
Embedding the Pentaho Reporting Engine

This document is copyright © 2004-2010 Pentaho Corporation. No part may be reprinted without written
permission from Pentaho Corporation. All trademarks are the property of their respective owners.

Help and Support Resources

Support-related questions should be submitted through the Pentaho Community Forum at http://
forums.pentaho.org/. There is also a community documentation effort on the Pentaho Wiki at: http://
wiki.pentaho.org/ that you may find helpful.

For information about how to purchase enterprise-level support, please contact your sales representative, or
send an email to sales@pentaho.com.

For information about instructor-led training on the topics covered in this guide, visit http://www.pentaho.com/
training.

Limits of Liability and Disclaimer of Warranty
The author(s) of this document have used their best efforts in preparing the content and the programs
contained in it. These efforts include the development, research, and testing of the theories and programs to
determine their effectiveness. The author and publisher make no warranty of any kind, express or implied, with
regard to these programs or the documentation contained in this book.

The author(s) and Pentaho shall not be liable in the event of incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of the programs, associated instructions, and/or
claims.

Trademarks
Pentaho (TM) and the Pentaho logo are registered trademarks of Pentaho Corporation. All other trademarks
are the property of their respective owners. Trademarked names may appear throughout this document. Rather
than list the names and entities that own the trademarks or insert a trademark symbol with each mention of the
trademarked name, Pentaho states that it is using the names for editorial purposes only and to the benefit of
the trademark owner, with no intention of infringing upon that trademark.

Company Information
Pentaho Corporation
Citadel International, Suite 340
5950 Hazeltine National Drive
Orlando, FL 32822
Phone: +1 407 812-OPEN (6736)
Fax: +1 407 517-4575
http://www.pentaho.com

E-mail: communityconnection@pentaho.com
Sales Inquiries: sales@pentaho.com
Documentation Suggestions: documentation@pentaho.com
Sign up for our newsletter: http://community.pentaho.com/newsletter/

http://forums.pentaho.org/
http://forums.pentaho.org/
http://wiki.pentaho.org/
http://wiki.pentaho.org/
mailto:sales@pentaho.com
http://www.pentaho.com/training
http://www.pentaho.com/training
http://www.pentaho.com
mailto:communityconnection@pentaho.com
mailto:sales@pentaho.com
mailto:documentation@pentaho.com
http://community.pentaho.com/newsletter/

i

Contents
Introduction .. 2

Required Knowledge and Expertise ... 2

Obtaining the Pentaho Reporting SDK ... 3

Using the Included Eclipse Project ... 4

Embedding the Reporting Engine Into a Java Application .. 5
Overview .. 5
Sample 0: The Base Class ... 7
Sample 1: Static Report Definition, JDBC Input, PDF Output .. 11
Sample 2: Static Report Definition, JDBC Input, HTML Output .. 13

Pentaho Reporting's Capabilities ... 17
Technological Advantages .. 17
Input Types ... 17
Output Types ... 18
Pentaho Report Designer ... 18

Other Embedding Scenarios ... 20
Building a Custom Reporting Tool .. 20
Hacking Pentaho Report Designer ... 20
Embedding the Pentaho BI Platform .. 20

License Information ... 22

Further Reading ... 23

Developer Support ... 24

Anatomy of the Pentaho Reporting SDK .. 25

JAR Reference .. 27

Source Code Links .. 29

More Examples .. 31
Sample 3: Dynamically Generated, JDBC Input, Swing Output ... 31
Sample 4: Dynamically Generated, JDBC Input, Java Servlet Output ... 34

Embedding the Pentaho Reporting Engine 2

Introduction

The Pentaho Reporting engine is a small set of open source Java classes that enables
programmers to retrieve information from a data source, format and process it according to specified
parameters, then generate user-readable output. This document provides guidance and instructions
for using the Pentaho Reporting SDK to embed the Pentaho Reporting engine into a new or existing
Java application.

There are four sample applications in this document, all of which are included in the SDK as .java
files. Each adds one level of complexity or shows a different kind of output.

You should read this guide in order, from this point all the way to the end of the second example.
The remaining portion contains extra information about the Pentaho Reporting engine's capabilities,
licensing details, further examples, and information on where to get help and support.

Related Links
• Required Knowledge and Expertise Required Knowledge and Expertise

Required Knowledge and Expertise

This document is strictly for Java software developers. You must be familiar with importing
JARs into a project, and be comfortable reading inline comments in code to figure out advanced
functionality on your own. Proficiency in connecting to data sources is a helpful skill for developing
your own application around the Pentaho Reporting engine, but is not required to follow the
examples.

Related Links
• Introduction Introduction

Embedding the Pentaho Reporting Engine 3

Obtaining the Pentaho Reporting SDK

You can download the latest Pentaho Reporting software development kit (SDK) from http://
reporting.pentaho.com.

The SDK is available as both a .tar.gz and a .zip archive; both contain the same files, but the .zip file
format is more Windows-friendly, and .tar.gz is more Mac-, Linux-, and Unix-friendly.

Once downloaded, unpack the Pentaho Reporting SDK archive to a convenient and accessible
location. If you use the Eclipse or IntelliJ IDEA development environments, this directory will also
serve as your workspace.

In an effort to reduce the size of the SDK, the source code of its constituent libraries is not included.
If you need to see the source to any of the software distributed with the Pentaho Reporting SDK,
see Source Code Links on page 29 for instructions.

Embedding the Pentaho Reporting Engine 4

Using the Included Eclipse Project

If you use the Eclipse or IntelliJ IDEA development environments, you can use the Eclipse project
included with the Pentaho Reporting SDK to work directly with the example source code. Simply
select the unpacked Pentaho Reporting SDK directory as your workspace.

You can also launch the Sample1.java and Sample2.java example applications directly from the
file browser in Eclipse.

