
Skillometers: Reflective Widgets that Motivate and Help
Users to Improve Performance

Sylvain Malacria1 Joey Scarr1 Andy Cockburn1 Carl Gutwin2 Tovi Grossman3

1University of Canterbury, Christchurch, New Zealand
2Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

3Autodesk Research, Toronto, Ontario, Canada
sylvain@malacria.fr, {joey, andy}@cosc.canterbury.ac.nz, gutwin@cs.usask.ca, tovi.grossman@autodesk.com

Figure 1. Three snapshots of a skillometer designed to encourage hotkey use. At first (left), the user mostly relies on mouse selections for activating
commands. The skillometer indicates that he could save time by using hotkeys, and displays the appropriate hotkey bindings. As he begins to increase
his hotkey use (center), the skillometer shows the benefits of the switch, encouraging him to use more hotkeys (right).

ABSTRACT
Applications typically provide ways for expert users to in-
crease their performance, such as keyboard shortcuts or cus-
tomization, but these facilities are frequently ignored. To help
address this problem, we introduce skillometers – lightweight
displays that visualize the benefits available through practic-
ing, adopting a better technique, or switching to a faster mode
of interaction. We present a general framework for skillome-
ter design, then discuss the design and implementation of a
real-world skillometer intended to increase hotkey use. A
controlled experiment shows that our skillometer successfully
encourages earlier and faster learning of hotkeys. Finally, we
discuss general lessons for future development and deploy-
ment of skillometers.

Author Keywords
Expertise; hotkeys; learning; reflection.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces. - Graphical user interfaces.

General Terms
Human Factors; Design; Measurement.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST’13, October 6–9, 2013, St. Andrews, United Kingdom.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2271-3/13/10...$15.00.
http://dx.doi.org/10.1145/2501988.2501996

INTRODUCTION
In modern applications, users have many opportunities to en-
hance their productivity. They can alter their environment
(e.g., customizing the interface to suit their workflows and
bring frequently-used commands close to hand), or they can
alter themselves by learning new skills and techniques for the
application. These new techniques can dramatically improve
performance, but a major problem in many systems is that
users ignore these opportunities [23, 27]. For example, many
users opt to “satisfice” [38] and stick with the interaction pro-
cedures they learnt as novices, even when they are aware of
the expert features [12].

This behavior is not unreasonable. Adopting a new mech-
anism or strategy could require a significant investment of
time and effort, possibly outweighing any efficiency gains; if
the user has no way of estimating these costs and benefits,
then they should not be expected to switch. Critically, it is
the user’s perception of the new mechanism that matters [35],
rather than its actual properties – therefore, if we could inform
the user about the benefits of adopting a new mechanism or
strategy, they might be more inclined to do so.

In this paper, we present and analyse the design potential of
using skillometers as a solution to these problems. Skillome-
ters are widgets designed to accelerate the development of UI
expertise by allowing the user to visualize their past and po-
tential future performance. While the term ‘skillometer’ has
been used in the domain of intelligent tutoring systems to re-
flect the system’s model of the user’s understanding (e.g., [4,
5]), we are unaware of their use for interface performance,
except for Linton and Schaefer’s proposal to use a “Skill-O-
Meter” to visualize command vocabulary [26]. Other related
systems are reviewed later in the paper. The specific skil-

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

321

mailto:sylvain@malacria.fr
mailto:joey@cosc.canterbury.ac.nz
mailto:andy@cosc.canterbury.ac.nz
mailto:gutwin@cs.usask.ca
mailto:tovi.grossman@autodesk.com

lometer implemented and evaluated in this paper, shown in
Figure 1, displays a visualization of a user’s interaction effi-
ciency (in this case, with menus and keyboard shortcuts), and
suggests ways in which efficiency could be improved.

This paper makes three specific contributions. First, we
present a general skillometer framework which can be used to
inform the design of future skillometers. Second, we discuss
the design of HotkeySkillometer, a skillometer for encourag-
ing hotkey use, and describe its implementation. Finally, we
present the results of a controlled experiment, where partici-
pants performed tightly constrained tasks in Apple Keynote.
Results demonstrate that the HotkeySkillometer motivates
users to increase their use of hotkeys. We conclude by dis-
cussing the lessons learned and issues of generalisation.

SKILLOMETER DEFINITION
Reflective interfaces, which inform the users about their own
behavior, have been well-studied in the area of tutoring sys-
tems (e.g. [5, 24]), which are specifically designed to help
the user develop skills and knowledge. In the context of in-
teraction, Linton and Schaefer [26] proposed a reflective visu-
alization called a ‘Skill-O-Meter’, which displays the user’s
command vocabulary compared to others in their peer group.
However, the effect of this feedback on user behavior was
not evaluated. More recently, Bateman et al. [8] devel-
oped a ‘Search Dashboard’ that gave users information about
their search habits, including comparison of their behaviors
to those of typical and expert users. By displaying informa-
tion about expert behavior, the Search Dashboard was able to
broaden users’ knowledge of search engine features.

In this paper, we define a skillometer as a reflective widget
that motivates and helps the user increase their level of perfor-
mance with an interface. Importantly, as reflective widgets,
skillometers support the user in understanding meta-level as-
pects of their own interaction. Typically, the meta-level as-
pect of interaction revealed by a skillometer will concern the
user’s level of performance, although others may be revealed,
such as the user’s task strategy or interaction modalities used
to select commands (examples follow later in the paper).

Under this definition, a tooltip that displays a hotkey binding
would not be considered to be a skillometer because although
it assists the user in increasing their level of performance (by
helping the user learn the hotkey), it does not facilitate un-
derstanding of performance at a higher level. In contrast, the
widget shown in Figure 1 is a skillometer because it displays
the user’s level of performance (a meta-level aspect of inter-
action) as well as showing hotkey bindings that might be used
to complete pointer-based selections (shown in red).

TARGET DOMAINS OF USER PERFORMANCE
Skillometers can be deployed to improve four different target
domains of user performance with interfaces: intramodal, in-
termodal, vocabulary extension, and strategic. Each of these
domains is described with respect to potential skillometer
design and prior work in upcoming subsections. In brief,
intramodal improvement addresses the rapidity of skill ac-
quisition within one particular interactive method for one
particular function (e.g., assisting the user to improve their

performance with a novel pointing device); intermodal im-
provement addresses ways to assist users to switch to faster
methods for accessing a particular function (e.g., switching
from cursor-based pointing to hotkeys); vocabulary exten-
sion methods focus on broadening the user’s knowledge of
the range of functions available through the interface; and
strategic methods address higher level issues of how users
combine interface functions to accomplish tasks.

