
UVStyle-Net: Unsupervised Few-shot Learning of 3D Style Similarity Measure
for B-Reps

Peter Meltzer1,3, Hooman Shayani1,3, Amir Khasahmadi1, Pradeep Kumar Jayaraman2, Aditya Sanghi1,
and Joseph Lambourne1

1Autodesk AI Lab, 2Autodesk Research, 3UCL

Abstract

Boundary Representations (B-Reps) are the industry
standard in 3D Computer Aided Design/Manufacturing
(CAD/CAM) and industrial design due to their fidelity in
representing stylistic details. However, they have been ig-
nored in the 3D style research. Existing 3D style metrics
typically operate on meshes or pointclouds, and fail to ac-
count for end-user subjectivity by adopting fixed definitions
of style, either through crowd-sourcing for style labels or
hand-crafted features. We propose UVStyle-Net, a style sim-
ilarity measure for B-Reps that leverages the style signals in
the second order statistics of the activations in a pre-trained
(unsupervised) 3D encoder, and learns their relative impor-
tance to a subjective end-user through few-shot learning.
Our approach differs from all existing data-driven 3D style
methods since it may be used in completely unsupervised
settings, which is desirable given the lack of publicly avail-
able labelled B-Rep datasets. More importantly, the few-
shot learning accounts for the inherent subjectivity asso-
ciated with style. We show quantitatively that our proposed

method with B-Reps is able to capture stronger style signals
than alternative methods on meshes and pointclouds de-
spite its significantly greater computational efficiency. We
also show it is able to generate meaningful style gradients
with respect to the input shape, and that few-shot learning
with as few as two positive examples selected by an end-
user is sufficient to significantly improve the style measure.
Finally, we demonstrate its efficacy on a large unlabeled
public dataset of CAD models. Source code and data will
be released in the future.

1. Introduction

B-Reps are the de facto standard for industrial design,
and the representation most widely used in the consumer
product and automotive industries where style is of great
importance. B-Reps offer unparalleled editability in a com-
pact, memory efficient representation, they are not dis-
cretized/sampled (as per mesh/point cloud) offering precise
boundaries with continuous smooth surfaces/edge curves.

Pre-trained
B-Rep Encoder
(Unsupervised)

Style Signals
Content Embedding

...

B-Rep Input

Query Nearest Neighbours

(a)

(b)

INorm

Re-Center

...

End user selects positive and/or negative examples for few-shot user defined style metric learningtriu

Figure 1: Overview of UV-StyleNet: Grams of activations are normalized and extracted for each layer. The weights applied to each layer
define the meaning of style. (a) Top-10 query results using uniform layer weights w (b) Top-10 query results using w? based on the
user-selected examples (positive in green, negative in red). In this example, w? ≈ [0, 0, 0, 1, 0, 0, 0]>.

Figure 2: Lower case examples from font ‘Viaoda Libre’. While
‘j’ and ‘r’ share some stylistic features, they are not obviously
similar to ‘c’, ‘s’ or ‘z’, i.e. font classes provide a ground truth
for style compatibility (as perceived by their designers) yet only a
weak label for style itself.

See Appendix A for a brief introduction to B-Reps. There
are many use cases for a B-Rep style similarity measure,
i.e. finding architectural parts that are in-keeping with the
style of a building, or selecting parts for a car that fit with
the manufacturer’s existing range. Moreover, the gradient
of a style similarity measure can be used to generate helpful
visualizations or modify the input 3D shape a la Gatys et al.
[11].

Geometric style is inherently subjective and may have a
different meaning in different object class domains, i.e. the
boundary between style and content is unclear. For exam-
ple, in the context of chair designs, number of legs could be
considered either style or content depending on the partic-
ular use case. Thus, an effective geometric style measure
must cater for these different interpretations of the end user.

While existing methods use hand-crafted features [25,
24] or crowd-sourcing [22, 27, 30, 28] to pre-define and
measure geometric style, we propose a user-defined few-
shot style metric learning method that leverages the range of
style signals available in the activations of a pre-trained 3D
object encoder through second order statistics (Gram matri-
ces). The relative importance of each layer’s Gram matrix is
then learnt through selection of just a few examples of what
style means to an end user (see Figure 1).

