plates, each
of which is either a wing or a fuselage. The fuselage is perpendicu-
lar to the Z-axis, while the wings rotate around the Z-axis, and can
translate within the XY-plane. The angle between the wing and
the X-axis is called the mounting angle Θ (see Figure 5-(b)).

4.1 Wing Theory

Our approach is based on wing theory, which estimates the aero-
dynamics forces on a wing using a scaling law and experimental
data. This theory is easy to apply for many airfoils (the sectional
shape of a wing) and planforms, so is commonly used in the initial
design stage of flying objects. We can only summarize this theory,
see [Abbott 1959] for complete details.

Assumptions. Basic wing theory assumes that there is no inter-
ference between the wings and fuselage, thus each wing’s force can
be independently computed. Of course, the wings generate airflow
and pressure distributions that have a global structure, but if the
distance between the wings is sufficiently large, this interference is
usually not significant.

Similarly, wing theory assumes that the forces on the glider are de-
termined only by the current velocity and orientation (this is the
quasi-static assumption). During stable flight, the velocity and ori-
entation generally change little and can be ignored. We emphasize
that our simulation framework is only suitable for predicting stable
flight, where the temporal change in angle and velocity is small.
During trajectory simulation, large changes in these values indicate
unstable flight, and the simulation results are no longer valid.

Forces on a wing. Since we assume that the glider is perfectly
rigid, flight is not affected by the shape of the wing/fuselage con-
nection. Hence we assume that the wing and fuselage are mechan-
ically coupled at a single mounting point P, and forces transfer at
this point. The mounting points are purely virtual and can be placed



at arbitrary locations. We place P inside both the plane of symme-
try and the plane of the wing.

We assume the wing is moving in still air at a constant velocity
V that has a zero Z-directional component. Combined with our
symmetric plane configuration, the airflow around the wing and
its stress distribution are also mirror-symmetric. At the mounting
point, the representative force is the integral of the stress distribu-
tion on the wing surface. In the symmetric configuration the trans-
lational force stays inside the plane of symmetry. Torque at the
mounting point is the integral of the cross product of the surface
stress and displacement of the surface from the mounting point. The
torque has only a Z-directional component since the other compo-
nents cancel out.

Therefore, the forces on the mounting point can be described using
three components f = (fd, fl, τz), as shown in Figure 5-(b). The
first component fd is the drag force, and is in the opposite direction
of the velocity. The second component fl is the lift force, which
is the perpendicular component of the aerodynamic force. The last
component τz is the torque around the Z direction, which is called
the pitching moment, measured at the mounting point.

These forces on a wing change due to many different parameters,
such as the density of air ρ, the wing’s speed V = |V|, the wing’s
shape S, and the angle of attack α, which is the relative pitch angle
between the tangential direction of the wing and the wing’s velocity
V. We can reduce the dimensionality of these parameters by intro-
ducing Reynolds’s scaling law [Shevell 1988]. Let us assume that
the two-dimensional planform S is uniformly scaled with a scaling
coefficient L ∈ R of S(L). This law states that the stress dis-
tribution on a wing’s surface is proportional to ρV 2/2 when the
Reynolds’s number Re = ρV L/µ is constant, where the µ is the
viscosity coefficient. Aerodynamic forces fd, fl are the stress inte-
grated over the wing’s surface and thus are proportional to L2, and
thus to the wing’s area A. Torque τz is the integral of the cross
product between the surface stress and moment arm, thus it is pro-
portional to L3, or L ·A. Therefore, the drag and lift forces can be
compactly written as

(fd, fl, τz)T =
1

2
(Cd, Cl, CmL)T ρV 2A, (1)

where Cd is the drag coefficient, Cl is the lift coefficient, and Cm

is the pitching moment coefficient. These coefficients are dimen-
sionless and are parameterized with the angle of attack α, Reynolds
number Re, and normalized planform S̄ with an area of A = 1.

The field of aerodynamics engineering has extensively studied how
these coefficients change under different conditions (α,Re, S̄).
However, the variation in wing shape S̄ in these analyses is limited
to simple planforms such as rectangular, taper, back-sweep, and el-
lipsoid wings. Typical approaches for obtaining these coefficients
for complex planforms are using wind-tunnel or large-scale fluid
simulations. In § 5, we describe a simpler approach.
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Figure 6: Our wing element discretization of wings.