Domain 1: Intramodal Improvement
Human skill acquisition has been shown to reliably follow a
‘power law of practice’ [31] across a wide range of activi-
ties, including interaction with computer systems. The law
of practice shows that performance improves quickly at first,
gradually leveling off with experience. In many interaction
contexts, such as cursor-based selection of menu items, this
effect is easily explained: users who are unfamiliar with the
interface must initially rely on visual search to identify likely
targets, but can gradually use faster methods for interaction
based on spatial, muscular and procedural memory. After ex-
tensive experience with any particular interaction modality,
users will approach a performance ceiling representing the
limit of the user’s capability for that modality.

While performance improvement within any particular in-
teraction modality will follow a power law of practice, re-
search in the psychomotor literature clearly shows that differ-
ent forms of practice and training can yield different rates of
skill acquisition – see [36] for an extensive review. For exam-
ple, there are reliable experimental effects for various prac-
tice manipulations, including the timing and distribution of
practice, the mental effort associated with processing trained
material, the specificity of the training material, and various
feedback effects.

Accelerating the rate of skill acquisition is one opportu-
nity for skillometers to improve performance. For example,
some psychology literature suggests that knowledge of per-
formance can improve skill acquisition (although results can
vary [36]), and this effect might be employed by a skillome-
ter. A touch-typing skillometer, for instance, might show a
real-time line chart of the user’s word-per-minute rate (Fig-
ure 2a). Additionally, many psychology and sports studies
shows that appropriate goal-setting can improve skill acquisi-
tion (again, see [36]). This result might be incorporated into
the skillometer by continually showing the user’s peak typing
rate as another line on the chart above their current rate.

Domain 2: Intermodal Improvement
Most interfaces support more than one interaction modality
for accessing the same function: for example, the ‘Bold’
function might be activated by selecting it from a menu, click-
ing a toolbar button, choosing it in a dialog box, or press-
ing Ctrl+B. The rate of skill acquisition for each independent
modality is the concern of intramodal improvement. Inter-
modal improvement, in contrast, concerns the transition from
slower modalities to faster ones that ultimately offer a higher
performance ceiling.

Many studies have observed that expert interface modalities
are often unused or only lightly used. Carroll [12] attributed

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

322

W
or

ds
 p

er
 m

in
ut

e

Time

Your friend

You

Office average

Your average number of words
typed per minute is 48.
Remember to keep your �ngers on
the home row!a)

Ef
fic

ie
nc

y

Time

You

Baseline

Your average selection time is 8.6s
per command. If you add Extrude to
the quick access toolbar, you could
�nish your task 10 minutes faster!b)

Your usage

File 50%

Insert 14%

Format 29%

View 20%

Window 30%

Have you tried?

Save a copy

Insert equation

Remove space

Zoom

Copy format

Skillometer

c)

Leader

16
Kills

2
Deaths

You

3
Kills

9
Deaths

You have been killed while reloading.
Remember to take cover when you
are out of ammo!

d)
Figure 2. Concept sketches of skillometers for a) typing speed (intramodal), b) interface customization (intermodal), c) command awareness (vocabulary
extension) and d) video game training (strategic).

the effect to the paradox of the active user, noting that users
tend to be too engaged in their primary task to put cognitive
effort into learning more efficient ways to accomplish that
task. This behavior is an example of a wider human phe-
nomenon called satisficing [38], where people make do with
sufficient, but suboptimal, strategies due to limited cognitive
resources: typical users do not have the necessary informa-
tion to determine whether learning hotkeys will be a worth-
while investment, nor can they spare the substantial effort re-
quired to acquire that information. In related work, Scarr et
al. [35] further examined users’ failure to make a transition
to higher-performance expert modalities, noting that a tempo-
rary ‘performance dip’ while gaining familiarity with a new
modality can deter users from switching to a new method.

Several factors act as deterrents or barriers to users switching
to modalities that can offer a higher performance ceiling, in-
cluding the user’s lack of awareness of other modalities, their
perception of performance with other modalities, and their
lack of motivation to use them. Each of these is described
below, with particular reference to the opportunities for skil-
lometers.

Awareness of Other Modalities
There are many ways to increase awareness of advanced in-
teraction modalities. For example, keyboard shortcuts are
sometimes displayed to the right of menu labels, or in tooltips
that appear after a dwell. However, Grossman et al.’s results
suggest that even when shortcuts are displayed in dropdown
menus, they are commonly ignored by users [20]. This may
be attributable to the fact that the shortcut is not displayed
until the user has already done most of the work for selecting
the command with the mouse, so they have no incentive to
learn the hotkey. Malacria et al. [28] and Tak et al. [39] both
developed successful systems that provide “feedforward” in-
formation about hotkeys when a modifier key (e.g. Ctrl) is
held down, displaying hotkey mappings when they are needed
rather than after the fact, with both systems increasing hotkey
use. Krisler and Alterman showed improved hotkey learn-
ing with their HotKeyCoach [22], which displayed a pop-up
window that needed to be explicitly dismissed every time the
user selected a command with the mouse. However, explicit
awareness techniques often come at the cost of undue distrac-
tion, and one of the goals of our skillometer is to minimise
interference and disruption of normal interaction (explicit di-
alog boxes clearly violate this goal). Scarr et al.’s “calm no-
tification” [35] technique provides awareness in a less intru-
sive fashion by using an ambient dialog in the corner of the

screen that does not require user response and that automati-
cally fades away if ignored.

The visual presentation of a skillometer widget can incorpo-
rate awareness information about appropriate expert modal-
ities. Using a skillometer as the location for this infor-
mation has two important advantages over other methods:
first, it provides a consistent location for feedback on higher-
performance methods for completing recent actions; second,
the skillometer can show performance over time, allowing
users to compare past and potential future performance (e.g.,
the skillometer in Figure 1 shows information about the last
six commands).

Perception of Performance with Other Modalities
In their framework of interface expertise, Scarr et al. [35] note
that the user’s perception of their potential performance in a
modality (both over the short and the long term) is a critical
factor influencing their decision of whether to switch. How-
ever, a user’s perception of future performance is often unre-
liable [13]. In the context of command selection, studies have
consistently shown that keyboard shortcuts offer a higher per-
formance ceiling than mouse selection [23, 32], yet Tak et al.
found that some participants failed to use known hotkeys be-
cause they believed the toolbar buttons to be faster [39].