Despite the abundant use of B-Reps in industrial settings,
there is a fundamental lack of publicly available B-Rep data
for training machine learning models — in particular, there
are no existing B-Rep datasets that include a reliable ground
truth for style. To overcome this challenge, we provide an
adaptation to SolidMNIST [16], which improves the style
consistency within font classes for the evaluation test set.
The font classes, however, still provide only a weak label
for style (see Figure 2), and as such we propose an unsu-
pervised method and use the font labels purely for quan-
titative evaluation to justify design choices of our method.
For comparison against existing SOTA on real-world data
we also provide evaluation with the unlabeled ABC dataset
[20] and a manually labeled subset of it.

The main contributions of this work are as follows:

� We demonstrate that the second order statistics (Gram
matrix) approach used in 2D image style literature can
be generalized to (B-Rep) 3D shapes

� We introduce a general few-shot learning method for
capturing a subjective end-user’s definition of 3D style
and demonstrate its effectiveness on B-Reps

� We show quantitative efficiency and performance ad-
vantages of using UVStyle-Net architecture with B-
Reps over similar approaches on meshes and point
clouds using a new synthetic public dataset (SolidM-
NIST) and a small subset of ABC labeled for style

� We verify our method on the ABC dataset with no style
or content labels for pre-training, and demonstrate the
effectiveness of our few-shot learning process to cap-
ture subjective user-defined style similarity measures

In summary, we introduce a geometric style similarity
measure for 3D solids that may be used in completely unla-
beled settings for arbitrary object classes, with user subjec-
tivity handled by few-shot learning given only a very small
number of examples. While our method is adaptable for all
3D input types, we demonstrate the benefits of our approach
with B-Reps (over meshes and point clouds) both quantita-
tively and qualitatively.

2. Related Work

Geometric Feature Learning. Geometric feature learn-
ing has seen many successes for both Euclidean represen-
tations, i.e. multi-view [34], projections [7], volumetric
[41], and non-Euclidean representations, i.e. point clouds
[37, 32, 13] and mesh [14, 10]. For a detailed review of
geometric feature learning we refer the reader to [5, 12, 1].
Despite the prevalence of B-Reps in industrial and creative
design applications, however, geometric feature learning for
parametric representations remains largely unexplored.

In addition to their wide use, there are many advantages
to working with B-Reps as 3D geometric representations.
Not only do B-Reps typically require less memory than
point clouds or meshes (depending on the sampling reso-
lution/detail of the model), but they also provide richer in-
formation about a solid, including the precise boundaries of
every surface and the topology of these surfaces.

The benefits of B-Reps over discretized representations
are demonstrated in Jayaraman et al. [16], where each face
is sampled uniformly in its parameter domain to form a reg-
ular grid then passed through a 2D CNN. The CNN face
representations are then fed to a GNN which uses the face
adjacency matrix of the original B-Rep.

Geometric Style Similarity. Existing geometric style
similarity learning methods are typically trained in a su-
pervised setting, requiring a set of hand-labeled triplets
(A;B;C) in which the pair A and B are believed to be
closer in style than A and C [24, 25, 22, 27, 28, 30]. To
account for style subjectivity, examples are labeled through

crowd-sourcing methods and thus result in a generally ac-
cepted definition for style.

For example, Liu et al. [24] use hand-crafted features
(i.e. curvature histograms) with a supervised triplet loss to
learn furniture compatibility, while Lun et al. [25] apply a
similar method by first segmenting input models into sub-
parts to compute geometric features for independently.

Geometric style feature learning has been demonstrated
by Lim et al. [22] and Pan et al. [27] whereby 3D meshes
are first projected into multiple 2D views which are then
processed with a traditional triplet image CNN. Polania et
al. [30] adopt a similar approach, where the learned style
representations are then passed to a Graph Neural Network
(GNN) for compatibility prediction.

