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Figure 1. The ViewCube: clicking on the “front” face of the cube rotates the cube and the 3D scene to the front view. 

 

Abstract 

Literally hundreds of thousands of users of 2D computer-aided 

design (CAD) tools are in the difficult process of transitioning to 

3D CAD tools. A common problem for these users is 

disorientation in the abstract virtual 3D environments that occur 

while developing new 3D scenes. To help address this problem, 

we present a novel in-scene 3D widget called the ViewCube as a 

3D orientation indicator and controller. The ViewCube is a cube-

shaped widget placed in a corner of the window. When acting as 

an orientation indicator, the ViewCube turns to reflect the current 

view direction as the user re-orients the scene using other tools. 

When used as an orientation controller, the ViewCube can be 

dragged, or the faces, edges, or corners can be clicked on, to 

easily orient the scene to the corresponding view. We conducted a 

formal experiment to measure the performance of the ViewCube 

comparing: (1) ArcBall-style dragging using the ViewCube for 

manual view switching, (2) clicking on face/edge/corner elements 

of the ViewCube for automated view switching and (3) clicking 

on a dedicated row of buttons for automated view switching. The 

results indicate that users prefer and are almost twice as fast at 

using the ViewCube with dragging compared to clicking 

techniques, independent of a number of ViewCube 

representations that we examined. 

Categories and Subject Descriptors: H.5.2 [User 

Interfaces]: Graphical User Interfaces (GUI), 3D graphics 

Additional Keywords and Phrases: 3D navigation, 3D 

widgets, Desktop 3D environments, virtual camera. 

1 Introduction 

Despite the addition of 3D modeling functionality to 2D drafting 

and computer-aided design (CAD) applications in the late 1990’s, 

hundreds of thousands of users have been slow to move to 3D and 

so, have not been able to benefit from the many advantages of 

working in 3D. Through several exploratory usability studies1 

conducted with experienced users of 2D design applications as 

well as inexperienced users who needed to examine 3D data in the 

normal performance of their occupation, we discovered that the 

additional concepts and tools needed for orientation and 

navigation through a 3D scene were difficult for people to grasp. 

Typical 3D applications allow users to create, manipulate, and 

view 3D geometry on traditional two-dimensional displays. By 

rendering a view of the virtual 3D scene from a particular 

viewpoint, a 2D image can be shown on the display. While this 

allows a rich and effective means of simulating the experience of 

viewing real 3D objects and scenes, controlling the virtual 

viewpoint and understanding the position of the viewpoint relative 

to the object is a significant task for users new to 3D. To help 

facilitate this paradigm transition, we developed a number of tools 

to address these issues. In particular, this paper focuses on the 

orientation issues. 

1.1 Exploratory Study Observations 

In observing inexperienced users and their first encounters with 

3D applications, we found that many were confused and 

misinterpreted 3D scenes. For example, when first shown a 

perspective view of a box (with typical foreshortening), and are 

then shown a side view of the box (without any animated rotation 

between the two view), users misinterpreted the results. Typical 

comments would be: ―my box disappeared and there’s only a 

square now‖. Clearly for some users, they were confounded by 

                                                           
1 Internal usability studies were conducted by our Usability Group. 
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their familiarity with 2D images from their drafting work and had 

a difficult time understanding and realizing that there were hidden 

elements in the depth dimension. Once they were told, or realized 

that the object was three dimensional, users requested different 

views of the object not by specific view naming conventions like 

―front view‖ or ―bird’s eye view‖, etc. but by spatial relationships 

relative to their current view. For the box example, participants 

stated that they wanted ―to look at the side around the edge‖ or 

―go around to the back side.‖ 

In observing inexperienced 3D users, we found that many would 

attempt to move through 3D space using only the traditional 2D 

navigation tools: zoom and pan, even though tasks called for the 

use of other (3D specific) tools such as ―look around‖, ―orbit‖, or 

―fly/walk‖. Also, the first few minutes of use would often result in 

the viewpoint looking off into space where no data existed, or 

inside parts of the 3D model and/or upside down. In general, users 

reported a lack of understanding of their current orientation and 

how to go about correcting it once disoriented. 

