
The Envoy Framework:
An Open Architecture for Agents

MURUGAPPAN PALANIAPPAN, NICOLE YANKELOVICH,
GEORGE FITZMAURICE, ANNE LOOMIS, BERNARD HAAN,
JAMES COOMBS, and NORMAN MEYROWITZ

Institute for Research in Information and Scholarship (IRIS)
Brown University

The Envoy Framework addresses a need for computer-based assistants or agents that operate in
conjunction with users’ existing applications, helping them perform tedious, repetitive, or
time-consuming tasks more easily and efficiently. Envoys carry out missions for users by

invoking envoy-aware applications called operatives and inform users of mission results via
envoy-aware applications called informers, The distributed, open architecture developed for
Envoys is derived from an analysis of the best characteristics of existing agent systems. This

architecture has been designed as a model for how agent technology can be seamlessly integrated

into the electronic desktop. It defines a set of application programmer’s interfaces so that
developers may convert their software to envoy-aware applications. A subset of the architecture
described in this paper has been implemented in an Envoy Framework prototype.

Categories and Subject Descriptors: A. 1 [Introduction and Survey]; C.2.4 [Computer-

Communication Networks]: Distributed Systems—distributed apphcatmns; D.2.2 [Software

Engineering]: Tools and Techniques—soj%vure libraries; H. 1.2 [Models and Principles]:

User/Machine Systems—lummrz factors; H.3.4 [Information Storage and Retrieval]:

Systems and Software—current u wureness systems (selectme dissemination of mformatzon-

SDZ); H.4. 1 [Information Systems Applications]: OffIce Automation; K.6.3 [Management of

Computing and Information Systems]: Software Management—software develop?nent

General Terms: Design, Human Factors, Management

Additional Key Words and Phrases: Application programmer interface, user agent

1. INTRODUCTION

Electronic computer-based agents may significantly improve users’ ability to

manage information; however, their impact to date has been minimal. This

Authors’ addresses M. Palaniappan, Aldus Corporation, Seattle, WA 98104, muru@’aldus.celes-

tial.tom; N. Yankelovich, Sun Microsystems Laboratories, Billerica, MA 01821, nicole.yankelo-

vich@east.sun.tom; G. Fitzmaurice, University of Toronto, M5T 1N4 Ontario, Canada,

gf~dgp.toronto. edu; A. Loomis, Go Corp., Foster City, CA, 94404, anne–loomis@go.tom; B.

Haan, Siemens Nixdorf, Cambridge, MA 02142, bhaan@sni-usa.tom; J. Coombs, IRIS, Brown

University, Providence, RI 02912, jhc@iris.brown. edu; N. Meyrowitz, Go Corporation, Foster

City, CA 94404, nkm@go.com

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and\or

specific permission.

O 1992 ACM 1046 -8188 /92/0700 -00233 $01.50

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992, 233-264.

234 . M. Palaniappan et al.

paper examines a spectrum of approaches previously applied to the imple-

mentation of agents. Based on our analysis of the strengths of these various

approaches, we have designed and prototyped a new open architecture for

agents. We refer to our implementation of agents as Envoys. The Envoy

architecture, which provides the focus for this paper, represents a practical

approach to the wide-spread integration of agent technology with standard

end-user applications.

Research at IRIS has been focused on hypermedia technology and informa-

tion retrieval [5, 34]. We have learned that these tools alone are not sufficient

to help users who routinely work in an information-rich environment. They

only solve a segment of the problems users encounter. Users still must devote

substantial time to actively seeking and sorting information—browsing, issu-

ing queries, or following links to find pertinent data. They still have a

difficult time distinguishing new information from old information. And they

still have trouble figuring out who else is working in their computing environ-

ment and what information other users are adding, deleting, or changing.

In the future, envoy technology can potentially have a dramatic effect on

the way people interact with electronic information. Once the technology

matures, both the jobs of sifting through incoming information and actively

seeking specific information can be delegated to Envoys. By shifting to a

delegation model, people would be able to dispatch Envoys to monitor data

sources likely to contain useful information, freeing them from the time-

consuming and repetitive aspects of these sifting and searching tasks. If

users, instead of Envoys, were to engage in such proactive behavior, their

time would be entirely consumed by searching for information. In the end,

they may also be less effective at finding critical information. As part of their

experimental evaluation of the Clipping Service project, Gifford and

Fracomano [16] have demonstrated that an active, user-programmed agent is

more effective in retrieving information of interest to the user than the user

is in actively seeking out the same information.

In the technology that we have prototyped, an Envoy takes on the burden

of waiting, watching, and searching, while the user only need to specify

missions and to review results—which are preclassified according to the

person’s specifications-as they arrive. People can focus, therefore, more of

their time and energy on primary tasks such as writing reports, analyzing

data, or creating on-line publications, confident that when relevant informa-

tion is available, it will find them.

1.1 Overview of Envoy Framework and Prototype

We have adopted a user interface metaphor to help users understand and

interact effectively with Envoys. A user specifies a mission for the Envoy by

interacting with an “envoy-aware” application. We call envoy-aware applica-

tions operatives because they are responsible for actually carrying out mis-
sions on behalf of the user. Once the user specifies a mission, the Envoy plays

the role of coordinator by scheduling, tracking, and dispatching all missions

the user has specified (Fig-m-e 1). As the user’s representative, the Envoy

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

The Envoy Framework . 235

Fig. 1. Overview of Envoy Framework components.

handles all communication with the operatives. If the user has specified an

information-gathering mission, then the operative assigned to the mission

lets the Envoy know when new information is available to report to the user.

In turn, the Envoy notifies the user, selecting a communication channel from

a set of envoy-aware applications called informers. Once notified of mission

results, either with a brief message or a short report, the user can opt to see

an interactive report. The Envoy stores interactive reports generated by

operatives. To view an interactive report, the Envoy passes the data to the

operative responsible for carrying out the mission, giving users the ability to

manipulate the mission results using the native application interface. At any

time, the user may display a Mission Summary, which provides a compre-

hensive list of all the user’s active missions and all the reports generated by

the operatives responsible for those missions.

When an application developer first introduces a new operative or informer

into the environment, it is registered with a Bureau Chief. For every local-

area network (LAN) there is one Bureau Chief, which maintains a record of

all envoy-aware applications in the environment as well as a record of each

user’s personal Envoy.

1.2 Operatives and Informers

There are three types of operatives: monitor operatives that monitor data

continuously over a span of time, scheduled operatives that execute tasks at

scheduled times, and combined operatives that can do both of these two

functions.

In our prototype, we have upgraded a file system browser to adhere to our

Envoy protocol, and we are nearly finished upgrading a full-text retrieval

application. The first, a UNIX@ File System Browser/Monitor (referred to
below simply as “the Browser”), is a monitor operative. With this application,

users can browse the UNIX file hierarchy and track changes to any file

systems in their LAN. The second, Document Search, is a combined opera-

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

236 . M. Palaniappan et al.

tive. This information-retrieval application for UNIX file systems allows

users to search the full text and attributes of any regular UNIX file. Users

may opt to either monitor the file system for any new or updated information

or specify queries to be run at scheduled times.

We believe that a wide range of desktop applications will be suitable for

developers to upgrade to operatives; however, there are also some that do not

lend themselves to working on missions for the user. Text and graphics

editors, for example, are best used interactively; we do not expect these types

of applications to become envoy aware. On the other hand, any type of

information retrieval application acting on collections such as file systems,

full-text databases, bibliographic databases, and news feeds would be ideally

suited for information-gathering missions on behalf of the user. In addition,

any applications that manipulate large or complex data could be controlled by

an Envoy. For example, if time-consuming calculations or database opera-

tions are involved, a user could specify the task to be done and delegate the

mission to the Envoy for execution during off-peak hours.

The second type of envoy-aware applications, Informers, can be any signals

already in the operating environment, such as beeps, flashing menu bars, or

alert boxes. They can also be any end-user communication program such as

the UNIX” write” facility, electronic mail, the InternetExpress service [28], or

a FAX application. Our prototype allows users to decide how they would like

to be informed of mission results by giving them the choice between two

informers; electronic mail or alert boxes.

Before describing our Envoy architecture in detail, we discuss the benefits

of adopting a delegation model of information retrieval, and we examine

previous work related to agents, culling out the significant characteristics

embodied by each different approach.

2. BENEFITS OF SHIFTING TO A DELEGATION MODEL

The shift from sifting and sorting behaviors to specifying and delegating

behaviors can bring about major gains for people who routinely work with

information. In this section, we describe how Envoys, as we envision them in

their maturest form, would reduce labor and benefit users by operating

within the framework of a delegation model. For example, we envision that

Envoys will automate the processes of sifting through incoming information,

monitoring existing data sources, carrying out repetitive tasks, and deferring

the execution of delegated tasks. They will also provide users with a number
of services in c1uding individualized reporting and flexible notification of

mission results.

Throughout this section, we use the term Envoy as a short-hand for

referring to the Envoy/operative team.

