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Abstract
Accurate building occupancy information can be beneficial
in minimizing energy use by improving the intelligence of
a Building Automation System (BAS) and helping designers
predict the effect of different design options on occupant be-
havior. However, current occupancy measurements are quite
inaccurate due to limitations in sensing technology and the
resulting discrepancies between sensor data and what actu-
ally happens. In this paper we explore the use of simula-
tion to model occupant behavior in combination with motion
sensors to be able to study the relationship between known
and measured occupant behavior. An extensible occupancy
model, influenced by computational cognitive science and
implemented using established modeling conventions is pre-
sented along with a simple experiment comparing the effects
of different sensor density levels.

1 INTRODUCTION
It is very difficult to predict the rich tapestry of activity

performed by building occupants through their day-to-day
actions. As a result of this difficulty, lighting, heating, air-
conditioning, and many other devices are left activated to con-
sume power even when people are absent. Benefits of power-
saving technology cannot be quantitatively assessed due to
these large unknowns related to occupant behavior. Further-
more, it is difficult to compare different design options for
their probable impact on occupant satisfaction, comfort, pres-
ence in various rooms, and use of water and electricity. These
are tremendously important issues, since building operations
account for the largest portion of global energy consumption
and greenhouse gas emissions (US EIA, 2008).

Instrumenting our built environment with sensors and col-
lecting detailed occupant data can address these issues, but
this is complicated by the unavoidable discrepancy between
sensor data and what actually happens. For example, a very
common sensor technology for detecting occupancy is Pas-
sive Infrared (PIR) motion sensing. For this kind of sensor the
discrepancy between sensed and real data occurs when certain
areas are not covered by the sensors, since they have a lim-
ited range and obstacles such as furniture can interfere with

proper detection. Also, even if the person is within the range
of the sensor, if the person remains too still the sensor may not
detect the person’s presence. Treating occupant sensor data
as a truthful representation of actual occupant presence could
be detrimental to an intelligent Building Automation Systems
(BAS) and to a designers’ understanding of human behavior
in buildings.

In this paper we present work towards the use of simula-
tion to study the relationship between actual occupant behav-
ior and occupant behavior measured by sensor networks in
buildings. The simulation encompasses a building with dif-
ferent rooms that have sensors within them. Occupants of
the building possess high level goals such as drinking water
and checking email, which they satisfy by walking around a
building and performing actions. As occupants walk around
the building they trigger motion sensors. In our experiment
we focus on evaluating different configurations of PIR-based
motion sensors by comparing actual occupancy within each
room to occupancy sensed by sensors.

A major goal of our work is to establish a framework to
be used in future research. To set a solid foundation in that
direction, the organization of the occupancy model has in-
fluences from computational cognitive science research. And
most importantly, we have adopted a simulation convention
called Discrete Event System Specification (DEVS) (Zeigler
et al., 2000) to set a solid theoretical foundation and allow for
better extensibility and future improvement of our simulation
models. Throughout the paper we will point out some of the
positive effects that adherence to the DEVS conventions has
provided.

2 BACKGROUND
There has been a large volume of work on occupant sim-

ulation in different fields of research, including computer
graphics, architecture, and energy modeling, to name a few.
However, in practice, these simulations are rarely utilized
for energy-efficient building design. Instead, fixed occupancy
profiles are used for most building energy models. These
fixed profiles are often based on large-scale metering data
from utility companies or building energy codes and stan-
dards (Chiou, 2009). Such fixed profiles are not sufficient to
realistically capture the relationship between a building’s en-
ergy consumption and individual occupants’ behavior, since
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no distinction is made between individual occupants, no inter-
action occurs between groups of occupants, and there is little
day-to-day variability. To fully understand the consequences
of individual choices that occupants make, more detailed oc-
cupant models are needed.

There are many applications of occupant simulation in the
field of computer graphics such as film, video games, train-
ing, and emergency evacuation. Virtual Crowds (Pelechano
et al., 2008) surveys work in this area, establishing a base-
line of techniques and requirements for simulating large-scale
virtual populations of seemingly sentient beings that possess
both crowd and individual goals. We hope to build from this
computer animation perspective to achieve a greater under-
standing of human behavior as it relates to comfort and en-
ergy consumption in buildings.