1.2 ViewCube 

We present a new 3D widget called the ViewCube (see Figure 1) 

that is intended to address many of the orientation problems found 

in our exploratory study and in current methods. The ViewCube is 

a cube-shaped widget placed in the corner of the screen that 

serves as a proxy object for the 3D scene being created or 

modified. In the design of the widget, we apply the edicts of direct 

manipulation, namely ―(1) continuous representation of the object 

of interest, (2) physical actions or labeled button presses instead 

of complex syntax, and (3) rapid incremental reversible operations 

whose impact on the object of interest is immediately visible‖. We 

discuss the design rationale behind the ViewCube and its features, 

and evaluate the performance of the ViewCube. 

2 Related Work 

2.1 3D Navigation 

The most pervasive navigation metaphor is the cinematic camera 

model, enabling users to rotate, pan and zoom the viewpoint. 

Researchers have also explored other camera metaphors including 

―arcball‖ orbiting [Shoemake 1992] and flying [Stoev and Straber 

2002], using constraints [Mackinlay et al. 1990; Singh and 

Balakrishnan 2004; Hanson and Wernet 1997], drawing a path 

[Igarashi et al. 1998], through-the-lens control [Gleicher and 

Witkin 1992], points and areas of interests [Jul and Furnas 1998], 

two-handed techniques [Balakrishnan and Kurtenbach 1999; 

Zeleznik and Forsberg 1999], and combinations of techniques 

[Shneiderman 1983; Smith et al. 2001; Ware and Osborne 1990]. 

Bowman et al. present taxonomies and evaluations of various 

interactions and camera models [1999; 1997]. A variety of 

metaphors have been explored for navigating in a virtual 

environment such as ―eyeball‖, ―scene in hand‖, and ―flying‖ 

[Ware and Fleet 1997]. Finding effective viewing angles to 

facilitate 3D direct manipulation has also been investigated 

[Phillips et al. 1992]. Techniques such as HoverCam orbit objects 

at a constant distance and always face the object’s surface [Khan 

et al. 2005]. Other navigation techniques include UniCam 

[Zeleznik and Forsberg 1999] click-to-focus [Mackinlay et al. 

1990] and Tan et al. [2001]. 

2.2 View Switching 

A room metaphor for managing multiple workspaces has also 

been introduced [Henderson and Card 1986; Chapuis and Roussel 

2005]. Toolspaces [Pierce et al. 1999] are storage spaces attached 

to the user's virtual body where objects or views can be placed 

that are always accessible yet out of the user's view until needed. 

Users access these toolspaces to store and retrieve objects through 

a lightweight but rapid navigational glance. 

With the ExoVis technique, a 3D object is surrounded by 2D 

orthographic views (e.g., front, top, left) which are projected onto 

planes surrounding the 3D object. Thus multiple 2D and the 3D 

perspective views are available simultaneously and within the 

same 3D space for improved view integration [Tan et al. 2001; 

Tory 2003; Tory and Swindells 2003]. 

Early 3D VRML environments [Rezzonico and Thalmann 1996] 

offer ―3D bookmarks‖. The animated transitions between 

bookmark views, known as object constancy [Robertson et al. 

1989], reduces the need to re-assimilate the material once at the 

new view because the user saw ―how they got there‖, hence 

assisting orientation tasks. 

To facilitate the realization that objects have depth, Grossman et 

al. [2001] introduced animated rotation transitions between the 

different views in the VRML bookmarks fashion. If the current 

and target views were not both using the same view projection, 

the projection matrix was manipulated to more smoothly 

transition between orthographic and perspective views. 

The use of in-scene 3D widgets within the 3D workspace can 

facilitate 3D navigation tasks. Selectable ―3D arrows‖ [Chittaro 

and Burigat 2004] point to objects of interest in the scene and, if 

selected, take the user to the target. The 3D arrows update and re-

orientate as the user moves through the space or if the target 

moves. Within GeoZui3D [Komerska and Ware 2003] a ―scene 

navigation widget‖ provides a 3D manipulator for the user with 

the ability to translate, rotate and scale the 3D scene about the 

center of the workspace. 

