
USING GENERAL MODELING CONVENTIONS FOR THE SHARED
DEVELOPMENT OF BUILDING PERFORMANCE SIMULATION SOFTWARE

Rhys Goldstein, Simon Breslav, and Azam Khan
Autodesk Research, 210 King St. East, Toronto, ON, Canada

ABSTRACT
The building performance simulation community ap-
plies theory from several different fields to develop
models for heat transfer, light propagation, human be-
havior, and other domains. To integrate these models,
we propose the adoption of general modeling conven-
tions from the less familiar field of modeling and sim-
ulation theory. The conventions we explore are known
as the Discrete Event System Specification (DEVS).
With DEVS, a model-independent simulator responsi-
ble for advancing time alleviates many of the techno-
logical difficulties involved in coupling models. We
show how DEVS, from a mathematical perspective,
accommodates the co-simulation strategies known as
loose and strong coupling as well as strategies involv-
ing variable time steps. We also show how a model
based on a functional decomposition of a system, as
opposed to a topological decomposition, readily sup-
ports the sharing of domain-specific algorithms. The
examples presented were implemented using Design-
DEVS, an environment we created to help communi-
ties of researchers collaborate in the development of
simulation software.

INTRODUCTION
The ongoing pursuit of increasingly accurate and effi-
cient building performance simulation (BPS) software,
addressing an expanding array of design applications,
necessitates the sharing and integration of simulation
code developed by experts in different domains. This
need for shared development is widely acknowledged
and follows from two observations. First, inventing
a state-of-the-art model for any individual domain, be
it heat transfer, light propagation, mechanical equip-
ment, control logic, the outdoor environment, or hu-
man behavior, requires considerable dedication on the
part of a single research team. Second, simulation-
based building design applications must account for
multiple domains. The task of coupling single-domain
models of different research teams is complicated by
the many interactions between domains that occur over
time (Hensen, 2002).
While the BPS community applies theory from dif-
ferent fields to develop single-domain models, a large
body of research relevant to the coupling of these mod-
els has barely been explored. Modeling and simulation
theory includes sets of general modeling conventions
that strive to facilitate representations of any type of

real-world system. Some of these conventions, such as
Bond Graphs, Statecharts, and Petri Nets, rely on di-
agrams. Others use mathematical notation, including
the Discrete Time System Specification (DTSS), the
Differential Equation System Specification (DESS),
and the Discrete Event System Specification (DEVS),
as defined in Theory of Modeling and Simulation (Zei-
gler et al., 2000).
Of these conventions, DEVS seems most likely to sup-
port the diverse interests of a research community. It
separates the simulation process from the models that
describe system behavior, and facilitates coupling in
a manner that avoids explicit dependencies between
interacting models. In this paper, we explore the ap-
plication of DEVS to the shared development of BPS
software from three perspectives. From a techno-
logical perspective, we compare the use of a DEVS-
based simulator to that of model-dependent simu-
lators such as ESP-r and EnergyPlus, other model-
independent simulators such as Modelica and Ptolemy
II, and co-simulation. From a mathematical perspec-
tive, we demonstrate how DEVS accommodates the
co-simulation strategies known as loose and strong
coupling as well as strategies involving variable time
steps. Finally, from a modeling perspective, we con-
trast the use of topological and functional system de-
compositions for structuring DEVS models involving
multiple building domains.

TECHNOLOGICAL PERSPECTIVE
Most simulation software is based on one of three ap-
proaches:

• Model-Dependent Simulator
• Model-Independent Simulator
• Co-simulation

A model-dependent simulator is a simulation program
in which the code fulfilling the role of a simulator,
the advancement of time and the initiation of the dif-
ferent phases of a simulation, is integrated with the
code fulfilling the role of a model, the representation
of a real-world process or system. The development
of large model-dependent simulators, such as the BPS
tools ESP-r and EnergyPlus, can be shared between
programmers with access to the same code reposi-
tory. This is how most software systems are devel-
oped, including applications for business and enter-
tainment. However, this form of collaboration often
requires contributors to have a common vision for fu-

