Swift: Reducing the Effects of Latency in Online Video Scrubbing

Justin Matejka, Tovi Grossman, George Fitzmaurice
Autodesk Research, Toronto, Ontario, Canada
{firstname.lastname} (@autodesk.com

Traditional Video Scrubbing

i) .
Figure 1. An illustration of the scrubbing behavior of a traditional streaming video player and the Swift player. With the
Swift system a quick-to-download low resolution version of the video is displayed while scrubbing.

ABSTRACT

We first conduct a study using abstracted video content to
measure the effects of latency on video scrubbing
performance and find that even very small amounts of
latency can significantly degrade navigation performance.
Based on these results, we present Swift, a technique that
supports real-time scrubbing of online videos by overlaying
a small, low resolution copy of the video during video
scrubbing, and snapping back to the high resolution video
when the scrubbing is completed or paused. A second study
compares the Swift technique to traditional online video
players on a collection of realistic live motion videos and
content-specific search tasks which finds the Swift
technique reducing completion times by as much as 72%
even with a relatively low latency of 500ms. Lastly, we
demonstrate that the Swift technique can be easily
implemented using modern HTMLS5 web standards.

Author Keywords
Video, Video Navigation, Online Streaming

ACM Classification Keywords
HS5.m. Information interfaces and presentation (e.g., HCI):
Graphical User Interfaces.

INTRODUCTION

Streaming online video players have given internet users
the instant gratification of watching a video play immedi-
ately, as opposed to the previous workflow of downloading
a video and then viewing it using a local player. With recent
advancements in both internet download speeds, and faster

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI’12, May 5-10, 2012, Austin, Texas, USA.

Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Swift Video Scrubbing

CPUs, the quality of streaming videos has improved
drastically. High definition videos are now standard, and
full length television shows and movies are readily
available on sites such as Netflix and Hulu.

Although very popular, streaming videos have limitations
when it comes to navigation. In most desktop media
players, the user is able to “scrub” the video by moving a
slider along the timeline and the current frame of the video
updates in real-time. In contrast, streaming video players
request new frames from the server to update the view,
introducing a significant amount of latency. This latency
makes the scrubbing experience very choppy at best, and
for many players, the view does not start updating until
after the mouse button has been released (Figure 1).

For many usage scenarios, the ability to scrub video
timelines is critical to the viewing experience. For example,
a user may wish to find a particular scene in a movie, look
for when a particular operation was performed in a software
tutorial video, or skip past an advertisement while watching
a sporting event. While scrubbing is sometimes enabled
once a video is cached, fully downloading a video can take
a considerable amount of time. Furthermore, it might not be
desirable, or even possible, to cache a large video file for
reasons such as the bandwidth costs incurred by the server
and/or user, or the storage capacity of the playback device.

Many aids for navigating videos have been explored [21].
However, most require additional visual elements such as
summary storyboards [25] or video analytics [22], and few
enhance the ubiquitous scrubbing behavior. Furthermore,
most enhancements are designed for desktop systems and
assume random access availability to the video. Despite the
ubiquity of online video players, we are unaware of any
research to date which has empirically measured the user
performance impact of latency during video scrubbing.

In this paper, we first conduct a study to measure the impact
of latency in a controlled abstract environment. We find that
even extremely short delays (20ms) can cause significant
difficulty when navigating videos, and with latencies users
typically experience (1000ms or more), seeking tasks can
take up to 10 times longer.

To combat these observed effects of latency, we present
Swift, a technique that supports real-time scrubbing of
streaming videos even in high latency conditions. Swift
works by overlaying a small, low resolution copy of the
video during video scrubbing, and snaps back to the high
resolution video when the scrubbing is completed or
paused. The technique has no impact on the user interface
controls or layout. By fixing the resolution and number of
video frames to the number of input pixels on the timeline
slider, the size of the low-resolution copy can be kept at a
fixed size of approximately 1MB, regardless of the duration
or size of the original source video.

In a second study, using real video content, we evaluate
Swift, against video navigation with traditional browsers in
20ms and 500ms latency environments. Swift significantly
decreased task completion times, in some cases by 72%.
After providing an analysis of the results, we demonstrate a
simple HTMLS implementation of Swift. Based on these
results, we believe the Swifi technique can be integrated
into today’s online video players, and significantly improve
the user’s viewing experience.

RELATED WORK

Video Navigation

There have been many projects exploring improvements to
video navigation. A number of approaches have looked at
using the traditional timeline slider augmented with
different dynamics such as the AV-ZoomSlider [12], which
uses the additional dimension of the y-axis to enable more
precise control. The PVSlider [20] provides an elastic
scrubbing experience for more fluid control.

Several systems have been developed to augment the
traditional video timeline with additional graphical
elements and information. The Video Explorer [22] uses
additional timeline strips to visualize low level video
features. Bailer et. al.’s SVAT [2] visualizes scene
boundaries and motion events on the timeline. Chronicle [8]
uses additional rows on the timeline to display document
workflow events based on captured metadata. Joke-o-mat
HD [14] and emoPlayer [4] both support navigating videos
based on user contributed metadata.

An alternate way to get an overview of an entire video is
through a collection of scene thumbnails [11, 25]. Truong
and Venkatesh [24] provide a thorough summary and
classification of work in both the creation of thumbnails
and video skimming. This includes techniques that display
thumbnails hierarchically [6], thumbnails lists [3], and
fisheye views of thumbnails [5].