The most closely related academic work is miniature overviews—

―Worlds in Miniature‖ (or WIM) [Stoakley et al. 1995]. A WIM 

approach is directed towards immersive head tracked display 

environments and augments the display of 3D scene with a 

miniature copy of the scene which the user can ―hold in their 

hand‖ and they control their viewpoint on the 3D scene by 

selecting locations on the miniature copy. Our solution differs in 

that we are, first, concerned with desktop virtual environments 

operated with standard mouse and keyboard and, second, instead 

of a literal miniature duplicate of the 3D scene, we use an abstract 

cube volume to represent and control viewing orientations.  

2.3 Commercial Tools 

In the commercial 3D application Maya, an in-scene widget called 

the ViewCompass provides more direct viewpoint selection, 

effectively replacing a small pull-down menu (see Figure 3). The 

ViewCompass is composed of a small cube in the scene that 

represents the current orientation of the scene, along with six 

cones pointing toward the faces of the cube. By clicking on the 

cone-shaped buttons, spatially associated with the faces of the 

cube, the virtual camera will turn to view that face, and both the 

model and the widget turn together during the animated transition. 

When clicking directly on the cube part of the ViewCompass, the 

camera moves to the standard three-quarter view (see top-right of 

Figure 2) regardless of which cube face was clicked.  Users 

reported that this ―return to the standard view‖ functionality was 

very useful as an orientation recovery mechanism when they 
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became disoriented in the 3D scene. ArcBall style dragging is not 

supported on the ViewCompass. 

Maya’s ViewCompass works towards a single-window workflow, 

avoiding the standard four-view approach by providing six 

standard orthographic views and one perspective view. However, 

we discovered that both engineering and architecture users have 

additional needs. For these classes of users, so-called ―half views‖ 

(e.g. Front-Right) and additional ―three-quarter views‖ (e.g. Top-

Right-Back) are fundamental to their workflow. As such, in 

typical 3D engineering applications, the standard-views menu is 

significantly longer, often with a dozen views from which to 

choose. Including all of the ―half‖ and ―three-quarter‖ views with 

the six standard ―face‖ views introduces an unwieldy total of 

twenty-six views.  

 

 

 

 

 

 

 

 

 

Figure 2. Standard Views (a) are accessible on the 
ViewCompass (b) where users can click the cones to view the 

scene from that point of view. Clicking the cube itself would 

move the camera to the standard three-quarter view with a 
perspective projection.  

Autodesk’s Inventor product, designed for CAD users, has an in-

scene widget, called the ―Glass Cube‖ (see Figure 3), that adds 

eight more viewpoints beyond the ViewCompass. Faces can be 

selected (by clicking on the green arrows on the faces) to move to 

that viewpoint. The corners of the Glass Cube can also be clicked 

on to move the viewpoint to a three-quarter view, providing a 

total of fourteen views. When the Glass Cube is ―face on‖, 

clicking on a cube edge will roll the view of the model about the 

center of the closest face. The edge control is split so that clicking 

on one-half of an edge will roll clockwise and the other half will 

roll counter-clockwise. As such, edge-viewpoints cannot be 

selected. The green arrows on the back sides of the cube are 

selectable as are back roll edge segments. The Glass Cube fills a 

large part of the center of the screen, and as it is semi-transparent, 

is effectively in front of the object or scene. Users must invoke the 

widget by going to the arcball tool and selecting the Glass Cube 

mode via a hotkey. Once they have oriented the scene as desired, 

selecting a different tool will remove the Glass Cube. As this 

modal tool is not visibly available in the GUI, it is unclear how 

many users have discovered and used this feature. Finally, the 

Glass Cube controls only support clicking and do not support 

dragging.  

 

Figure 3. The Glass Cube has a complex set of controls: 14 
selectable viewpoints (green arrows) and when “face on” edge 

segments are selectable and roll the view clockwise or counter-

clockwise. 

A number of factors make the Glass Cube objectionable even for 

the advanced users that we consulted. First, clicking through the 

transparent cube requires significant planning for the user to 

predict the outcome. Second, the roll operation is difficult to 

discover and operate. Finally, the Glass Cube itself visually 

interferes with the 3D scene being manipulated. 