2.1 Automation

With a mature Envoy system, people could stay informed of just those topics

or events that matter to them. They would not have to attend as carefully to

ACM Transactions on Information Systems, Vol 10, No. 3, July 1992

The Envoy Framework . 237

notices of general distribution. For example, if a user is interested in any

information posted on network news about the Hypertext ’93 conference, the

user currently has to sift through all the conference and hypertext news

postings to find relevant articles, which may or may not exist. In many cases,

the percentage of relevant information contained in a data source is so low

that the cost of an individual monitoring this information for a small number

of relevant items is high. Because some of these large data sources are time

consuming to sift through, many people do not take the time to keep abreast

of topics which interest them. If users could conveniently delegate the task of

sifting through incoming data to an Envoy, they would be freed from having

to examine these data sources manually.

Once Envoys are well established, people should soon become aware that

notices of general distribution do not need to be generated so frequently. If,

for example, an engineer finds it useful to track all new specification docu-

ments created by his division, such tracking can be performed without

requiring that a human generate regular reports. In fact, tracking could be

initiated and terminated without any explicit coordination with other mem-

bers of the organization. This capability changes the base assumption from

“we should broadcast all information that people may find usefu~ to “let

individuals delegate their Envoys to acquire routine information.”

If Envoys are able to monitor a wide range of electronic data sources, they

may be of great benefit to users working in a networked environment who

wish to keep abreast of changing information. One of the most frequent

problems reported to us by users of our Intermedia hypermedia system is the

difficulty in knowing what information has changed and by whom. With

today’s file systems, which we consider an important source of full text and

other data, it is hard to know if anyone else is currently working with the

same data or if anyone else has changed information since it was last

examined.

As Envoys become more and more able to monitor shared information

sources, they will increasingly be relied on as a communication aid between

collaborators. Team members will be able to keep abreast of additions,

deletions, and changes other team members are making in the shared

electronic work space. The onus can be placed on the Envoy to track group

activity, rather than require each team member to carefully report on current

activities. In this way, new or updated information will automatically find the

user.

Sometimes a person may prefer not to monitor a data source, but rather to

search it at discrete intervals. For example, it may be too expensive to

monitor a commercial on-line database service. Searching the database peri-

odically is more economical, but requires repetition. Doing the same task over

and over can be tedious, time consuming, and not the most effective use of a

person’s time. For example, logging on to a full-text database such as Med-

Line once a week to check for new items of interest can be a waste of time if

no new relevant articles are available. On the other hand, the cost of missing

relevant information is high, making the task necessary, if not always

fruitful. People often wish to delegate these types of repetitive tasks to

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

238 . M. Palaniappan et al.

assistants if possible. By providing an easy mechanism to specify such a task

and how often that task should be carried out, Envoys will eventually allow

people to delegate a variety of repetitive tasks in the domain of the electronic

work environment.

Envoys also have the potential to benefit people who would like to carry out

a task now that time constraints dictate must be done in the future. For

example, a manager might know that the newest sales figures will be entered

into the company database a week from now. While the thought occurs, the

manager could formulate a query requesting the latest figures, delegating

responsibility to the Envoy for running the query on the appropriate day. By

specifying the task in the present, the person would be able to delegate

responsibility to the Envoy for executing the task in the future. This deferred

execution capability could also be helpful when a task involves using a scarce

resource or doing something that would be disruptive to others at the current

time. For example, it might be possible to re-sort a large database now, but

everyone else in the office accessing the database would be disrupted. Better

to do the time-consuming, disruptive operation during off-peak hours by

specifying the task now and delegating it to an Envoy to carry out later.

2.2 Services

In addition to the automation of sifting, monitoring, repetitive, and deferred

tasks, Envoys will eventually be able to provide users with a set of services.

The most significant of these involves reporting mission results. Consider a

person trying to discover who has changed what in a jointly authored

electronic collection, or consider a person repeating the same search for new

information of interest. These people often find it difficult to remember the

previous state of the environment. For example, a person searching an article

database might spot an interesting title, begin to read the article, and then

recognize the article as one that was previously read. Or a person might list

the files in a shared directory by date, hoping to find all the new additions,

but not quite remembering the exact data the directory was last examined.

In conjunction with envoy-aware end-user applications, Envoys provide

individualized reporting services. When monitoring a shared workspace or an

electronic data source, Envoys provide users with a clear indication of how

the state of the electronic environment has changed since their last report.

People will no longer have to rely on their memory of what they have and

have not seen in the past, nor will they have to waste time unintentionally

reviewing old information.

In shifting to a delegation model, it is essential to keep users abreast of

their delegated missions and to alert them as soon as new information is

available. Each user’s Envoy serves as a center for communications and has

the ability to relay information to the user through a variety of channels

(envoy-aware communication applications). Consequently, the bearers of im-

portant information (envoy-aware end-user applications) can contact the

communications hub, which can then absorb the burden of trying alternative

routes to reach the user who needs the information. In this way, Envoys

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

The Envoy Framework . 239

direct information to people who regularly travel from home to office to

laboratory and beyond.

3. BACKGROUND

Our approach to integrating Envoys with standard end-user applications

builds on the work of others. Apple Computer has produced a video* explor-

ing a futuristic system called the Knowledge Navigator [3, 22]. In this video,

a character responds to voice-activated commands and performs tasks for the

user, such as searching for data in external databases and screening incom-

ing telephone calls. As a preliminary step towards achieving a full-fledged

Knowledge Navigator, Apple has demonstrated a system called Guides that

includes video personalities that present the user with different perspectives

on a topic and suggest alternate routes through educational material [7, 27].

The Knowledge Navigator and the Guides system are reminiscent of the

guide concept envisioned at Atari as part of their Electronic Encyclopedia

project [33]. An encyclopedia guide would act as a user’s personal agent by

finding, filtering, and explaining information. Users could select as their

guide an agent with a particular personality. This personality, for example, a

Renaissance scholar, Albert Einstein, or a Disney character, would dictate

the type, complexity, scope, and slant of the information presented to the

user.

The Corporation for National Research Initiatives (CNRI) has introduced

another vision. They have proposed a scheme for creating a National Digital

Library System, which would include tireless Knowbots (knowledge robots)

responsible for sorting, analyzing, maintaining, and finding information in a

network-wide electronic library [19].

3.1 Artificial Intelligence Approaches

Most of the visionary conceptions of agents and a large number of the

implemented systems involve varying degrees of intelligence on the part of

the agent.

3.1.1 Rule-Based Systems. The most common mechanism for endowing

agents with intelligence is to base their behavior on rules. LIZA [10, 15],

PAGES [17], ISM [29], Object Lens [21], and Information Lens [23] are

examples of systems that incorporate a rule-based approach. If the conditions

of a rule are satisfied, then its actions are executed by the agent.

PAGES, for example, targets forms migration. Each user has an agent and

a database of forms. Each form includes fields, data, and the specification of

one or more rules. Using agents, the system provides a mechanism for users

to route forms to other users on the network. The user interface to the forms,

*Project 2000—A Knowledge Navigator is available from Apple Computer @1-800-627-0230.

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

240 . M Palanlappan et al

the agent processes, and the forms database all can be distributed across the

network. By uniquely identifying agents, PAGES allows users to route and

share forms across both a local- and a wide-area network. Users create new

forms by subclassing instances of existing forms and modifying the layout,

fields, and rules associated with the forms. Users must learn an interpreted

rule language to modify an existing rule or write a new rule.

In contrast to PAGES, Object Lens helps users construct rules by providing

them with structured templates for specifying rules. These templates allevi-

ate the need for users to learn the syntax of a programming language to

specify the behavior of agents. The technique of using templates to define

agents and create rules for them provides users with a consistent way of

specifying the behavior of agents. Whether the user would like an agent

to sort incoming mail, retrieve information from a database, or track

the progress of a project, the mechanism for specifying these tasks is

standardized.

The primary advantage of a rule-based approach is the flexibility rules

provided in extending the functionality of agents. On the other hand, users

who are focused on primary tasks such as writing reports, reading mail, or

looking for information may be unable or unwilling to construct the sort of

rules that make these systems useful.

3.1.2 Systems Bused on “Society of Mind” Theory. A number of agent

systems are based on Minsky’s “society of mind” theory [25], which postulates

a divide-and-conquer theory of human intelligence. The mind, according to

the theory, consists of a swarm of communicating agents, each running in

parallel, attending to a single aspect of a problem. These agents are orga-

nized hierarchically and can be grouped together for the purpose of complet-

ing a task more complicated than any one agent can tackle individually.

This theory has inspired several researchers to implement systems based

on multiple cooperating agents. NeuralAgents [1] and the agents within the

Playground system [12] provide two such examples. Both of these systems

use cooperating agents for developing simulations where actions routinely

occur in parallel.

While appealing in the simplicity of individual agents and their rules, in

practice, the Society-of-Mind approach leads to some formidable complexities.

For example, will users be able to figure out which agents to combine

together to carry out a complex task, or will users be able to determine which

agents can work in parallel?

3.1.3 Adaptiue Systems. A third potential AI approach to agents, which

may place less burden on users than rule-based approaches, involves agents

that display intelligence by learning from experience and adapting their

behavior to their user’s habits, needs, likes, and dislikes. There are many

examples of adaptive systems in the learning, diagnostic, and reasoning

domains. Ellman [11] provides many examples of intelligent systems that

learn by example.

One system that specifically includes an adaptive agent is the Office

ACM TransactIons on Information Systems, Vol. 10, No. 3, -July 1992.