Embedding the Pentaho Reporting Engine 5

Embedding the Reporting Engine Into a Java Application

This section shows in detail how to build a simple reporting application around the Pentaho
Reporting engine. There are three classes for the two examples shown in this section:

1. AbstractReportGenerator.java
2. Sample1.java
3. Sample2.java

You can find the full example source code, plus the .prpt report file they use, in the /source/org/
pentaho/reporting/engine/classic/samples/ directory in the Pentaho Reporting SDK.

Related Links
• Overview Overview
• Sample 0: The Base Class Sample 0: The Base Class
• Sample 1: Static Report Definition, JDBC Input, PDF Output Sample 1: Static Report Definition,
JDBC Input, PDF Output
• Sample 2: Static Report Definition, JDBC Input, HTML Output Sample 2: Static Report Definition,
JDBC Input, HTML Output

Overview

In the following samples, the interaction with the Reporting engine follows these basic steps:

1. Boot (initialize)
2. Get the report definition
3. Get the data for the report (if it is created outside of the report definition)
4. Get any report generation parameters (optional)
5. Generate the report output in the requested format

With the samples, this allows us to create an abstract base class for all the samples
(AbstractReportGenerator). This class defines the abstract methods:

• getReportDefinition(): this loads/creates/returns the report definition
• getDataFactory(): this returns the data to be used by the reporting engine (if the report

definition does not tell the engine how to retrieve the data).
• getReportParameters(): this returns the set of parameters the reporting engine will use while

generating the report

The generateReport() method tells the reporting engine to generate the report using the above
method, and creates the output in one of the following methods (using the OutputType parameter):
HTML, PDF, or XLS (Excel). A full list of output types is listed later in this guide, but to keep these
examples simple, we'll concentrate on these three.

Sample1.java

In this sample, the getReportDefinition() method loads the report definition from a PRPT file
created using the Pentaho Report Designer. This report definition defines the following:

• Data Query (retrieving a list of customers based on a set of customer names)
• Report Title
• Report Header – set of 4 columns (Customer Number, Customer Name, Postal Code, Country)
• Report Data – set of 4 columns (Customer Number, Customer Name, Postal Code, Country)

Embedding the Pentaho Reporting Engine 6

The getDataFactory() method returns null to indicate that no data factory is required to be provided.
In this example, the source of data is defined in the report definition.

The getReportParameters() method defines three parameters in a HashMap:

Parameter Name Parameter Value Description

Report Title Simple Embedded Report Example
with Parameters

The value of this parameter will
be placed in the Report Title that
is centered on the top of each
page in the report. In the report
definition, the Report Title field is a
Text Field whose value is “Report
Title”. This indicates that the field
will use the value of the parameter
“Report Title” when the report is
generated.

Col Headers BG Color yellow The value of this parameter will
be used as the background color
of the column header fields. In
the report definition, all four of the
column header fields are defined
with a bg-color style of “=[Col
Headers BG Color]”. This indicates
that the value of the “Col Header
BG Color” parameter will be used
as that value.

Customer Names "American Souvenirs Inc",
"Toys4GrownUps.com",
"giftsbymail.co.uk",
"BG&E Collectables",
"Classic Gift Ideas, Inc"

The value of this parameter
defines a set of Customer Names
that will be used in the data query.
This allows the sample to define
which customers will be used in
the report at the time the report is
generated.

SELECT

 "CUSTOMERS"."CUSTOMERNAME",

 "CUSTOMERS"."POSTALCODE",
 "CUSTOMERS"."COUNTRY",

 "CUSTOMERS"."CUSTOMERNUMBER"
FROM
 "CUSTOMERS"
WHERE

 "CUSTOMERS"."CUSTOMERNAME"
 IN (${Customer Names})

The main() method creates an output filename in which the report will be generated and then starts
the report generation process.

Sample2.java

In this sample, the getReportDefinition() method creates a blank report and sets the query name to
“ReportQuery”. It then adds a report pre-processor called RelationalAutoGeneratorPreProcessor.

Report pre-processors execute during the report generation process after the data query has been
executed but before the report definition is used to determine the actual layout of the report. The

Embedding the Pentaho Reporting Engine 7

benefit of this is that the RelationalAutoGeneratorPreProcessor will use the column information
retrieved from the data query to add header fields in the Page Header and data fields in the Item
Band of the report definition for each column of data in the result set.

The getDataFactory() method first defines the “DriverConnectionProvider” which contains all the
information required to connect to the database. It then defines the “DataFactory” which will use the
connection provider to connect to the database. The Data Factory then has the query set which will
be used in report generation. The query name “ReportQuery” must match the query name defined
when the report definition was created or else the report will contain no data.

The getReportParameters() method is not used in this example, so it returns null.

The main() method creates an output filename in which the report will be generated and then starts
the report generation process.

Related Links
• Embedding the Reporting Engine Into a Java Application Embedding the Reporting Engine Into a
Java Application

Sample 0: The Base Class

The AbstractReportGenerator class shown below is extended by the two primary example
applications. It contains the basic logic that creates a report, leaving the details of input and output
to the classes that extend it:

/*
 * This program is free software; you can redistribute it and/or modify it under
 the
 * terms of the GNU Lesser General Public License, version 2.1 as published by the
 Free Software
 * Foundation.
 *
 * You should have received a copy of the GNU Lesser General Public License along
 with this
 * program; if not, you can obtain a copy at http://www.gnu.org/licenses/old-
licenses/lgpl-2.1.html
 * or from the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT ANY
 WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * Copyright 2009 Pentaho Corporation. All rights reserved.
 *
 * Created July 22, 2009
 * @author dkincade
 */
package org.pentaho.reporting.engine.classic.samples;

import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Map;

import org.pentaho.reporting.engine.classic.core.ClassicEngineBoot;
import org.pentaho.reporting.engine.classic.core.DataFactory;
import org.pentaho.reporting.engine.classic.core.MasterReport;
import org.pentaho.reporting.engine.classic.core.ReportProcessingException;