4.2 Wing Element Discretization

We introduce a new discretization of a wing that is based on the
wing element (see Figure 6) to efficiently handle a wide range of
planforms. In aerodynamics terminology, the upwind edge of a
wing is called the leading edge, the downwind edge is called the
trailing edge and the length in between is called the chord length.
A wing is discretized into wing elements by slicing it with a plane
perpendicular to the Z-axis at a constant interval ∆z. The wing
element then takes on a trapezoidal shape to approximate the slice.
The average horizontal length l of the trapezoid corresponds to the
chord length of the wing. The angles at the leading and trailing
edges of the trapezoid are denoted as ξl and ξt.

Our assumption behind the wing element discretization is that the
air velocity relative to wings is much faster in the (X,Y) direction,
compared to that of Z. Therefore, we can use a simplified model for
the shape difference in the Z-direction. If the shape is sufficiently
smooth, the planform of the wing element can be captured using
these two angle parameters, ξl and ξt.

Let wing S have wing elements si (i = 1, . . . , N). For each si,
we compute the amount of torque at chosen point pi be 0.25l down-
wind from the leading edge. For a rectangular wing, this point is
called the aerodynamic center and it is empirically known that the
pitching moment here is insensitive to the angle of attack [Abbott
1959]. Each wing element contributes drag, lift, and pitching mo-
ment to mounting point P as f i

d

f i
l

τ iz

 =
1

2

 cd
cl
cml

i + cdd
i sinα+ cld

i cosα

 ρV 2ai, (2)

where ai is the area of the wing element and di is how far pi is
from the mounting point in the upwind direction. These drag, lift,
and pitching moment coefficients c = (cd, cl, cm) ∈ R3 for a wing
element are parameterized with a four-dimensional parameter vec-
tor ε = (α,Re, ξl, ξt) ∈ R4, where Re = ρV l/µ is the Reynolds’
number for the element. We assume the use of planar wings, and
therefore, the sectional shape is rectangular and thus symmetric,
so cd becomes an even function and cl, cm become odd functions,
with respect to the angle of attack. These forces are aggregated to
compute the total forces at the mounting point.

Our discretization is motivated by the blade element [Perkins and
Hage 1949] used in propeller design. Propeller blades are decom-
posed into blade elements, and per-element forces integrated to es-
timate forces on the entire blade. This technique is common for
propeller blades because the sectional shape and angle of attack sig-
nificantly vary along the blades’ span, whereas wings usually have
a constant sectional shape and angle of attack. Our wing also has
constant sectional shapes and angle of attack, but the element shape
along the wing may significantly change. The main difference be-
tween the wing and blade elements is that we include parameters
ξl, ξt to capture these planform differences along the span.

Coefficient representation by scattered data interpolation.
We take a scattered data interpolation approach obtain coefficient c
for our new wing element model. Let the relationship between in-
put parameter ε and output coefficient c be represented as function
c(ε) : R4 → R3. We discretely represent this function by smoothly
interpolating the output coefficient value c(εk) = (ckd, c

k
l , c

k
m) at

several sampling points εk = (αk,Rek, ξkl , ξ
k
t ), where k ∈ K and

K is a set of sampling points. We explain how to construct these
discrete sampling sets in § 5.



Following [Bickel et al. 2009], we
use Radial Basis Functions (RBFs)
for the interpolation between sam-
pling points (i.e., RBF centers). We
carefully construct the RBF inter-
polant so that it automatically en-
forces that cd is an even function
and cl, cm are odd functions, with
respect to the angle of attack α.
We enforce this parity by using a ghost sampling point ε̄k =
(−αk,Rek, ξkl , ξ

k
t ) for each sampling point εk that is located sym-

metric to the hyper plane α = 0 in the input parameter space.
The output coefficient value of the ghost sampling point is set at
c(ε̄k) = (ckd,−ckl ,−ckm). The interpolation becomes

c(ε) =
∑
k∈K

wk · ψ
(
||ε− εk||

)
+ w̄k · ψ

(
||ε− ε̄k||

)
, (3)

where ψ : R → R is a scalar kernel function and wk =
(wk

d , w
k
l , w

k
m) ∈ R3 is the weight for the k-th sampling point. We

solve the weights for the drag, lift, and pitching moment coeffi-
cients, respectively, using standard RBF techniques. The weights
for the ghost sampling points become w̄k

d = wk
d for the drag co-

efficient and w̄k
l = −wk

l , w̄
k
m = −wk

m for the lift and moment
coefficients, enforcing the parity of these coefficients.