In architecture, there has also been some push to use
computer-aided design tools to look at how space is used by
occupants, instead of just looking at architecture only in terms
of geometrical form. As stressed in the Space Re-Actor thesis
(Narahara, 2007), computational design tools need to go be-
yond visualizations of light, materials and geometry, and help
people study and understand designed spaces as they are to
be inhabited. In his thesis Nagukura presents a system where
agents display different behaviors in reaction to architectural
elements, such as glass, perforations, and furniture.

When it comes to behavior models, the most interesting
and advanced models are being developed in computational
cognitive science in an effort to merge neuroscience, artificial
intelligence, and cognitive psychology to produce models of
human cognition (Vernon et al., 2007). While our occupant
model is not a direct implementation of any of the existing
cognitive architectures, we are inspired by the current work in
the field, and hope to integrate more aspects of these systems
in the future.

Using more advanced occupant models instead of fixed
profiles in the context of building energy modeling can have
a significant impact on energy consumption predictions. For
example, (Bourgeois et al., 2005) showed that energy use pre-
dictions changed by 62% in an office building when the simu-
lated occupant had the ability to manipulate heating, cooling,
and lighting controls. Another example by Hoes et al. (2009),
showed that the use of a detailed occupant model can have a
significant effect on both heating and cooling energy demand
predictions.

To study the relationship of actual occupant behavior, and
behavior collected by sensors, we need to integrate sensor
networks into our agent framework. Modeling sensors and
occupants in combination to find relationships between these
two aspects has not received much attention in the context of
building design and operation. Sensor networks are an impor-
tant aspect of surveillance systems, traffic control, and health-
care monitoring, and there has been a number of papers on au-

tomatic sensor placement (Becker et al., 2009; Hengel et al.,
2009; Garaas, 2011). This previous work focuses on finding
ways to fully cover the geometric space with camera sensing.
In our work, on the other hand, we are interested in evaluat-
ing, and understanding the relationship between sensor place-
ment and accuracy of occupant measurement. To achieve that
kind of understanding, we need an advanced occupant behav-
ior model where people are able to perform actions such as
walking around the building along paths for sensors to moni-
tor, and in the next section we will discuss the details of cre-
ating such a model.

3 MODEL
The goal of our experiment is to study the relationship be-

tween actual occupant behavior within each room and occu-
pant behavior measured by motion sensors within a building.
To achieve that, our simulation involves occupants walking
around a building performing actions to satisfy their goals,
while motion sensors detect occupant presence. To under-
stand the mechanism of the simulation, in Section 3.1 we will
introduce the overall process in terms of its basic elements
and output behavior. Then, in Section 3.2, we present the de-
tails of our occupant model. We conclude with ways we have
used DEVS conventions for the model in Section 3.3.

Figure 1: Grid-based floor plan. Green dots are occupants, purple
dots are waypoints, red dashes are sensors with the direction of the
line indicating the orientation. Light gray areas on the floor indicate
the area monitored by the sensor, and dark gray areas indicate that
there is an occupant within that sensed area. Doors are in yellow.
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(a) (b)

Figure 2: Input building geometry, where (a) refers to the original
3D floor plan, and (b) to the extracted 2D floor plan.

3.1 Building Model
The main elements of the building model are the space lay-

out, the occupants, and the sensors. The space layout remains
fixed throughout the simulation while occupants move around
it. As an occupant walks into a detection area of a sensor, that
sensor gets activated, and when the person leaves the detec-
tion area, the sensor is de-activated.

Our space layout is represented as a discrete 2D grid of
cells (see Figure 1). To create such a grid, a 2D floor plan
(see Figure 2b) is extracted from a 3D building (see Figure
2a) which is discretized into cells. Different cells represent
different elements, such as open areas, obstacles, doors, sen-
sors, occupants, and others. The cells are colored based on
their element type (Figure 1). People move from cell to cell
based on the rules described in their behavior model. We have
adopted a grid-based space layout representation for a num-
ber of reasons, such as to increase computational speed and
to simplify the programming of the model. Alternative ways
to represent the space layout, such as full 3D geometry, may
be explored in future work. To generate the grid-based repre-
sentation from an Autodesk Revit model of the building, we
used the Spatial Analysis and Query Tool (SQ&AT). SQ&AT
is a Revit plugin that affords the interactive analyses of circu-
lation patterns of buildings (Doherty et al., 2012).