The Envoy Framework . 241

CLERK [24]. In this system, the CLERK learns the bulk of how to accomplish

a task by example. That is, the user demonstrates some sequence of actions

to the CLERK. To then explain conditions or iterations to the CLERK, the

user can either provide written instructions or perform more instances of the

task for the CLERK to learn the desired behavior.

Another system that has some adaptive characteristics is called COKES

[20]. In this rule-based system, each agent, though identical in nature to

others, has a knowledge base appropriate to the needs, authority, and respon-

sibility of its particular user. Specialized servers have knowledge of general

interest and maintain centralized control over changes to this knowledge. All

agents and servers are equipped with inference engines for communicating

and cooperating with each other. For example, an agent would be able to

support a newly appointed manager by first identifying members of a project

staff and later, operationally, by prompting the manager for authorization to

distribute timely requests to various project members for submission of their

contributions to the project.

Basing agent behavior on learning strategies is a promising approach since

it alleviates the need for users to think about and create rules. In practice,

however, the time and expertise necessary to create knowledge bases which

provide domain knowledge that agents can use as a basis for learning is still

impractical.

3.2 Specialization Approach

Much less ambitious than any of the AI approaches, the specialization

approach involves imbedding a special-purpose agent within an application to

allow users to automate a particular task. For example, to find the electronic

address of a user on the Internet, a person must know about and issue

queries to three or four different lookup services that have been indepen-

dently developed. Of course, each of these services has a different user

interface. The Directory Access Service [9] helps users automate the lookup

process. In response to a query, an agent forwards the query to the various

lookup services scattered around the Internet. The agent then collects and

formats the responses, sending the results of the multiple queries to the user

in an electronic mail message.

There are many on-line database-retrieval services [6, 8, 14] that provide

some degree of query automation. For example, the Alert service allows users

to specify an Associated Press (AP) news wire query. This query can then be

registered with an agent of sorts. The agent will run the query either on a

daily or a weekly basis, depending on the time interval specified by the user.

Based on the user’s preference, the agent will notify the user about the

results of the query through postal mail or electronic mail.

This kind of specialized agent imbedded within an application is helpful to

users; however, the approach is not at all general. Currently, users can only

enlist assistants to find information about other users with the Directory
Access Service, and users can only expect agents to trigger AP news wire

queries and return results with the Alert Service. Although these services

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

242 . M. Palaniappan et al.

allow users to monitor information, users have to learn different interfaces,

notification styles, and reporting techniques for each service.

3.3 Watchdog-Based Approach (Morutoring Tools)

Considerably more general than the special-purpose agents described above,

a number of systems incorporate agents to help monitor computer environ-

ments and notify users when certain events occur. UNIX Crontab [32], Sun’s

Calendar Manager [30], and Sun’s SunNet Manager [31], described below,

are representative examples of such systems. The Rand Intelligent Terminal

Agent (RITA) [2] and the Network Event Manager [4] are other examples of

systems that fall into the category of monitoring tools. Most of these tools are

targeted primarily towards system administrators and programmers.

The UNIX system scheduling tool, called Crontab, can be considered an

agent of sorts. It allows users to define when and how often they want

commands to be carried out. The system, rather than the user, monitors the

system clock and executes commands at the times users have specified in a

crontab file. This file provides a consistent mechanism for users to register

commands for the system to carry out repetitively. Crontab’s delayed execu-

tion feature enables users to be less time conscious about performing tasks.

Sun’s Calendar Manager application provides a portion of Crontab’s func-

tionality with a significantly more intuitive user interface. Like Crontab, the

Calendar Manager monitors the system clock watching for times specified by

the user. Unlike Crontab, the Calendar Manager only performs a single type

of delayed task—sending a calendar entry to the user on a specified date.

More elaborate than both Crontab and the Calendar Manager, the SunNet

Manager is targeted towards monitoring and managing a network. The

network manager comes with a set of small applications or agents designed to

collect network statistics. A single interface to all these agents is provided for

users to specify how and when reports should be generated as well as how

and when to report results. As agents run and collect statistics, the data are

stored in a central database. When a reporting condition is met, the user may

be notified by a signal (blinking icon or bell) or by electronic mail. Once
notified, the user can request to see the data in a number of forms, including

bar charts and strip charts, or can specify that the statistics be passsd as

input to another program. System administrators can use the network man-

ager to monitor a site’s network, or they can write new managers that

coordinate a completely different set of agents.

While the functions currently performed by SunNet Manager agents are
narrow in scope, the architecture is extensible. The system allows application

programmers to add new managers and agents into the SunNet Manager

framework. Adding these tools to the framework enhances their value since

the framework provides a single, consistent mechanism for triggering the

agents, reporting results, and notifying users of results.

The SunNet Manager is appealing in many respects; however, it suffers

from a number of problems. A large obstacle to creating new sets of agents is

that only tools that can share the same user interface can be integrated with

a single manager. Even the interface to fairly simple tools would have to be

ACM Tran sactlons on Information Systems, Vol. 10, No. 3, July 1992.

The Envoy Framework . 243

redefined to fit into the manager framework. Highly interactive tools such as

database- or full-text-retrieval applications would probably be extremely

difficult, if not impossible, to convert into agents.

In general, the watchdog or monitoring tools approach to agents suffers

from a lack of generality. Monitoring the environment can be quite useful,

but it only addresses one class of tasks that agents can potentially perform

for users.

3.4 Desktop-Based Approach

Unlike the SunNet Manager approach, in the desktop-based approach, agent

functionality is integrated with a set of full-fledged end-user applications.

The main difference involves the framework in which agents operate. In the

SunNet Manager, agents are integrated with the SunNet Manager core. In

the desktop-based approach, agents are integrated into a computer’s main

operating environment or desktop. New Wave Agent [18] exemplifies this

approach. In the New Wave environment, application developers implement a

defined set of protocols to make their applications agent aware. This scheme

allows users of agent-aware applications to take advantage of agent func-

tionality with a moderate amount of effort on the part of the application

developer.

New Wave Agent is a tool for automating tasks that users frequently

perform. For example, an agent could start a database access application,

download specified information into a spreadsheet, generate a graph of the

data in the spreadsheet, copy the graph into a text document, and mail the

text document to a group of users. This type of agent behavior is specified by

example. Users turn on a recording feature and perform the desired set of

actions interactively. This produces a script that can be edited by the user.

Figure 2 shows a simple script that opens, empties, and then closes the user’s

waste basket. Represented on the desktop by the script document, the task

can be scheduled using a calendar. Users interact with the calendar to specify

how often the task should be carried out and at what time intervals.

The seamless integration of the agent functionality into the desktop envi-

ronment provides users with the power to automate repetitive tasks that they

normally would have to carry out manually. Since tasks can be defined by

example, the cognitive overhead of learning a scripting language is reduced.

Users need to gain only enough familiarity with the language to be able to

make modifications to the scripts. In addition, the calendar provides a

natural and intuitive mechanism for users to schedule agent tasks.

The New Wave Agent approach capitalizes on users’ existing skills and

knowledge of applications, requiring them to learn a minimal amount to take

advantage of agents. In theory, the “difficult” parts of tasks will be recorded

for users automatically in the scripts. There are, however, a number of

problems with the approach. First, New Wave Agents are both single user

and single tasking. If an agent task is scheduled to run while a user is

working, the agent will take over the processor to carry out the task, only
returning control to the user when the task is completed or when the user

explicitly interrupts the agent. Basing agent tasks on scripts is also

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

244 . M. Palaniappan et al.

FOCUS OFFICE

Open.Waste# = 1
ON ERROR DO Cant–Select WasteBasket
SET ERROR ON
SELECT WASTE-BASKET

SET ERROR OFF

IF Open.Waste# = 1
OPEN

ENDIF

FOCUS WASTEBASKET
EMPTY

IF Open. Waste# = 1
CLOSE

ENDIF
END

ENDTASK

PROCEDURE Cant.Select.Wastebasket

IF SYS_ERROR() = 197

Open_Waste# = O

RETURN

ENDIF

MESSAGE Cancel# “Can’t open

the Waste Basket”

+ STR(SYS.ERROR())

& EXCLAMATION.POINT OK

END

ENDPROG

Fig. 2. Example of a New Wave Agent script that opens, empties, and then closes the waste

basket. The script is written in a special-purpose task language.

problematic in that scripts may become obsolete as the user’s environment is

modified, For example, the script that downloads data into a spread sheet

will fail if the user has inadvertently moved the spreadsheet application to a

different directory.

3.5 Characteristics and Capabilities of Agent Systems

Each of the systems described above incorporates features and characteristics

associated with the agent concept. In analyzing these systems, we have

extracted what we believe are the most significant characteristics embodied

in this work.

Functionally, the systems described above provide examples of agents that
are event or time triggered. A task might be triggered by the user, by a

certain prerequisite event occurring, or by the time of day. Some of the

systems provide for delayed execution of tasks or commands, allowing the

users to specify what they would like done and when in the future they would

like it to be done. The most sophisticated systems are resilient to failure,

display adaptive behavior, and provide for pipelining of tasks. A resilient

system enhances users’ confidence by not losing track of missions entrusted

to an agent when machines are down or when network failures occur. An

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

The Envoy Framework . 245

adaptive system changes its method of carrying out a task based on the user’s

response to previous interaction with the agent, and in the systems that

support pipelining, one agent’s task can be triggered by the completion of

another agent’s task.