We use the Gaussian kernel ψ(r) = exp(−r2), where the distance
r is the square norm of the difference of parameter ε. Smoother
harmonic kernels ψ(r) = r and ψ(r) = r3 resulted in unstable
flight simulations because they can output unrealistically large co-
efficients when the input parameter is far from the sampling points.

4.3 Free-flight Simulation of Glider

We have thus far illustrated the forces on an individual wing given
the discrete sampling set of the relationship between a wing element
and the coefficients of aerodynamic force. In this section, we sim-
ulate the flights of gliders using these parameterized wing forces.
This simulation is used for the trajectory estimation during interac-
tive shape design, as well as for real-time design optimization (§ 6),
and our parameter acquisition procedure (§ 5.1).

current
 flight 
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Figure 7: Configuration of forces on glider during flight.

World coordinates. As a glider flies, its position and orientation
continuously change. We use 3D world coordinates (x,y, z) with
the y axis being the upright, vertical axis to describe this flight tra-
jectory. The glider is launched at time t = t0, and we assume
a perfectly symmetric launching condition so that the gliders fly
inside the xy-plane. The transformation from the glider local coor-
dinates to the world coordinates can be written as (x(t), y(t))T =
R(β(t))(X,Y )T + (px(t), py(t)) and z(t) = Z, where (X,Y, Z)
and (x, y, z) are an identical point represented in local and world
coordinates, respectively. R is a two-dimensional rotation matrix,
β ∈ R is the glider’s pitching angle in world coordinates, and

(px, py) is the location of the center of gravity. The plane flies at the
speed V = ||ṗ(t)|| in the direction θ(t) = − tan−1{ṗy(t)/ṗx(t)},
where the sign of θ takes on positive values when the glider is de-
scending. Since the glider is flying against still air at a relative angle
γ = θ + β, this is the angle of attack. Note that we set the signs of
angles such as θ, β and Θ such that larger angles increase the angle
of attack by following tradition of aerodynamics (Figure 7).

Equation of motion. Figure 7 shows the aerodynamic forces act-
ing on a glider. Let Sj (j = 1, . . . ,#wing) be a wing in the glider.
The angle of attack for each wing is αj = γ + Θj , where Θj is the
mounting angle for wing j. We compute the (f j

d , f
j
l , τ

j
z ) forces for

wing j using the method described in § 4.1. Let Fd =
∑#wing

j=1 f j
d

be the total drag force generated in the flying direction and Fl =∑#wing
j=1 f j

l be the total upward force generated perpendicular to
the flying direction. We measure the pitching moment at the glider’s
center of gravity (i.e., the origin). Since the mounting point and the
center of gravity are different, we take the linear forces into account
for the total pitching moment Tz =

∑#wing
j=1 τ jz + Pj

xfl + Pj
yfd,

where (Px,Py)T = R(γ)(PX ,PY )T . Finally, the equation of
motion can be written as

Mp̈x = Fx, Mp̈y = Fy −Mg, Iβ̈ = Tz, (4)

where (Fx, Fy)T = R(θ) (Fd, Fl)
T , M is the mass of the glider,

and I is the rotational inertia of the pitching rotation measured at
the center of gravity.

The trajectory of a glider is obtained by numerically integrating (4).
We use Verlet integration for this time integration. Weißmann et
al. [2012] described a more accurate time integration scheme based
on the Kirchhoff tensor, but we found a simple Verlet to be sufficient
for our application.

Figure 8: Twenty gliders used to train our physics model.