Besides the space layout data, Waypoints are an important
input for the simulation. A Waypoint is a reference point in
the building used for purposes of navigation. In our simula-
tion we restrict occupants to move between these Waypoints,
reflecting the observation that in most rooms, occupants tend
to spend time at certain positions. These locations are man-
ually authored during the design of the building, and would
normally coincide with furniture or electronic devices used
by the occupant. In Figure 1 they are illustrated with purple
dots.

The occupant behavior is driven by high level goals such as
reading an email, drinking water, or eating lunch. To achieve
a high level goal, an occupant breaks the goal down to actions
that she can perform. In our simulation all goals break down

(a) (b)

(c) (d)

Figure 3: Sensor Detection Process. (a) A ray is shot from the sensor
(red cell), and as the ray travels through the grid space, grid cells are
marked as belonging to the sensing area (gray cells). The ray stops
if it hits a wall or if it reaches maximum range. (b) The process
repeats for a number of rays to form a cone shaped area. (c) When
an occupant (green cell) is outside the sensing area, the sensor is
inactive. (d) When an occupant is inside, the sensor becomes active
and the sensed area turns dark gray.

into at most two actions; first walking to the location where
the goal can be satisfied, and second, actually performing the
action necessary, e.g. drinking water. The locations at which
the goal can be satisfied is picked by the selection of a random
Waypoint. In future experiments we intend to make both of
these procedures much more involved and context dependent.
In Section 3.2, we will describe the Occupancy model in more
detail.

PIR-based motion sensors detect occupant presence by
sensing the difference between infrared light emitted by mov-
ing people and the background. We have modeled each PIR
sensor as an emitter of rays at a given location and direction.
The term passive in this instance refers to the fact that PIR de-
vices do not generate or radiate any energy for detection pur-
poses. However, for computational and implementation effi-
ciency, instead of modeling walls and occupants as sources of
radiation, we trace rays from the sensors outwards. In Figure
1 sensors are illustrated using red line with the direction of
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Figure 4: Building Simulation Model.

the line indicating the orientation of the sensor, with all of the
sensors being mounted on the walls. To find the sensed area
for a given sensor, rays are sent out using a fast grid-based ray
tracing algorithm (Amanatides and Woo, 1987). See Figures
3a and 3b for the illustration of this process. Ray casting is
necessary to make sure that sensors are blocked by walls and
other obstacles. In practice, we perform the ray casting only
once, during the initialization of the simulation, and cache the
results in a reference grid for the whole building. This caching
allows for fast lookup if an occupant passes within the detec-
tion range of the sensor. An important parameter for the Mo-
tion Sensor model is the sensor’s range which includes the
distance (8 meters) and horizontal angle range (90◦) at which
the sensor can perform detection. The process of sensing the
occupant is illustrated in Figures 3c and 3d.

3.2 Occupant Model
Our overall goal in designing the Occupancy model was

two fold; first, keeping it as simple as possible to achieve
the desired simulation, and second, to set a clear foundation
for future extension to more complicated behavior. Similar
to other agent-based work (Yu and Terzopoulos, 2007), our
occupant model is composed of different conceptual compo-
nents. To talk about these components in a way that clearly
communicates their purpose, we use fundamental cognitive
psychological themes consistent with work in computational
cognitive science (Vernon et al., 2007).

The submodels of our Occupancy model fall under the fol-
lowing themes:

Motivation A Goal Generator model creates a goal for the
occupant to perform. An example of a goal is to satisfy

hunger or thirst. A goal has an associated duration for the
goal to be satisfied. Currently, this duration is a random
time drawn from an exponential distribution with a mean
of 10 minutes.

Motor System is responsible for controlling movement and
is represented by a submodel called Motor System. It
knows how to walk and execute various actions such as
drink and eat.