ture versions of the software. A common vision may
be difficult to attain with different research teams seek-
ing to explore different combinations of simulation
algorithms. In practice, research teams tend to pre-
serve their autonomy by maintaining their own model-
dependent simulators. As a consequence, a consider-
able amount of work is needed to extend one simulator
with code developed for another.
A model-independent simulator is a program that ini-
tiates the different phases of a simulation and ad-
vances simulated time, but does not explicitly refer-
ence any code representing a real-world process or
system. Representing the real world is left to the
model developers who use the simulator. A model-
independent simulator can be reused with any model
implemented according to the simulator’s modeling
conventions. The commercial product Dymola and
the open source environment OpenModelica are exam-
ples of model-independent simulators which use the
Modelica language as the set of modeling conventions.
With the recent introduction of a library of models
for HVAC components and related processes (Wetter,
2009), Modelica has received considerable attention as
an option for BPS. Other model-independent simula-
tors relevant to the BPS community include Ptolemy
II and the TRNSYS kernel.
Co-simulation, in which multiple simulators run si-
multaneously while exchanging information, is some-
times the most tractable way to combine models of
interacting systems that have already been developed
in separate programs. Co-simulation can be imple-
mented by modifying one simulator to control the oth-
ers, as done by Janak (1997) to have ESP-r influence
and access the results of the lighting simulation tool
Radiance. Alternatively, a new program can be writ-
ten to control all the simulators. Beausoleil-Morrison
et al. (2011) follow this approach for the coupling
of ESP-r with TRNSYS, a package that includes the
model-independent TRNSYS kernel and a library of
models for renewable and other energy systems. The
Building Controls Virtual Test Bed (BCVTB) uses
Ptolemy II to connect EnergyPlus, Radiance, Model-
ica, and other simulators and software tools (Wetter,
2011). The use of a consistent communication mech-
anism makes the BCVTB’s approach to co-simulation
compelling from a technological point of view. How-
ever, it introduces mathematical limitations that we
will discuss later.
The advantage of model-independent simulators is that
they alleviate many of the technological difficulties
involved in coupling models. For model-dependent
simulators, the difficulty lies in breaking the depen-
dence of various source files or object-oriented classes
on one simulation program, and merging the extracted
code with another simulation program. Co-simulation
frequently involves modifying both simulators to send
and receive information, controlling one or more sim-
ulators from another program, and writing low-level,

inter-process communication code. Connecting two
models written for a model-independent simulator, by
contrast, can be as simple as drawing an arrow in a
graphical editor. Of course it is never that easy due
to mathematical and modeling considerations, which
we will discuss later. But from a strictly technolog-
ical perspective, a model-independent simulator can
dramatically simplify the task of integrating multiple
teams’ developments.
The drawback to model-independent simulators is that
they require model developers to embrace a common
set of modeling conventions. This is particularly chal-
lenging for conventions perceived as unfamiliar, un-
necessarily complex, or overly restrictive. With the
Modelica language, lack of familiarity is a key issue.
Its use of equation-based modeling, in which differ-
ential equations are encoded directly and solving code
is generated automatically, is a significant departure
from traditional imperative programming. Complex-
ity is a concern with Ptolemy II, as its models may be
based on communicating sequential processes, contin-
uous time, discrete events, process networks, or syn-
chronous dataflow (Eker et al., 2003). The conventions
of the TRNSYS kernel are less diverse but arguably
more restrictive. They do not support variable time
steps, for instance.
There are several reasons to think that the modeling
conventions known as DEVS could be embraced by
different research teams within a community. First,
DEVS models are almost always implemented us-
ing the familiar imperative style of programming in-
volving assignments, if statements, and loops. Sec-
ond, DEVS is a relatively minimalistic set of conven-
tions. It consists of atomic models, which when im-
plemented contain most of the imperative code, and
coupled models, which connect any number of other
models of either type. Third, since its first introduc-
tion in 1976, DEVS has been known for its general-
ity. The fact that an atomic model’s transitions func-
tions depend not only on its state, but also on the time
elapsed since the previous transition, allows DEVS to
represent essentially any time-varying system.
Let us introduce DEVS with an example. The equa-
tions below represent a single-zone building with an
indoor air temperature of T . The indoor temperature
is influenced by the outdoor temperature Tout , and by
heat transferred from an idealized HVAC system at a
rate of q̇sys .