5 Fitting Parameters

In the previous section, we explained how the trajectory of a glider
is simulated given the glider’s geometry and aerodynamic coeffi-
cients c(ε) of the wing elements. This section describes how to
obtain these coefficients by using a data-driven method. These co-
efficients are computed by constructing a set of training gliders, and
then fitting simulated trajectories to those we acquired.

5.1 Data Acquisition

We manually designed a set of 20 gliders, shown in Figure 8, to fit
with the physically-valid parameters for our wing element model.
The gliders have varying planforms (rectangular, tapered, swept,
etc.), which we hoped would result in good coverage of the param-
eter space ξl, ξt of the wing element. Flight data cannot be acquired
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Figure 9: (a) Our launching device and (b) Our flight trajectory
tracking interface.

for invalid gliders, so none were included. Note that eliminating
invalid gliders does not bias the sampling because we do not selec-
tively exclude specific wing element shapes from sampling.

Glider construction. We constructed our gliders using 1mm
thick foam core board, which is a polystyrene sheet cladded with
paper. This material is light and easily cut using a laser cutter. We
added slits to the wings and fuselage so that the planar plates can
interlock with each other, and glued small L-shaped plastic braces
at the intersections to reinforce the joint. We attached a paperclip
of a known weight at the head of the glider to add mass. The den-
sity of the board is measured beforehand to compute the moment of
inertia from the glider’s geometry and the paperclip’s position.

Launching device. We constructed the simple launcher shown in
Figure 9-(a) to produce consistent glider launches. The launch force
is provided by a rubber band. During a launch, the glider slides on
a rail that is placed on a flat plate attached to a tripod, allowing the
launch pitch angle to be adjusted. Note that our optimization takes
care of determining the exact launch velocity V0, pitch angle β0,
and time t0, so we do not need to precisely measure these values.

Capturing. We used video captures from the side and back of the
launching device to capture the sample glider trajectories. We used
off-the-shelf SONY α77 DSLR cameras to capture 1920 × 1180
video at 30 frames per second. As the gliders should fly within the
plane of symmetry, we only needed the side camera to capture the
trajectories; the rear camera feed was used to verify this assump-
tion. Several of our gliders did initially veer off-course, but manual
symmetrization of the gliders corrected these artifacts.

Trajectory tracking. The camera parameters (angle of view, rel-
ative position to launcher, etc.) were determined based on the ref-
erence points of an already known configuration. We developed a
simple tool in which the user manually annotates the location of
the center of gravity in each frame of the video to recover the flight
trajectories, as shown in Figure 9-(b). We estimated the acquisi-
tion precision to be ±5cm. See the supplementary material for the
actual captured video and acquired trajectories.

5.2 Parameter Estimation Algorithm

We fit our simulated trajectories to the acquired trajectory to obtain
the aerodynamic coefficients of the wing elements. As explained in
§ 4.2, we model the aerodynamic coefficients of a wing element as
an interpolated function c(ε) that is sampled at discrete parameters
εk. Therefore, we can obtain the function by optimizing the values
of the coefficients at the sampling points ck = c(εk).

In the previous section, the trajectories of actual gliders were
tracked for each launch l ∈ L as discrete trajectory points ql

m ∈
R2 {m = 1, . . . , Nl} with the camera’s frame rate ∆t = 1/30,

where L is the set of launches across all the training gliders. The
number of tracked point Nl for each launch generally ranged from
15 to 20. However, the exact launch conditions were difficult to
measure using our simple launcher. Therefore, we also obtained
(i) the launch conditions (velocity, orientation, and timing) from
the optimization together with (ii) the aerodynamic coefficients of
the wing elements. These two optimizations are coupled; if we
change the aerodynamic coefficients of the wing elements the opti-
mized launch condition estimates will change, and vice versa. So,
we interleave these two optimizations to simultaneously optimize
both sets of parameters.

For each launch l ∈ L, the launch parameters σl = (V0, θ0, β0, t0)
are estimated by fitting the initial trajectory points qi:

arg min
σl

M∑
m=1

||pl(t0 +m∆t)− ql
m||2, (5)

where pl(t0 + m∆t) denotes the simulated glider position after
time t = t0 + m∆t and we chose M = 10. The optimization of
(5) starts from a guess where V0 and β0 are computed from two
points right after the launch, t0 is zero, and θ0 is equal to β0.