Appropriate skillometer design may assist with communicat-
ing accurate perceptions of the relative potential and actual
performance gains of using different modalities. For exam-
ple, a skillometer might show the actual time taken to select
the ‘bold’ command in a ribbon or menu (calculating time
from completing a text selection and selecting the item) and
also show the estimated keystroke time for the associated
hotkey. Alternatively, time estimates might be aggregated
and/or projected to future total time savings, based on the
frequency with which particular commands have been used
in the past (e.g., the tooltip in Figure 2b). Such information
might assist the user in making rational judgements concern-
ing the costs and benefits of changing modality.

Lack of Motivation
The user’s motivation for improving performance is another
important factor. There are many elements of motivation at
play in a user’s decision to learn new skills and techniques,
and skillometer design can make use of both intrinsic and
extrinsic elements. First, intrinsic motivation concerns the
user’s own interest in improving, and here it is important
for the skillometer to clearly visualize the potential for fu-
ture improvement. However, designers must recognize that

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

323

the user’s performance goal may depend upon the context –
for example, a user browsing the Internet at home may be
less concerned with fast command selection than an office
worker who carries out the same tasks throughout the day.
Interestingly, however, Tak et al. [39] found that increased
time pressure did not lead to increased hotkey use, suggesting
that workload alone is not sufficient to encourage adoption of
more efficient methods (reflecting Carroll’s paradox).

Extrinsic motivation can also be used in skillometer design –
in particular, there are interesting opportunities for skillome-
ters to use social factors, social learning, and gamification
(discussed later) as motivation. For example, recent results
from Banovic et al. [7] showed that social influence was im-
portant for encouraging tool palette customization. Similarly,
Peres et al. [33] found that users were more likely to use key-
board shortcuts if they worked with others who did so, and
Bateman et al. [8] found that having knowledge of expert
search engine use led people to change their own behaviour.

Domain 3: Vocabulary Extension
Many interfaces allow access to extensive functionality, but
users are often unaware of functions that may assist their per-
formance (see [30] for a review of the problem). For example,
in a photo editing suite a user may be familiar with a tool for
painting filled circles and may use it to remove red-eye from
photographs, unaware that a more effective dedicated red-eye
removal function is available. Existing interface mechanisms
such as ‘tip of the day’ can assist in extending the user’s vo-
cabulary of commands, but the information they provide is
typically unconnected with the user’s current task, and may
therefore be viewed as an unwanted distraction.

The conceptual deterrents and barriers to vocabulary exten-
sion are similar to those described for intermodal improve-
ment described above. The opportunities for skillometers
to assist with overcoming these deterrents and barriers are
also similar to those described for intermodal improvement,
although there are additional challenges in determining the
functional relationships between groups of commands. While
it is straightforward for a skillometer to determine and display
intermodal relationships (such as the availability of a hotkey
when a menu item is selected by pointing), determining func-
tional relationships is likely to benefit from some semantic
knowledge of the user’s task objective. For example, a skil-
lometer could only represent the efficiency of the ‘red-eye’
example above if it correctly identified that the user’s manip-
ulation of the circle painting tool was directed at that specific
task rather than some other activity.

However, skillometers are not restricted to displaying infor-
mation about task completion times. Rather, they might be
used to promote reflection about other meta-level aspects of
interaction, such as the range of commands used. In such a
deployment, a skillometer might depict the set of commands
that the user employs, grounded by a depiction of the set of
commands used by other users – Linton’s ‘Skill-O-Meter’
proposal [26] and Bateman’s ‘Search Dashboard’ [8] are ex-
amples. Furthermore, the skillometer might incorporate in-
formation about the frequency of use of commands among a

community of users, thereby alerting a user to unknown com-
mands that others find useful (e.g., Figure 2c). Community-
Commands [30] and Patina [29] were directed at these objec-
tives, with Patina’s interface representation using a heatmap
stencil overlay on top of the user interface to show the fre-
quency of command use among a community of users.

Domain 4: Strategic Improvement
Strategic improvement involves helping the user to optimize
their sequence of actions – i.e., choosing a better strategy to
complete the task. While vocabulary extension often facil-
itates strategic improvement (e.g., invoking ‘Align Left’ is
a better strategy than using drag-and-drop to manually left-
align items), users may need more guidance than simply pro-
viding broader awareness of application functionality. We re-
fer the reader to Bhavnani et al. [10] for a detailed analysis
of strategic aspects of computer use, but we use one of their
examples to illustrate interaction strategies. Consider a user
interacting with a drawing package to create a series of identi-
cal arched windows. A novice user might use a ‘sequence-by-
operation’ strategy, first drawing all of the arcs for the win-
dow arches (arc operation), then drawing all of the vertical
lines for the window sides (line operation), and finally draw-
ing the horizontal lines for the window bases. An experienced
user, in contrast, might use a ‘detail-aggregate-manipulate’
strategy, first drawing the arc and lines for one window (de-
tail), then grouping the lines (aggregate), and finally copying
and pasting multiple replicates (manipulate).

In theory, a skillometer targeted at strategic improvement
would detect inefficient interaction strategies and suggest bet-
ter ones. In general, detecting suboptimal user interaction
strategies is a difficult problem. However, in some applica-
tions (particularly games), there are points where it is easy to
tell that the user has performed poorly. For example, a strate-
gic skillometer for a first-person shooter game might analyse
players’ deaths and give targeted advice such as ‘remember
to take cover while reloading’ or ‘keep your movements un-
predictable’ (Figure 2d).

SKILLOMETER INTERFACE: GOALS AND MECHANISMS
As discussed above, skillometers may be targeted at any of
four different domains of user interface performance. How-
ever, regardless of the target domain, there are four goals that
apply to the user interface of any skillometer, as follows.

Goal 1: Visualize the Possibility for Improvement
A skillometer interface should clearly communicate to the
user that their performance can be improved. This can mean
different things, depending on the purpose of the skillometer.
An intramodal skillometer might display a graph of the user’s
performance compared to a theoretical optimum. For an in-
termodal skillometer, this means making the user aware of
different modalities and their benefits – for example, display-
ing the user’s performance compared to their performance if
they used hotkeys. Skillometers aimed at vocabulary exten-
sion and strategic improvement might suggest new function-
ality and interaction strategies to the user, and demonstrate
how these might improve efficiency or quality of work.

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

324

Goal 2: Provide Specific Details on How to Improve
As well as making the user aware of the possibility of improv-
ing their performance, a skillometer should also provide spe-
cific guidance to the user about how that improvement could
take place. For example, an intermodal skillometer would
provide details of how to perform commands with a better
modality, such as showing the hotkey bindings for each com-
mand performed.

Goal 3: Motivate the User to Improve
Motivation can be provided by a skillometer in several differ-
ent ways. A skillometer’s visualization should stimulate the
user’s intrinsic motivation: as discussed in Goal 1, it should
enable the user to quantify the benefits of improvement. How-
ever, there are additional methods available to motivate and
persuade users, discussed below.