Procedural Memory is memory for how to perform actions.
In our model the responsibility of Procedural Memory is
to take a high level goal and translate it to low level ac-
tions that the motor system can understand and perform.

Short-Term Memory is memory that can hold information
for a short period of time. Goal Memory is responsible
for keeping track of future goals that the occupant needs
to satisfy. It is implemented using a simple queue. For
example, if an occupant’s goal is to drink water in room
8, but she is located in room 7, the Goal Memory would
save the goal of drinking water in room 8, while the oc-
cupant walks there.

Spatial Memory is the part of memory responsible for in-
formation about one’s spatial location and orientation.
In our simulation two models fall into this theme, Loca-
tion Selection and Path Finder. Location Selection is a
model responsible for selecting the location of a given
goal. In our simulation we simply pick random Way-
points from the building. One can imagine extending this
to pick only locations depending on the goal at hand,
for example, washing hands should only be done at a
sink. However, for our experiment, such extensions were
not necessary. Path Finder is a model which returns the
shortest path between two points, respecting all the walls
and obstacles in the building. This model uses the A* Al-
gorithm (Hart et al., 1968) for finding the shortest path,
which is very popular in the computer game industry due
to its flexibility in a wide range of contexts by offering a
tradeoff between speed and accuracy. It also allows dif-
ferent areas of the building to have different costs associ-
ated with them, to allow encouragement or discourage-
ment of occupants from going one way or another. For
example, areas in a hallway right against a wall might
have a higher cost value than areas in the middle of the
hallway, or an elevator might have a different cost than
stairs. The biggest downside of the current implementa-
tion is that all the paths are pre-computed at the initial-
ization of the simulation. In the future we hope to expand
the simulation to use more adaptive pathfinding.

As described, our occupant behavior is missing crucial
pieces of the human cognitive cycle such as perception, at-
tention, emotions, and decision making capabilities to name
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a few. However, even with these limitations it does satisfy
our goals for the experiment, where an occupant is capable of
generating a goal and is able to walk around the building to
satisfy that goal. This set of models is also sufficient to set up
the framework for future research where each psychological
theme can be further expanded.

3.3 DEVS Hierarchy
DEVS is a set of conventions for specifying simulation

models. The conventions promote modular models that allow
for better extensibility. There are two types of models that are
defined by DEVS, atomic and coupled. Coupled models are
created by linking or coupling other models, while the atomic
models are indivisible. A coupled model can be composed of
many atomic and other coupled models, without needing to
know if the models within are atomic or coupled. One of the
important benefits of support for coupled models is that it al-
lows one to break the simulation model into a hierarchical set
of models. This gives rich flexibility to abstract complicated
behavior behind intuitive sets of modules.

Please refer to Figure 4 for the illustration of the Build-
ing simulation model hierarchy, showing all the models that
make up the Building and the Occupancy model. The links
in the diagram represent the pathways of information flow.
For example, a Goal is sent from Goal Generator to Proce-
dural Memory, and within the Procedural Memory model it
travels to Location Selection. Location Selection in turn may
translate the goal into an Action, and send it out to its par-
ent model, Procedural Memory, who will pass it to Motor
System. However, if an occupant is not at the right location
to perform the action, Location Selection will send the goal
to Goal Memory instead, for temporary storage, and will re-
quest Path Finder to find a path to the desired location. It will
send an Action to walk to that location and Procedural Mem-
ory will delegate the walk Action to Motor System. Motor
System will update the occupant’s location and send out all
the messages regarding the changes internally to Procedural
Memory and to the parent Occupant model who will delegate
the message onward to Space Layout. Space Layout will then
send a message to the Motion Sensors model.

In designing our Occupancy model, we have created a hi-
erarchy based on cognitive models to stress the idea that the
model represents a general behavior of occupancy instead
of individual occupants. Thus, an important property of the
model is that it represents all the occupants in the building.
This approach implies that input and output messages must
contain occupant IDs and that some internal variables have to
contain structures indexed by this occupant ID (e.g. a dictio-
nary or an array) instead of a single variable. A possible alter-
native to support multiple occupants is to be take advantage
of Dynamic Structure DEVS (Barros, 1995), which gives one
the ability to define a network of models that can undergo

structural changes during a simulation so that each instance
would be a new model.