While these described techniques all aid video navigation in
interesting ways, they typically require a local cache of the
video, or its thumbnails, to function, and do not support
real-time scrubbing in an online environment.

Existing Deployed Technologies

The internet is full of sites with streaming video players and
we tested over 30 unique implementations. The most
popular video streaming site, YouTube, currently hosts
more than 350 million streaming videos. While scrubbing,
the YouTube player does not update the position in an un-
cached video until the mouse button is released. This
general interaction model is representative of the majority
of streaming players we have found.

Several players such as the ones found on Hulu and
ESPN.com support enhanced video navigation by providing
a thumbnail preview while hovering over the timeline.
These thumbnails are not pre-loaded so they suffer from the
same latency issues as the full video, but they do present an
interesting interaction model.

The PC version of the Netflix streaming video player is the
only example we have found to support real-time
scrubbing. When the user begins scrubbing, sequential
thumbnail images are displayed in the center of the screen,
and update in real-time as the user scrubs (Figure 2).

Figure 2. PC version of the Netflix streaming video player.

We are unaware of any archived publication or white paper
describing its behavior, and so its technical implementation
is unknown. However, the real-time scrubbing seems to
only be enabled once a full set of thumbnails has been
downloaded. For some movies, the scrubbing is enabled
within 10 seconds, however, for others, we found it could
take several minutes before the real-time scrubbing begins
to work, even with a high-speed broadband connection.

Despite its limitations, the Netflix player should be
considered closely related to Swift. That said, Swift does
contribute a scalable technique, where real-time scrubbing
only requires IMB of data, regardless of the source video
resolution or duration. Furthermore, we demonstrate a
simple implementation using modern web standards
consisting of less than 30 lines of javascript and HTMLS
code, and provide a public dissemination of its implementa-
tion and related technical details to the research community.

DEFINITIONS
Before describing the first experiment, we will outline
definitions for the two main factors being tested.

Simulated Network Latency

All computer systems have some amount of inherent input
latency. Using the technique from [17] we calculated the
average delay between when the mouse is moved to when
the cursor actually moves on the screen to be 37ms. For our
video navigation tasks we refer to simulated network
latency (or sn-latency) as the time between when a frame is
requested by the user and when the frame is displayed on
the screen, less the inherent system latency. With an online
video player this is the time it takes to request a new play
position from the server, and have the server transfer
enough frames to buffer the video sufficiently to begin
playing again. While the effects of latency on some
interaction tasks has been studied [16, 18], its impact on
video scrubbing is unknown.

Classification of Video Types for Navigation Tasks

We restrict our evaluation to tasks where the user knows
what scene they are looking for, and would recognize when
they have successfully navigated to it. Within such a task, a
user’s knowledge of the target video content and scene
organization provides information and orientation which
may affect scrubbing behaviors. Thus we found it useful to
divide videos into three main video type categories:

Sequential

In a sequential video, the scenes have a natural order which
is known to the user. It is therefore possible for a user to
estimate where the target scene is, and to “jump” to the
approximate point in the timeline. During the navigation
task the user is able to tell if they have gone too far, or not
far enough, and also judge how far away from the target
they are. An example of a sequential video seeking task is
finding a particular time in a televised sporting event: to
find “the beginning of the 4™ quarter” in a basketball game,
the user could jump to about 75% into the video and then
looking at the game clock, adjust accordingly.

Ordered

With an ordered video it is possible for a user to tell if they
are before or after the target scene, but not how far away
they are. An example would be navigating through a
commercial break to get back to the television show. After
navigating, the user would know if they have gone too far,
or, if they still see a commercial, had not gone far enough.
Without real-time scrubbing, the optimal strategy for this
type of task may be a binary search of the timeline,
reducing the search space by half in each step.

Random

In a video with a completely random ordering, the user
does not know where the target scene is likely to be located
in the timeline, and has no cues as to where the target sits in
relation to their current position. There are no particularly
intelligent strategies for this type of task; the user is forced
to try and look at each scene. A primary example of this
type of task is for a user to find a particular scene in a
movie which they have never seen before.

The exact same video could have different navigation
characteristics for different users; finding a scene in a
movie that one person is unfamiliar with would be a
random searching task. For a person who is very familiar
with the move, it would be more of a sequential seeking
task. These classifications also do not necessarily have hard
boundaries between them. For example a sporting event
which only displays the clock some of the time could
present a primarily sequential seeking task, but the
segments without a clock present would represent a random
seeking sub-task. Even though the distinctions are not
always clear, this categorization of video types will be
useful when studying navigation techniques over a range of
potential scene finding scenarios.

EXPERIMENT ONE

To better understand how latency affects video navigation
tasks we conducted a controlled experiment. Specifically,
we wanted to test video scrubbing performance while
navigating to a target scene with varying levels of latency
and for differing video types. To ensure a controlled
environment, this experiment was carried out with
abstracted video content simulating three types of videos:
sequential, ordered and random, and two different scene
counts to simulate shorter (/2) and longer (24) videos.

Participants and Apparatus

Twelve paid volunteer participants (8 female) were
recruited though an online classified posting. Users had
varying levels of computer experience, with daily usage
ranging between 2 and 10 hours.

The experiment was conducted in a private office on a
3.16GHz quad-core desktop computer running Windows 7
64-bit Edition. The graphics card was an nVidia Quadro FX
5600 and was driving a 24” Dell LCD monitor with a
resolution of 1920 by 1200.