Given the initial launch parameters, the coefficients at the sampling
points ck are optimized to fit the trajectory for all the acquired
launches, across all the training glider shapes.

arg min
ck, k∈K

E, E =
∑
l∈L

Nl∑
m=1

||pl(t0 +m∆t)− ql
m||2. (6)

The two optimization problems in (5) and (6) are solved using the
gradient descent method. The gradients were computed using the
forward-differncing, where E is computed at two different param-
eters with an empirically chosen difference. Even with this simple
approach, we observed a rapid convergence to the optimal parame-
ters for both the launch conditions and wing element parameters.

One remaining question is how to obtain the sample points εk. We
used a greedy method created by [Bickel et al. 2009]. We start
with a single point ε0 that has the averaged parameters of the wing
elements obtained for all the training gliders. We find the launch
conditions and wing element coefficients for this single sampling
point using the above optimization. After convergence, we add the
next sample point εk at the location where the largest difference be-
tween the simulated and acquired trajectories occurs. We thus re-
duce the approximation error until it converges by iteratively adding
the sampling points in this fashion.

6 Design Optimization

In the previous sections, we explained how to model the physics
of a glider to simulate its flying trajectories. We now illustrate our
design optimization based on the physics model. The optimization
changes the mounting angle Θj and the mounting positions Pj

X

and Pj
Y for all the wings. Therefore, the optimization searches the

design in a 3× (#wing)-dimensional design space. The launching
conditions such as the glider’s velocity and pitch angle for a hand
launch are different for each launch. So, we optimize the glider’s
performance for a certain range of velocities and orientations, in-
stead of optimizing performance for a specific launching condition.

Characteristic function of glider. In § 4.3, the glider’s dynam-
ics were simulated from the forces of the wing. We denoted func-
tion F(V, γ) : R2 → R3, which maps the glider’s speed V and
angle of attack γ to (Fd, Fl, Tz). With this function, from (4), a



glider’s flight path can be computed given the launching configura-
tion. Therefore, we assume that this function characterizes the aero-
dynamics property of the entire glider. Since we use hand launch-
ing to fly the glider, the initial velocity and initial angle varies a
lot. So, we take into account the region of interest in the input
parameters Ω = [Vmin, Vmax] × [γmin, γmax], which is the rect-
angular region of the range of speed and angle of attack, and then
try to optimize the overall glider’s performance in this region in-
stead of taking into consideration the specific launching configura-
tions. We chose Vmin = 6m/s, Vmax = 9m/s, γmin = −10◦, and
γmax = 10◦, which are typical in hand launching.

What property in this characteristic function F in region Ω makes
a better glider? The most important observation is that when a
glider flies stably the pitching moment approaches zero: Tz = 0.
This is because the aerodynamic forces Fd, Fl are very sensitive to
the glider’s angle of attack, and if the pitching moment constantly
has a large value, it quickly changes the angle of attack and then
the forces are difficult to balance. We constructed a cost function
to evaluate a glider’s performance based on this observation. The
cost function consists of three different performance evaluations: (i)
pitch stability, (ii) vertical force balance, and (iii) less drag. Each
of these three properties are represented as a cost function and the
overall cost function is the sum of them. We respectively explain
these properties in the following paragraphs.

Pitch stability. Pitch stability means the pitching angle is stable
under a small perturbation. This is the most important property for
a long and stable flight. Without pitch stability, the glider rapidly
changes its pitching angle and angle of attack, resulting in a sharp
plummet or a quick flip after launch. The pitch stability is achieved
by producing restoring torque to make the deviation small when the
angle of attack deviates from the angle that makes Tz = 0. That
is, a small angle of attack should produce a positive pitching mo-
ment and large angle of attack should produce a negative pitching
moment. In the Ω region, this property is enforced if the angle of at-
tack is too small γ = γmin, then there is a positive pitching moment
Tz(V, γmin) > 0, or if the angle of attack is too large γ = γmax,
then there is a negative pitching moment (see Figure 10). This can
be represented with the cost function:

C1 =

∫ Vmax

Vmin

T−z (V, γmin) + T+
z (V, γmax)dV, (7)

where T−z (V, γ) takes −Tz(V, γ) if the value Tz is negative and
takes on a zero if the value is positive. In the same manner,
T+
z (V, γ) takes on Tz(V, γ) if the value Tz is negative and zero

if positive.