Using DEVS in designing our models allowed us to isolate
the responsibility of different aspects of the simulation, where
each model does not have to know anything about any other
models. This is very convenient, since often the models have
to be adjusted or changed. If different models have high de-
pendency on each other, this would be hard to achieve. When
models sends out messages, they know nothing about the re-
cipients of those messages, and thus stay independent from
the surrounding models. This property of reconfiguration is
crucial in the context of occupant behavior, since as our un-
derstanding of cognitive processes evolve and new computa-
tional models for different aspects of the mind are developed,
we will be able to adjust accordingly.

4 EXPERIMENT
To better understand the discrepancy between occupancy

data collected by sensors and true occupancy, the goal of our
experiment is to investigate how sensor configuration influ-
ences accuracy of occupancy detection. Specifically, our ex-
perimental variable is per-room sensor density. Sensor den-
sity is the degree at which a given room is sensored, high
density implies lots of motion sensors in a room, while low
density having few sensors. Refer to Figure 5 for examples of
how the density maps to the degree of sensing of the space
layout.

To create the full 100% sensor density placement for a
given room, each wall segment was instrumented with two
sensors. The placement along the wall is chosen by parame-
terization the wall on a [0,1] interval, and placing the sensors
at 0.2 and 0.6 locations. This can be seen in 5f, where sen-
sors are represented as red dashes. While this simple sensor
placement schema will not scale well for more complicated
building plans, it is sufficient for our basic experiment. To
produce the sensor density of 10%, for each room, 10% of
the sensors are randomly used from all the sensors that were
initially placed. Then, to produce 25% density, more sensors
are added on top of the ones that were previously added when
creating the 10% density configuration. This procedure en-
sures that sensors that were present in the 10% density trial
are also present in the 25% density trial.

For each density (10%, 25%, 40%, 60%, 100%) a trial was
run for 8 simulated hours. As the simulation is running, occu-
pants walk around the space layout to get from one Waypoint
to another, activating and deactivating sensors in the process.
The number of occupants in the building is a parameter ini-
tialized to generate 30 people. When an occupant gets to their
Waypoint of interest, they perform an action (e.g. drink wa-
ter). The time it takes to perform the action is randomly drawn
from an exponential distribution with a mean of 10 minutes.
This mean time is also an input parameter for the simulation
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(a) Labeled Floor Plan (b) 10% Sensor Density

(c) 25% Sensor Density (d) 40% Sensor Density

(e) 60% Sensor Density (f) 100% Sensor Density

Figure 5: Floor Plans with different sensor densities. Red dashes are
sensors with the direction of the line indicating the orientation. Light
gray area on the floor indicates the sensed area.

set during the initialization phase.
To calculate both the sensed and actual occupancy in each

room, we look at times when occupants walk in and out of
sensor coverage and enter and exit rooms. According to the
sensor network, a room is considered occupied whenever at
least one sensor in the room is active. Based on actual occu-
pant behavior, a room is considered occupied whenever there
is at least one occupant in that room. The Relative Error be-
tween sensed and actual occupancy of each room is given by
Otrue−Osensed

Otrue
, where Osensed is the percentage of time the room

is occupied according to the sensor network and Otrue is the
percentage of the time the room is actually occupied.

All simulation runs were performed using DesignDEVS, a
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Figure 6: Error Plot for Room 15, the hallway.

simulation tool we created for developing and testing DEVS
models. The results of our experiment for Room 15, which is
a hallway, can be seen in Figure 6. In the plot, observe that
as the density of sensors is increased, the error rate decreases
in a very smooth trend. However, note that as sensor density
goes to 100%, the Relative Error does not go to zero. To un-
derstand the reason behind this, see Figure 5f, using Figure
5a to identify Room 15. There are a few areas of the hall-
way (outside of Room 8, 9, and 10) which are not covered by
sensors. These unsensed areas explain the discrepancy.