3 The ViewCube 

To address all of the problems and user requirements stated 

above, we developed the ViewCube: a cube shaped widget with 

selectable pieces that spatially arranges the twenty-six possible 

views (8 corners, 12 edges, 6 faces – see Figure 4). The design is 

an extension of both the ViewCompass and of the Glass Cube but 

simplifies some interactions and makes some hidden functions 

explicit. Again, direct manipulation edicts are followed to assist 

novice 3D users.  

 

Figure 4. Split view diagram of the ViewCube from a ¾ view 
explicitly showing all currently selectable views (in this case 19 

views are accessible). 

The ViewCube maps the selectable views to a cube where the 

faces, edges and corners can be chosen (see Figure 4). These 

separate regions are effectively buttons where clicking a piece 

activates the command to set the viewpoint appropriately. Figure 

1 shows the effect of clicking the Front button on the cube: the 

view of the model of the car and the view of the ViewCube both 

animate (over 0.5 seconds) until the front of the car is facing the 

user. 

When inactive, the cube appears to be all one piece. So, to 

visually indicate which pieces of the cube are selectable, when the 

mouse pointer is above the cube, we highlight the part that would 

be selected if clicked (see Figure 5). 

 

Figure 5. ViewCube Selection Feedback. As the cursor moves 

over the ViewCube, the piece that would be selected if the user 

clicked the mouse button is highlighted. 

3.1 Dragging 

When users click on a piece of the cube to select that view, a 

quick animated rotation moves the scene and the cube to that view 

(see Figure 1).  But since the total hit area of the cube is quite 

large, it also affords dragging, and in a pilot study where only 
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clicking was provided, several users requested dragging. When 

the user clicks anywhere on the cube and begins to drag, the cube 

is rotated, along with the scene, providing freeform arcball-style 

direct manipulation of the camera position. Alternatively, a 

hotkey can be used to begin ViewCube dragging (for experienced 

users). 

During freeform orientation of the view while dragging on the 

ViewCube, it can be very difficult to move exactly to one of the 

fixed views. As the cube’s purpose is to select a fixed view, we 

added view snapping. While being dragged, when the viewpoint is 

within 10° of any of the fixed viewpoints, we snap to that view 

using snap-and-go [Baudisch et al. 2005; Bier 1990]. Due to the 

often abstract visual nature of the 3D scene under review (e.g. an 

incomplete wireframe display of a structure), we attempt to help 

the user easily determine if they are currently exactly at one of the 

fixed twenty-six views by drawing the outline of the cube using a 

solid line instead of a dashed line (see Figure 6).  

 

Figure 6. Before (left) and after (right): The dashed outline 

becomes solid to indicate that the camera is exactly at one of the 

fixed viewpoints. 

When the user engages the application’s orbit function to rotate 

the view of the scene, the ViewCube rotates as well to match. For 

additional feedback to the user, the piece of the ViewCube that 

represents the fixed viewpoint that is closest to the current scene 

orientation will be highlighted (see Figure 7). In this way, the user 

can easily see which piece of the cube to click on to quickly go 

exactly to the closest view, effectively to ―repair‖ or align the 

current viewpoint. Furthermore, the ―closest view‖ feedback 

makes it easier to choose a fixed view neighboring the current 

view to more easily make relative viewpoint changes. For 

example, clicking on a piece of the cube that is a direct (edge-to-

edge) neighbor to the current viewpoint will result in a small 

viewpoint change (45°) while clicking a piece far from the current 

viewpoint will result in a much larger turn (up to 180° if going 

from the Top Front Right to the Top Left Back, for example). 

Without the ―closest view‖ feedback, it is more difficult to judge 

how much of a viewpoint change will occur. 

 
Figure 7. When moving the viewpoint using the application’s 

Orbit tool, the cube rotates to match the scene orientation. The 

current closest fixed view is highlighted. Here, the scene is 
orbited slightly from almost Front (left) to almost Front-Top-

Right (right). 

Layout of Controls: 3D View-sensitive versus 2D Fixed  

In Figure 2(a), we see a list of fixed viewpoints presented in a 

menu. This could be called a ―2D fixed layout‖ while the spatial 

arrangement of the viewpoint buttons of the ViewCube design can 

be thought of as a ―3D view-sensitive layout‖ of controls.  