2

(a) (b)1

Figure 10: (a) Stable and (b) unstable glider design.

Vertical force balance. Pitch stability ensures that Tz is near-
zero and the glider flies stably. However, with insufficient lift forces
the glider quickly descends, but with too much lift force the glider

ascends and the possibility of a stall increases. Therefore, the lift
force should be equal to the gravitational force in the given range.
The cost function is described as

C2 =

∫ Vmax

Vmin

‖Fl(V, γ)−Mg‖2dV, where Tz(V, γ) = 0. (8)

Note that the actual vertical aerodynamic force is not Fl but Fy =
Fl cos θ+Fd sin θ, where θ is the defending angle (§ 4.3). However,
if the glider flies horizontally the defending angle becomes small
and the difference between the lift and vertical forces also becomes
small.

Less drag. As the glider flies, the drag force pulls the glider
backward and the speed attenuates. If the drag force is small the
glider flies longer. Therefore, we designed the cost function as

C3 =

∫ Vmax

Vmin

‖Fd(V, γ)‖2dV, where Tz(V, γ) = 0 (9)

The lift-drag ratio and is frequently used for evaluating an air-
plane’s quasi-static performance, where all the forces are in bal-
ance and the lift and drag forces do not change. On the other hand,
during actual glider flight the lift and drag forces constantly change,
and it is difficult to directly apply this lift-drag-ratio. However, with
a small C2, the lift and gravity forces are similar. So, minimizing
C3 and C2 together means the overall lift-drag ratio is improved.

Minimizing cost function. The second and third cost functions
are difficult to compute because they are the integrations of non-
linear function F over the line, where the pair of V and γ make
Tz = 0. Therefore, we discretely sample the values of the forces
inside Ω and interpolate them to make it easier to handle. We use
one-dimensional interpolation; we sample several fixed velocities,
and then with that given velocity, we linearly interpolate the value
of the forces that are sampled with different γ.

We set up a total cost function as C(F) = w1C1 + w2C2 + C3,
where we choose w1 = 100 and w2 = 1. Note that the first
cost function is the most important one for the plane’s flight, so we
choose a large number. We minimize this cost function online dur-
ing editing using the steepest descent method. We use the numerical
differentiation to compute gradients of the total cost function with
respect to design parameters: the wing positions, mounting angles.
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Figure 11: (a) Convergence of fitting errorE with increasing num-
ber of sampling points and (b) change of drag and lift coefficients
with respect to angle of attack α for wind tunnel data and the wing
element model.

7 Results

7.1 Validation of Aerodynamics Model

We introduced wing elements to represent the aerodynamic prop-
erties of free-form wings. The parameters of our wing element



acquired trajectory fitted trajectory empirical wing element

-1 

0 

1 

2 

0 1 2 3 4 5 6 7 

-1 

0 

1 

2 

0 1 2 3 4 5 6 7 

-1 

0 

1 

2 

0 1 2 3 4 5 6 7 

-1 

0 

1 

2 

0 1 2 3 4 5 6 7 

Figure 12: Simulated trajectories (red) produced after fitting our
wing element model to the acquired trajectories (blue). Green tra-
jectories shows simulation using empirical wing elements.

model are learned from empirical trajectory data, which consists
of 113 flights of the 20 gliders. Figure 11-(a) plots the differences
between the measured trajectories and the simulated trajectories re-
sulting from the parameter-fitting procedure illustrated in § 5.2. We
observe that as the number of sampling points increases, the error
steadily decreases, until approximate convergence. In all further
experiments we use 10 RBF centers.