Tout(t) = T̄out − ∆Tout ·sin
(

2·π·t
d

)
Ṫ (t) =

∑
i Ui·Ai

C
·(Tout(t) − T (t)) +

q̇sys(t)

C

q̇sys(t) = UAsys ·(Tset − T (t))

The details of this mathematical model are as follows.
The outdoor temperature is a sinusoidal function of
time with a fixed initial and mean value of T̄out , a

fixed amplitude of ∆Tout , and a period of d which
we assume to be one day. The equation for the in-
door temperature is a standard albeit simplistic model:
the indoor air has a heat capacity C, the product of air
density ρ (1.2 kg/m3), specific heat capacity cp (1000
J/(kg·K)), and volume V ; each surface i bounding the
indoor air has a U-value Ui and an area Ai. The rate
of heat transfer from the HVAC system is proportional
to the difference between the indoor temperature and a
fixed setpoint temperature Tset . The positive constant
UAsys determines how aggressively the system strives
to maintain the setpoint.
Because T is the only variable that is differentiated,
the three equations combined yield a single ordinary
differential equation. The problem was contrived to
permit an analytic solution, useful for verifying the
numerical solution implemented with DEVS. For the
sake of convenience, we define four constants.

renv =

∑
i Ui·Ai

C
rsys =

UAsys

C

rtot = renv + rsys rday =
2·π
d

Below is the analytic solution.

T (t) =

(
T0 −

renv ·rday
rtot2 + rday2

·∆Tout
)
·e−rtot ·t

+
renv ·T̄out + rsys ·Tset

rtot
·
(
1 − e−rtot ·t

)
+
renv ·cos

(
rday ·t+ tan−1(rtot

rday
)
)

√
rtot2 + rday2

·∆Tout

For the numerical solution, each of the three original
equations is treated in its own atomic DEVS model: a
Weather model for the Tout equation, a Thermal model
for T and Ṫ , and an HVAC model for q̇sys . A single
coupled DEVS model, illustrated in Figure 1, defines
links through which the three submodels interact. Note
that the Weather and Thermal models have a one-way
relationship, as the outdoor temperature influences the
indoor temperature. The Thermal and HVAC models
are connected to form a feedback loop, reflecting the
fact that the indoor temperature and the system heat
transfer rate influence one another. From a technolog-
ical perspective, coupling DEVS models requires little
more than the creation of such diagrams in a graphical
editor.

Figure 1: A coupled DEVS model.

An atomic model consists primarily of an external
transition function and/or an internal transition func-
tion. The transition functions of the Weather, Ther-
mal, and HVAC models are specified mathematically
in Figure 2.

Figure 2: Three atomic DEVS models.

A transition is an event at which a model may undergo
a state change, and may interact with other models via
inputs and outputs. The purpose of an external transi-
tion is to receive the input that triggers it. As indicated
in both Figure 1 and the external transition functions
of Figure 2, the Thermal model can receive either of
two inputs while the HVAC model receives one. The
Weather model receives no inputs, and therefore lacks
an external transition function. An internal transition
is scheduled by the model itself, and has the option of
producing outputs. The internal transition functions in
this example indicate that all three atomic models out-
put a single quantity, which is consistent with Figure 1.
Note that more complex inputs and outputs are possi-
ble. To achieve a more realistic BPS simulation, the
Weather model could output an array of weather vari-
ables, and the Thermal model could output a vector
of temperature values describing each of a building’s
thermal masses.
Transition functions deal with two important duration
variables: the read-only time ∆te elapsed since the
previous transition, and the modifiable time ∆tr re-
maining until the next internal transition. An internal
transition occurs only if ∆tr elapses before any input
is received. If an input is received, an external transi-
tions occurs immediately and the next internal transi-
tion is rescheduled according to the updated remain-
ing time ∆tr

′. To give a more complete description of
DEVS, we should mention that the remaining time is
traditionally supplied not by a variable, but by a time

Figure 3: Sequence of external and internal transitions occurring at a single time step.

advance function invoked after every transition. In this
paper we assume that the time advance function al-
ways yields the state variable ∆tr, and therefore we
omit this function.