For example, if the user decides to switch to the Top viewpoint, it 

can be accessed directly in the list. However, on the ViewCube, 

the Top viewpoint may not be visible and the user would have to 

select an intermediate viewpoint first to ―get to‖ the Top 

viewpoint to select it, or they could click and drag to ViewCube to 

get to the Top view. View selection from a 2D fixed layout has 

the benefit of being able to go to any view in one click, at the 

expense of finding the button in a long list and the large amount 

of screen space that the list consumes. The cost of the 3D view-

sensitive cube-based button layout is that it may take up to two 

clicks to select a viewpoint. However, the cube arrangement has 

the benefits of relative selection (i.e. it is clear which viewpoints 

are close to the current viewpoint, which is difficult to determine 

when presented with a list of viewpoints) and it uses only a small 

amount of screen space.  The extra-click cost may seem high but 

note that at least 13 –and as many as 19– viewpoints are 

selectable on the cube at any given time in a single click, 

depending on its orientation. The remaining 7 to 13 views can be 

selected quickly, by dragging to rotate the cube around to the 

other side to the intended viewpoint, or by one additional click (if 

the first click is used to expose the hidden parts of the cube). In 

any case, considering object constancy and the principles of direct 

manipulation, the additional travel of the second animated 

transition or the freeform rotation would increase overall shape 

understanding [20]. 

 

Figure 8. ViewCube Design.  Components are the large center 
cube with selectable faces, edges, and corners, the triangles 

pointing “around the edges” to orthogonal faces, the “home” 

button in the top-left to return to a default view, and the “roll” 
arrows in the top-right for clockwise and counter-clockwise 

rotation. 

3.2 Reaching Orthogonal Views 

Switching from one face view, for example ―Front‖, to another, 

like ―Right‖, is quite common. However, when a ViewCube face 

is directly facing the user (as in Figure 8), the sides of the 

ViewCube are not visible, and so, are not directly selectable. If 

dragging is not used, this leads to the situation where moving 

from the Front view to the Right view would require two clicks; 

one click on the Front-Right edge and, once the Right face 

becomes visible, clicking on the Right face. To remove this extra 

step, we use the ViewCompass technique. We replaced the cones 

in the ViewCompass with triangles pointing to the orthogonal 

faces. Clicking on the triangle on the right side of the ViewCube 

in Figure 9 would rotate the scene and the cube to the Right view 

with a single click. Unlike the ViewCompass, these triangles are 

only visible when directly on a face view. The ViewCube can 

optionally show face views (or all views) orthographically or in 
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perspective. However, the ViewCube itself is always rendered in 

perspective so that edge and corner views of the ViewCube better 

convey the current viewpoint orientation. 

There are also two curved arrows to the top-right of the cube to 

support clockwise and counter-clockwise view ―roll‖ rotation, 

which was also identified as a user need in the field of industrial 

design. Unlike the Glass Cube, the roll arrows are only displayed 

when available and are presented as separate buttons for 

clockwise and counter-clockwise actions. As shown in Figure 9, if 

the user clicks the bottom arrow, the scene and the cube are 

rotated 90° clockwise. This is especially useful for the top and 

bottom views where the ―correct‖ orientation of a scene is often 

highly subjective. 

 

Figure 9. Before (left) and after (right): Clockwise and counter-

clockwise controls are shown when at a face view. Clicking the 

bottom (clockwise) arrow rotates the scene and the cube 90°. 

To minimize extra rotations when moving from one viewpoint to 

another, we use the local up model when moving to the top or 

bottom faces, and the global up model [Khan et al. 2005] in all 

other cases.  

3.3 Recovery 

Finally, to make the viewpoint ―recovery‖ function of the 

ViewCube more explicit (compared to the implicit ViewCompass 

approach), we added a ―home‖ icon that is always accessible, 

shown above and left of the cube in Figure 9. Clicking the Home 

button returns the view to the standard three-quarter view, or a 

pre-authored starting view. 

A second implicit recovery feature of the ViewCube is available 

when clicking on a piece of the ViewCube.  Once a viewpoint is 

selected in this manner, while the viewpoint orientation is being 

changed (during the animated transition), a ―fit-to-view‖ 

transformation is also applied.  This ―fit-to-view‖ function centers 

the 3D scene (or the selected 3D model if a component of the 

scene has been selected) ensuring that the (un-shown) bounding 

box of the scene is completely within the viewing area of the 

window.  This added functionality further helps novice 3D users 

to recover from navigation problems. 