Embedding the Pentaho Reporting Engine 8

import org.pentaho.reporting.engine.classic.core.layout.output.
AbstractReportProcessor;
import org.pentaho.reporting.engine.classic.core.modules.output.pageable.
base.PageableReportProcessor;
import org.pentaho.reporting.engine.classic.core.modules.output.pageable.
pdf.PdfOutputProcessor;
import org.pentaho.reporting.engine.classic.core.modules.output.table.base
.FlowReportProcessor;
import org.pentaho.reporting.engine.classic.core.modules.output.table.base
.StreamReportProcessor;
import org.pentaho.reporting.engine.classic.core.modules.output.table.html
.AllItemsHtmlPrinter;
import org.pentaho.reporting.engine.classic.core.modules.output.table.html
.FileSystemURLRewriter;
import org.pentaho.reporting.engine.classic.core.modules.output.table.html
.HtmlOutputProcessor;
import org.pentaho.reporting.engine.classic.core.modules.output.table.html
.HtmlPrinter;
import org.pentaho.reporting.engine.classic.core.modules.output.table.html
.StreamHtmlOutputProcessor;
import org.pentaho.reporting.engine.classic.core.modules.output.table.xls.
FlowExcelOutputProcessor;
import org.pentaho.reporting.libraries.repository.ContentLocation;
import org.pentaho.reporting.libraries.repository.DefaultNameGenerator;
import org.pentaho.reporting.libraries.repository.stream.StreamRepository;

/**
 * This is the base class used with the report generation examples. It contains
 the actual <code>embedding</code>
 * of the reporting engine and report generation. All example embedded
 implementations will need to extend this class
 * and perform the following:
 *
 * Implement the <code>getReportDefinition()</code> method and return the
 report definition (how the report
 * definition is generated is up to the implementing class).
 * Implement the <code>getTableDataFactory()</code> method and return the data
 factory to be used (how
 * this is created is up to the implementing class).
 * Implement the <code>getReportParameters()</code> method and return the set
 of report parameters to be used.
 * If no report parameters are required, then this method can simply return
 <code>null</code>
 *
 */
public abstract class AbstractReportGenerator
{
 /**
 * The supported output types for this sample
 */
 public static enum OutputType
 {
 PDF, EXCEL, HTML
 }

 /**
 * Performs the basic initialization required to generate a report
 */
 public AbstractReportGenerator()
 {
 // Initialize the reporting engine
 ClassicEngineBoot.getInstance().start();
 }

 /**
 * Returns the report definition used by this report generator. If this method
 returns <code>null</code>,
 * the report generation process will throw a <code>NullPointerException</code>.
 *
 * @return the report definition used by thus report generator

Embedding the Pentaho Reporting Engine 9

 */
 public abstract MasterReport getReportDefinition();

 /**
 * Returns the data factory used by this report generator. If this method
 returns <code>null</code>,
 * the report generation process will use the data factory used in the report
 definition.
 *
 * @return the data factory used by this report generator
 */
 public abstract DataFactory getDataFactory();

 /**
 * Returns the set of parameters that will be passed to the report generation
 process. If there are no parameters
 * required for report generation, this method may return either an empty or a
 <code>null</code> <code>Map</code>
 *
 * @return the set of report parameters to be used by the report generation
 process, or <code>null</code> if no
 * parameters are required.
 */
 public abstract Map<String, Object> getReportParameters();

 /**
 * Generates the report in the specified <code>outputType</code> and writes it
 into the specified
 * <code>outputFile</code>.
 *
 * @param outputType the output type of the report (HTML, PDF, HTML)
 * @param outputFile the file into which the report will be written
 * @throws IllegalArgumentException indicates the required parameters were not
 provided
 * @throws IOException indicates an error opening the file for
 writing
 * @throws ReportProcessingException indicates an error generating the report
 */
 public void generateReport(final OutputType outputType, File outputFile)
 throws IllegalArgumentException, IOException, ReportProcessingException
 {
 if (outputFile == null)
 {
 throw new IllegalArgumentException("The output file was not specified");
 }

 OutputStream outputStream = null;
 try
 {
 // Open the output stream
 outputStream = new BufferedOutputStream(new FileOutputStream(outputFile));

 // Generate the report to this output stream
 generateReport(outputType, outputStream);
 }
 finally
 {
 if (outputStream != null)
 {
 outputStream.close();
 }
 }
 }

 /**
 * Generates the report in the specified <code>outputType</code> and writes it
 into the specified
 * <code>outputStream</code>.
 * <p/>
 * It is the responsibility of the caller to close the <code>outputStream</code>

Embedding the Pentaho Reporting Engine 10

 * after this method is executed.
 *
 * @param outputType the output type of the report (HTML, PDF, HTML)
 * @param outputStream the stream into which the report will be written
 * @throws IllegalArgumentException indicates the required parameters were not
 provided
 * @throws ReportProcessingException indicates an error generating the report
 */
 public void generateReport(final OutputType outputType, OutputStream
 outputStream)
 throws IllegalArgumentException, ReportProcessingException
 {
 if (outputStream == null)
 {
 throw new IllegalArgumentException("The output stream was not specified");
 }

 // Get the report and data factory
 final MasterReport report = getReportDefinition();
 final DataFactory dataFactory = getDataFactory();

 // Set the data factory for the report
 if (dataFactory != null)
 {
 report.setDataFactory(dataFactory);
 }

 // Add any parameters to the report
 final Map<String, Object> reportParameters = getReportParameters();
 if (null != reportParameters)
 {
 for (String key : reportParameters.keySet())
 {
 report.getParameterValues().put(key, reportParameters.get(key));
 }
 }