Design

A repeated measures within-participant design was used
with the independent variables being video type (sequential,
ordered, random), number of scenes (12, 24), and sn-
latency (1000ms, 500ms, 100ms, 20ms, Oms, Oms-lowRes).
The ordering of sn-latency and number of scenes were
counterbalanced and video type was randomized. A fully
crossed design resulted in 36 combinations of variables.

Each participant performed the experiment in one session
lasting approximately one hour. The study was divided into
two blocks, with each condition run 4 times per block.

Video Player

A custom video player with a playback resolution of 800 by
600 pixels was used for the study. The player was
programmed as a stand-alone application to allow for
precise control of the latency, and to support high frequency
logging capabilities. The interface was intentionally simple,
with just the video playback window and a timeline slider
(Figure 3). In the Oms condition, dragging the slider along

the timeline would update the video frame to the appropri-
ate location immediately (less the 37ms inherent system
input latency). In the other conditions, the frame would
only update if the slider remained stationary for the
condition’s associated latency duration. It was not necessary
to mouse-up to trigger the update, dwelling in place was
sufficient. During the latency period, the screen would
display a “Loading” message on top of the previous frame
to help the user understand the player’s state. Playback was
disabled, as we were only testing seeking behaviors.

> -

H N

] HENN
. HE BN

% 1 %
Figure 3. Video player used in the experiment near the
beginning of a trial (A) and at the target scene (B). The
most recently drawn square, representing the current
scene, was outlined with a wide border. The goal scene is
marked with a black dot.

Simulated Network Latency

Five different simulated network latency levels were used
for the first study ranging from 1000ms down to Oms. The
1000ms condition is typical of what we have observed on a
fast (~18MB/s) network when viewing a 480p video on
YouTube. When viewing 720p content the delay is
generally more than 2000ms. We also tested shorter delays
of 500ms and 100ms, which are both faster than what we
have been able to achieve on any deployed network, but
might be conceivably possible. We also tested with 20ms as
an approximate “theoretical limit” based on the average
network latency, or ping times, of 20 to 40ms.

The Oms condition was included to simulate the baseline
scenario, of watching the video on a desktop player capable
of real-time scrubbing, or an online player once the video
has been fully cached. To begin to understand the effects of
video resolution on navigation tasks, the final condition
(Oms-lowRes) was the same as the Oms condition, except
that while scrubbing the timeline, the frame displayed was a
64 by 48 pixel version of the current frame which had been
scaled up to 800 by 600 and bilinearly smoothed. In
particular, we hoped to see if switching between a crisp
view and a blurry view of the same video content would
affect navigation performance.

Video Content

The video content for the study was a grid of procedurally
generated squares that faded in one at a time. There were an
equal number of squares as number of scenes (i.e., 12
squares for /2 scenes, and 24 squares for 24 scenes).
During each scene a different square would be filled in. To
make it easier to determine which was the last square to be
drawn (i.e. the current “scene”), the most recently drawn

square was outlined with a 10px wide border (Figure 3).
The timeline was divided into equally spaced segments so
each scene was of the same length. Because playback was
disabled, the scenes, and video, did not have an absolute
duration. The timeline was 800 pixels wide and each scene
occupied 800/12=67 pixels in the /2 scene conditions, and
800/24=33 pixels in the 24 scene conditions.

To represent each of the video orderings in a controlled
fashion, the order for which the squares appeared differed:

SEQUENTIAL: The squares filled in from left-to-right and top
to bottom (Figure 4). This made it possible to tell how far
the target scene was into the video so the user could make a
large movement and “jump” to the correct area of the

timeline if desired.
-

Figure 4. First three scenes in a sequential scene order-
ing. The order which the squares fill in is fixed.

ORDERED: For the ordered condition the squares were filled
in a random order, and once a square filled in, it remained
colored for the rest of the video (Figure 5). With this
configuration the user could tell if they were not far enough
(the target square was not filled), or too far (the target
square was filled, but not outlined) but could not tell how
far forward or back they needed to navigate.

s My

Figure 5. First three scenes in an ordered scene ordering.
The order which the squares fill in is random.

Ranpom: With the random ordering, the squares would
become filled in a random order, however they would only
remain filled in for one scene (Figure 6). This gave no
information to the user in terms of if they were before or
past the target scene; they could only know if they were
exactly at the target scene.

» H >

Figure 6. First three scenes in a random scene ordering.
The order which the squares fill in is random.

Task

In all trials, the user’s task was to find a target scene in the
video. More specifically, the user had to find the part of the
video where a target square was the last to be filled in. The
target square was indicated with a black dot overlaid on the
video (Figure 3). The first and last scenes were never
chosen for a trial, and the same scene was never selected for
consecutive trials. Additionally, the timeline was halved,
and half of the trials were selected from each section.

Procedure

At the beginning of the study the examiner explained and
showed the user examples of each video type. Once the
differences between the video types were understood, the

participants spent two minutes becoming accustomed to the
different latency conditions.

Each trial began when the cursor entered the timeline slider,
and at that time the dot would appear over the target square.
Participants were instructed to click and hold the mouse
button down while searching for the target scene and to
release the button once it was found. Errors were not
possible as the trial ended only once the target scene was
found. Between each block users were given a short break,
and the next condition was described on the screen. If the
participant was unclear how the next condition would work
they had the opportunity to execute several practice trials.