 

Figure 10. Expanded hit areas for boundary buttons and 

additional buttons on the ViewCube. Clicking anywhere within 

the green regions will select the corresponding button. 

Finally, while the face buttons are fairly large, the hit areas on the 

boundary of the cube can become quite small, especially when the 

view is quite oblique, which occurs when the cube is rotationally 

close to one of the fixed face views. To help facilitate the 

selection of the boundary buttons, we algorithmically increase the 

hit zone areas in these cases (see Figure 10). Interior buttons are 

the same size as they appear to be but the boundary buttons are 

more than twice as large as they appear to be. We feel this has 

been quite effective. During extensive testing, no users expressed 

that the (visually) smaller ViewCube pieces were difficult to 

select. 

3.4 Rendering 

When the view has been rotated a number of times, it becomes 

more difficult to interpret the current orientation. While the text 

labels on the cube faces helps, we added some artificial lighting 

rendering cues such as the drop shadow beneath the cube, as 

though it was lit from the top, as well as a subtle gradation, from 

light blue to a darker blue, on the sides of the cube. 

Proxy-image labels for viewpoint switching are often used in 

commercial packages, of either a cube or a model, such as a 

house, as in Google’s SketchUp (see Figure 11). Text lists are also 

common (see Figure 2a). However, as mentioned earlier, these 

approaches do not scale well to include all twenty-six views. 

 

Figure 11. View proxy images in Google Sketchup. 

So, in addition to the text labels, we implemented designs with 2D 

proxy labels and no labels. We also created a design containing a 

proxy model of a 3D house within the cube (see Figure 12).  

 
Figure 12. Label Schemes: text, 2D proxy image, 3D proxy 

model, and no label. 

Each labeling scheme and interaction method has advantages and 

disadvantages as reported in the Experiment section below. 

4 Experiment 

To help determine the benefits and costs of these design choices, 

and to better understand how these methods scale from the six 

view case to the twenty-six views, we conducted a formal 

experiment.  

The goal of the experiment was to measure the performance and 

subjective preference of the ViewCube design while varying the 

labeling style and interaction model, clicking vs. dragging.  

4.1 Design 

The experimental design consisted of three orientation interaction 

techniques, four labeling schemes and two difficulty levels. 
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4.1.1 Orientation Interaction Techniques 

Specifically, three interaction techniques were studied: 

ArcBall – which takes only mouse drag events on the cube 

performing an ArcBall-style orbit operation with snapping to 

standard views; 

ClickCube – which takes only single mouse click inputs on the 

ViewCube’s faces (and face triangles or roll arrows for orthogonal 

faces), edges and corners; and 

List – which presents an exhaustive collection of buttons to the 

user similar to a toolbar or items in a pop-up menu (see Figure 

13), as well as the roll arrows. This condition represents a much 

less spatially related arrangement of controls (i.e., ―2D fixed 

layout‖ for orientation selection) compared to the ClickCube and 

ArcBall conditions (i.e., ―3D view-sensitive layout‖ for 

orientation selection).  

Both the ClickCube and List conditions animate the view 

transition to the target view after a ClickCube component (face, 

edge, or corner) or List button is selected, or any of the additional 

controls are selected (on mouse-up).  

4.1.2 Labeling Schemes 

In addition to the three interaction techniques, we varied the 

labeling schemes to indicate orientation.  First, Text labels were 

used such as ―Front‖ or ―Left‖ to indicate a face view. In the List 

of buttons condition, combined views were grouped (faces, edges 

and corners) and labeled with multiple terms such as ―Top-Left‖ 

or ―Front-Top-Right‖ for an edge and corner view respectively 

(see Figure 13b). The cube conditions had multiple faces visible 

to specify combined views (see Figure 12). Next we chose to use 

2D Graphics of a familiar object – a house – to indicate 

orientation. The house is used in numerous 3D applications (see 

Figure 11) to achieve standard views. The simplified house design 

consists of unique elements such as a door and chimney to make 

all faces look unique from each other. For the two cube conditions 

we defined two additional labeling schemes. The 3D-Model 

condition embeds an actual 3D model of a miniature house within 

the cube (see Figure 12) which acts as a proxy for the 3D scene. 