 // Prepare to generate the report
 AbstractReportProcessor reportProcessor = null;
 try
 {
 // Greate the report processor for the specified output type
 switch (outputType)
 {
 case PDF:
 {
 final PdfOutputProcessor outputProcessor =
 new PdfOutputProcessor(report.getConfiguration(), outputStream,
 report.getResourceManager());
 reportProcessor = new PageableReportProcessor(report, outputProcessor);
 break;
 }

 case EXCEL:
 {
 final FlowExcelOutputProcessor target =
 new FlowExcelOutputProcessor(report.getConfiguration(),
 outputStream, report.getResourceManager());
 reportProcessor = new FlowReportProcessor(report, target);
 break;
 }

 case HTML:
 {
 final StreamRepository targetRepository = new
 StreamRepository(outputStream);
 final ContentLocation targetRoot = targetRepository.getRoot();
 final HtmlOutputProcessor outputProcessor = new
 StreamHtmlOutputProcessor(report.getConfiguration());

Embedding the Pentaho Reporting Engine 11

 final HtmlPrinter printer = new
 AllItemsHtmlPrinter(report.getResourceManager());
 printer.setContentWriter(targetRoot, new
 DefaultNameGenerator(targetRoot, "index", "html"));
 printer.setDataWriter(null, null);
 printer.setUrlRewriter(new FileSystemURLRewriter());
 outputProcessor.setPrinter(printer);
 reportProcessor = new StreamReportProcessor(report, outputProcessor);
 break;
 }
 }

 // Generate the report
 reportProcessor.processReport();
 }
 finally
 {
 if (reportProcessor != null)
 {
 reportProcessor.close();
 }
 }
 }
}

Related Links
• Embedding the Reporting Engine Into a Java Application Embedding the Reporting Engine Into a
Java Application

Sample 1: Static Report Definition, JDBC Input, PDF Output

The simplest embedding scenario produces a static report (no user input regarding a data source or
query), with JDBC input from the Pentaho-supplied SampleData HSQLDB database, and produces
a PDF on the local filesystem.

/*
 * This program is free software; you can redistribute it and/or modify it under
 the
 * terms of the GNU Lesser General Public License, version 2.1 as published by the
 Free Software
 * Foundation.
 *
 * You should have received a copy of the GNU Lesser General Public License along
 with this
 * program; if not, you can obtain a copy at http://www.gnu.org/licenses/old-
licenses/lgpl-2.1.html
 * or from the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT ANY
 WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * Copyright 2009 Pentaho Corporation. All rights reserved.
 *
 * Created July 22, 2009
 * @author dkincade
 */
package org.pentaho.reporting.engine.classic.samples;

import java.io.File;
import java.io.IOException;
import java.net.URL;
import java.util.Map;

Embedding the Pentaho Reporting Engine 12

import java.util.HashMap;

import org.pentaho.reporting.engine.classic.core.DataFactory;
import org.pentaho.reporting.engine.classic.core.MasterReport;
import org.pentaho.reporting.engine.classic.core.ReportProcessingException;
import org.pentaho.reporting.libraries.resourceloader.Resource;
import org.pentaho.reporting.libraries.resourceloader.ResourceException;
import org.pentaho.reporting.libraries.resourceloader.ResourceManager;

/**
 * Generates a report in the following scenario:
 *
 * The report definition file is a .prpt file which will be loaded and parsed
 * The data factory is a simple JDBC data factory using HSQLDB
 * There are no runtime report parameters used
 *
 */
public class Sample1 extends AbstractReportGenerator
{
 /**
 * Default constructor for this sample report generator
 */
 public Sample1()
 {
 }

 /**
 * Returns the report definition which will be used to generate the report. In
 this case, the report will be
 * loaded and parsed from a file contained in this package.
 *
 * @return the loaded and parsed report definition to be used in report
 generation.
 */
 public MasterReport getReportDefinition()
 {
 try
 {
 // Using the classloader, get the URL to the reportDefinition file
 final ClassLoader classloader = this.getClass().getClassLoader();
 final URL reportDefinitionURL = classloader.getResource("org/pentaho/
reporting/engine/classic/samples/Sample1.prpt");

 // Parse the report file
 final ResourceManager resourceManager = new ResourceManager();
 resourceManager.registerDefaults();
 final Resource directly =
 resourceManager.createDirectly(reportDefinitionURL, MasterReport.class);
 return (MasterReport) directly.getResource();
 }
 catch (ResourceException e)
 {
 e.printStackTrace();
 }
 return null;
 }

 /**
 * Returns the data factory which will be used to generate the data used during
 report generation. In this example,
 * we will return null since the data factory has been defined in the report
 definition.
 *
 * @return the data factory used with the report generator
 */
 public DataFactory getDataFactory()
 {
 return null;
 }

Embedding the Pentaho Reporting Engine 13

 /**
 * Returns the set of runtime report parameters. This sample report uses the
 following three parameters:
 *
 * Report Title - The title text on the top of the report
 * Customer Names - an array of customer names to show in the
 report
 * Col Headers BG Color - the background color for the column
 headers
 *
 *
 * @return <code>null</code> indicating the report generator does not use any
 report parameters
 */
 public Map<String, Object> getReportParameters()
 {
 final Map parameters = new HashMap<String, Object>();
 parameters.put("Report Title", "Simple Embedded Report Example with
 Parameters");
 parameters.put("Col Headers BG Color", "yellow");
 parameters.put("Customer Names",
 new String [] {
 "American Souvenirs Inc",
 "Toys4GrownUps.com",
 "giftsbymail.co.uk",
 "BG&E Collectables",
 "Classic Gift Ideas, Inc",
 });
 return parameters;
 }