There are various ways for a DEVS model to perform
calculations. The Weather model keeps track of the ab-
solute time by adding the elapsed time ∆te to a state
variable t at the beginning of every transition. This
time value is used to calculate Tout , which is then
output. The Thermal and HVAC models are compli-
cated by the fact that an advancement of time can be
interrupted by either an external transition or an inter-
nal transition. Thus they are prepared to perform the
same calculation, either an extrapolation of T or a di-
rect evaluation of q̇sys , in both transition functions.

DEVS does not require a fixed time step, but does al-
low it. In this example the time step ∆ts is common
to all three atomic models. Each internal transition
schedules the next internal transition after a duration
of ∆ts. The two external transitions are more compli-
cated: if a time step has elapsed (∆te = ∆ts), they
must schedule an immediate output (∆tr ′ = 0); but
if no time has elapsed (∆te = 0), they must leave the
remaining time unchanged (∆tr ′ = ∆tr). The assign-
ment ∆tr

′ = ∆tr − ∆te, which is typical of DEVS
models in general, covers both cases.

The last DEVS concept illustrated by this example is
the ordering of simultaneous events. There are two
rules. First, if a model receives an input at the ex-
act time it is scheduled to undergo an internal transi-
tion, the input takes precedence. Second, if multiple
models are scheduled to undergo internal transitions
at the same time, an ordering determines which occurs
first. Figure 3 gives the sequence of transitions that oc-
cur at each time step assuming that the Weather model
is given the highest priority, followed by the Thermal
model, followed by the HVAC model. At the begin-
ning of a time step, all three models are scheduled to

undergo an internal transition. Having the highest pri-
ority, the Weather model goes first. Its internal tran-
sition produces an output that is received by the Ther-
mal model, triggering an external transition. Accord-
ing to the first rule, this external transition preempts
the Thermal model’s internal transition. Applying the
same rules yields the remainder of the sequence.
Note that there are six possible orderings of the three
atomic models. With a different ordering, not only
would the transitions occur in a different sequence, but
either of the calculations shown in the external transi-
tions might be performed instead in an internal transi-
tion. Nevertheless, for all six orderings, the output of
each atomic model remains the same. This desirable
property was achieved not by analyzing all six cases,
but by defining the atomic models according to con-
straints that guarantee robustness regardless of how
models are ordered. In this case, the atomic models
recalculate temperatures and heat transfer rates only
after an advancement of time, and output these vari-
ables exactly once per time step. Other strategies in-
volve different constraints. In the next section, we will
solve the same equations with DEVS models capable
of producing multiple outputs per time step.

MATHEMATICAL PERSPECTIVE
DEVS offers research communities the possibility of
integrating simulation code while avoiding many of
the technological difficulties associated with sharing
access to interdependent source files or establishing
communication protocols between multiple simula-
tors. From a strictly technological point of view, cou-
pling DEVS models requires little more work than
drawing arrows in a graphical editor. Of course it is
never that easy, as there are mathematical and model-
ing considerations that transcend computing technol-
ogy. From a mathematical perspective, it is necessary
that all interacting models are compatible in terms of
the strategies used to solve systems of equations in a

co-operative fashion. We consider four such strategies:
• Definitive (discrete time, continuous state)
• Speculative (discrete time, continuous state)
• Adaptive (continuous time, continuous state)
• Quantized State (continuous time, discrete state)