Finally, we had No Labels on the cube to emphasize relative 

orientation.  

4.1.3 Difficulty Levels 

To isolate the effect of easy view orientations (only face views 

such as ―Top‖) and more challenging orientations (such as ―Top-

Front-Right‖), we defined two levels of target difficulty: Face-

Views (the 6 face views) and All-Views (all 26 face, edge and 

corner views).  

4.2 Task – Target Matching 

Two shaded models of a car were shown; one in the left hand 

window (with an initial pseudo-random orientation) and one on 

the right (shown as the target orientation), as seen in Figure 13a. 

The subject is asked to orient the car in their (left) window to 

match the orientation of the car (presented in the right window) 

using one of the orientation techniques mentioned above. On trials 

where the target was oriented to the top or the bottom of the car, 

an additional ―roll‖ rotation step may be needed and the arrow 

buttons facilitated this action.  

In the ArcBall case, the orientations of the target car and subject’s 

car were checked on mouse-up events, and if they matched, a 

―Trial Success‖ message was displayed. In the ClickCube and List 

cases, a mouse-up event initiates playback of an animated 

transition, after which matching is checked. Each trial would 

continue until a match was achieved. After a pause of 3 seconds, 

the next trial would begin. A total of 15 trials were presented for 

each condition. For the All-Views condition, a subset of 5 faces, 5 

edges and 5 corner target orientations were chosen. We ignored 

the first 3 trials of each condition to factor out subjects becoming 

familiar with the interface and condition. All subjects experienced 

the same orientation trials but in random order. 

 
Figure 13. (a) Top: experiment screen. (b) Bottom: the List 

condition for (left to right) 6 Views with Text Labels, 6 Views 
with 2D Image Labels, 26 Views with Text Labels, and 26 

Views with 2D Image Labels. The area outlined shows how and 

where the various experiment conditions are displayed. 

A total of 18 subjects were used (8 men and 10 women) between 

the ages of 21 and 29. Roughly half had 3D modeling or extensive 

video game experience. All were experienced computer users. 

Before the start of the experiment, we briefly instructed the 

subjects on how each of the orientation techniques worked. Once 

comfortable, we asked them to complete the tasks as quickly and 

as accurately as possible, allowing them to rest between 

conditions.  

A within-subjects design was used with each subject using all 

three orientation techniques. This resulted in 18 subjects x 3 

techniques x 4 labels x 2 target difficulties x 12 trials = 5,184 data 

points. However, the List condition did not have the 3D-Model or 

the No Labels labeling conditions, and so this resulted in a total of 
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4,320 data points for the entire experiment. Trials were grouped 

by technique and counter balanced with 1/3 of the subjects using 

the List condition first, 1/3 using the ClickCube first and 1/3 using 

the ArcBall first. The remaining factors were randomly presented 

to the subjects. 

For every trial, we logged the time for the subject to complete the 

trial and recorded the number of mouse clicks pressed. Errors 

were not possible as the system waited for a positive match before 

proceeding to the next trial. After completing the experiment, 

subjects were given a short questionnaire to determine their 

preferences for the three techniques and the four labeling 

schemes.  

5 Results 

We performed an analysis of variance on the performance data 

and found a significant difference between the three techniques 

(List, ClickCube, and ArcBall) with F(2, 34) = 74.20, p < .0001.  

The ArcBall performance was 2.1 times faster than the List 

technique for the All-Views condition. No statistical significance 

in performance was found between the List and ClickCube 

techniques (see Figure 14). 

We found a significant difference for task difficulty with F(1, 17) 

= 289.73, p < .0001. That is, it took less time to orient to the six 

face viewpoints compared with the more complicated edge or 

corner viewpoints for all three techniques.  

 

Figure 14. Mean (All Users): List and ClickCube had little 

difference but the ArcBall was almost twice as fast at the List 

method. 

A significance interaction was found between orientation 

technique and task difficulty with values of F(2, 34) = 49.18, p < 

.0001 (see Figure 14). However, there was no statistically 

significant performance difference based on the various labeling 

schemes (Text, 2D-Graphics, 3D-Model and No Labels). A pair-

wise T-test of means (p < .05) reveals no differences between the 

labeling schemes within a given orientation technique and task 

difficulty. 