 /**
 * Simple command line application that will generate a PDF version of the
 report. In this report,
 * the report definition has already been created with the Pentaho Report
 Designer application and
 * it located in the same package as this class. The data query is located in
 that report definition
 * as well, and there are a few report-modifying parameters that will be passed
 to the engine at runtime.
 * <p/>
 * The output of this report will be a PDF file located in the current directory
 and will be named
 * <code>SimpleReportGeneratorExample.pdf</code>.
 *
 * @param args none
 * @throws IOException indicates an error writing to the filesystem
 * @throws ReportProcessingException indicates an error generating the report
 */
 public static void main(String[] args) throws IOException,
 ReportProcessingException
 {
 // Create an output filename
 final File outputFilename = new File(Sample1.class.getSimpleName() + ".pdf");

 // Generate the report
 new Sample1().generateReport(AbstractReportGenerator.OutputType.PDF,
 outputFilename);

 // Output the location of the file
 System.err.println("Generated the report [" + outputFilename.getAbsolutePath()
 + "]");
 }
}

Related Links
• Embedding the Reporting Engine Into a Java Application Embedding the Reporting Engine Into a
Java Application

Embedding the Pentaho Reporting Engine 14

Sample 2: Static Report Definition, JDBC Input, HTML Output

This example produces a static report (no user input regarding a data source or query), with JDBC
input from the Pentaho-supplied SampleData HSQLDB database, and produces an HTML file on the
local filesystem.

/*
 * This program is free software; you can redistribute it and/or modify it under
 the
 * terms of the GNU Lesser General Public License, version 2.1 as published by the
 Free Software
 * Foundation.
 *
 * You should have received a copy of the GNU Lesser General Public License along
 with this
 * program; if not, you can obtain a copy at http://www.gnu.org/licenses/old-
licenses/lgpl-2.1.html
 * or from the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT ANY
 WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * Copyright 2009 Pentaho Corporation. All rights reserved.
 *
 * Created July 22, 2009
 * @author dkincade
 */
package org.pentaho.reporting.engine.classic.samples;

import java.io.File;
import java.io.IOException;
import java.util.Map;

import org.pentaho.reporting.engine.classic.core.DataFactory;
import org.pentaho.reporting.engine.classic.core.MasterReport;
import org.pentaho.reporting.engine.classic.core.ReportProcessingException;
import org.pentaho.reporting.engine.classic.core.PageDefinition;
import org.pentaho.reporting.engine.classic.core.wizard.
RelationalAutoGeneratorPreProcessor;
import org.pentaho.reporting.engine.classic.core.modules.
misc.datafactory.sql.SQLReportDataFactory;
import org.pentaho.reporting.engine.classic.core.modules.
misc.datafactory.sql.DriverConnectionProvider;

/**
 * Generates a report in the following scenario:
 *
 * The report definition file is a .prpt file which will be loaded and parsed
 * The data factory is a simple JDBC data factory using HSQLDB
 * There are no runtime report parameters used
 *
 */
public class Sample2 extends AbstractReportGenerator
{
 private static final String QUERY_NAME = "ReportQuery";

 /**
 * Default constructor for this sample report generator
 */
 public Sample2()
 {
 }

Embedding the Pentaho Reporting Engine 15

 /**
 * Returns the report definition which will be used to generate the report. In
 this case, the report will be
 * loaded and parsed from a file contained in this package.
 *
 * @return the loaded and parsed report definition to be used in report
 generation.
 */
 public MasterReport getReportDefinition()
 {
 final MasterReport report = new MasterReport();
 report.setQuery(QUERY_NAME);
 report.addPreProcessor(new RelationalAutoGeneratorPreProcessor());
 return report;
 }

 /**
 * Returns the data factory which will be used to generate the data used during
 report generation. In this example,
 * we will return null since the data factory has been defined in the report
 definition.
 *
 * @return the data factory used with the report generator
 */
 public DataFactory getDataFactory()
 {
 final DriverConnectionProvider sampleDriverConnectionProvider = new
 DriverConnectionProvider();
 sampleDriverConnectionProvider.setDriver("org.hsqldb.jdbcDriver");
 sampleDriverConnectionProvider.setUrl("jdbc:hsqldb:./sql/sampledata");
 sampleDriverConnectionProvider.setProperty("user", "sa");
 sampleDriverConnectionProvider.setProperty("password", "");

 final SQLReportDataFactory dataFactory = new
 SQLReportDataFactory(sampleDriverConnectionProvider);
 dataFactory.setQuery(QUERY_NAME,
 "select CUSTOMERNAME, CITY, STATE, POSTALCODE, COUNTRY from CUSTOMERS
 order by UPPER(CUSTOMERNAME)");

 return dataFactory;
 }

 /**
 * Returns the set of runtime report parameters. This sample report does not use
 report parameters, so the
 * method will return <code>null</code>
 *
 * @return <code>null</code> indicating the report generator does not use any
 report parameters
 */
 public Map<String, Object> getReportParameters()
 {
 return null;
 }

 public static void main(String[] args) throws IOException,
 ReportProcessingException
 {
 // Create an output filename
 final File outputFilename = new File(Sample2.class.getSimpleName() + ".html");

 // Generate the report
 new Sample2().generateReport(AbstractReportGenerator.OutputType.HTML,
 outputFilename);

 // Output the location of the file
 System.err.println("Generated the report [" + outputFilename.getAbsolutePath()
 + "]");
 }
}

Embedding the Pentaho Reporting Engine 16

Related Links
• Embedding the Reporting Engine Into a Java Application Embedding the Reporting Engine Into a
Java Application

Embedding the Pentaho Reporting Engine 17

Pentaho Reporting's Capabilities

Now that you are familiar with the basic functions of the Pentaho Reporting engine, you're prepared
to learn more about its advanced features, explained in the subsections below.