DEVS accommodates all four strategies, which is ap-
propriate for a community pursuing multiple options.
The BCVTB, possibly the BPS community’s most ex-
tensible co-simulation effort, is limited to the defini-
tive strategy in which each part of the current state
of a system is updated once per time step. The ESP-
r/TRNSYS co-simulator of Beausoleil-Morrison et al.
(2011) is a recent example of the speculative strategy,
where parts of the future state are estimated then re-
peatedly revised within each time step. The defini-
tive and speculative strategies are more commonly re-
ferred to as loose coupling and strong coupling (Trčka
et al., 2009), emphasizing differences in how mod-
els are connected in co-simulation projects. We adopt
new terminology because, with DEVS, the coupling of
models varies little if at all between strategies.
The definitive and speculative strategies are similar
to one another in that they discretize time into fixed
steps while allowing state variables such as zone tem-
peratures to remain continuous. The lesser explored
adaptive and quantized state strategies, by contrast,
are differentiated by their representation of time and
state. Both strategies treat time as continuous by per-
mitting variable time steps. With the adaptive strat-
egy, time steps are shortened to improve accuracy over
time periods of rapid change, but lengthened to reduce
computational requirements over periods of gradual
change. It has been applied to BPS by Zimmermann
(2001) and Gunay et al. (2013), the latter using DEVS.
The quantized state strategy is similar, except that time
steps are varied in a way that constrains each state vari-
able to a set of discrete values (Cellier and Kofman,
2006).
Let us revisit the example with the atomic models
named Weather, Thermal, and HVAC. Whereas the
definitive strategy was used in the previous section,
here we will solve the same equations using the specu-
lative strategy. The coupled model of Figure 1 remains
unchanged, but all three atomic models must be rede-
fined to output not only the current value of the out-
door temperature, indoor temperature, or system heat
transfer rate, but also the predicted value for the next
time step. For the Weather model the change is triv-
ial, since we can evaluate the outdoor temperature at
any requested time. For the HVAC model, matters are
complicated by the need for external iterations, which
we will explain shortly. It is the Thermal model, how-
ever, that best illustrates the speculative strategy, as the
new version involves both external and internal itera-
tions within each time step. We will present an imple-
mentation of this model.
The examples in this paper were implemented using
DesignDEVS, an environment we created to help com-

munities of researchers collaborate in the development
of simulation software. Using DesignDEVS, atomic
DEVS models are written in the general-purpose Lua
programming language. Below is the Lua code for
the speculative Thermal model’s external and internal
transition functions.

1 if elapsed() == dts then
2 T[1] = T[2]
3 Tout[1] = Tout[2]
4 q_sys[1] = q_sys[2]
5 k = 0
6 elseif elapsed() ∼= duration(0) then
7 error("inconsistent time step encountered")
8 end
9

10 local port, value = input()
11 if port == "Outdoor Temperature" then
12 Tout = copy(value)
13 elseif port == "System Heat Transfer Rate" then
14 q_sys = copy(value)
15 end
16
17 dtr = duration(0)

1 if elapsed() == dts then
2 T[1] = T[2]
3 Tout[1] = Tout[2]
4 q_sys[1] = q_sys[2]
5 k = 0
6 end
7
8 if k < k_max then
9 local dt = dts/duration(1, "seconds")

10 local Tout_mean = (Tout[1] + Tout[2])/2
11 local q_sys_mean = (q_sys[1] + q_sys[2])/2
12 local Tnext = T[2]
13 local j = 0
14 local dTnext = math.huge
15 while j < j_max and dTnext > dTeps do
16 local Tmean = (T[1] + Tnext)/2
17 local Tprev = Tnext
18 Tnext = T[1] + (r_env*(Tout_mean - Tmean)
19 + q_sys_mean/C)*dt
20 Tnext = (Tprev + Tnext)/2
21 dTnext = math.abs(Tnext - Tprev)
22 j = j + 1
23 end
24 Tnext = (T[2] + Tnext)/2
25 local dT = math.abs(Tnext - T[2])
26 if k == 0 or dT > dTeps then
27 T[2] = Tnext
28 output("Indoor Temperature", T)
29 k = k + 1
30 end
31 end
32
33 dtr = dts

Listing 1: External (top) and internal (bottom) transi-
tion code for the speculative Thermal model.