Although not demonstrated in any of the systems described above, we

believe two other characteristics will substantially contribute to the usability

of an agent system. First, users must be provided with some mechanism for

tracking an agent’s activity, just as they would want frequent status reports

on the activity of a human assistant. In addition, agents should provide users

with flexible notification options, giving users a variety of potential commu-

nication channels from which to choose.

For people to continue to use an agent system, the architecture must be

extensible. Either users themselves have to be able to add new behaviors, or

there must be a uniform mechanism for application developers to enhance the

functionality of agents. In some cases, extensibility may be achieved by

interagent communication. By having agents work in conjunction with one

another, tasks beyond the ability of any single agent can be accomplished.

Extensibility may be made easier by creating a decentralized agent architec-

ture. Decentralization, or partitioning agent functionality into component

parts, will help to make an agent system manageable. Extensions or up-

grades can be accomplished by modifying or replacing modules rather than

one large monolithic program.

We believe a prime characteristic contributing to the usability of an agent

system is seamlessness. If users are going to accept agents, they must fit

seamlessly into the computing environment, working in conjunction with the

tools a person commonly uses. This type of integration also necessitates a

reasonable degree of consistency. If agents can perform a variety of tasks in

a user’s standard computing environment, it is important that users have a

uniform way to specify these tasks. This mechanism must also involve low

cognitive overhead. A simple interface for specifying tasks will allow users to

concentrate on their work rather than concentrate on interacting with the

agent. Two characteristics—distributed architecture and heterogeneity—are

essential if agents are to exist in an networked environment. In such an

environment, users, data, and applications are spread across multiple ma-

chines and file servers, not always of the same type. Users, who normally

have access to a variety of resources on the LAN, will expect agents to

perform missions throughout this entire domain. As WANS offer more re-

sources with the same ease of access as LANs users will expect agents to

carry out missions in this broader domain. In designing the Envoy framework

we attempt to embody many of these characteristics, as shown in Figure 3.

4. ENVOY USER INTERFACE

In designing the user interface for the Envoy prototype, we adopted a

fundamental principle: Envoys must save time for users, not make extra
work for them. Envoys only require users to learn a few simple concepts. To

help users carry out essential tasks, Envoys fit seamlessly into the user’s

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

246

Fig. 3.

. M. Palaniappan et al.

I Object Lens I ~ IY IY(6) I iY II

ISM (Malltrays) t “7-— i
..——. -

NeuralAgent
+ ;-+-+-”’++-+- !

I ---—--..... . ..- — —4.—.—J .-..L.—J..—.—

t--

Playground :
\ Y;

hi

lY
I—

COKES Y(5) I Y i y– Y y I y(1)

I Dialog Alert I / \y y(4) \ y

UNIX Crcmtab I ! Y

i t – —!————— !-– —-4” -----h.-.”-l.——..—..L——

L RITA I jy
j \: {y+*..- ..-..— — .—.- —-—

Network Evl Mgr Y
— !_._.__ L..__..

I New Wave Aaent I lYIY/Ylll!

Envoy Framework
I ~Y Y{Y Y Y Y \ y(1)

aY— —

Y

Y

Jy(3) 3

Y Y

I Y
!

Y

--++--

Summary of characteristics and capabilities of select agent systems

(1)
(2)

(3)

(4)

(5)

(6)

Works across only UNIX-based systems.

Partial. Crontab cannot be easily extended to do anything other than launch executable.

New Wave Agent calendar is limited to scheduling information. No mission status M

provided.

Extensible to the extent that Dialog can add databases to them search services.

Adaptive only m the sense that the agent behavior changes as knowledge in the various

knowledge bases is updated.

Extendible to the extent that new classes can be defined, but it is unclear how agents access

external applications.

computing environment, taking advantage of the applications a user already

employs.

4.1 Using Envoys

To interact with an Envoy, a user first specifies a task or mission using the

standard user interface of an operative. Specifying a mission can be as simple

or as complex as ordinary interaction with the application. The rules defining

a mission are implicitly specified by the user’s interaction with an operative.

With Envoys, users never explicitly write or edit rules using a programming
or scripting language. For example, a system administrator might want to

monitor a confidential directory to detect any unauthorized access to the

data. To do so, the administrator would interact with the Browser, mark the

desired directory, and register the request to monitor the directory with

the Envoy (Figure 4).
In another example, a user might open Document Search, enter the phrase

“library automation,” set some searching options, and search the full text of

the IRLIST (information retrieval special-interest group) archives. After

ACM TransactIons on Information Systems, Vol. 10, No. 3, July 1992

The Envoy Framework . 247

Fig. 4. An envoy-aware UNIX File System Browser operative with a directory “marked.” The

user has selected the “Register with Envoy” command and is now filling out a Registration Form.

examining all the occurrences of the phrase in the existing collection, the user

decides to track the subject of library automation in the IRLIST and be

alerted if any new information becomes available.

Since the mission is already specified-terms have been entered and

options selected—the user picks the generic “Register with Envoy” command

that is included in all envoy-aware applications. A Registration Form opens,

presenting a number of choices (Figare 5). Following the scenario above, the

default registration options would send the user a short report via electronic

mail as oon as a new electronic issue of IRLIST was archived that contained

the phrase “library automation.” The mission to monitor the electronic publi-

cation would be named automatically (e.g., Mission: Find “library automa-

tion” in\text\IRLIST) and would persist indefinitely.

The user can dismiss the Registration Form dialog immediately, accepting

the default settings, or the user can select a number of alternate registration

options. The first registration option a user might change for a mission is the

default mission name. A user might prefer a shorter or more personally

meaningful name. If library automation is the only topic a user is interested

in, then a mission name such as “Monitor IRLIST” might suffice.

For a combined operative such as Document Search, which can be used to

run queries at scheduled times or can be used to monitor full-text databases,

the user has the maximum number of alternate registration options avail-
able. In terms of scheduling, the user can specify dates for the mission to be

carried out or the user can specify time intervals such as “every six hours,”

“three times a week,” or “every two months.” If the user opts for monitoring

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

248 . M. Palaniappan et al

A

Document Search: ir.vin

Document Dialogs Heip

Words:
Pry automation’”

Path: /text/lRLISTA
. I

D, ~
Search in Names/Content m sort by Rank =

Found 4 documents

98 II?LIST VO1 X No+l..— — .,
m$.

~A

Mar 26 21:33.,.. —” —-——
. , “_,-“.--d .—. ——

%__’RLIsT vol vIII No 4 Mar 26 21:24
10 IRLIST VO1 VIII NO 9

J!

Mar 26 21:06

Path: /texttlRLIST

Name: IRLIST Vol V No 7

Words: Iibraty automation (5)

conference on library automation to be held in 1
the field of library automation and will be prc

nformation on 1 ibrary automation information ret Ii[lRm

(a)

, ,
Registration I’lzj

,

Micson Name: bionltor IRLIST
1

Operat Ive: Document Search

Monitor:
I Untl 1 Cancel led u

Generate Report: ~WhenNeu Info IS Rvallable ~

Notify By: SendingElectrmlc Hail D

‘“t’fy ‘“h’ ~
91s0 Notify:

~

E Nat,fy When M1ss,on IS Carried Out

~m

(b)

Fig. 5. Registering a Document Search mission to monitor the IRLIST archive directory for the

phrase “library automation.”

(the default, when possible), the user can specify when to start and stop
monitoring, as opposed to indefinite monitoring. The user can also specify

that the mission should be carried out only until results are found, at which

time the mission should be concluded.

In addition, the user can decide when and how he would like to be notified.

Reports can be generated as soon as new information becomes available (the

default), at any time interval the user chooses, or on any specific dates the

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992

The Envoy Framework . 249

user selects from a calendar. The user can choose to be notified with either a

message or a short report (described below). One of these can be sent to the

user by way of informer applications, which may include electronic mail, alert

boxes, or FAX messages. Finally, a user can opt to add other users to the

notification list. These other users will be notified also with a message or

short report when mission results are available.

Included in our design for the Registration Form, but not in the first

prototype, is a notification option called “Notify by Finding Me.” Users

selecting this option would not have to decide ahead of time which informer

the Envoy should use to notify them when the mission they are registering

returns results. Since mission results are generated at unspecified times, the

Envoy should help the information find the user by employing the informer

most appropriate considering the time of day, the current status of the user,

and the urgency of the mission.

When an operative has results to report, the Envoy notifies the user via an
informer application such as electronic mail. The Envoy sends the user a
short report, summarizing the mission results. For example, if the user has

specified a mission using the Browser to monitor a shared directory, the

Envoy would send a short report summarizing changes to the directory that

occurred since the user’s last short report.

As soon as a mission is registered with the Envoy, the mission is recorded

in the Mission Summary table. This table, opened by clicking on the Envoy

icon on the desktop, provides a comprehensive list of a user’s active missions.