Overall, consistent with the performance results, subjects had a 

much stronger preference for the ArcBall compared to both the 

ClickCube and the List of buttons technique. The 3D-Model 

labeling scheme was preferred over other labeling schemes. 

Within the List condition, the 2D-Graphics were preferred over 

the Text labels (see Figure 15). 

 

Figure 15. Subject Preferences: the ArcBall and the 3D Model 

label type were preferred, and the Image buttons were favored 
over the Text buttons. 

6 Discussion 

6.1 Orientation Interaction Techniques 

The ArcBall greatly outperformed the ClickCube and List 

techniques. While we expected significant benefits of cube 

dragging, the factor of 2 times speed increase and the consistency 

of results were impressive. When using the List method, 

especially with Text labels, the task seems significantly more 

difficult than in any other case. As such, it was surprising that the 

ClickCube had no significant benefits over the List method. We 

believe this is due to a planning phase of the interaction that is 

common to both the List and the ClickCube. In practice, before 

choosing a viewpoint with these two techniques, the user must 

consider which might be the correct button.  Subjects could have 

used a fast random clicking strategy to complete the trials but we 

found that, perhaps due to the cost of the animated transitions, 

they would plan their choices. However, the ArcBall seems to 

afford immediate operation where the user completely forgoes 

any planning.  If the users finds that they are dragging in the 

―wrong‖ direction, they can switch directions very quickly and 

given the combination of a high C:D ratio and viewpoint 

snapping, can more easily match the target  in a short period of 

time. It is also interesting that for the simple six viewpoint case, 

the ArcBall was almost as fast as the short list of the six faces in 

the List. Furthermore, the ArcBall scales from the six viewpoint 

case to the twenty-six viewpoint case far better than the other 

techniques. With the other two techniques, the twenty additional 

viewpoints grossly affected performance. 

Despite the speed advantages of the ArcBall, we believe the 

ClickCube better supports novice users.  In our experience, when 

users first encounter a new widget, clicking seems to be a more 

common exploration method than initially dragging on a widget. 

As such, by supporting both clicking and dragging, we can 

accommodate both novice and advanced users. Another benefit of 

the ClickCube operation is the smooth animated transitions to the 

chosen viewpoint. This action creates a smoother visual flow 

while working. However, when dragging the ArcBall, the quick 

model rotation is visually jarring but gives better performance. 

6.2 Labeling Schemes 

As we expected significant variance based on the labeling 

scheme, we included four cases in our experiment.  In the ArcBall 

case, it is not terribly surprising to find that label type had little 

effect because once the subject had clicked on the ViewCube and 

started dragging, they would invariably switch to visually 

monitoring the jeep model –not the cube– to match it to the target.  

However, in the List and ClickCube cases, the subject’s 

performance seems to vary to the individual’s talent for 
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interpreting text, for some people, or imagery for others; but in 

any case did not significantly vary the time taken to complete the 

task. 

7 Conclusions 

Despite the seemingly simple function of a viewpoint orientation 

indicator and controller, we found many subtleties in designing 

and evaluating a widget that would accommodate a number of 

types of users and uses. These factors also play an important role 

in the overall user experience. 

In this paper we presented a novel ViewCube widget as a means 

for viewpoint switching between 26 views as well as offering 3D 

orientation information. Our experimental results indicated that 

users prefer and are twice as fast at using the ViewCube with 

dragging (to perform orbit operations with view snapping) 

compared to the ―single click based‖ view switching techniques. 

Also, by making the scene orientation always visible via the 

ViewCube as a proxy for the 3D scene, we make visible the effect 

of other application tools including ArcBall functionality. We 

found no significant performance effects of varying the 

ViewCube’s labeling schemes (using text, 2D graphics, a 3D 

proxy model, or no labels) but to facilitate collaboration we 

believe text labels are most beneficial.  In the future, just as the 

2D scrollbar facilitates 2D document navigation and orientation, 

we believe the ViewCube could evolve towards a similar ―3D 

scrollbar‖ for 3D environments.  
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