The indoor temperature T, outdoor temperature Tout,
and system heat transfer rate q_sys are 2-element
vectors storing both current and future values. As
with the definitive Thermal model, the current val-
ues (T[1], Tout[1], q_sys[1]) are updated in both
transition functions, but only if time has elapsed
(elapsed() == dts, where dts is the time step).
The current values are updated using the future val-
ues (T[2], Tout[2], q_sys[2]), which have already
been calculated.
Let us now identify the external and internal iterations
in this example. The internal iterations seek a poten-
tial future indoor temperature Tnext consistent with
all available current and future variables. They occur

entirely within the Thermal model’s internal transition
in the while loop at line 15. External iterations seek
mutually consistent future values for both the Ther-
mal model (T[2]) and the HVAC model (q_sys[2]).
Because the two models must exchange information,
each external iteration requires a pass through both
transition functions. In each pass, a decision is made
at line 26 in the Thermal model’s internal transition
function. If it is the first pass, or if the updated Tnext

differs significantly from the previous prediction, then
Tnext is recorded as T[2] and output. Receiving this
future temperature, the HVAC model might respond
with a new q_sys[2]. The Thermal model would
then undergo an external transition, record the in-
put (q_sys = copy(value)), schedule an immedi-
ate internal transition (dtr = duration(0), where
dtr is the remaining time), and eventually proceed to
line 26. If on line 26 the new temperature prediction is
sufficiently similar to the previous prediction, the cy-
cle of outputs is broken and time advances.
Unlike strongly coupled simulators, speculative DEVS
models require no custom external module to coordi-
nate them. The models are independently responsible
for enforcing iteration limits (e.g. j_max, k_max), and
applying relaxation as described in Trčka et al. (2009)
(e.g. lines 20 and 24).
Figure 4 shows simulation results produced by the def-
inite and speculative examples. Indoor temperature
profiles obtained with 2-hour and 30-minute time steps
are plotted alongside the analytic solution given in the
previous section.

Figure 4: Definitive (top) and speculative (bottom) re-
sults for the Weather/Thermal/HVAC simulations.

The simulated building has a 12 m × 9 m footprint, a
height of 4 m, and wall and roof U-values of 0.5 and
0.3 W/(m2·K) respectively. The outdoor temperature
profile has a mean value of 18◦C and an amplitude of
6◦C. For the HVAC system, the setpoint temperature
is 22◦C, and UAsys = 70 W/K. The initial indoor
temperature is 18◦C.
With 2-hour time steps, the definitive results show
signs of instability while the speculative results agree
reasonably well with the analytic solution. We do not
conclude that the speculative strategy is superior, how-
ever, since the definitive strategy will allow consider-
ably shorter time steps given the same amount of time
and computing power. The relative performance of the
two strategies is studied in Trčka et al. (2007). Our
purpose is simply to demonstrate that DEVS accom-
modates both. With 30-minute time steps, both sets of
results agree well with the analytic solution.
The examples presented thus far demonstrate how
mathematical strategies developed for co-simulation
can be applied using a single DEVS-based simulator.
It is equally important to understand that, by allowing
the remaining time to be calculated at every transition,
DEVS supports the lesser explored strategies based on
variable time steps. Our focus now shifts from math-
ematics to modeling, but note that the example in the
next section employs the quantized state strategy.

MODELING PERSPECTIVE
To fully benefit from DEVS, or any modular approach
to simulation development, it not enough to master the
mechanics of composing and combining models. One
must also understand the implications of various mod-
eling decisions, which become increasingly important
as simulation models grow in complexity. A key deci-
sion is the type of system decomposition that collabo-
rating research teams should agree to use as a basis for
structuring their coupled models:

• Topological Decomposition
• Functional Decomposition

Figure 5 illustrates the two approaches. With a topo-
logical decomposition, each submodel is associated
with a spatial element such as a wall segment, a zone,
or an occupant. Accordingly, links between compo-
nents of a coupled model reflect the spatial topology
of a real-world system. A functional decomposition,
by contrast, associates each submodel with an aspect
of the entire system such as the thermal domain or the
occupancy domain of a building. Links exist wher-
ever there are interactions between domains. Model-
dependent simulators and co-simulation projects tend
to favor functional decompositions, as most simulation
algorithms are domain-specific. Model-independent
simulators typically support both types of decompo-
sitions, though the topological approach is often em-
phasized. Describing the topology-based modeling
of HVAC systems using Modelica, for example, Wet-
ter (2009) explains that having each model compo-

nent represent a physical device is a tenet of the
language. The thermal domain has also been tack-
led with a model-independent simulator in conjunc-
tion with a topological decomposition (Zimmermann,
2001). This method essentially replaces the matrix-
based algorithms described in Clarke (2001) and else-
where with the rapid exchange of temperature and heat
flow values between adjacent building elements.