Figure 11-(b) compares the aerodynamic lift and drag coefficients
of a rectangular wing (modeled by our wing element with ξl =
0, ξt = 0) and experimental wind-tunnel data for a planar wing
with 30mm chord length and 0.3mm thickness, taken from [Abbott
1959]. We choose this experimental data because the Reynolds’
number is similar to our problem (Re ' 1.0 × 104). The coef-
ficient data obtained from wind-tunnel tests with this Reynolds’
number is frequently used for construction of gliders with typical
wing shapes. Since the airfoils are different, these plots should not
be identical, but the similarities show that our obtained model cap-
tures basic traits of the aerodynamics coefficients, such as that the
lift coefficient stops increasing when the angle of attack is around
10◦ (This phenomena is called stall). The drag coefficient is larger
than in the wind tunnel data because our wing is thicker.

Figure 12 shows a comparison of the recorded flight and simulation
results using the parameters obtained by using (5) and (6). In the
figure, we also show a trajectory simulated with a method similar
to the blade element, discretizing it with rectangular wing elements,
and using the empirical relationship between the aerodynamic co-
efficients and attacking angle from Figure 11-(b). We refer to this
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Figure 13: Trajectory plots produced from our acquired data, our
simulation, simulation with the empirical wing element, and ballis-
tic motion, for complex glider designs that are not included in the
training data.

naı̈ve approach as the empirical wing element. When the wing
shape is close to rectangular (e.g., Fig. 12-first row), the trajectories
simulated with our wing element and the empirical wing element
produce similar trajectories, however if the wing element angles
are large (e.g., the forward-swept wing glider in Fig. 12-third row),
our approach produces a trajectory that better fits the acquired tra-
jectory. These results, and those for our set of training gliders found
in the supplemental materials, show that our simple wing element
model is capable of reproducing many real glider flights.

We validated our wing element by simulating the trajectories of four
complex gliders that were not included in the training data. Fig. 13
compares the acquired trajectories with those generated by conduct-
ing a simulation using our wing element and the empirical wing el-
ement. We also show the ballistic trajectories that were computed
when there were no aerodynamics forces. The trajectories from
our more advanced wing element show a closer approximation to
the experimental data than those based on the empirical wing ele-
ment. Fig. 14 shows more complex gliders that are created with our
system. They each fly more than 10m with casual hand launches.
Please see the accompanying video for their flight examples.

7.2 User Study

We performed an informal user study to demonstrate the effective-
ness of our design tool. Our goal was to examine how significant an
impact our automatic flyability correction had on the glider design
process compared to traditional design/test iterations. Four com-



Figure 14: Airplanes designed with our system.

puter science students (A,B,C,D) participated in the study. They
were familiar with 3D modeling but had no prior experience or
knowledge with airplane design. We tested two different glider
design environments. In the first environment, the participants de-
signed gliders in a conventional way, without continuous feedback
from the simulation and optimization. Since actually making the
glider and observing its flight pattern would be very time consum-
ing, instead the participants could preview the simulated flight re-
sults, but only three times per task, mimicking design/test itera-
tions. In the second environment, the user designed gliders with
our real-time optimization enabled, which automatically corrected
their designs to ensure flyability. Each participant designed a dif-
ferent original glider in each design environment. The participants
were divided into two groups; participants A and B tried the con-
ventional design environment first, and then designed with our flya-
bility correction enabled. Participants C and D completed the same
tasks in the reverse order.

Each subject was given 15 minutes to design an original glider that
could fly more than 5m horizontally when launched from a 1.5m
height. The eight resulting gliders were constructed and tested us-
ing the launching device described in § 5.1, and we used a radar gun
(D&M Pocket Radar TM) to verify the actual launching velocity.
We collected 10 flight distances for each plane, with the launching
speeds ranging from 7 to 9m/s.

Figure 15 shows the designed gliders and their flight distances. All
the participants used our optimization functionality frequently, to
try to improve flight distances both during exploration and also
while finalizing the design. With the traditional design/test itera-
tive process, the plane designs not only stayed closer to the conven-
tional glider shapes, but many of the planes also failed to fly long
distances. With our optimization-guidance enabled, the subjects
explored more design variations, and also achieved longer flights.
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Figure 15: Result of the user study. The top row (Trad.) shows
the user’s glider designs with traditional design/test iteration. The
bottom row (Sim.+Opt.) shows designs with our tool. med and max
stands for the maximum and median flight distances of 10 flights.
Participant B’s design was design was unstable due to Y-axis ro-
tation (discussed in the next section).