Social Influence and Competition
As mentioned earlier, social influence can be an important
extrinsic motivation for changing user behavior (e.g., [7, 8,
33]). A skillometer could make use of this by comparing the
user’s performance, modality use, command knowledge, or
interaction strategies to others in their peer group. For exam-
ple, a touch-typing skillometer could display extra lines on
the graph representing the typing speeds of co-workers. How-
ever, care must be taken, as some users may react negatively
to unfavorable comparison with others.

Exaggeration of Benefits
Since the point of a skillometer is to persuade users to change
their behavior, one option would be to exaggerate the advan-
tages of doing so. This is a case of benevolent deception [3],
where an interface lies in order to provide some benefit to the
user. As with competition, care needs to be taken with this
approach to avoid negative effects – if the deception is too
obvious, the user will lose trust in the system and stop attend-
ing to the feedback.

Gamification
Gamification is a broad research topic, and we refer read-
ers to [14] and [21] for a review of gamification techniques.
In brief, game elements have been demonstrated to enhance
the effectiveness of training with software systems (e.g., [15,
25]), and gamification has been deployed to assist learning
of commercial software interfaces (e.g., Microsoft’s Ribbon
Hero [2]). Gamified interactive components could be used as
part of a skillometer, such as scoreboards, achievements, and
progression-based elements equivalent to game levels.

Goal 4: Minimize Disruption to Normal Interaction
While providing feedback on user performance can be ben-
eficial, it has also been shown to degrade learning if given
too frequently [34]. A skillometer should therefore aim to
provide information when it is most useful to the user, and
minimize disruption of the user’s normal workflow. Research
by Bødker [11] suggests that there are two types of task in-
terruption: breakdowns and focus-shifts. Breakdowns result
in severe disruption and force the user’s attention to a new
activity, while focus-shifts cause only a brief attention switch
and have a minimal effect. Systems resulting in a breakdown,

such as Microsoft’s Clippy, have been shown to be quickly
abandoned after a few untimely interruptions [37].

Ideally, skillometer feedback would be transient, unintrusive,
and require no user response, eliciting a focus-shift rather
than a breakdown from the user. However, this presents a dif-
ficult trade-off: in order for a skillometer to counteract Car-
roll’s active user paradox, a certain amount of disruption is
necessary to draw attention to the skillometer.

Manipulating the locus of control is one way that a skillome-
ter could avoid this tradeoff. Push notifications, such as a
window popping up on screen, can be distracting and inter-
rupt the user’s workflow. However, if the locus of control
rests with the user, they can choose to request the feedback
at a time that suits them, and ignore it when they are busy.
The risk of this approach is that the user may never request
the feedback – so a possible compromise is a small ambient
display in the corner of the screen, which constantly displays
a performance overview and provides more detailed informa-
tion and guidance only on demand.

C

B
A

Figure 3. The visual design of HotkeySkillometer.

A SKILLOMETER FOR PROMOTING HOTKEY USE
To gain practical experience with the challenges of design-
ing and implementing skillometers, and to gain initial in-
sights into the validity using skillometers to assist expertise
development, we constructed and evaluated a system called
HotkeySkillometer. The system, shown in Figure 3, is di-
rected at target domain #2, intermodal improvement – it aims
to motivate and assist users in transitioning from mouse-
driven interaction methods (menu and toolbar selections) to
hotkeys [20, 28, 6]. We chose to examine hotkey intermodal
improvement because hotkeys are widely available in com-
mercial software, yet they are known to be lightly used [23].

Overview of HotkeySkillometer
HotkeySkillometer monitors the user’s interaction with
graphical desktop applications, analysing and depicting their
level of performance, and displaying alternative and faster
hotkey methods for executing commands whenever they are
available. Its display consists of three parts, labelled A, B,
and C in Figure 3. Part A (Fig. 3, left) uses a bar chart to show
the time taken to select each of the six most recently used
commands (the Implementation section below details how se-
lection times are calculated to determine each bar’s height).

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

325

When a new command is selected, an animation slides a new
bar item into view, scrolling all other items leftwards. Each
bar is coloured dependent on the selection modality (red for
mouse, green for hotkey), and an icon below each bar also
depicts the modality. Additionally, each bar is overlaid with
text showing the name of the command and its hotkey.

Part B (Fig. 3, right) is a meter that grades the user’s perfor-
mance based on the modality used for the last 6 command se-
lections – if all selections were made with hotkeys, the slider
will be at the ‘Superstar’ end; if all used the mouse, it will
be at the ‘Slowpoke’ end. The value of the slider is deter-
mined by a weighted interpolation, where more recently se-
lected commands have more weighting – this gives the bar a
more noticeable ‘swing’ toward the positive end each time a
hotkey is used, or the negative end with each mouse selection.

Part C (Fig. 3, bottom) shows motivational text advising the
user that hotkey selections are faster. It also quantifies, across
the past 6 selections, how much time could have been saved
if the selections were performed with hotkeys instead (based
on a KLM-derived value of 200ms for each hotkey selection).

By default, HotkeySkillometer is a transient window located
at the bottom left (or right, based on user preference) of the
display. As soon as the user selects a command or presses the
Command key, the window fades in and remains until the user
stops selecting commands. When the user mouses over the
window, it fades out revealing the content beneath it. While
the mouse-over fading enables users to interact with underly-
ing content, it also prohibits intentional interaction with com-
ponents within the skillometer – this design choice is appro-
priate for HotkeySkillometer, but will be inappropriate for
other designs where the user needs to be able to explicitly
request information associated with skillometer components
(e.g., the roll-over tips shown in Figure 2a).

With respect to the interface goals, HotkeySkillometer sup-
ports Goal 1: Visualize the possibility for improvement and
Goal 3: Motivate the user to improve in both the height of
mouse-based bar chart items (suggesting poor performance)
and through the performance meter, which quickly moves to-
wards the ‘Slowpoke’ end following mouse selections. It sup-
ports Goal 2: Provide specific details on how to improve in
Part C’s text and by the hotkey overlay on the bar chart. Goal
4: Minimize disruption to normal interaction is supported by
using a transient window that only appears after each com-
mand selection and which quickly fades out with inactivity.