Figure 5: Illustration of models based on topological
(top) and functional (bottom) system decompositions.

Although topological decompositions can be appeal-
ing when depicted for simple examples, complications
may arise for models sufficiently detailed to capture
the many performance-influencing elements of a real
building. One complication is the need to generate
coupled models with hundreds of interconnected com-
ponents. Graphical editors, while adequate for small
models, are rarely useful for authoring such complex
networks. A related issue is the computational over-
head associated with the interactions between these
numerous components. A third problem with topo-
logical decompositions is that some mechanism other
than model coupling may be needed to support collab-
oration. To understand why, consider that each sub-
model of a topology-based network represents a build-
ing element relevant in multiple domains. If research
teams each specialize in a particular domain, they will
likely end up with overlapping sets of submodels that
cannot be integrated by coupling alone.
Techniques addressing the challenges associated with
topology-based models have been presented and are
likely to mature over time. However, to avoid these
complications in the short term, we advise prospec-
tive DEVS users in the BPS community to consider

functional decompositions of buildings and their sur-
rounding environments. Even relatively detailed cou-
pled models based on functional decompositions are
likely to include less than two dozen or so compo-
nents, a small enough number that graphical editors
remain useful and computational efficiency need not
be severely compromised. Also, having worked inde-
pendently on separate domain-specific algorithms, re-
search teams can use model coupling as the primary
mechanism to integrate their developments.
To illustrate the use of DEVS with a functional de-
composition of a building, consider a simple DEVS
model based conceptually on Figure 5 and structured
according to Figure 6. As with the example treated
in preceding sections, the Weather model supplies the
outdoor temperature to a single-zone Thermal model.
However, one of the walls bounding the zone now has
a window that can be opened and closed by the build-
ing’s occupants, affecting the rate at which the indoor
temperature changes. Both indoor and outdoor tem-
peratures influence occupants’ decisions on whether to
manipulate the window.

Figure 6: Coupling of functional models.

Let us briefly explain the mathematics of this example
before we return to the subject of decomposition. The
Thermal model solves the same differential equation
as in the earlier example, except that q̇sys = 0 and the
outdoor temperature Tout is assumed to remain con-
stant between inputs received from the Weather model.
If T is the indoor temperature at the preceding tran-
sition, and a duration of ∆te has elapsed since that
transition, then the new indoor temperature T ′ can be
calculated as follows.

T ′ = Tout + (T − Tout) ·e−
∑

i
Ui·Ai

C ·∆te

This version of the Thermal model uses the quantized
state strategy, and for that reason the right-hand side
above is evaluated only when an input is received. If
instead the temperature reaches the threshold Tnext ,
which is any multiple of a fixed temperature interval,
then T ′ is simply Tnext and this value is output. To
determine when such an internal transition should oc-
cur, the remaining time ∆tr is obtained by solving the
above equation for the duration variable.

∆tr =
C∑

i Ui·Ai
·ln
(

T − Tout
Tnext − Tout

)
The Occupancy model is stochastic. Each of an arbi-
trary number of occupants repeatedly moves to a uni-
formly sampled (x, y) location for an exponentially
sampled duration of time. An occupant that ends up
within a fixed distance from the window may open or
close it in an effort to bring the indoor temperature
closer to 22◦C.

Simulation results produced by the coupled model are
shown in Figure 7. The window is opened first to
accelerate the increase in indoor temperature when it
is around 18◦C, and later help reduce it from about
30◦C. Observe how the time steps vary to allow indoor
temperature changes of exactly 0.5◦C. The Weather
model in this example reads historical data (the TMY3
data set for Chicago O’Hare, 1987-09-27, was used),
but its output is also quantized.