Related Links
• Technological Advantages Technological Advantages
• Input Types Input Types
• Output Types Output Types
• Pentaho Report Designer Pentaho Report Designer

Technological Advantages

The Pentaho Reporting engine offers unique functionality not found in competing embeddable
solutions:

• Does not require a JDK at runtime. While you do need a Java Development Kit installed on
your development machine, you do not need a JDK to run a program that embeds the Pentaho
Reporting engine -- just a standard Sun Java Runtime Environment.

• All processing is done in memory. No temporary files are created by the Reporting engine.
A program that relies on the Pentaho Reporting engine for report generation can run on a
diskless system.

• Potentially backwards-compatible to JDK 1.2. The Pentaho Reporting architect has given
special consideration to users and developers on legacy systems. While Pentaho focuses its
in-house development and QA efforts on JRE 1.6.0, it is possible to use the Reporting engine
in older JREs by adding JDBC and JNDI libraries.

• Dynamically and automatically adjustable components. The Pentaho Reporting engine
detects JARs that add functionality at runtime, so you can add new JARs to expand the
engine's capabilities, or remove unnecessary JARs to reduce your application's memory and
disk space footprint.

• Low memory footprint. A Pentaho Reporting-based application can run with as little as 64MB
of memory (though 128MB would dramatically increase report processing speed).

• Totally configurable through runtime parameterization. Every style, function, query, and
report element is fully customizable by passing parameters to the Reporting engine when you
render a report.

• OpenFormula integration. OpenFormula is an open standard for mathematical formulas.
You can easily create your own custom formulas, or you can customize the ones built into the
Pentaho Reporting engine with this clearly and freely documented standard.

• Simple resource management. Using the OpenDocument Format (ODF), the Pentaho
Reporting engine bundles all report resources, including the data source connection
information, query, and even binary resources like images into one canonical file. This
simplifies physical resource management and eliminates relative path problems.

Related Links
• Pentaho Reporting's Capabilities Pentaho Reporting's Capabilities

Input Types

The Pentaho Reporting engine can connect to virtually any data source:

Embedding the Pentaho Reporting Engine 18

• JDBC
• JNDI
• Kettle (Pentaho Data Integration)
• Simple SQL (JDBC Custom)
• Pentaho Metadata
• Mondrian MDX
• OLAP4J
• XML
• Simple table
• Scripting data sources (JavaScript, Python, TCL, Groovy, BeanShell)
• Java method invocation
• Hibernate

If your data source is not directly supported, you can use Pentaho Data Integration to transform it
into a more report-friendly format, or you can design your own custom data source interface.

Related Links
• Pentaho Reporting's Capabilities Pentaho Reporting's Capabilities

Output Types

The Pentaho Reporting engine can create reports in a variety of relevant file formats:

• PDF
• HTML
• Excel
• CSV
• RTF
• XML
• Plain text

All of the output types listed above are highly customizable in terms of style, formatting, and
pagination. You can also specify your own output type if none of the standard choices are sufficient.

Related Links
• Pentaho Reporting's Capabilities Pentaho Reporting's Capabilities

Pentaho Report Designer

The examples in this guide accept data source input and create user-readable output, which is
essentially what the Pentaho Report Designer does with its graphical user interface. In addition to
being a powerful report creation and design tool, Report Designer is also an extraordinary example
of a Java application that embeds the Pentaho Reporting engine.

Embedding the Pentaho Reporting Engine 19

You can also create report definition files with Report Designer, then use your custom Reporting
engine-based application to render them at a later time.

Related Links
• Pentaho Reporting's Capabilities Pentaho Reporting's Capabilities

Embedding the Pentaho Reporting Engine 20

Other Embedding Scenarios

Pentaho offers many embeddable structures -- not just the Reporting engine. You can also embed
or extend the Pentaho Analysis engine (Mondrian), the Pentaho BI Platform, part or all of Pentaho
Data Integration (Kettle), and the Weka data mining engine. This guide is focused on reporting,
however, so the below scenarios only involve the reporting components of the Pentaho BI Suite.

Related Links
• Building a Custom Reporting Tool Building a Custom Reporting Tool
• Hacking Pentaho Report Designer Hacking Pentaho Report Designer
• Embedding the Pentaho BI Platform Embedding the Pentaho BI Platform

Building a Custom Reporting Tool

The examples in this guide have covered simple scenarios that don't involve a high degree
of user interactivity. It's easy to imagine how far you can expand the example code, even to
the point of building your own client tools. On a slightly smaller scale, you could build a report-
generation program that merely takes some parameters from a user, then silently emails the report
to designated recipients via the Java mail component. You could also design a reporting daemon or
service that listens for incoming requests and outputs reports to a Web server.

Pentaho Report Designer is built on the Pentaho Reporting engine, as is the ad hoc reporting
functionality built into the Pentaho User Console in the BI Platform. If you need a graphical report
creation tool, it would be easier to modify Report Designer than it would be to rewrite it from scratch.
For Web-based ad hoc reporting, you will have an easier time embedding the entire BI Platform than
trying to isolate and embed just the ad hoc component.

Related Links
• Other Embedding Scenarios Other Embedding Scenarios

Hacking Pentaho Report Designer

Perhaps you do not need to create a whole new content creation program around the Pentaho
Reporting engine; instead, you can enhance or reduce the functionality of Pentaho Report Designer
to match your needs.

Report Designer is both modular and extensible, so you can remove or disable large portions of
it, or create your own custom data sources, output formats, formulas, and functions. You can also
customize Report Designer with your own background images, icons, language, and splash screen.

Related Links
• Other Embedding Scenarios Other Embedding Scenarios

Embedding the Pentaho BI Platform

If your Web-based reporting application needs scripting, scheduling, and security functionality,
it makes more sense to embed the slightly larger Pentaho BI Platform instead of writing a large
amount of your own code to add to the Reporting engine. The BI Platform contains powerful
scripting and automation capabilities, an email component, report bursting functionality, user
authorization and authentication features, and a cron-compatible scheduling framework.