Users can refer to the Mission Summary to find out the status of a mission, a
mission’s schedule, and the operative responsible for a mission. An entry is

added to the Mission Summary table each time an operative reports results

to the Envoy. A user who has been notified of new mission results, through

electronic mail or some other informer, can find out additional details about

the results by interacting with the Mission Summary. Although the short

report that the Envoy sends as notification to the user may contain sufficient

information, users will often want to see a more complete interactive report.

Unlike short reports, interactive reports provide results in their “native”

environment, giving users access to the full interactive capabilities of the

operative user interface. When a user double-clicks on a mission result in the

Mission Summary table, the Envoy launches the corresponding operative,

passing the application the appropriate data to display. For example, if a user

opens an interactive report concerning a mission to monitor a shared direc-

tory, the Browser interface would open, showing the contents of the shared

directory with symbols indicating how items in the directory have changed

(Figure 6).
In addition to opening interactive reports, users can also interact with the

Mission Summary to cancel a mission, change the registration options for a
mission, or review a short report associated with a mission. Users can also

request an interim report by selecting the “Open Report” command from the

Mission Summary window.

The Envoy user interface provides a single, consistent scheme for users to

register missions. Coupled with this, the interface allows users to monitor

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

250 . M. Palanlappan et al,

Fig. 6. By clicking on the Envoy icon (bottom right), the user has opened the Envoy Mission

Summary table showing a list of his active missions (top center). The user selected the mission

called “Monitor Sponsors Dir” from the table, clicked on the “Open Report” button, and is now

examimng the corresponding interactive report (bottom left). Notice that the Browser opens to

show the contents of the monitored directory. All changes in the directory since the user last

examined a report are indicated (+ for additions, – for deletions, and & for changes). In the

bottom portion of the Browser window, the user can see which attributes of the selected

document have changed.

and manage multiple missions easily. Automatic notification of mission re-

sults with informer applications allows information to actively seek out the

user rather than forcing the user to seek out the information.

5. ENVOY ARCHITECTURE

Now we examine how our prototype Envoy Framework supports the User

Interface section above by tracing the flow of data through the various system

components.

Figure 7 represents data flow and channels of communication among the

Envoy Framework’s various components. In this example, the user is inter-

acting with the full-text -retrieval operative, Document Search. As mentioned

earlier, Document Search is a combined operative. Users can either schedule

queries to be run at specific time intervals, or they can have Document

Search monitor the file system, searching files as they are added or updated.

In the example in Figure 7, the user schedules a Document Search query.

To interact with an Envoy, the user first specifies a mission (A). For

example, the user might enter a full-text query by interacting with Document

Search, pick “Register With Envoy,” and fill out a Mission Registration Form.

The operative frontend, the Document Search user interface in this example,

ACM Transactmns on Information Systems, Vol. 10, No. 3, July 1992

The Envoy Framework . 251

e

%! -
Document Frontend USER Mission Informers

Search
o

Summary

Operative mm

,., ,. ,,::i . .-.,.:’’’’” “
~:::::,,:;:i API 4 :::, 4 “ -’- ‘“

4,.. ,,.,.
,,, ,,, ,,, ,,, ,,, .,”,,

,;:::::::,::::::,:,~

Q -...,

Fig. 7. Data flow and communication among the Envoy Framework components. The top

portion of the diagram illustrates system components that the user interacts with directly.

encapsulates the mission data using a format that the backend can easily

interpret. The operative contacts a Bureau Chief to find the location of the

user’s Envoy (B). If one does not exist, the Bureau Chief creates a new one.

Now that the operative knows how to find the user’s Envoy, it conveys both

the encapsulated mission data and the mission registration information to

the Envoy (C).

Assuming that in the mission registration the user requested the query to

be run at scheduled intervals, the Envoy computes the next launch date and

time based on the mission registration information, then adds a new mission

entry to its list of registered missions (D). The mission entry consists of the

encapsulated mission data and the mission registration information, which

includes the next launch date and time. The Envoy sends a message to the

Mission Summary with information about the newly registered mission, and

the Mission Summary updates the user’s list of missions accordingly (E).

At the scheduled time, the Envoy contacts the operative backend and

passes it the encapsulated mission data (F). The operative backend parses

the encapsulated mission data, interpreting it as if the user had just entered

the data interactively. The mission is then carried out (G). In the case of the

Document Search operative, the user’s query would be executed.

After performing the mission, the operative returns data to the Envoy for

constructing a message, a short report, and an interactive report (H). The

Envoy adds the message and short report to the mission entry and saves

the interactive report data in a file, maintaining a reference to it from

the mission entry (I). From the mission entry, the Envoy determines what

type of notification the user has requested.

The Envoy updates the Mission Summary, adding a new mission report

entry (J). The message is always displayed in these entries. The Envoy

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

252 . M. Palanlappan et al,

launches the appropriate Informer, electronic mail for example, and passes it

either the message or the short report, depending on the user’s specification

(K). The Informer notifies the user of the results (L).
At this point, the user might decide to view an interactive report by

double-clicking on the mission report entry in the Mission Summary (M). The

Mission Summary informs the Envoy which report the user selected (N). The

Envoy launches the operative frontend, for example a Document Search

interface, and passes the interactive report data contained in the file (0). On

receiving the interactive report data, the operative frontend interprets the

data and displays the results (P). In the case of Document Search, the results

of the registered query would be displayed, and all the documents retrieved

since the last report would be highlighted.

At this stage, the user may no longer need the mission to be carried out,

and therefore the user cancels the mission from the Mission Summary (Q).

The Mission Summary informs the Envoy about the canceled mission and

updates its list of user’s missions (R). The mission entry in the Envoy’s list of

registered missions is also updated to reflect that the status of the mission is

now canceled (S). The mission entry will be deleted only from this list if the

user deletes all the results displayed in the Mission Summary associated

with the mission.

If the user had specified in the mission Registration that Document Search

should monitor the file system for the search terms rather than run the query

at scheduled intervals, the flow of events and data would be altered slightly.

Instead of contacting the Document Search backend at scheduled intervals,

the Envoy would contact the Document Search backend only once, sending it

the mission data. It is then the application’s responsibility to do the monitor-

ing. If the user cancels a mission, the Envoy would inform the Document

Search backend, and the backend would delete the mission from its list of

items to monitor.

The components of the Envoy Framework can be distributed across a LAN

as shown in Figure 8. The fig-are shows a user “ muru” viewing Mission

Summary from one machine, the Envoy running on a different machine, and

Document Search mission being carried out on a third machine. By making

agent functionality available on a network-wide basis, users are not con-

strained to the resources available on their personal machine. Their Envoy

can locate them regardless of where they are working on the network,

5.1 APIs (How to Become Envoy Aware)

The architecture we have defined for Envoys encapsulates the core agent
functionality by defining application programmer interfaces (Al%), which

interact with the main Envoy components and the operating system. Develop-

ers may upgrade their software to become envoy-aware applications by
adhering to the APIs. This approach is similar to the way developers create

(cut/copy/paste) compliant Macintosh applications and also similar to the
way linking functionality is abstracted out in Intermedia, a hypermedia

system developed at IRIS [34]. In IRIS, the core linking functionality (a

database of document IDs, link endpoints, link property sheets, navigation

ACM TransactIons on Information Systems, Vol. 10, No. 3, July 1992.

The Envoy Framework . 253

User muru

I

Fig. 8. Distributed Envoy components.

aids, etc.) is integrated into the operating system. End-user applications

participate in this functionality by implementing a linking protocol, thereby

becoming link aware. In a similar way, applications become envoy aware by

adhering to an interprocess envoy \operative protocol, which is part of our

decentralized, distributed Envoy architecture. Applications that implement

the envoyioperative protocol inherit agent functionality, which includes

tracking missions, launching missions at scheduled times, reporting results

of missions to users by invoking informer applications, and continuously

updating information in the Mission Summary to keep users well-informed of

the status of their missions.

Following our design philosophy, we have defined two APIs that operative

programmers must implement to make their applications envoy aware: one

API that informer programmers must implement and one that developers

who wish to create alternate mission summaries must implement (see Figure

7). These APIs are implemented as object-oriented classes. A table accompa-

nies each API description below to summarize the set of calls available to the

developer and the set of calls the developer is required to implement to create

an envoy-aware application.

5.1.1 Operatives. It is a fundamental requirement in becoming envoy

aware that operatives function in both an interactive and noninteractive

mode. In the interactive mode, users converse with the application through

either a command line interface or a graphical interface. Operatives must

allow users to define one or more tasks interactively. In order to carry out

tasks for the user behind the scenes, an operative must be able to run in a

noninteractive mode, accepting raw data input from the Envoy and perform-

ing the mission within a background process.

Some operatives such as our File System Browser and Document Search
applications are continuous. That is, the server process is constantly running

in a noninteractive mode, accepting mission requests from interactive client

ACM TransactIons on Information Systems, Vol. 10, No. 3, July 1992.

254 . M. Palaniappan et al.

processes. Alternatively, operatives can be discrete and may be invoked by

the Envoy either in an interactive or a noninteractive mode. When an Envoy

calls on a discrete operative to carry out a mission, the Envoy launches the

operative and the operative performs its task, terminating when the task is

complete.

To make an operative frontend envoy aware, the operative writer has two

primary tasks. First, the frontend must be able to define a mission to be

conveyed to the Envoy and later to the operative backend. Once a mission has

yielded results, tbe frontend must be able to display mission results in the

form of an interactive report.