IMPLEMENTATION OF HOTKEYSKILLOMETER
The implementation of HotkeySkillometer requires three fun-
damental building blocks. First, it has to be able to monitor
and detect command selections. Second, it has to determine
which modality (e.g., mouse or hotkey) was used to select the
command. Third, it has to calculate and display the user’s
performance. Our implementation, HotkeySkillometer, is a
Mac OS X application, developed using Objective-C and the
Cocoa framework. It uses Apple’s Accessibility API [1] to
browse and access GUI control elements; all Mac OS X ap-
plications implementing this interface can therefore be ob-

served by our skillometer. Details of how HotkeySkillome-
ter achieves each of the three building blocks follow.

Monitoring and Detecting Command Selections
HotkeySkillometer uses two separate components for menus
and toolbar selections.

Menu Items
When an application first receives focus, HotkeySkillome-
ter dynamically adds global action listeners to all the menu
items located within an application’s menu bar and context
menus. These action listeners are triggered as soon as the
user selects a command (either by clicking on the menu item,
or using its associated hotkey), and the listener is provided
with all the accessibility attributes of the menu item, which
includes the command name and keyboard shortcut.

Toolbar Buttons
Handling toolbar selections is more complicated, since Apple
does not provide a global listener for toolbar buttons. Unlike
the menu bar, toolbar buttons are often custom widgets that
do not implement the Accessibility API, which complicates
identifying widgets and accessing any associated hotkey.

To circumvent this limitation, HotkeySkillometer uses a hard-
coded description of the mapping between toolbar buttons
and their equivalent menu items for each of the client in-
terfaces it monitors. It then uses a combination of a global
mouse event listener (that intercepts mouse-up actions) and
the Accessibility API to identify the widget located beneath
the mouse cursor and thus determine which command was ex-
ecuted. An alternative approach, not used in HotkeySkillome-
ter, would use code injections for extending existing method
of the applications at runtime [16]. However, this method
would be limited to Cocoa applications and would require a
plugin for each monitored application.

Determining the Modality Used
Since toolbar selections use a different detection mechanism
to menus, they are easily distinguished. However, for menu
items that also possess hotkeys, the same action listener is
called for both pointer and hotkey selections. To discrimi-
nate between selection modalities, HotkeySkillometer listens
to global mouse and keyboard events and checks whether
the key corresponding to the keyboard shortcut character was
pressed immediately before command selection. If so, the
command is recorded as a hotkey selection.

Calculating User Performance
HotkeySkillometer measures pointing time using an
Objective-C implementation of Evans and Wobbrock’s Input
Observer [18], which assumes that a user’s current pointing
action began with the most recent ballistic movement. The
time to select a toolbar item therefore begins at the user’s
most recent ballistic motion, and ends when the toolbar
button is clicked. Menu item selection time is calculated as
the sum of the time taken to point to the top-level menu bar
item, and the time spent in the menu (and submenus) prior
to command selection. For context menus, selection time is
simply the time spent in the menu prior to selection.

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

326

For keyboard shortcut selections, HotkeySkillometer simply
measures the time between the first modifier keypress (or the
last command selection in the case of consecutive keyboard
shortcut activations) and the command selection time.

Note that both of these measures exclude the time for men-
tal preparation and for precursor movements such as homing
the hand to the mouse or key. Consequently, both measures
represent the lower-bound of the selection time.

EXPERIMENTAL STUDY
We performed a lab experiment using HotkeySkillometer to
gain initial insights into the validity of the skillometer ap-
proach to performance improvement. The experimental
tasks were conducted using Apple’s Keynote software in a
between-subjects design, with half of the participants having
access to HotkeySkillometer and the other half not.

Participants and Apparatus
24 participants were recruited from a local university (20
male, 4 female). The experiment was performed on an Apple
Macbook Pro running Mac OS 10.8. Participants were pro-
vided with a standard mouse and QWERTY keyboard, and a
24” screen running at 1920×1080 pixels.

Since Keynote ordinarily lacks keyboard shortcuts for many
commands, we used the Mac OS System Preferences to add
custom hotkeys for all of the commands used in the experi-
ment. Each shortcut was composed of a single modifier key
(Command) followed by one of the 18 alphabetic keys from
the left part of the keyboard. No hotkey letter was the same
as the first or last letter of the command name.

- Create a shape

- Create a shape

- Arrange=>Flip Horizontally

- Arrange=>Send to Back

- Select the and Arrange=>Group

- View=>Zoom=>Zoom in

- Insert=>Comment

- View=>Zoom=>Zoom out

- Slide=>Go to=>Next slide

4

Figure 4. The initial state of a slide used in the experiment. Participants
performed tasks on the slide surface, and the instructions were included
as a background image. The skillometer appeared at bottom left.

Procedure
Participants were pseudo-randomly assigned to either the
skillometer or control condition (control having no access
to HotkeySkillometer). Participants were introduced to the
Keynote software and to the experimental procedure – they
were instructed that they would be completing ‘a repetitive

series of tasks’. In the skillometer condition, participants
were additionally given a brief description of the skillometer,
explaining the visual presentation of parts A, B, and C shown
in Figure 3. To reduce the risk of introducing bias, the skil-
lometer instructions did not mention its overall goal. Partic-
ipants in both conditions were informed that hotkeys existed
for all commands (with labels shown next to menu items).
Finally, they were instructed to complete tasks as accurately
and quickly as possible.

Each participant performed eight formatting commands on a
Keynote slide, then selected a ‘next slide’ command. They
repeated the same eight commands (and next slide) ten times,
giving a total of 10×8 = 80 logged command selections. In-
structions for the eight formatting commands were presented
in a Keynote slide (Figure 4), and each command involved
manipulating components within the slide or view to achieve
a particular effect – for example, zooming in or flipping items
on the slide. The ‘next slide’ command initiated the next set
of 8 commands on a new slide identical to the preceding one.
Timing for each command selection consisted of the elapsed
time since the previous correct command selection. All user
actions were logged, and the whole experiment took partici-
pants 15 minutes on average. To gain insight into the behavior
of our participants, we collected post-experiment comments
using a short questionnaire. We had considered using a think-
aloud protocol to achieve this, but since think-aloud protocols
achieve the same goal as skillometers (i.e., promoting reflec-
tion during interaction) [17], it would have likely confounded
our experimental objectives.

Design and Hypotheses
The experiment was designed as a 2×10 mixed-design
ANOVA, with between-subjects factor Interface {skillometer,
control} and within-subjects factor Repetition {1..10}. Inter-
face was a between-subjects factor to minimize unintended
learning effects. The two key dependent variables were pro-
portion of hotkey use and task time (the time between com-
mand selections). Our primary hypotheses concerning skil-
lometers were as follows:

H1: Proportion of hotkey use will be higher for skillometer
than for control.
H2: Task time will be lower for skillometer than for control.
H3: There will be an Interface × Repetition interaction,
showing more rapid hotkey adoption with skillometer.