Figure 7: Results for the Weather/Thermal/Occupancy
simulation.

With a functional decomposition, most of the com-
plexity ends up in the atomic models. Consider the
Thermal model, which must account for one zone and
several surfaces. An enhanced version would be con-
siderably more complex, providing separate outputs
for each of a building’s zones and many of its solid el-
ements. Similarly, the Occupancy model in the exam-
ple accounts for the window and every occupant. An
enhanced version might track all windows, doors, and
appliances, and provide outputs for each object manip-
ulation and occupant location change.
With a topological decomposition, the atomic models
would be simpler because each would focus on a sin-
gle type of thermal mass, a single type of manipulable
object, or an individual occupant. But whereas the use
of functional decompositions is already a practical ap-
proach with DesignDEVS or other DEVS-based tools,
further research would be needed to address the com-
plexity of topology-based coupled DEVS models for
BPS software.

CONCLUSION
The general modeling conventions known as DEVS
offer various benefits to researchers striving for a more
collaborative approach to BPS software development.
From a technological perspective, the use of a DEVS-
based simulator alleviates many difficulties otherwise
encountered when integrating simulation code. From
a mathematical perspective, DEVS does not restrict re-
searchers to a single equation-solving strategy, but al-
lows them to explore several. Finally, from a modeling
perspective, domain-specific algorithms implemented
by different research teams can be combined via the
coupling of DEVS models according to functional de-
compositions of buildings and their surroundings.

REFERENCES
Beausoleil-Morrison, I., Macdonald, F., Kummert, M.,

McDowell, T., Jost, R., and Ferguson, A. 2011. The
Design of an ESP-r and TRNSYS Co-Simulator.
In Proceedings of the International IBPSA Confer-
ence, Sydney, Australia.

Cellier, F. E. and Kofman, E. 2006. Continuous System
Simulation. Springer.

Clarke, J. A. 2001. Energy Simulation in Building De-
sign. Butterworth-Heinemann, second edition.

Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X.,
Ludvig, J., Neuendorffer, S., Sachs, S., and Xiong,
Y. 2003. Taming Heterogeneity - the Ptolemy Ap-
proach. Proceedings of the IEEE, 91(1):127–144.

Gunay, H. B., O’Brien, W., Goldstein, R., Breslav,
S., and Khan, A. 2013. Development of Discrete
Event System Specification (DEVS) Building Per-
formance Models for Building Energy Design. In
Proceedings of the Symposium on Simulation in Ar-
chitecture and Urban Design, San Diego, CA, USA.

Hensen, J. L. M. 2002. Simulation for performance
based building and systems design: some issues and
future directions. In Proceedings of the Interna-
tional Conference on Design and Decision Support
Systems in Architecture and Urban Planning, Eind-
hoven, Netherlands.

Janak, M. 1997. Coupling Building Energy and Light-
ing Simulation. In Proceedings of the International
IBPSA Conference, Prague, Czech Republic.

Trčka, M., Hensen, J. L. M., and Wetter, M. 2009. Co-
simulation of innovative integrated HVAC systems
in buildings. Journal of Building Performance Sim-
ulation, 2(3).

Trčka, M., Wetter, M., and Hensen, J. 2007. Compari-
son of Co-Simulation Approaches for Building and
HVAC/R System Simulation. In Proceedings of the
International IBPSA Conference, Beijing, China.

Wetter, M. 2009. Modelica-based Modeling and Sim-
ulation to Support Research and Development in
Building Energy and Control Systems. Journal of
Building Performance Simulation, 2(2).

Wetter, M. 2011. Co-Simulation of Building Energy
and Control Systems with the Building Controls
Virtual Test Bed. Journal of Building Performance
Simulation, 3(4).

Zeigler, B. P., Praehofer, H., and Kim, T. G. 2000. The-
ory of Modeling and Simulation. Academic Press,
San Diego, CA, USA, 2nd edition.

Zimmermann, G. 2001. A New Approach To Build-
ing Simulation Based on Communicating Objects.
In Proceedings of the International IBPSA Confer-
ence, Rio do Janeiro, Brazil.