Results

The primary independent variable was completion time for
each task. Repeated measure analysis of variance showed a
main effect for video type (Fy2, = 79.2, p < .0001), number
of scenes (Fy 11 =39.4, p <.0001), and latency (Fsss = 73.5,
p < .0001). Additionally, video type had a significant
interaction with number of scenes (F,2 = 14.6, p < .0001)
as well as with ns-latency (Fo,110 = 22.3, p <.0001).

Looking at the results for each video type we can see that
overall the completion times increase as the latency
increases (Figure 7). Of particular interest is the large jump
in completion times between Oms and 20ms conditions with
overall mean completion times of 3210ms and 6175ms
respectively (p < .0001). It is important to recall that the
20ms latency condition represents a theoretical limit, and is
much lower than any existing online video player that we
are aware of. This result suggests that even optimal latency
levels will not approximate the efficiency of real-time
scrubbing capabilities.
25.0

20.0

o
o

o
o

Time (sec)

Oms-lowRes

Oms-lowRes

Oms

Oms-lowRes

o
o

Oms

©
o

Ordered

Sequential Random
Figure 7. Average median navigation completion times
for each combination of video type and ns-latency. (Note:
error bars report standard error).

When we compare the Oms and Oms-lowRes conditions we
see that the average completion times were 3.21s and 3.22s
respectively. This result indicates that exploring the use of a
lower resolution video while scrubbing could be a
promising direction.

Figure 8 illustrates the completion times for each individual
video type. It can be seen that after the initial jump from
Oms to 20ms, completion times increase in a fairly linear

fashion with latency. The exception is the Random video
type with 24 scenes, where the /000ms latency condition
possesses additional difficulty.

7.5
Sequential
g 5.0
L
£
=25 @
@@ 24 Scenes
12 Scenes
0.0 T 1
(low res) 0 20 100 500 1000
Simulated Network Latency (ms)
15.0
_ Ordered
(&]
ﬁ 10.0
[J]
£
= 5.0
e ®® 24 Scenes
12 Scenes
0.0 — T 1
[lqures] 020 100 500 1000
Simulated Network Latency (ms])
30.0
_ Random
(&)
ﬁ 20.0
[0}
I
= 10.0
P ®@® 24 Scenes
12 Scenes
0.0 —= T 1
020 100 500 1000

(low res)

Simulated Network Latency (ms])
Figure 8. Average median navigation completion time
divided into groups based on video type. (Note: error bars
report standard error).

Frames Seen

In addition to completion time, it is interesting to look at
how efficient users are being in their searching behaviors.
One way to do this is to look at how many times a new
video frame is seen by the user while completing a task. For
conditions with no latency we cannot tell when a user has
seen a new frame, as they are being displayed constantly.
However, for the conditions with latency we can count the
number of frames seen during each trial (Figure 9).

Across all video type and number of scene combinations the
trend is for the number of frames seen to go down as the
latency increases. This matches with the observed behavior
of users being more “careful” with their movements as the
penalty for each additional search step became greater. That
is, when the penalty for a poor strategy is small, users were
more likely to randomly search around in the video than to
make a calculated decision of where to look next. So

although latency is detrimental to performance times, users
can partially make up some of the time in higher latency
conditions with improved search strategies.

20
[0}
o 15 .
o £EE ¢ ¢
. 5 £
mmggmg S§g
E s E S — ")
N 5 oS 8 o]l w| g
: mmes MEEE AOAE
o =]8[8]s

Sequential Ordered Random
Figure 9. Average number of frames seen per trial.

Anecdotally, we found that most users were using near
optimal strategies of jumping to the approximately correct
position with the sequential videos, and linearly searching
through the random videos. With the ordered videos
however, few participants performed an optimal binary
search of the video scenes, however, many participants
performed a somewhat “partial binary” search by first
seeking to near the middle of the video, and then searching
linearly in one direction to find the target scene.

THE SWIFT TECHNIQUE

Our controlled evaluation on the effects of latency indicates
a significant performance decrease when real-time
scrubbing is not available. One possible way to address this
limitation is to use a lower resolution version of the video
that can be cached immediately and used for scrubbing. The
Netflix player comes close to doing so, but its implementa-
tion details are unknown, and there is a noticeable delay
before scrubbing is enabled. As such, we developed Swift to
support immediate low resolution scrubbing. This technique
will allow us to empirically evaluate if low-resolution
scrubbing could address the performance limitations
identified in our first experiment.

Overview

The idea behind Swift is to display a fully cached, low
resolution copy of the video during video scrubbing, and
snap back to the high resolution video when scrubbing is
completed or paused. Since the low resolution version of
the video is fully cached ahead of time, it can be scrubbed
in real-time and used to find the desired scene in the video.
Displaying the low resolution version overlaid onto the
entire size of the high resolution version allows for spatial
congruence and tracking video content while scrubbing.

User Interface

There is a large base of existing streaming videos on the
internet, and a broad demographic spectrum of users who
consume them [9]. As such, it is important for the
navigation mechanism to be simple and have minimal
impact on the existing user interfaces. Introducing advanced
controls could impact ease-of-use, and hosting sites may be
reluctant to adopt major changes to the interface layout.

To this end, our technique requires no changes to the
traditional video player interface, and no changes to the
interaction model. It would be relatively straightforward to

retrofit an existing player to use our technique, and we
believe any user familiar with a traditional timeline slider
would be able to use the Swift interface on first exposure
based on our results and observations from the Oms-lowRes
condition in the first study.