Additionally, we wanted to ensure that the skillometer was
addressing an appropriate target domain of user performance,
leading to H4: hotkey selections will be faster than menu and
toolbar selections.

Results
Hotkey Use
Figure 5-left shows the proportion of command selec-
tions completed using hotkeys for the control (left) and
HotkeySkillometer (right) conditions across the ten repeti-
tions. With HotkeySkillometer the mean rate of hotkey use
across all repetitions was 50% compared to 28% for the con-
trol condition, giving a significant main effect of Interface
(F1,22 = 4.52, p < 0.05) and supporting H1. There was

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

327

0
20

40
60

80
10

0
%

 o
f s

el
ec

tio
ns

Control Skillometer
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Menu Toolbar Hotkey

0
1

2
3

4
5

6
7

8
9

10
M

ea
n

co
m

m
an

d
se

le
ct

io
n

tim
e

(s
)

1 2 3 4 5 6 7 8 9 10
Repetition

Control Skillometer

0
2

4
6

8
M

ea
n

co
m

m
an

d
se

le
ct

io
n

tim
e

(s
)

Control Skillometer

Menu Toolbar Hotkey

Figure 5. Percentage of selections per modality per repetition in both Control and Skillometer conditions (left). Mean command selection time across
all repetitions (center). Mean command selection times across modalities and conditions (right).

also a significant interaction effect of Interface×Repetition
(F9,198 = 3.13, p < 0.01), with participants making an ear-
lier and more substantial switch to hotkeys when using the
skillometer, with 80% of commands completed using hotkeys
by the 10th repetition, compared to 42% with the control.

Command Selection Time
Figure 5-center summarizes the results for command selec-
tion time, showing that selections were initially marginally
faster with the control but marginally faster in the skillome-
ter condition across the later repetitions. Given a suggested
cross-over effect, it is relatively unsurprising that there is no
significant main effect for Interface (F1,22 = 0.27, p = 0.6).
However, there is no significant Interface×Repetition interac-
tion (F9,198 = 0.55, p = 0.8). We therefore reject H2 (with
caveats described in the Discussion).

Although there is no significant evidence that the skillome-
ter reduced command selection time, analysis of variance for
Modality (hotkey, menu, and ribbon) confirms that hotkey se-
lections were much faster than toolbar or menu selections,
with mean selection times of 3.3, 5.2 and 7.7 s respectively
(p < 0.001). We therefore accept H4.

Figure 5-right, which shows the mean selection time for each
modality in the control and skillometer condition, offers an
explanation for the apparent inconsistency between the skil-
lometer resulting in higher use of fast hotkeys, yet not result-
ing in a significant overall performance improvement. Specif-
ically, it shows that toolbar selections were slower with the
skillometer present (5.8 s compared to 4.2 s with the control).

One explanation for slow toolbar selections when using the
skillometer is that users engaged in additional activities (men-
tal and/or perceptual) in order to memorize and learn the
hotkeys associated with commands, and that these activities
consumed additional task time. Additionally, Figure 5-center
suggests that skillometer users were still improving their per-
formance and Figure 5-left further suggests that they were
still increasing in the proportion of hotkeys used. Conse-
quently, we suspect that participants’ performance in the skil-
lometer condition would have continued to improve as more
hotkeys were learned and routinely executed. However, fur-
ther empirical work is necessary.

DISCUSSION
To briefly summarise, skillometers are intended to be a widely
applicable interface technique that motivates and assists users
to increase their level of performance with an interface. They
do so by encouraging users to reflect about their level of per-
formance and by assisting them in understanding the per-
formance benefits attainable by altering aspects of their in-
teraction. We described four different domains of perfor-
mance that skillometers can aim to improve (intramodal per-
formance, intermodal performance, vocabulary extension and
user strategies), and we identified four interface goals that any
skillometer should seek to achieve (visualize the possibility to
improve, provide details on how to improve, motivate the user
to improve, and minimize disruption). We then described the
design, implementation and evaluation of one specific skil-
lometer addressing intermodal performance improvement –
from point and click modality with menus and toolbars to
hotkeys. Results of a lab study showed that users quickly
learned and used more hotkeys with a commercial software
product when presented with an accompanying skillometer.

While the experimental results are encouraging, they are pre-
liminary and cover only a small subset of the potential do-
mains into which skillometers could be deployed. In the fol-
lowing sections we discuss design refinements, explanations
for our experimental results, and issues of generalisation.

Understanding and Refining HotkeySkillometer
In designing and implementing HotkeySkillometer, we fol-
lowed the four interface design goals described earlier in the
paper. Although the experimental results showed that the
overall design successfully achieved increased hotkey use, it
is difficult to know the relative contribution of each of the
design goals in that success. This is an important question
because the different interface design goals tend to pull the
designer in different directions – for example, ‘goal 4: min-
imize disruption’ leads to subtle and transient visual effects
that may go unnoticed, while goals 1-3 all encourage visual
effects that are readily noticeable. Similarly, we are currently
unable to determine whether each of goals 1-3 are crucial to
the overall success of the system, or whether any one on its
own would have had the same effect. For example, it is pos-
sible that the display of the hotkey bindings on the bar chart

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

328

(motivated by ‘goal 2: provide specific details’) accounts for
all of the increase in hotkey adoption because it made hotkeys
more salient in the display.

We attempted to mitigate some of these concerns in our ex-
perimental method by displaying only the last six commands
within the skillometer (and therefore the previous use of any
particular hotkey was not inside the view when next needed).
We consider it unlikely that our results are attributable solely
to the increased saliency of hotkey bindings, since previ-
ous research has failed to find benefits for such techniques
[20]. We also attempted to understand the relative importance
of different skillometer components by asking for subjective
feedback on each, but this feedback yielded few strong in-
sights. In general, participants viewed the history chart and
overlaid hotkeys as being most useful, and the performance
meter and motivational text least useful, with two stating that
they did not look at the motivational text at all. We also no-
ticed some participants tilting their head to read the text, sug-
gesting that a horizontal chart would have been easier to read.

To elicit further feedback on the design we gave a real-world
implementation of HotkeySkillometer to eight people to use
on their personal computers for a week. While the lack of
global toolbar support (see the Implementation section) re-
duced the usefulness of the tool, we received several com-
ments on the design. One participant said he wanted to “mea-
sure improvement or long term performance”, suggesting that
the performance meter might have a configurable time com-
ponent. Several participants suggested that the skillometer
should not show hotkey selections, because it increases dis-
traction when the user already knows the hotkey (counter
to interface goal 4) and because it consumes space in the
skillometer that might otherwise be dedicated to unknown
hotkeys. However, two of the participants in the lab study
would have disagreed with this recommendation, as they
stated that hotkey feedback in the skillometer was useful for
confirming which command was executed if they suspected
an error was made. A related issue was raised regarding the
inclusion of repeated command selections in the skillometer
– a richer vocabulary of available hotkeys would be displayed
if only the most recent repetition was displayed.