Rendering 3D solids into 2D (even with multiple views)
is problematic since stylistic features can be lost or oc-
cluded and selecting the best views without making as-
sumptions on the orientations of the data is non-trivial. Pan
et al. [28] overcome this using curvature-guided sampling
directly from the solids to generate element-level style fea-
tures which are then aggregated to global style representa-
tions using a triplet network.

The reliance of these methods on crowd-sourced, hand-
labeled style triplets creates two problems: Firstly, there is
limited labeled data available in 3D style domain, and no
labeled B-Rep data. Secondly, and more importantly, the
definition of style (an inherently subjective concept) is pre-
defined according to a consensus, hence may not be com-
patible with an end-user’s particular taste or application.

Style Transfer. Contrary to the geometric style learn-
ing methods above, the style transfer literature has largely
adopted the use of first and second order activation statistics
from deep pre-trained image classifiers in order to represent
and quantify style. Gatys et al. [11] showed that feature
co-occurrence in the different layers of a CNN effectively
captures elements of style at different scales of abstraction.
In the finest layers where features are most local, the style
representation given by the Gram matrix captures color and
texture information, yet deeper into the network, the Gram
matrices capture higher level structure and patterns eventu-
ally crossing into semantic content.

Following from this, Huang et al. [15] and Babaeizadeh
et al. [4] demonstrate that first order activation statistics
(channel-wise mean and variance) are also able to capture
elements of style through the use of Adaptive Instance Nor-
malization (AdaIN). Karras et al. [18] illustrate the relation-
ship between layer depth and the style/content trade-off by
swapping the inputs to a generator at varied depth. Swap-
ping at lower layers renders image interpolations of low
level texture/colour information, and swapping at deeper
layers interpolates semantic content.

Many further works utilize and extend the use of first or-
der statistics of network activations to improve style trans-

fer results, e.g. GAN based methods [19, 40, 17]; however,
these methods rely on a generator to align the activations to
these statistics while generating an output image, with the
main focus on the quality of the output images rather than
the interpretability of the statistics in defining an explicit
style distance metric for arbitrary inputs. To explicitly dis-
entangle style and content for arbitrary inputs Park et al.
[29] propose an auto-encoder architecture that adopts the
technique of swapping inputs at various layers and a GAN
based encoder and discriminator that is able to effectively
separate structure and texture.

Azadi et al. [3] propose a few-shot learning approach for
font style transfer in which stacked conditional GANs are
used to generate unseen characters in a target style from a
small number of observed examples. This method is, how-
ever, specific to font generation and relies on supervised
pre-training using the style labels.

3D Style Transfer. Recently, Liu et al. [23] showed that
style could be learned from one mesh model and transferred
to another using a neural subdivision surface scheme. Cao
et al. [6] generalised the second order statistics approach
of [11] to 3D point clouds, adopting the use of a Pointnet
[31] encoder pre-trained for classification on ShapeNet [8].
Following the trend of 2D style transfer Segu et al. [33]
extend this work using GAN methods to produce a gen-
erative model with better disentanglement of content and
style. There are no existing style transfer/unsupervised ap-
proaches to style metric learning for B-Reps.

3. Method
Inspired by image-based style-transfer literature, our ap-

proach uses second order statistics of the activations from a
pre-trained B-Rep encoder to form a flexible style represen-
tation.

For the encoder we use UV-Net [16], which processes
each face of a solid with 3 layers of 2D convolutions, and
propagates the projected pooled features of each face in a
face-adjacency graph using 2 GIN [39] layers. Each face is
represented by a 10� 10 grid (image) of 7 dimensions con-
taining the absolute 3D position (xyz) of each UV sample,
the normal for each sample, and a mask indicating whether
each sample lies within or outside of the trimmed face. We
use UV-Net due to its SOTA performance on B-Rep classi-
fication and its parallels to conventional 2D CNNs.

For B-Rep model x, we extract the normalised, flattened
upper triangle of the Gram matrix for each layer l:

Gl (x) = triu
�
�l(x)�l(x)>

�
(1)

where �l(x) 2 Rdl�Nl is the normalised feature map of
a pre-trained classifier given input x such that �l

ij(x) is
the normalized activation of filter i at position j in layer
l, dl and Nl are the number of distinct filters and non-

masked samples in layerl respectively, and triu: Rdl � dl !