Low Resolution Videos

The human visual system has an amazing tolerance to
degradation in image resolution. For example, as little as 16
x 16 pixel images are suitable for face recognition [1].
Torralba et. al. found that human scene recognition on
images with a resolution of 32 x 32 was 93% of the
recognition at the full resolution of 256 x 256 source
images, despite having only 1.5% the number of pixels as
the original [23]. This findings support the idea that low
resolution videos might be suitable for recognition tasks.

Increases in internet bandwidth and advances in video
compression and streaming technology [10, 15] will
continue to drive the movement to higher quality streaming
videos. Those same advancements make lower resolution
videos extremely efficient to transfer.

Video Size Analysis

The success of Swift depends on a low-resolution video
small enough that it can be cached almost immediately after
a page is loaded, but large enough to give a reasonable
depiction of the video. Our hope was to use a video size of
approximately 1MB, which would take less than a second
to download with most broadband internet connections.

To determine appropriate parameters for the lower-
resolution video, we looked at file sizes generated by a
modern codec. We used the H.264/MPEG-4 AVC high
profile codec, given its high quality, low file sizes, and
HTMLS compatibility. Videos were converted to .mp4 files
with this codec using the “mp4” option of “Miro Video
Converter”, a free video conversion tool. A one hour full
motion movie was used for the evaluation, at 800 x 600
resolution. For the evaluation, we varied the video
resolution, ranging from 320x240 to 32x24.

In addition, we varied the total number of frames encoded.
A key insight is that only a subset of the video’s frames
need to be encoded for real-time scrubbing, equal to the
pixel width of the timeline slider. For instance, a slider with
a width of 600 pixels can only access one of 600 frames
during scrubbing, regardless of the actual length of the
video. We varied frame totals from 50 (representing low
granularity scrubbing) to 1600 (representing high
granularity scrubbing in a full screen playback mode). To
convert the videos to a desired frame total, n, the playback
speed was modified using a video editor to run exactly n
seconds, and the video was then encoded at 1fps.

Figure 10 shows the resulting mp4 file sizes, at different
resolutions and frame counts. It can be seen that video sizes
drastically decrease as the resolution decreases. It can also
be seen that there are a group of candidate parameters that

result in video sizes close to 1MB. Based on these results,
we choose to use a video size of 134 x 100, with a frame
count of 800. This gave us the file size we wanted and the
resolution seemed to provide adequate visual cues during
navigation tasks. If the aspect ratio of a video was wider
than 4:3, the height could be reduced instead of increasing
the width, so that the file size would not increase.

e 1600 frames

N~ o o

- 800 frames
)

Video Size (MB)

P o - —o 400 frames
- — - e 200frames
& 100 frames

. .
o« o—® e
e S

o = N W
1

= — — 50 frames

— . v = IV T =
64x48 | 96x72 128x96 176x132 240x180 320x240
80x60 Video Resolution

Figure 10. Encoded file sizes using varying resolutions
and frame counts.

Because we fix the total frames encoded, and the frame
resolution, these parameters should reduce any source video
into the range of a IMB file, regardless of its initial
resolution, duration, or frame rate. The compressibility of
the video content will have some effect on the resulting
video size, however, the most complicated videos we tried
still had files sizes of approximately 1MB, and for some
videos we achieved sizes as small as 0.2MB.

EXPERIMENT TWO

To validate the Swift technique we conducted a second
controlled experiment using an actual full-motion video and
content-specific search tasks.

Participants and Apparatus

Twelve paid volunteer participants (7 female) were selected
from the same recruiting pool as used for the first
experiment. Participants reported using a computer for an
average of between 2 and 14 hours per day (1 = 6.5 hours)
and watching between 0 and 200 online videos per month
(n =47 videos). The experiment was conducted in the same
office and on the same machine as the first study.

Design

A repeated measures within-participant design was used
with the independent variables being video type (sequential,
ordered, random), target discernibility (low, high), sn-
latency (20ms, 500ms), and technique (traditional, swift).
The ordering of video type, discernibility, and technique
were counterbalanced and the order of sm-latency was
randomized. A fully crossed design resulted in 24
conditions. Each participant performed the experiment in
one session and each condition was run 5 times, with the
first trial discarded as practice.

For the traditional technique the sn-latency value had the
same effect as in the first study (the frame would update
after x ms), and with the Swif technique the low resolution
version of the video was shown while scrubbing and the full
resolution version would appear after the x ms delay.

Latency values of 20ms and 500ms were selected from the
values used in the first study, with again the 20ms condition
serving as an approximate “theoretical limit” assuming
infinite download speed and fast network ping responses
and the 500ms representing a level of latency still lower
than what we have found on any existing online player.

Video Content

In video seeking tasks, the distinguishing feature of a target
scene could have varying degrees of visibility. To examine
this dimension, videos representing two levels of
discernibility were selected for each video type; the high
discernibility condition contained targets which were easier
to recognize than the Jlow discernibility conditions. We
specifically chose videos that the subjects would not have
seen prior to the study. Also, as described below, the
experimental design tried to minimize learning effects from
memorizing the video content.

Ordered

Random

Sequential

14 \Y. PATRIC
= >ETERSON|

High Discernibility

Low Discernibility

Full Resolution Swift Resolution

Figure 11. Frames taken from the target scenes for each
video type and discernibility combination used in the
study. For the ordered examples, (A) is from before the
change occurring, and (B) is from after. In the random
examples, (C) is a typical scene from the movie and (D) is

the target scene.