A final variation to the design of HotkeySkillometer that we
are keen to pursue would blend the feedback methods that
it currently employs with feedforward display techniques.
HotkeySkillometer currently ‘pushes’ data to the user in re-
sponse to their command selections. However there are rich
interaction opportunities in supporting users who wish to ex-
plicitly ‘pull’ assistance prior to completing command exe-
cution. For example, ExposeHotkey [28] and OctoPocus [9]
demonstrate improved learning of expert interface techniques
by providing feedforward assistive information in response
to partially complete interactions. A skillometer might use
equivalent feedforward methods, such as displaying a list of
frequent commands that have not been previously selected by
hotkeys in response to the user pressing the command key.

Improving User Performance with Skillometers
An important issue for skillometers in general is whether they
do in fact help users to improve overall performance – and in

particular, why did this not occur in our initial evaluation?
There are two main points for discussion in this issue.

First, the difference in completion time for toolbar selections
between the skillometer and control groups may have arisen
because groups were attempting to learn both the hotkeys and
the toolbar locations at the same time – and in the skillometer
condition, participants may have allocated more of their cog-
nitive resources to learning the hotkeys, leading to less effec-
tive learning of the toolbar. There are often costs associated
with learning new interaction modalities [35] – and it is worth
noting that the skillometer group did not suffer any ‘perfor-
mance dip’ as they switched to the new mode. More research
is needed, however, to determine why the skillometer group
continued to use the toolbar (or menu) in some instances –
there may have been other types of ‘interaction inertia’ that
future skillometer design could attempt to counteract.

Second, it is clear that hotkeys are substantially faster than
the other two interaction modalities, so the observed slow-
down in toolbar use for the skillometer group would likely be
overcome by the hotkey advantage over a longer term than
our 15-minute study (a trend that is also suggested by the di-
vergence of the lines in Figure 5-center).

Challenges in Designing Skillometers for Other Domains
Although we provided design suggestions for each target do-
main earlier in the paper, it is clear that substantial challenges
arise in designing and implementing skillometers for domains
other than intermodal improvement, particularly for strategic
deployments.

However, even in the complex domain of strategic improve-
ment, there are realistic opportunities for successful deploy-
ment. In particular, computing systems are increasingly capa-
ble of capturing and usefully processing large pools of meta-
information about users’ interaction, both at individual and
societal levels. These data repositories can be put to use to
predict the user’s intention and needs, and the predictions fa-
cilitate new forms of interaction to assist users in completing
their tasks. For example, Fitchett and Cockburn [19] intro-
duced the ‘AccessRank’ algorithm and demonstrated that it
outperformed a variety of previous algorithms for predicting
upcoming user actions across a wide range of user tasks. A
skillometer could use such predictions to gain an understand-
ing of the user’s task, and suggest alternative methods for
achieving it when alternatives are known. But again, inter-
esting design questions emerge on whether the skillometer’s
role extends beyond identifying and suggesting better interac-
tive alternatives (as we have described them), or whether they
could additionally provide a shortcut method for achieving
the predicted intention (which we see as beyond their scope).

Platform Requirements for Engineering Skillometers
Accessibility APIs remain the best solution for implementing
systems like skillometers on a generic level. However, the
main goal of these APIs is to be able to provide better access
to interfaces for individuals with disabilities. These APIs are
therefore usually limited to a shallow description of the UI
components, and it is complicated (often impossible) to ac-
cess deeper information such as the actions associated with

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

329

toolbar buttons. Ideally, the next generation of UI toolkits
would provide an improved connection between UI compo-
nents and their semantics.

CONCLUSIONS AND FUTURE WORK
Users have many opportunities to enhance their productivity
in modern applications, one of them being to transition to ex-
pert modalities such as hotkeys. Yet users tend to stick to their
familiar methods and strategies for interaction, rather than
trying to improve. As a solution to this problem, this paper in-
troduced the use of skillometers, a type of reflective interface
that motivates and helps users to increase their level of per-
formance. We provided a framework examining the domains
of interaction that can be targeted for improvement, and dis-
cussed interface design goals for skillometers. We then de-
scribed the design and evaluation of HotkeySkillometer, an
exemplar skillometer that motivates and helps people to use
more hotkeys. A preliminary lab study provided positive re-
sults, with experimental participants exposed to the skillome-
ter learning more hotkeys than those in the control condition.

There are two main directions for future work. First, we
will refine the design of HotkeySkillometer based on feed-
back from our study participants, and perform a longer-term,
application-specific study with a complex application. Sec-
ond, we will study skillometers in other settings and for other
target domains, such as strategic improvement.

ACKNOWLEDGMENTS
This research was partially funded by Royal Society of New
Zealand Marsden Grant 10-UOC-020.

REFERENCES
1. Apple accessibility api.

https://developer.apple.com/library/mac/#documentation/Accessibility/
Conceptual/AccessibilityMacOSX/OSXAXIntro/OSXAXintro.html.

2. Ribbon hero 2. http://www.ribbonhero.com/.
3. Adar, E., Tan, D., and Teevan, J. Benevolent deception in human

computer interaction. In CHI ’13, ACM (2013).
4. Aleven, V., Koedinger, K., Sinclair, H., and Snyder, J. Combatting

shallow learning in a tutor for geometry problem solving. In Intelligent
Tutoring Systems, Springer (1998).

5. Anderson, J., Corbett, A, Fincham, J., Hoffman, D., and Pelletier, R.
General principles for an intelligent tutoring architecture. Cognitive
approaches to automated instruction (Jan 1992).

6. Bailly, G., Pietrzak, T., Deber, J., and Wigdor, D. J. Métamorphe:
augmenting hotkey usage with actuated keys. In CHI ’13, ACM (2013).

7. Banovic, N., Chevalier, F., Grossman, T., and Fitzmaurice, G.
Triggering triggers and burying barriers to customizing software. In
CHI ’12, ACM (2012).

8. Bateman, S., Teevan, J., and White, R. The search dashboard: how
reflection and comparison impact search behavior. In CHI ’12, ACM
(2012).

9. Bau, O., and Mackay, W. Octopocus: a dynamic guide for learning
gesture-based command sets. In UIST ’08, ACM (2008).

10. Bhavnani, S., Peck, F., and Reif, F. Strategy-based instruction: Lessons
learned in teaching the effective and efficient use of computer
applications. ACM Trans. Comput.-Hum. Interact. 15, 1 (May 2008).