Embedding the Pentaho Reporting Engine 21

The BI Platform is the heart of the larger Pentaho BI Server, which is a complete J2EE Web
application that provides engines for Pentaho Reporting, Data Integration, and Analysis, as well as
a fully customizable Web-based user interface that offers ad hoc reporting, real-time analysis views,
and interactive dashboard creation.

The BI Server is fully customizable, so your options range from simple rebranding to removing entire
components or developing your own plugins to add major user-facing functionality.

Related Links
• Other Embedding Scenarios Other Embedding Scenarios

Embedding the Pentaho Reporting Engine 22

License Information

The entire Pentaho Reporting SDK is freely redistributable. Most of it is open source software, but
its constituent JARs are under a few different licenses. If you intend to embed and distribute any
part of this SDK, you must be familiar with the licensing requirements of the pieces you use.

You can read all of the relevant licenses in text files in the licenses subdirectory in the Pentaho
Reporting SDK.

Embedding the Pentaho Reporting Engine 23

Further Reading

Pentaho Reporting 3.5 For Java Developers (ISBN: 1847193196), written by Pentaho VP of
Engineering Will Gorman, covers every imaginable aspect embedding the Pentaho Reporting
engine. It is a far more comprehensive guide than this document.

You can buy it from any bookseller, or online from Amazon.com: Pentaho Reporting 3.5 For Java
Developers . Mr. Gorman will gladly autograph your copy if you send it, along with a prepaid, self-
addressed return envelope, to:

Pentaho Corporation
ATTN: Will Gorman
5950 Hazeltine National Dr.
Suite 340
Orlando, FL 32822

http://www.amazon.com/Pentaho-Reporting-3-5-Java-Developers/dp/1847193196
http://www.amazon.com/Pentaho-Reporting-3-5-Java-Developers/dp/1847193196

Embedding the Pentaho Reporting Engine 24

Developer Support

The example applications in this guide are simple and easy to follow, but with more complex
requirements come more advanced programs. While reading the source code comments can
help quite a bit, you may still need help to develop an enterprise reporting application within a
reasonable timeframe. Should you need personal assistance, you can have direct access to the
most knowledgeable support resources through a Pentaho Enterprise Edition annual subscription:

ISV/OEM support options

If phone and email support are not enough, Pentaho can also arrange for an on-site consulting
engagement:

Consultative support options

http://www.pentaho.com/services/isv_oem_support/
http://www.pentaho.com/services/consulting/

Embedding the Pentaho Reporting Engine 25

Anatomy of the Pentaho Reporting SDK

SDK Directory Structure

/
/documentation
/licenses
/samples
/WebContent
/../META-INF
/../WEB-INF
/../../lib
/lib
/source
/../org
/../../pentaho
/../../../reporting
/../../../../engine
/../../../../../classic
/../../../../../../samples
/sql

Directory Content Description

Documentation Where the Embedding the Pentaho Reporting Engine
PDF is located

Licenses Contains text files with licensing information

Samples The eclipse project directory, which contains the
samples shown in this guide

Samples/WebContent WebContent information used with Sample 4 (mainly
the WEB-INF/web.xml)

Samples/lib The lib directory which makes up the Reporting
Engine SDK

Samples/source The source files used to make up the four reporting
samples

Samples/sql The file-based HSQLDB instance used with the
samples

Content of the Samples Directory

File Purpose

build.properties Ant properties used with the build script

build.xml Ant build script

common_build.xml Ant Build Script

ivysettings.xml Settings for Ivy (used with build)

ivy.xml Dependencies for project (used with Ivy – used with
build)

.project Eclipse project file

.classpath Eclipse classpath file

Embedding the Pentaho Reporting Engine 26

samples.iml IntelliJ project file

Sample*.bat Runs the sample (1/2/3) program on Windows

Sample *.launch Runs the sample (1/2/3) program from within Eclipse

Sample*.sh Runs the sample (1/2/3) project on linux

Sample4.war The WAR that can be dropped in a Servlet Container
(Tomcat) and executed

Embedding the Pentaho Reporting Engine 27

JAR Reference

The Pentaho Reporting SDK consists of the following Pentaho-authored JARs:

JAR File Name Purpose

libbase The root project for all reporting projects. Provides
base services like controlled boot-up, modularization,
configuration. Also contains some commonly used
helper classes.

libdocbundle Support for ODF-document-bundle handling.
Provides the engine with the report-bundle
capabilities and manages the bundle-metadata,
parsing and writing.

libfonts Font-handling library. Performs the mapping between
physical font files and logical font names. Also
provides performance optimized font-metadata and
font-metrics.

libformat A performance optimized replacement for JDK
TextFormat classes. Accepts the same patterns as
the JDK classes, but skips the parsing. Therefore
they are less expensive to use in terms of CPU and
memory.

libformula Our OpenFormula implementation. Provides a
implementation of the OpenFormula specification.
Basically a way to have Excel-style formulas without
the nonsense Excel does.

libloader Resourceloading and caching framework. Used
heavily in the engine to load reports and other
resources in the most efficient way.

libpixie Support for rendering WMF (windows-meta-files).

librepository Abstraction-layer for content-repositories. Heavily
used by LibDocbundle and our HTML export.

libserializer Helper classes for serialization of Java-objects. A
factory based approach to locate serializers based on
the class of the object we want to serialize. needed
as major parts of the JDK are not serializable on their
own.

libxml Advanced SAX-parsing framework and namespace
aware XML writing framework used in the engine and
libdocbundle.

pentaho-reporting-engine-classic-core The Pentaho Reporting engine core, which itself
consists of modular sub-projects.