The distinction between a hallway and the rooms is the fact
that rooms have Waypoints where occupants stop to perform
actions, while a hallway is simply a circulation area where
occupants pass through to get to the rooms. Since Waypoints
may fall outside of the sensed area, the whole time an occu-
pant spends at that location would count towards increasing
the Relative Error between sensed and actual occupancy. The
resulting error for the rooms can be seen in Figure 7. As an
example, see the error plot for Room 5 where the error stays
high until 25% density, and then plunges nearly to 0 at 40%
density. To understand what happened, see Figure 5b, using
Figure 5a to identify Room 5. Observe that the Waypoint (a
purple dot) is outside of the sensor’s range. As we increase
the density to 25% (Figure 5c) the Waypoint continues to be
outside of the sensed area, and finally at 40% density (Figure
5d) we can see the Waypoint being inside the sensing area of
one of the sensors. Similar relationships between the Relative
Error plots and sensor coverage can be seen in other rooms. A
slight loss of sensor coverage in an important area can result
in a significant error in occupancy measurements. Although
the model is simplified, the variability of the plots in Figure 7
is a good reflection of the complication of sensing occupants
in real buildings.
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Room 10

Figure 7: Error Plots for Rooms.

5 FUTURE APPLICATIONS
There are a number of potential applications for this work.

First, it could be used to enhance automatic sensor placement
tools to account for dynamic occupant behavior. Second, with
additional models for occupancy sensing technologies based
on pressure and ultrasound, the work could support the de-
sign of accurate and cost efficient occupant monitoring sys-
tems. Simulation models of building occupants and sensors
could be integrated with thermal, lighting, and air flow mod-
els to improve energy use predictions. They could also sup-
port emergency evacuation experiments. To get to the point
where such applications are possible, we anticipate a number
of necessary enhancements.

For some of these applications, our current occupant be-
havior is not detailed enough, and new aspects of behavior
need to be modeled. Since all our models adhere to the DEVS
convention, it is straightforward to replace one model for an-
other. For example, we can easily replace our Location Se-
lection model with work by Goldstein et al. (2011), which
would help make location selection favor nearby rooms, or
steer the occupants away from rooms that are overcrowded.
As the occupancy model evolves to account for more enviro-
mental factors, we envision omitting both waypoints and the
explicit distinction between rooms to start examining emer-
gent occupant behavior. This would introduce a need to dy-
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namically adjust navigation paths, requiring enhancements to
the Path Finder model. For example, we could use a geomet-
rical navigation mesh (Doherty et al., 2012) instead of the grid
based navigation to allow for greater freedom of movement.
Also, it is easy to replace an existing atomic model with a
more complicated hierarchical one. For example, instead of
using a simple Goal Memory model for the memory, we can
adopt a more advanced hierarchical model like Atkinson and
Shiffrin (1968), which would have three sub-models: short-
term, long-term, and sensory memory.

To expand the simulation to different domains, such as
adding thermal and energy models, DEVS allows us to easily
add new models adjacent to existing models and connect them
using links. For example, for modeling energy consumption
we might want to add an Appliances, an HVAC system, and
a Lighting model that connects to our Space Layout model.
Similarly, if we want to expand the occupancy model to sup-
port perception of the environment, interaction with the envi-
ronment, and decision making, we can add new models inside
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of the occupancy model, and easily adjust the way submodels
are connected. Connecting all these different pieces into one
simulation allows us to ask new questions about correlations
between different aspects of our environment and occupant
behavior.

6 CONCLUSION
In this paper we have contributed a hierarchical model of

occupant behavior inspired by cognitive research and an ex-
periment that studies how sensor density influences effective-
ness of occupancy detection. We have found that the effec-
tiveness of sensors increases as the density of sensors in-
crease, with hallways having a predictable Relative Error,
while other room’s Relative Error being more variable. By
adhering to the DEVS conventions, we have established a
foundation for extending our simulation model to support
more advanced human behaviors and set a path for future re-
search in our understanding of human behavior in the con-
text of building performance. This research path may help
in creating more intelligent Building Automation Systems
and increasing designers’ understanding of human behavior
in buildings.
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