SEQUENTIAL: The sequential videos used for the study were
both “countdown” videos which presented a number of
clips in decreasing numerical ranking. For the high
discernibility condition, a countdown of the Top 25 Music
Videos of 1986 was used (Figure 11). This video displayed
the number of the current video prominently in the bottom
left corner of the screen. Each video took the same fraction
of time to play making the target size on the timeline
800/25 = 32 pixels wide. The low discernibility video was a
countdown of the Top 50 Basketball Dunks. The decreasing
numbers were shown on a slightly transparent rotating cube
in the bottom right corner of the frame. The clips in this
video were of varying length, but the ones used in the task
each occupied 12 pixels on the timeline.

ORDERED: For the ordered condition we used a software
tutorial video and simulated the situation where a user
wants to find out how a particular piece of the design was

created. Both the high and low discernibility videos were
taken from a tutorial video of the drawing program
Paint NET. In the high discernibility condition the user
needed to find when the background of the drawing
changed from white to black, while in the low discernibility
condition the user needed to find the point where the inner
bevel was added to the porthole (Figure 11). Participants
were not required to find the exact single frame where the
change occurred, but were given a 5 pixel buffer on either
side making for an 11 pixel range on the timeline.

To enable positioning the target point at different locations
on the timeline, each of the ordered videos were construct-
ed in three parts: a seamless loop of material before the
change, a small section of video where the change occurred,
and a seamless loop of material from after the change. From
these “master” videos, a portion was trimmed from each
end, positioning the change in the desired location; half of
the trials occurred at a random location in the first half of
the timeline, and the remainder occurred in the second half.

R4aNDOM: The video used for the random conditions was the
1946 movie “Till the Clouds Roll By” (Figure 11). To
counter the potential learning bias of users memorizing the
movie, participants were required to find one particular
scene which was placed at a random location within the
video. For the high discernibility condition the scene was
the easily recognizable opening credits (taking up 32 pixels
on the timeline), and for low discernibility the scene was a
dance number where the actors were wearing red and green
costumes (a 3 minute scene, taking 34 pixels).

Procedure

The examiner began by using a sample video to show each
of the techniquel/latency combinations to the participant.
The examiner demonstrated how each worked, and
observed the user interacting with the player to ensure that
they understood. The trials were ordered with video type at
the outermost level, and discernibility at the second level.
This created 6 occasions when a new video or target type
would be introduced. At these times the examiner would
verbally explain the video and target to accompany the
written description presented on the screen. Four trials with
a Oms latency, full resolution video player were presented
for the user to become accustomed to the new video and
target content, and then the balance of the trials began.

The trial timing behavior and interaction instructions were
the same as in the first study.

Results

As in the first study, the primary independent variable was
completion time for each task. Repeated measure analysis
of variance showed a main effect for technique (F; =
100.3, p < .0001) with means of 7.01s for swiff and 12.51s
for traditional. Additionally, significant effects were found
for video type (F,2, = 91.6, p < .0001), discernibility (F\
=7.15, p <.05), and sn-latency (F 1, = 32.3, p <.0001).

Looking at the technique pairs for each of the video
typeldiscernibility/sn-latency conditions (Figure 12) we see
that in all cases the Swift technique performed faster than
traditional. Post-hoc analysis shows the effect to be
significant for all pairs except the 20ms conditions in the
sequential videos, and the 20ms/ordered/low condition.

Sequential
10.0
Low Discernibility High Discernibility
_ 75
153
Q
o
o 5.0
€
=
25
0.0 Swift Traditional Swift Traditional Swift Traditional Swift Traditional
20ms 500ms 20ms 500ms
Ordered

Low Discernibility High Discernibility

Time (sec)

Swift Traditional Swift Traditional Swift Traditional T Swift Traditional
20ms 500ms 20ms 500ms

Random

Low Discernibility High Discernibility

N
N
3]

Time (sec)
I
o

N
3

0.0 Swift Traditional Swift Traditional Swift Traditional Swift Traditional
20ms 500ms 20ms 500ms
Figure 12. Results for the three video types. (Note: error

bars report standard error).

It is interesting to see that for each video type/discernibility
condition, the performance of the Swifi technique stayed
relatively constant across the two latency values. With the
traditional player the completion times increased
significantly overall from 9.9s in the 20ms conditions to
15.1s during the 500ms conditions (£ ;; = 40.4, p < .0001).
Based on the increasing trend of the results from the first
study, it is reasonable to project that the gap in performance
would continue to increase as the latency increased.

As in the first study, the overall task completion times
increased as the tasks moved through the video types from
sequential to ordered to random. As the tasks became more
difficult, the benefit of the Swift technique became more
pronounced, with traditional taking between 2 and 3.5
times as long as Swift in the random/500ms conditions. So
as not to make the study unnecessarily hard, the target
scenes were relatively long, and the movie relatively short.
As the total length of the movie increases and the length of
the target decreases, the benefits of Swift would become
even more pronounced.