8 Discussion

We presented an interactive glider design tool that uses a real-time
aerodynamics-driven optimization to constrain the design space to
shape configurations that are likely to actually fly. To do so, we in-
troduced a compact wing element model that allowed us to simulate
the aerodynamics of free-form wings, and recovered physically-
valid simulation parameters from the captured trajectories of a set
of sample gliders. Our analysis results show that this simplified
model is effective, and our user study shows that novice users can
easily design novel flyable gliders.

We obtained a reasonable physics model by conducting inexpensive
experiments, and this required only a video camera and many dif-
ferent sample gliders. This approach was much simpler and more
accessible than wind tunnel experiments or expensive CFD simula-
tions, and could be widely deployed in various design tasks. Our
methodology is applicable under more complex conditions such as
variable airfoil shapes and different flying conditions, and may even
be useful for other functional design tasks such as for kites, wind-
mills, submarines, or sailing boats.

Our techniques are suitable for designing hobby-grade hand-
launched gliders with creative shapes which can be constructed eas-
ily and inexpensively. However, our techniques would need exten-
sive validation to be applied to the design of human-scale manned
gliders, where aerodynamic performance is more critical. We be-
lieve our prototype system could still be useful in those contexts as
a tool for brainstorming or education.

Construction using other material.
Aerodynamic forces depend on the
outer shape of the glider, and therefore,
we can use the same optimized simula-
tion parameters for different materials
if the thickness remains consistent and
the density is known. The right figure
shows a glider constructed from laser-
cut acrylic resin board. The acrylic resin plane flies roughly 9.5m
at a horizontal launch speed of 8m/s. See the accompanying video
for more detail.

Limitations and future work. In the glider design tool, we only
compute aerodynamic forces on a wing, ignoring contributions
from the fuselage. This is because if a glider flies in the plane of
symmetry, the airflow around the thin fuselage results in very small
aerodynamic forces. However, fuselage shape does affect the ro-
tational stability about the Y-axis (i.e., yaw stability). If the front
part of the fuselage is significantly larger than the rear portion, the
glider flips about the Y-axis and falls down. For example, in the
user study, the glider created by user B in Figure 15 has a large
head compared to its tail, thus it did not fly stably. Although it is
not observed in our study, the same rotation instability can happen
for the X-axis (i.e., roll instability) when the upper part of a glider
is significantly larger than the lower part. Furthermore, guarantee-
ing stability in the presence of imperfect symmetry in construction
and launching condition is an important future work.

Our aerodynamic model can-
not handle the interference
from multiple wing elements
in a streamline (see the right
figure), in these cases the system gives unreliable results. Our tool
is limited to symmetric glider designs assembled from thin rigid
plates. Symmetric wings simplify the problem because there are
only three independent component forces acting on the wing, and



the planar components simplify both the fabrication and aerody-
namic analysis. Using a thin plate for the fuselage results in lower
drag forces, and at the scale and velocity of hand-launched gliders,
the performance of the planar wings is comparable to more com-
plex airfoils. However, we would like to use sculpted 3D shapes to
increase the users’ design freedom. This will involve modeling and
learning the aerodynamic coefficients of a 3D asymmetric object,
which is a challenging problem to address in our future work.

Another potential direction is increasing the controllability. We
currently optimize for gliders that fly straight and flat within the
plane of symmetry. A more complex goal behavior, such as for a
glider that flies along a designed trajectory or stays airborne for a
maximum amount of time, is an interesting possibility. Moreover,
thanks to the recent advances in battery technology, micro-motors,
and wireless radios, it is possible to provide thrust and control even
for small, lightweight gliders. These are interesting venues to ex-
plore in the future.
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2012. Stress relief: Improving structural strength of 3D printable
objects. ACM TOG 31, 4.

UMETANI, N., KAUFMAN, D. M., IGARASHI, T., AND GRIN-
SPUN, E. 2011. Sensitive couture for interactive garment mod-
eling and editing. ACM TOG 30, 4.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
TOG 31, 4.
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