API 1. Envoy Interface to Operative Frontend

Available Calls To Be Implemented

RegisterWithEnvoy() DoInteractiveReport()
DoReceiveData()

To send mission data, an operative writer makes a function call, Register-

WithEnvoy(). The operative writer must encapsulate the data and parame-

ters constituting the user’s mission. There are no specific requirements for

how to encapsulate the data. The operative writer can either send the data

as a raw stream of bytes or as an encoded string. The Envoy will pass the

data packet, untouched, to the operative backend at the appropriate time.

RegisterWithEnvoy() first connects to the Bureau Chief running at a prede-

termined machine and port number. Contact with the Bureau Chief is made

to obtain the current address of the user’s Envoy and to validate that the

specified operative has been installed into the framework. The Registration

Form is presented to extract the user-specified registration data before

locating and communicating this mission information to the user’s Envoy.

When a user chooses to see an interactive report from the Mission Sum-

mary application, a message is sent to the Envoy that will then contact the

operative frontend and send the necessary data to the application by calling

DoReceiveData(). By invoking this method, we allow an application to do any

necessary processing before receiving a new report. For example, if an

application is already displaying an interactive report, the application can

save the report data before displaying data corresponding to a new report.

The API receives the new data and calls the DoInteractiveReport() method,

implemented by the operative developer. This method is responsible for

parsing the interactive report data and presenting the information in a
manner consistent with the application’s user interface.

API 2. Envoy Interface to Operative Backend

Available Calls To Be Implemented

InformEnvoy() ReceiveNewMission()
InvalidMission() GetMissionList()’

CancelMission()

‘ Only necessary to implement for continuous operatives.

ACM TransactIons on Informatmn Systems, Vol 10, No 3, July 1992.

The Envoy Framework . 255

When operatives function in a noninteractive mode, the Envoy calls the

developer-implemented ReceiveNewMission() function when the time arrives

for the operative to perform a specified task. The Envoy passes the operative

backend a unique mission ID, which is formed by concatenating a user’s

identification number and a number assigned by the Envoy. The encapsu-

lated mission data and a return address to locate the Envoy are also passed

as parameters to the ReceiveNewMission() function.

When the operative completes the mission and has results to pass back to

the user, the backend calls InformEnvoy(), which contacts the user’s Envoy

and returns the results of the mission. It identifies the mission ID and a

unique result ID, since one mission can generate multiple results (reports).

Alternately, the backend can choose to notify the Envoy that new results are

available, but not send the results until the user chooses “Open Report” from

the Mission Summary.

The operative writer needs to generate three types of reports: an interac-

tive report, a short report, and a message. The interactive report may be

encapsulated in the same manner as the mission data. This data will get

passed to the operative frontend when a user requests to view an interactive

report. The short report or the message may be used by any of the informers

to notify users of results. The message is always displayed in the Mission

Summary. The InformEnvoy() call first tries to contact the user’s Envoy at

the last known address. If it cannot establish a connection, it contacts the

Bureau Chief to verify the address or retrieve a new address.

At any time, an operative may receive a request from the Envoy to

discontinue a mission. The Envoy will pass the unique mission ID to the

operative. Continuous operatives will use the mission ID to clean up any

internal data structures they have used during the lifetime of the mission.

Once canceled, an acknowledgment message is sent back to the Envoy to

report a successful cancellation of the mission.

Continuous operative writers must implement a few additional methods to

ensure that the operative receives a mission request and that it is working on

a valid mission. Because the server may be carrying out multiple missions at

any given time, it is necessary for the Envoy Framework to validate the

operative’s known missions during consistency checks (e.g., whenever the

continuous operative is restarted). If a system failure occurs and there is no

mission validation, the operative may lose track of missions. Consequently,

continuous operative writers must implement a method, GetMissionList(),

which generates a linked list of known missions by mission ID. This list is

used in the validation process. At some point in the life span of a mission, the

mission may become invalid. For example, a user might revoke read privi-

leges for a directory being monitored by the File System Browser. Since the

directory can no longer be monitored, the mission is rendered invalid. The

operative notifies the Envoy that the mission is no longer valid by calling

InvalidMission(). This function will change the status of the mission to

Invalid in the Mission Summary, and an error report specified as an argu-
ment in the function call will be presented to the user. Depending on the

severity of the circumstances that caused a mission to become invalid, the

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

256 . M. Palaniappan et al.

operative backend can specify that the mission should automatically be

canceled by setting a parameter to InvalidMission().

5.1.2 Informers. Application developers creating Informers need to ad-

here to a very simple interface to make these applications envoy aware.

API 3. Envoy Interface to Informer

Available Calls To Be Implemented

GetUserAttribute() InformUsers()

Informer writers need to implement one function call, InformUsers(), to

become envoy aware. This function is supplied with three parameters: a

primary user, a list of other users to be notified, and the mission report,

which is always in ASCII.

If an informer requires additional information about a user, the Informer

writer makes a call to the utility routine GetUserAttribute(), which is

provided to retrieve a specified user attribute. For example, a FAX informer

would need a user’s FAX telephone number. The routine takes as parameters

the user login name and an attribute. It contacts the Bureau Chief to get the

address of the user’s Envoy. Next, it establishes a connection to the Envoy

and retrieves the value of the specified attribute.

5.1.3 Mission Summary. The Envoy Framework provides a flexible and

extensible interface for tracking and managing a user’s set of registered

missions. In the current prototype there is one application that provides this

functionality: the Mission Summary.

API 4. Envoy Interface to Mission Summary

Available Calls To Be Implemented

CancelMission() InstallMission()
ReregisterMission() ChangeStatus()
OpenReport() AddResults()
DeleteResults()

Anyone developing an alternative mission summary application must adhere

to three function calls: InstallMission(), ChangeStatus(), and AddResults().

The InstallMission() call informs the application that the user has registered

a new mission with the Envoy. The ChangeStatus() call indicates that the
status of a mission has changed. For example, a mission that was scheduled

to be launched at a specified time is currently running. The AddResults() call

specifies that there is a new report for a mission. It is the responsibility of the

application to decide how to present this information to the user.
API 4 also defines four function calls: CancelMission(), ReregisterMission(),

OpenReport(), and DeleteResults(). The CancelMission() call sends the delete

mission information (e.g., the unique mission ID) to the user’s Envoy. The

Envoy in turn, locates the operative and relays the cancel-mission request.

ACM TransactIons on Information Systems, Vol. 10, No 3, July 1992.

The Envoy Framework . 257

Telephone
Informer

and informers

Bureau Chief

Fig. 9. Bureau Chief overview.

ReregisterMission() opens the mission registration dialog and sends the

user-specified registration data to the user’s Envoy; the new mission informa-

tion is installed. The OpenReport() call conveys the user’s desire to see an

interactive report of a mission. To view an interactive report, OpenReport()

requires the unique mission ID and result ID, which are provided when new

results are received, via AddResults(). The user’s Envoy is contacted to

retrieve the interactive report data and pass the data to the proper operative

frontend, launching one if necessary, and presenting the report. When a user

wishes to remove mission results, DeleteResults() will contact the Envoy

which, in turn, removes the data associated with the specified mission ID and

result ID.

The four APIs presented in this section represent an open architecture that

allows many applications to participate in the Envoy framework.

5.2 Managing the Envoy Framework

Since the Envoy Framework architecture encompasses multiple applications,

machines, and users, the model uses a Bureau Chief to coordinate the

interactions of the various system components. The Bureau Chief is responsi-

ble for maintaining a database of all Envoys and envoy-aware applications as

shown in Figure 9.

An Envoy Table is used for recording the port number and the machine on

which each user’s Envoy is running. Likewise, the Bureau Chief records

information about envoy-aware applications in the Operative and Informer

Tables. This information includes the path and name of the executable as

well as what machines the executable will run on. The Bureau Chief process

runs on a predetermined port at all times and provides three primary
services: an Envoy lookup directory, envoy-aware application installation,

and propagation of newly installed operatives to Envoys.

ACM TransactIons on Information Swtems, VO1. 10. No. 3, JUIY 199~.

258 . M. Palaniappan et al,

The Envoy lookup directory is consulted when a user registers a mission.

At this time, the Bureau Chief is contacted to determine the location of the

user’s Envoy. If the Bureau Chief does not find an entry in the Envoy Table,

it instantiates a new Envoy by selecting a machine with a relatively low load

average, launching a new Envoy, and updating the Envoy table.

The Bureau Chief’s second major service includes managing the application

installation process. An application developer installs a new informer or

operative into the Envoy framework by filling out a system-defined Installa-

tion form. In the form, the application developer specifies the application’s

name and location, whether it is an informer or an operative (distinguishing

between continuous and discrete), and the machine architecture required

to run the application. The machine architecture is important as it tells

the Envoy framework the types of hardware that the operative or infor-

mer executable will run on. The developer can optionally indicate that the

operative\ informer should preferably be run on a specified machine or even

indicate that the operative/informer must run on a specific machine. The

installation information in the form is passed on to the Bureau Chief, which

will perform the necessary consistency checks, validate the operative or

informer, and assign it a unique identifier within the Envoy Framework. The

application developer is notified immediately of any installation errors. Such

errors include unknown machine types or machine names and inaccessible

executable. The Bureau Chief then updates the Operative Table or Informer

Table, adding the new information to the database.