R
d l (d l +1)

2 returns the �attened upper triangle of a matrix.
For the �rst (features) layer, samples corresponding to

the positions that do not lie on the surface of a trimmed face
are masked, and the gram matrix is calculated accordingly.
In the GIN layers, we have a single vector per face (i.e.
node), thus instance normalization [35] is applied across
the solid prior to computing the Grams. For each of the fea-
tures (non-masked positions and normals) and activations of
each convolution layer's �lters, we leverage the grouping of
samples into faces which is unique to B-Reps (compared to
meshes and point clouds), whereby we re-center (subtract
the mean of) the UV samples by face. This can be inter-
preted as per-face instance normalization without division
by the standard deviation.

Face re-centering/instance normalization are applied to
the activations after extraction from the encoder, but the raw
(un-normalized) activations are passed to the next layer of
the encoder, thus imposing no requirements on the encoder
architecture in terms of normalization strategies.

Analogous to style-transfer with 2D images [11], for a
pair of B-Repsa andb we de�ne the style distance:

Dstyle (a; b) =
LX

l =1

wl � D l (a; b) ; (2)

where

D l (a; b) = 1 �
Gl (a) � Gl (b)

kGl (a)kkGl (b)k
(3)

andw is a weights vector that controls how much each layer
contributes to the style distance measure. We deviate from
Gatyset al. [11] in use of the cosine distance (rather than
Euclidean) due to simpli�ed normalization and an observed
improvement in our initial experiments.

Given a set of user selected examples from a target style
(i.e. positive samples)T, and a set of user selected counter-
examples (i.e. negative samples)T0, we de�ne the user-
de�ned loss:

L user =
LX

l =1

wl � E l (4)

where

E l = c1 �
X

t i ;t j 2 T
i 6= j

D l (t i ; t j) � c2 �
X

(t ;t 0)2 T � T 0

D l (t ; t 0) (5)

is a layer-wise energy term,c1 andc2 are normalization con-
stants, and to prevent trivial solutionsw is constrained such
that

P L
l =1 wl = 1 andw � 0. Due to these constraints, we

note that even with only positive examplesT (i.e. T0 = ;),
E l is suf�ciently determined, and in such a case the second

term may be omitted. However, to reduce the risk of over-
�tting, a large number of negative examples may be drawn
randomly from the remaining dataset. This is of particu-
lar bene�t in real world settings without access to labeled
datasets, where an end user may select only a handful of
positive examples that share style as they perceive it.

We �nd the optimal weights for an end-user

w ? = arg min
w

LX

l =1

wl � E l (6)

subject to the above constraints, and substitute them into
Eq. (2) to produce the �nal user style distance metric.

We observe thatE l is constant w.r.t.w , thus Eq. (6)
is simply a linear combination and its intersection with the
hyperplane

P L
l =1 wl = 1 results in a twice-differentiable

convex optimization which we solve using Sequential Least
Squares Quadratic Programming (SLSQP) [36].

4. Experiments & Results

We �rst test if a method similar to image style ap-
proaches is able to capture 3D style signals, and quantify
the presence of this information at each layer. We evalu-
ate our proposed method for disentanglement of style from
content with a gradient visualization, thus demonstrating a
practical use-case in which a designer may utilize the feed-
back from the model. We then test few-shot learning of our
style metric in its ability to capture an end-user's subjective
requirements. Finally, we assess the effectiveness of our
approach when content labels are not available with com-
pletely unsupervised encoder pre-training.

For quantitative evaluation we use SolidMNIST [16],
which is a collection of extruded letters from a variety of
fonts including labels for both content (i.e. letter class) and
style (i.e. font class) (Table 1). This is a good choice of
data for initial validation of our design decisions, as the
2D nature of the elements of style in 3D shapes simpli�es
the analysis and debugging while the generation process of
these 3D letters mirrors the most typical CAD modelling
approach — drawing a 2D wire body, then extruding to 3D
and potentially �lleting/bevelling the edges.