HTMLS5 IMPLEMENTATION

In this section we describe a simple HTMLS5 implementa-
tion of Swiff, which demonstrates that the technique can
work in today’s web browsers. Two videos are rendered
with the HTMLS5 <video> tag, with the small video above
the large video, but initially invisible. The Swift technique is
implemented with less than 20 lines of javascript code
(Listing 1). A custom slider is configured to make the
small-resolution video visible when sliding begins, and
update its position as it slides. The position of the full
resolution video is not updated until the sliding completes.
The small-resolution video is not hidden until the full
resolution video has finished seeking to the desired frame,
resulting in a seamless transition between resolutions. Our
testing of this code indicated that by default, the small and
large video are downloaded in parallel, resulting in a close
to instant download of the small video. However, further
code could be investigated to force the initial download of
the small-resolution video.

var small_length = 800;

var large_length = 3999.929;

var large = document.getElementById("lmovie");

var small = document.getElementById("smovie");
document.getElementById("slider").max = small_length;

function startSlide() {
small.style.visibility = 'visible';

function Slide(newvalue) {
small.currentTime = newValue;

function endSlide() {
var t = small.currentTime;
large.currentTime = ((t) * (largelength)) / small_length;

function Seeked() {
small.style.visibility = 'hidden’;

(Y]

<video STYLE="position:absolute;" id="lmovie" src="large.mp4"
onseeked="Seeked ()" width="800" height="600" preload controls>
</video>

<video STYLE="position:absolute; visibility:hidden" id="smovie"
src="small.mp4" width="800" height="600" preload>
</video>

<input STYLE="position:absolute; TOP:608px; WIDTH:800px" type="range"
id="slider" value="@" onchange="Slide(this.value)"
onmousedown="startSlide()" onmouseup="endSlide()">

Listing 1. Javascript and HTML code for basic imple-
mentation of Swift technique.

Unfortunately, supported codecs and input elements still
vary from one browser to the next. The listed code is fully
functional in Google Chrome, and minor adjustments would
be required for other HTMLS enabled browsers.

DISCUSSION AND LIMITATIONS

We have presented the empirical results from two novel
experiments related to navigating online videos. Our first
study demonstrated that even a small amount of network
latency (20ms) can significantly hinder performance in
video navigation tasks. Our second study demonstrated that
real- time, low resolution scrubbing, significantly improves
performance, in both high and low latency environments.
The new empirical data provided by these studies will help

practitioners and researchers better understand the benefits
of enabling real-time scrubbing in online video players.

In addition to being beneficial in online environments, our
results are applicable to desktop video players as well.
Many such players still do not support real-time scrubbing,
and only update their frames when a seek operation has
completed. While transitioning to a lower resolution version
in a desktop environment may not be necessary, this could
actually improve the display rate of frames during a
scrubbing operation, due to the reduced CPU load.

An important aspect of our implementation, Swift, is that it
limits the download capacity required to enable real-time
scrubbing to approximately 1MB, regardless of the source
video’s resolution, frame rate, and duration. As such, real-
time scrubbing is available almost immediately when
viewing videos with a broadband connection. We are unable
to verify the Netflix implementation, but we did find it
usually takes at least 10 seconds, and often several minutes
before real-time scrubbing is enabled. Limiting the
download size is also important as many internet providers
are employing download caps and pay-per-use models.

Another advantage of Swift is its simple HTMLS compati-
bility. We demonstrated how real-time scrubbing could be
enabled with less than 30 lines of HTMLS and javascript
code. However, for a video sharing site to implement the
technique, a service to create the low-resolution videos
would be required. This should not be problematic, since
sites, such as YouTube already have services to convert
videos into multiple versions at different resolutions.

One potential limitation of low-resolution scrubbing is that
it may be impossible to discern low-granularity details
while scrubbing. Although prior research indicates very
little resolution is required to identify features in images,
small text fonts for example would be unreadable. Although
we do not believe it is common for users to be searching for
such fine grain details while navigating videos, it should be
noted that low-resolution scrubbing would not aid such a
task. In our future work section, we discuss possible ways
for which fine grain details could be represented.

FUTURE WORK AND CONCLUSION

There are a number of other techniques in the literature that
aid video navigation, although most do not focus on the
scrubbing interaction. Low-resolution scrubbing could
potentially be used in combination with these techniques.
For example, Pongnumkul et al.’s content-aware dynamic
timeline control [19] could be used while scrubbing, so that
instead of frames flashing quickly by, salient scenes could
be displayed at a more digestible rate. Additionally, direct
manipulation video navigation systems such as DRAGON
[13] and DimP [7] could utilize a low-resolution overlay.

Our implementation of Swifi overlaid the low-resolution
version of the video across the entire video player canvas.
In contrast, the Netflix player displays multiple smaller

thumbnails centered on the canvas. We did not become
aware of the Netflix player until our studies were
completed, but it would be interesting in the future to
compare these two approaches. Another alternative design
worth exploring is displaying a small thumbnail just above
the timeline, offset from the cursor position. Some players,
such as Hulu, already do this when hovering over the
timeline, but do not pre-cache these thumbnails.

It would also be interesting to look at alternative low-data
representations of the content while scrubbing, other than a
literal down-sampling of the entire video. For example, the
low resolution video could be a zoomed in view of the full
resolution video, showing an area that has important details.
Alternatively, metadata could be stored alongside the video
and rendered instead of frames from the actual video. For
example, when scrubbing through a sporting event, the
current score or time remaining in the game could be
overlaid. When scrubbing a movie or music video, the
closed captions or lyrics could be displayed.

While our implementation used a fixed 1MB file size, our
analysis of the H.264 codec performance showed that
representations could be made as small as 29KB. To
support low speed connections, it could be useful to have
multiple low-resolution files available, and possibly
progressively download and use larger versions.