The Bureau Chief propagates the information about the newly installed

envoy-aware application to the Envoys. This propagation occurs on a regular

basis and allows consistency among Envoys without interruption of Envoy

services. The Bureau Chief frees users from being tied down to any one

machine, building on our philosophy that information should find the user

rather than vice versa.

5.3 Reliability and Resilience

Although (1) our system is a prototype and (2) we have not focused our efforts

on creating a failsafe system, we have identified a number of important

reliability issues. By reliability, we mean that once a user has delegated a

mission to the Envoy, the system should make every reasonable effort to

complete the mission. Failure of a Bureau Chief, Envoy, or operative are all

possible obstacles to successful completion of a delegated mission.

When the Bureau Chief crashes, for example, routine operations such as

operatives returning results and users viewing interactive reports can still be
performed; however, the Envoy framework loses its lookup service capability

and cannot register new missions. In addition, new operatives and informers

cannot be installed into the framework.
Failure of an Envoy prevents the user from interacting with the Mission

Summary, prevents operatives from returning mission results to the Envoy,

and prevents scheduled missions from being launched. When an Envoy is

restored, all of the user’s missions must be reestablished, and overdue mis-

sions must be launched.

ACM TransactIons on Information Systems, Vol 10, No. 3, July 1992.

The Envoy Framework . 259

If an operative prematurely terminates, missions can no longer be per-

formed, and results cannot be sent to the Envoys. Since continuous operatives

maintain their own list of registered missions, a failure requires that these

operatives reestablish all active missions when restarted and reprocess any

missions that were incomplete when the failure occurred.

In our prototype, we focused most closely on the crucial task of ensuring

mission persistence. Since a single mission may persist for an indefinite

period of time, Envoys maintain mission information redundantly, both in

memory and in a database. Whenever a new mission is registered or the

status of a mission changes, the database information is updated. If an Envoy

crashes, a user’s missions can be reestablished by retrieving the information

from the database. No user intervention is required to restart missions or to

run missions scheduled to launch during the time the Envoy was unavailable.

5.4 Experience with the Prototype

The development of the Envoy Framework encompasses two distinct efforts:

development of the Envoy core and upgrading of applications to adhere to the

envoy/operative or envoy\ informer protocols. All the Envoy core components

except the Bureau Chief have been implemented. The implementation of the

core as well as the operatives and informers are in C + + with Xl 1R4 and

Motif for Sun Sparcstations and Sun 4/110’s running Sun OS 4.1. The

prototype allows operatives and informers to carry out tasks on other UNIX-

based systems such as MAC II’s running A\UX. An earlier version used

TCP\IP while the current version uses RPC + + (an object-oriented version

of Sun’s RPC) for communication among the various components. We present

below some initial evaluations from operative developers, framework design-

ers, and end users.

5.4.1 Developer Evaluation. To assist operative developers we published

an “Operative Designers API Cookbook.” The Cookbook provides detailed

descriptions of the APIs for discrete and continuous operatives. Contin-

uous operative developers adhere to the API by subclassing two classes,

cEvCltOperative and cEvSvrOperative. For example, Document Search de-

fines two subclasses: cDSCltOperative and cDSSvrOperative. After the ini-

tialization of the cDSCltOperative within the client’s main() procedure, the

developer calls the Operate() method. Within this method, the superclass

determines if the frontend is to receive an interactive report. If so, the

superclass invokes the DoInteractiveReportI) method; otherwise it invokes

the DoFrontend() method. After the initialization of the cDSSvrOperative,

the superclass deals with servicing envoy-specific commands. For instance,

when the superclass receives an RPC request to register a new mission, it

invokes the application’s ReceiveNewMission() method.

Although the prototype is too new for us to have gathered much feedback,

our experience with upgrading applications into operatives thus far suggests

that it takes a matter of days to implement the envoy/operative protocol.
As we had anticipated, the two most difficult aspects of accomplishing the

upgrade involved deciding what application capabilities should constitute a

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

260 . M. Palaniappan et al.

mission and deciding how to modify the frontend to support viewing of

interactive reports. For example, in our File System Browser application, the

developer had to decide whether a user who marked a directory would want

to monitor only the contents of the directory or the contents of its subdirecto-

ries as well. The developer decided to support both possibilities and added a

toggle button to the interface to allow users to choose between the two

options.

In designing the Browser’s interactive reports, the developer initially ex-

perimented with displaying a dialog box with a table summarizing all the

changes to a monitored directory or file. The developer eventually decided to

rely more heavily on the existing user interface design and prefixed file and

directory names with plus, minus, and other symbols to indicate which items

were created, deleted, moved, or changed since the user’s last mission report.

To indicate specifically what attributes of a file or directory had been modi-

fied, the developer appended the text “(was. . .)“ to each attribute that had

been changed (see Figure 6).

Based on this initial experience, we are optimistic that developers can

adhere to the protocols we have designed with minimal time and effort that

does not involve substantial redesign of their applications.

5.4.2 Framework Evaluation. For the few applications that have become

envoy aware, we are beginning to assess the success of the framework in

terms of the functionality that it provides compared with the functionality

required by the envoy-aware applications. Abstracting functionality such as

notification, tracking, and scheduling into the framework alleviates the need

for application developers to providing this common functionality. While the

prototype demonstrates that these services do reduce the work involved in

building operatives, we are finding that additional functions should be pro-

vided to support mission management. Assisting developers in creating con-

tinuous operatives is one area in need of better management services. Cur-

rently, once a continuous operative is launched, the operative is required to

handle more than one mission at a time. It is important that each mission is

given adequate attention, and that not too much time is spent working on one

mission while neglecting another or not responding to requests by the Envoy

(e.g., registering new missions). For now, developers need to build this type of
balanced work behavior into their applications manually. Since this is an

issue all continuous-operative developers face, it would be more convenient if

the Envoy framework provided a generalized mission management service.

The framework could also be expanded to provide continuous operatives
with optimization services for handling concurrent requests and with consoli-

dation services. If more than one user makes the same request, the operative

should be able to consolidate these requests. Duplication of effort can be

costly and can tie up valuable shared resources. Since each operative devel-

oper will have to handle consolidation, it would benefit the developer if the
framework provided some help in this area.

In the early design stages, we decided to define an API between the Envoy

and Mission Summary application. At first this seemed awkward and unnec-

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

The Envoy Framework . 261

essary; however, as the design unfolded, we realized that this API was

needed to prevent the Mission Summary application from being the only

means of accessing and modifying registered mission information. With the

API, alternate mission summary applications can be created and plugged into

the framework with very little effort. For example, a telephone-based Mission

Summary has been proposed. Using this application, users would be able to

call their Envoy and issue commands by selecting a sequence of numbers; a

voice synthesizer could provide status information and read mission reports.

Having this API allows for the telephone-based as well as other new mission

summary applications to be developed.

Finally, one of the major tests of the framework has been in its use as the

basis for an office automation application that implements a workflow model

centered around electronic forms [13]. A few new operatives were designed to

handle filling-in and routing of electronic forms. Also, the notion of Envoys

was extended; and a new class of Envoys was designed: Workflow Envoys.

These Workflow Envoys track and manage a series of related submissions

in order to carry out a large workflow task (e.g., a travel report approval

and reimbursement process). The framework proved to be a successful and

quick means of prototyping this workflow model. The Workflow Envoys were

modeled after the user Envoys and were able to be integrated into the

framework by adhering to the existing APIs. The Envoy framework was

modified so that users did not always have to explicitly register missions.

Instead, missions might be registered automatically, when for example, an

employee receives a work request from a manager. The Mission Summary

Application was hooked up with the Workflow Envoys to allow users to access

and track the progress of each workflow instance; no changes to the Mission

Summary were necessary.

5.4.3 User Evaluation. The Envoy prototype has not yet been fieldtested,

so we cannot fully judge the effectiveness of the system in helping users

monitor shared workspaces and full-text databases. We have, however, col-

lected suggestions for improving the user interface.

We found that users wanted access to more information within the Mission

Summary application. Users were confused that missions were not separated

from their associated results. Our initial concept was to make the Mission

Summary as compact as possible so that users would not mind leaving it open

on the screen. Based on initial feedback, however, our belief is that it would

be better to use one line to identify the mission and then list each report

individually as it arrives. Users would then be able to expand or collapse the

list of reports to see different views of the data.

We also discovered that while using an operative, some users wanted to

see all currently pending missions involving that operative. A Mini-Mission
Summary available via a menu command inside the operative window might

be one way to address this concern. This window might provide a context-de-
pendent submt of the information found in the full Mission Summary.

Users also often wanted a detailed description of one of their registered

missions. The current interface does not provide this ability; user’s can

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

262 . M, Palaniappan et al.

examine the mission’s registration form but not the actual definition. That is,

they can see the name of a mission, what type of operative is involved, and

how frequently a mission is to be run, but they cannot get information about

the specifics of the mission. For example, the user might want to find out that

a selected mission involves searching for “library automation” in the IRLIST

archive. Supplying a textual description of the mission in a dialog box would

definitely be quite helpful. On the down side, this would place an additional

burden on the developer whose job it would be to create English language

descriptions of each mission.