In all cases we pre-train the classi�er on the training set
to predict the letter classes, and perform model selection
with the validation set. Following the methodology of Co-
henet al. [9] and Jayaramanet al. [16], we perform pre-
training using 26 classes (combining upper and lower case
examples). The dataset provided by Jayaramanet al. [16]
includes randomness in the �llet size, and extrusion depth
and angle. For the held-out test set used in all our evalu-
ations, we regenerate the letters to remove sources of ran-
domness (extrusion angle/amount and �llet size) within font
classes, hence strengthening the style labels. For further de-
tail, see Appendix E.

Train Validation Test

Examples 40,402 10,100 13,339
Letter Classes 26 26 26
Font Classes 1,664 1650 378
Random Extrude/Fillet 3 3 7

Table 1: Details of SolidMNIST dataset [16]. The test set is re-
generated without sources of randomness within font classes to
strengthen the associated style labels used for evaluation.

After pre-training, all experiments are performed using
the held-out test set. We note in particular that no examples
of the test fonts are included in the training/validation sets,
and that font style labels are used purely for evaluation and
not during pre-training.

For comparison with other representation types and en-
coders, we use MeshCNN [14] for meshes, and Pointnet++
[32] for point clouds. We use Pointnet++ over DGCNN
[37] or Pointnet [31] since we are drawing upon 2D style
literature. DGCNN aggregates intermediate layer activa-
tions according to locality in feature space rather than co-
ordinate space, and Pointnet does not perform hierarchical
pooling, thus Pointnet++ is a closer point cloud generaliza-
tion of the 2D CNN approach used in [11]. In mesh and
point cloud representations, there is no information regard-
ing local grouping of samples, thus it is not possible to apply
face-wise re-centering, so we use instance normalization for
the extracted activations throughout.

For comparison against existing SOTA, knowing of no
existing unsupervised B-Rep style learning methods, as a
baseline we use the geometric style embedding of PSNet
[6], without the colour inputs, which we refer to as PSNet*.
PSNet performs geometric and colour style transfer on point
clouds without surface normal. Its use of a pre-trained en-
coder allows us to adapt it to completely unsupervised set-
tings by pre-training the encoder through point cloud re-
construction rather than content classi�cation as proposed.
Further details in Appendix F.

4.1. Measuring Style Signal

We adopt the Linear Probe methodology [2] to measure
the amount of style signal present in the Gram matrices
of each layer of the pre-trained network. We train a lin-
ear classi�er on each layer's Gram matrixGl with ground
truth font labels on a subset of the SolidMNIST test set.
We select four visually distinct fonts in order to strengthen
the style labels with respect to style over style compata-
bility (see Figure 2), and due to many fonts in the test set
containing almost identical variants. Each encoder is pre-
trained with only letter classes as labels, and the four test
fonts used in this evaluation are previously unseen. Since
the dimensions of the Gram matrices are very large (i.e. in

Figure 3: Linear probe classi�cation accuracy scores for each en-
coder using font labels for evaluation (no font labels used during
pre-training). All fonts used here are previously unseen by the
networks. Random baseline: 0.25.

Figure 4: SolidMNIST Font Subset: Top-5 queries for a letter from
each font, with all weight distributed uniformly over the �rstL

2
layers. Red box indicates result does not match query font.

Figure 5: Visualization illustrating the sampling bias advantage
of UV-Net, whereby the details in the long surfaces of the `L' are
sampled more densely (each face in the B-Rep is sampled with a
uniform 10x10 grid) than the simple �at surface of the `Z' mak-
ing it much easier to differentiate between the different styles than
with the uniformly sampled point cloud.

some cases> 219), but we have only 137 examples, we per-
form logistic regression with L2 regularization and 5-fold
cross-validation to prevent over�tting. We report the mean
validation accuracies.

Figure 3 shows the mean validation accuracy using the
extracted Gram matrices from each layer in all three pre-
trained models. Compared to random baseline at 0.25, we
observe signi�cant indication of style being present in the