11. Bødker, S. Applying activity theory to video analysis: how to make
sense of video data in human-computer interaction. In Context and
consciousness, Massachusetts Institute of Technology (1995).

12. Carroll, J., and Rosson, M. Paradox of the active user. Interfacing
thought: Cognitive aspects of human-computer interaction (1987).

13. Czerwinski, M., Horvitz, E., and Cutrell, E. Subjective duration
assessment: An implicit probe for software usability. In IHM-HCI ’01,
vol. 2 (Jan 2001).

14. Deterding, S., Dixon, D., Khaled, R., and Nacke, L. From game design
elements to gamefulness: defining ”gamification”. In MindTrek ’11,
ACM (2011).

15. Dong, T., Dontcheva, M., Joseph, D., Karahalios, K., Newman, M., and
Ackerman, M. Discovery-based games for learning software. In CHI
’12, ACM (2012).

16. Eagan, J., Beaudouin-Lafon, M., and Mackay, W. Cracking the cocoa
nut: user interface programming at runtime. In UIST ’11, ACM (2011).

17. Ericsson, K., and Simon, H. How to study thinking in everyday life:
Contrasting think-aloud protocols with descriptions and explanations of
thinking. Mind, Culture, and Activity 5, 3 (1998).

18. Evans, A., and Wobbrock, J. Taming wild behavior: the input observer
for text entry and mouse pointing measures from everyday computer
use. In CHI ’12, ACM (2012).

19. Fitchett, S., and Cockburn, A. Accessrank: predicting what users will
do next. In CHI ’12, ACM (2012).

20. Grossman, T., Dragicevic, P., and Balakrishnan, R. Strategies for
accelerating on-line learning of hotkeys. CHI ’07, ACM (2007).

21. Kapp, K. The Gamification of Learning and Instruction: Game-based
Methods and Strategies for Training and Education. Pfeiffer, 2012.

22. Krisler, B., and Alterman, R. Training towards mastery: overcoming
the active user paradox. NordiCHI ’08, ACM (2008).

23. Lane, D., Napier, H., Peres, S., and Sandor, A. Hidden costs of
graphical user interfaces: Failure to make the transition from menus
and icon toolbars to keyboard shortcuts. International Journal of
Human-Computer Interaction 18, 2 (2005).

24. Lesgold, A., Eggan, G., Katz, S., and Rao, G. Possibilities for
assessment using computer-based apprenticeship environments.
Cognitive approaches to automated instruction (Jan 1992).

25. Li, W., Grossman, T., and Fitzmaurice, G. Gamicad: a gamified tutorial
system for first time autocad users. In UIST ’12, ACM (2012).

26. Linton, F., and Schaefer, H.-P. Recommender systems for learning:
building user and expert models through long-term observation of
application use. User Modeling and User-Adapted Interaction 10, 2.

27. Mackay, W. Triggers and barriers to customizing software. In CHI ’91,
ACM (1991).

28. Malacria, S., Bailly, G., Harrison, J., Cockburn, A., and Gutwin, C.
Promoting hotkey use through rehearsal with exposehk. In CHI ’13,
ACM (2013).

29. Matejka, J., Grossman, T., and Fitzmaurice, G. Patina: Dynamic
heatmaps for visualizing application usage. In CHI ’13, ACM (2013).

30. Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G.
Communitycommands: command recommendations for software
applications. In UIST ’09, ACM (2009).

31. Newell, A., and Rosenbloom, P. Mechanisms of skill acquisition and
the law of practice. Cognitive skills and their acquisition (1981).

32. Odell, D., Davis, R., Smith, A., and Wright, P. Toolglasses, marking
menus, and hotkeys: a comparison of one and two-handed command
selection techniques. In GI ’04, Canadian Human-Computer
Communications Society (2004).

33. Peres, S., Tamborello, F., Fleetwood, M., Chung, P., and Paige-Smith,
D. Keyboard shortcut usage: The roles of social factors and computer
experience. the Human Factors and Ergonomics Society Annual
Meeting 48, 5 (2004).

34. Salmoni, A., Schmidt, R., and Walter, C. Knowledge of results and
motor learning: A review and critical reappraisal. Psychological
Bulletin 95, 3.

35. Scarr, J., Cockburn, A., Gutwin, C., and Quinn, P. Dips and ceilings:
understanding and supporting transitions to expertise in user interfaces.
In CHI ’11, ACM (2011).

36. Schmidt, R., and Lee, T. Motor Control and Learning: A Behavioral
Emphasis. Human Kinetics, 2011.

37. Shroyer, R. Actual readers versus implied readers: role conflicts in
office 97. Technical Communication 47, 2 (2000).

38. Simon, H. Satisficing. The new Palgrave: a dictionary of economics 4
(1987).

39. Tak, S., Westendorp, P., and van Rooij, I. Satisficing and the use of
keyboard shortcuts: Being good enough is enough? Interacting with
Computers (2013).

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

330

https://developer.apple.com/library/mac/#documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXIntro/OSXAXintro.html
https://developer.apple.com/library/mac/#documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXIntro/OSXAXintro.html
http://www.ribbonhero.com/

	Introduction
	Skillometer Definition
	Target Domains of User Performance
	Domain 1: Intramodal Improvement
	Domain 2: Intermodal Improvement
	Awareness of Other Modalities
	Perception of Performance with Other Modalities
	Lack of Motivation

	Domain 3: Vocabulary Extension
	Domain 4: Strategic Improvement

	Skillometer Interface: Goals and Mechanisms
	Goal 1: Visualize the Possibility for Improvement
	Goal 2: Provide Specific Details on How to Improve
	Goal 3: Motivate the User to Improve
	Social Influence and Competition
	Exaggeration of Benefits
	Gamification

	Goal 4: Minimize Disruption to Normal Interaction

	A Skillometer for Promoting Hotkey Use
	Overview of HotkeySkillometer

	Implementation of HotkeySkillometer
	Monitoring and Detecting Command Selections
	Menu Items
	Toolbar Buttons

	Determining the Modality Used
	Calculating User Performance

	Experimental Study
	Participants and Apparatus
	Procedure
	Design and Hypotheses
	Results
	Hotkey Use
	Command Selection Time

	Discussion
	Understanding and Refining HotkeySkillometer
	Improving User Performance with Skillometers
	Challenges in Designing Skillometers for Other Domains
	Platform Requirements for Engineering Skillometers

	Conclusions and Future Work
	Acknowledgments
	REFERENCES