6. CONCLUSIONS

We describe a model in which Envoys allow users to specify missions within

applications that operate on heterogeneous machines across a local-area

network. Envoys use operatives to carry out missions and use informers to

notify users of the results of missions. In Section 3 we identify a set of

characteristics and capabilities that we believe an agent system should

exhibit. Below we evaluate our model on its conformance to these characteris-

tics and capabilities.

The model supports event-triggered, time-triggered, and repetitive execu-

tion of tasks. Time triggering, which we also refer to as delayed execution, is

internal to the Envoy process; however, most event triggering is handled at

the operative level. For example, to monitor the file system for documents

matching a user’s query, Document Search triggers execution of the query

when new files are added to the file system or existing files are modified. This

way, the Envoy Framework does not have to determine all possible events

that users might want to use as triggers for launching missions and does not

have to be concerned with variations among differing machines and system

configurations. In addition to event or time triggering, the Envoy framework

supports repetitive execution of missions. For example, users can specify that

they want a mission to be carried out three times a day for the next two

weeks.

Our philosophy has been to introduce Envoy functionality seamlessly into

the user’s computing environment and to integrate Envoys with applications

that users already employ to carry out their work. The agent functionality is

embodied as a desktop service. Consequently, users only need to learn a few

simple additional concepts to take advantage of Envoys. Consistency is

emphasized throughout the system. For example, we provide a uniform user

interface for re~isteri ng missions, independent of any application, as well as a

standard method of opening and viewing mission results.

The Envoy Framework’s Mission Summary application provides a mecha-

nism for the user to track and manage a set of registered missions. Our

prototype demonstrates an extensible, decentralized architecture by abstract-

ing agent functionality into a set of components and APIs. All of the message

communications among the Envoy components have been abstracted to obvi-

ate the need for operative and informer developers to be concerned with this

level of detail. For example, by separating out the mission notification, an

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992,

The Envoy Framework . 263

operative writer knows that users will be able to use any Informer applica-

tion for reporting the results of missions. Operative developers are not

burdened with implementing application-specific methods of communicating

results to the user.

The Envoy architecture has been designed to support a distributed environ-

ment. A user can access an Envoy from any UNIX-based computer on the

local-area network, and missions can be carried out on a computer other than

the one the user is operating. The system is resilient enough to retain a user’s

set of registered missions through system and process failures.

Functionally, we would like to enhance the Envoy Framework to support

pipelining of tasks and to work across a wide-area network. One approach

might be to base the Envoy Framework on OMGS object management

architecture [26], using their Object Request Broker technology. This archi-

tecture will support interoperability between applications on different ma-

chines in heterogeneous distributed environments. We also plan to assess the

need and utility of both interagent communication and adaptability.

If a protocol similar to our envoy\ operative protocol is integrated into

standard operating environments, then users will be able to benefit from a

host of agent-aware applications. Users will no longer have to be information

seekers. Information will find the users.

REFERENCES

1. Au.&iws, S. S. AND NABI, A. K. NeuralAgents: A frame of mind. In 00PSLA ’89 F’roceedtngs

(Oct. 1989), ACM, New York, 139-149.
2. ANDERSON, R. H., AND GILLOGLY, J. J. Rand Intelligent Terminal Agent (RITA): Design

philosophy. ARPA Order, 189-1, Rand, Santa Monica, Calif., Feb. 1976.

3. APPLE COMPUTER, INC. Project 2000–A Knowledge Navigator. (Videotape). Available from

Apple Video Fulfillment Program, 1-800-627-0230, Mar. 8, 1988.

4. CHEN, F. F., PRAKASH, A., AND RAMAMOORTHY, C. V. The network event manager. In

Proceedings of the Computer Networking Symposium (Washington, D. C., 1986).
5. COOMBS,J. H. Hypertext, full text, and automatic linking. In SIGZR ’90 Proceedings: 13th

International Conference on Research and Development in Information Retrieual (Brussels,

Sept. 1990) ACM, New York, 1990, 83-98.

6. DIALOG INFORMATION SERVICES, INC. AP news reloaded as a single file; New fields and

Dialog alert service added. Chronology 18, 4 (Apr. 1990).

7. DON, A., OREN, T., AND LAUREL, B. Guides 3.0. In CHI’91 Video Proceedings (New Orleans,
La., Apr. 1991).

8. DOW JONES AND COMPANY, INC. An Overview of DowVision. DowVision, Princeton, N. J.,

1990.

9. DROMS, R. E. Access to heterogeneous directory services. In Proceedings of the IEEE

ZnfoCOM ‘9o Conference (Jun. 1990), IEEE, New York, 1990.

10. ELLIS, C. A., GIBBS, S. J., AND REIN, G. L. Groupware: Some issues and experiences.

Commun. ACM 34, (Jan. 1991), 38-58.

11. ELLMAN, T. Explanation-based learning: A survey of programs and perspectives. ACM

Comput. Suru. 21, 2 (Jun. 1989), 164-221.

12. FENTON, J., AND BECK, K. Playground: An object-oriented simulation system with agent

rules for children of all ages. In 00PSLA ’89 Proceedings (Oct.) ACM, New York, 1989,
123-137.

13. FITZMAURICM, G. Form-centered workflow automation using an agent framework. Masters

thesis, Brown Univ., Aug. 1991.

14. FREEDMAN, B. Verity upgrades topic text manager. PC Week (Jun. 12, 1989).

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.

264 . M. Palaniappan et al

15. GIBBS, S. J. LIZA An extensible groupware toolklt. In CHI’89 Conference proceedings

(Austin, Tex., Apr. 1989) ACM, New York, 1989, 29-35.

16. GIFFORD, D. K., AND FRANCOMANO, A M. An information system based upon programmable

agents. In CIPS Edm on ton ’90 In formatzon Tech nology Conference, (Edmonton, Alberta, Oct.

1990).

17. HAMMAINEN H., ELORANTA E., AND ALASUVONTO, J. Distributed form management, ACM

Trans. Inf. Syst. 8, 1 (Jan. 1990), 50-76.

18. HEWLETT PACRARD. HP NewWaLe Agent Guide. Santa Clara, Calif, Oct. 1989.

19, KAHN, R. E., AND CERF, V, G, The Digttal LLbrary Project The World of Knowbots Vol. 1,

Corporation for National Research Imtiatives, Mar 1988.

20. KAYE, A. R., AND KARAM, G. M. Cooperating knowledge-based assistants for the office ACM

Trans. Offzce Inf. Syst, 5, 4 (Oct. 1987), 297-326.

21. LAI, K. Y., AND MALONE, T. W. Object lens: A “spreadsheet” for cooperative work ACM

Trans. Offzce Inf. Syst 6, 4 (Oct. 1988), 332-353

22. LAUREL, B, Interface agents: metaphors with character. In The Art of Human-Computer

Interface Deszgn, B, Laurel, Ed. Addison-Wesley, Reading, Mass., 1990, 355-366,

23. MALONE, T. W., GRANT, K. R., LAI, K. Y., RAO, R., AND ROSENBLITT, D. Semi-structured

messages are surprisingly useful for computer-supported coordination. ACM Trans. OfiLce

Znf, Syst. 5, 2 (Apr. 1987), 115-131.

24. MACDONALD B. A. Instructable systems. Knowledge Acquisition 3, 4 (Dee 1991), 381-420,

25. MINSKY, M. The Society of Mznd, Simon and Schuster, New York, 1986.

26. OBJECT MANAGEMENT GROUP. ObJect Management Architecture Guide, Framingham, Mass.,

1991.

27. OREN, T., SALOMON, G., KREITMAN, K., AND DON, A. Guides: Characterizing the interface. In

The Art of Human-Computer Interface Design, B. Laurel, Ed. Addison-Wesley, Reading,

Mass,, 367–381.

28, PALANIAPPAN, M., AND FITZMAURICE, G. InternetExpress: An inter-desktop multimedia data-

transfer service. IEEE Computer 24, 10 (Oct. 1991), 58-67.

29. RODDEN, T., SAWYER, P., AND SOMERVILLE, I. Interacting with an active, integrated envi-

ronment. SIGSOFT 13, 5 (Nov. 1988), 76–84.

30. SUN MICROSYSTEMS, INC. DeskSet Enz]zronment Reference Guide. Part Number: 800-4929-10,

Mountain View, Calif,, June 1990.

31. SUN MICROSYSTEMS, INC. SanNet Manager Installation and User’s Guide. Part Number:

800-3481-10, Mountain View, Calif., Mar. 1990.

32. Umx System Manager’s Manual. University of California, Berkeley, March 1984.

33. WEYER, S. A., AND BORNING, A. H. A prototype electronic encyclopedia. ACM Trans. Offzce

Inf. Syst. 3, 1 (Jan. 1985), 63-88.

34. YANRELOWCH. N., HAAN, B. J., MEYROWITZ, N., AND DRUCKER, S. M. Intermedia: The concept

and the constriction of a seamless information environment. IEEE Computer 21, 1 (Jan.

1988), 81-96.

Received February 1991; revised June 1991; accepted March 1992

ACM TransactIons on Information Systems, Vol. 10, No. 3, July 1992