Our study focused on scrubbing under uniform latency
values while in practice, users may experience a range of
latencies and this would be interesting to examine further.

Finally, we feel low-resolution scrubbing is particularly
suited for mobile devices, as it reduces both bandwidth and
CPU load. Our implementation should work with minimal
modification on HTMLS5 supported mobile devices, such as
the iPad, and it would be interesting to evaluate such an
implementation.

To conclude, we have contributed empirical data demon-
strating the impact of latency on online-video navigation
tasks, demonstrated that low-resolution real-time scrubbing
can significantly improve performance, and provided a
simple HTMLS compatible implementation. Given today’s
prevalence of online streaming video sites, we feel these are
important and timely contributions.

REFERENCES

1. Bachmann, T. (1991). Identification of spatially queatized
tachistoscopic images of faces: How many pixels does it take
to carry identity? European J. of Cog. Psychology. 3:85-103.

2. Bailer, W., Schober, C., and Thallinger, G. (2006). Video
Content Browsing Based on Iterative Feature Clustering for
Rushes Exploration. TRECVID Workshop. 230-239.

3. Chang, L., Yang, Y., and Hua, X.S. (2008). Smart Video
Player. IEEE Multimedia and Expo. 1605-1606.

4. Chen, L., Chen, G.C., Xu, C.Z., March, J., and Benford, S.
(2008). EmoPlayer: A Media Player for Video Clips with
Affective Annotations. Int. with Comp. 20:17-28.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Divakaran, A. and Forlines, C. and Lanning, T. and Shipman,
S. and Wittenburg, K. (2005). Augmenting Fast-Forward and
Rewind for Personal Digital Video Recorders. ICCE. 43-44.
Doulamis, A.D. and Doulamis, N.D. (2004). Optimal Content-
based Video Decomposition for Interactive Video Navigation.
IEEE CSVT. 757-775.

Dragicevic, P., Ramos, G., Bibliowitcz, J., Nowrouzezahrai,
D., Balakrishnan, R., and Singh, K. (2008). Video browsing by
direct manipulation. CHI. 237-246.

Grossman, T., Matejka, J., and Fitzmaurice, G. (2010).
Chronicle: Capture, Exploration, and Playback of Document
Workflow Histories. UIST. 143-152.

Hanson, G. and Haridakis, P. (2008). YouTube Users Watching
and Sharing the News: A Uses and Gratifications Approach.
Journal of Electronic Publishing. 11:3.

Hefeeda, M. and Hsu, C.H. (2008). Rate-Distortion Optimized
Streaming of Fine-Grained Scalable Video Sequences. ACM
TOMCCAP. 1-28.

Holthe, O. and Ronningen, L.A. (2006). Video Browsing
Techniques for Web Interfaces. I[EEE CCNC. 1224-1228.
Hiirst, W. (2006). Interactive Audio-Visual Video Browsing.
ACM MM. 675-678.

Karrer, T., Weiss, M., Lee, E., and Borchers, J. (2008).
DRAGON : A Direct Manipulation Interface for Frame-
Accurate In-Scene Video Navigation. CHI. 247-250.

Janin, A., Gottlieb, L., and Friedland, G. (2010). Joke-o-Mat
HD: Browsing Sitcoms with Human Derived Transcripts.
ACM MM. 1591-1594.

Krasic, C. and Légaré, J.S. (2008). Interactivity and Scalability
Enhancements for Quality-Adaptive Streaming. MM. 753-756.
MacKenzie, I.S. and Ware, C. (1993). Lag as a Determinant of
Human Performance in Interactive Systems. CHI. 488-493.
Pavlovych, A. and Stuerzlinger, W. (2009). The Tradeoff
between Spatial Jitter and Latency in Pointing Tasks. ACM
Symposium on Eng. Interactive Comp. Syst. 33-44.

Pavlovych, A. and Stuerzlinger, W. (2011). Target Following
Performance in the Presence of Latency, Jitter, and Signal
Dropouts. GI. 33-44.

Pongnumkul, S., Wang, J., Ramos, G., and Cohen, M. (2010).
Content-Aware dynamic timeline for video browsing. ACM
UIST. 139-142.

Ramos, G. and Balakrishnan, R. (2003). Fluid Interaction
Techniques for the Control and Annotation of Digital Video.
ACM UIST. 105-114.

Schoeftmann, K., Hopfgartner, F., Marques, O., Boeszoerme-
nyi, L., and Jose, J.M. (2010). Video browsing interfaces and
applications: a review. SPIE Reviews. 18004:1-35.
Schoeffmann, K., Taschwer, M., and Boeszoermenyi, L.
(2010). The Video Explorer — A Tool for Navigation and
Searching within a Single Video based on Fast Content
Analysis. ACM SIGMM. 247-258.

. Torralba, A., Fergus, R., and Freeman, W.T. (2008). 80 million

tiny images: A large data set for non-parametric object and
scene recognition. [EEE Pattern Analysis and Machine
Intelligence. 1958-1970.

. Truong, B.T. and Venkatesh, S. (2007). Video Abstraction: A

Systematic Review and Classification. ACM TOMCCAP. Appl.
3, 1, Article 3.

. Uchihashi, S., Foote, J., Girgensohn, A., and Boreczky, J.

(1999). Video Manga: Generating Semantically Meaningful
Video Summaries. ACM CHI. 383-392.