Included third-party JARs

JAR File Name Purpose

Embedding the Pentaho Reporting Engine 28

activation The JavaBeans Activation Framework, which
determines the type of the given data, encapsulates
it, discovers the operations available on it, and to
instantiates the appropriate bean to execute those
operations.

backport-util-concurrent A library which implements concurrency capabilities
found in Java 5.0 and 6.0, which allows building fully-
portable concurrent applications for older JREs.

batik-awt-util, batik-bridge, batik-css, batik-dom, batik-
ext, batik-gui-util, batik-gvt, batik-parser, batik-script,
batik-svg-dom, batik-util, batik-xml

The core Batik SVG toolkit, which adds scalable
vector graphics support to a Java application.

bsf The Apache Jakarta Bean Scripting Framework,
which provides scripting language support within
Java applications, and access to Java objects and
methods from scripting languages.

bsh The Bean Shell, which dynamically executes
standard Java syntax and extends it with common
scripting conveniences such as loose types,
commands, and method closures like those in Perl
and JavaScript.

commons-logging-api The Apache Commons Logging library, which allows
writing to a variety of different logging services in a
common format.

itext Enables dynamic PDF generation.

jsr107cache A Java cache API specification.

ehcache A distributed cache library that uses the jsr107cache
API.

mail The Java Mail API, which allows you to send email
from a Java application without requiring a separate
mail server.

poi A Java API that allows you to read from and write to
Microsoft file formats.

xml-apis The Apache Commons XML DOM library, which
allows you to read from, write to, and validate XML
files.

JARs exclusive to the embedding samples

JAR File Name Purpose

hsqldb HSQLDB database engine and JDBC driver.

pentaho-reporting-engine-classic-samples The sample applications explained in this guide.

Embedding the Pentaho Reporting Engine 29

Source Code Links

Pentaho maintains a Subversion repository for Pentaho Reporting. It consists of many individual,
modular projects, all of which are listed below. You can also traverse the repository with a Web
browser by replacing the svn:// with an http:// . As is customary with Subversion repositories, the
trunk is where active development happens; tags represent snapshots of official releases; and
branches are separate codelines generally established for new releases.

JAR File Name Source Code Repository

libbase svn://source.pentaho.org/pentaho-reporting/libraries/
libbase

libdocbundle svn://source.pentaho.org/pentaho-reporting/libraries/
libdocbundle

libfonts svn://source.pentaho.org/pentaho-reporting/libraries/
libfonts

libformat svn://source.pentaho.org/pentaho-reporting/libraries/
libformat

libformula svn://source.pentaho.org/pentaho-reporting/libraries/
libformula

libloader svn://source.pentaho.org/pentaho-reporting/libraries/
libloader

libpixie svn://source.pentaho.org/pentaho-reporting/libraries/
pixie

librepository svn://source.pentaho.org/pentaho-reporting/libraries/
librepository

libserializer svn://source.pentaho.org/pentaho-reporting/libraries/
libserializer

libxml svn://source.pentaho.org/pentaho-reporting/libraries/
libxml

pentaho-reporting-engine-classic-core svn://source.pentaho.org/pentaho-reporting/engines/
classic/trunk/core

Included third-party JARs

Below are URLs for the source code for the third-party JARs included in the SDK:

JAR File Name Source Code Repository

backport-util-concurrent-3.0.jar https://sourceforge.net/projects/backport-jsr166/files/
backport-jsr166/backport-util-concurrent-3.0-src.tar.gz

batik-awt-util-1.6.jar, batik-bridge-1.6.jar, batik-
css-1.6.jar, batik-dom-1.6.jar, batik-ext-1.6.jar, batik-
gui-util-1.6.jar, batik-gvt-1.6.jar, batik-parser-1.6.jar,
batik-script-1.6.jar, batik-svg-dom-1.6.jar, batik-
util-1.6.jar, batik-xml-1.6.jar

http://archive.apache.org/dist/xmlgraphics/batik/batik-
src-1.6.zip

Embedding the Pentaho Reporting Engine 30

bsf-2.4.0.jar http://mirror.its.uidaho.edu/pub/apache/jakarta/bsf/
source/bsf-src-2.4.0.tar.gz

bsh-1.3.0.jar svn://ikayzo.org/svn/beanshell

commons-logging-api-1.0.4.jar http://www.gossipcheck.com/mirrors/apache/
commons/logging/source/commons-logging-1.1.1-
src.tar.gz

itext-1.5.2.jar svn://itext.svn.sourceforge.net/svnroot/itext/tags/
iText_1_5_2/

jsr107cache-1.0.jar svn://jsr107cache.svn.sourceforge.net/svnroot/
jsr107cache/

ehcache-1.4.1.jar svn://ehcache.svn.sourceforge.net/viewvc/ehcache/
branches/ehcache-1.4.1/

mail-1.4.1.jar http://kenai.com/projects/javamail/downloads/
download//javamail-1.4.2-src.zip

poi-3.0.1-jdk122-final-20071014.jar http://www.uniontransit.com/apache/poi/release/src/
poi-src-3.0.1-FINAL-20070705.tar.gz

xml-apis-1.0.b2.jar http://svn.apache.org/repos/asf/xml/commons/tags/
xml-commons-1_0_b2/

JARs exclusive to the embedding samples

JAR File Name Source Code Repository

hsqldb svn://hsqldb.svn.sourceforge.net/svnroot/hsqldb

pentaho-reporting-engine-classic-samples svn://source.pentaho.org/pentaho-reporting/engines/
classic/trunk/samples

SDK assembly project svn://source.pentaho.org/pentaho-reporting/engines/
classic/trunk/sdk

Embedding the Pentaho Reporting Engine 31

More Examples

If you have successfully worked with the first two sample applications and want to see a Pentaho
report render in a more realistic user-facing application scenario, then continue on to samples 3 and
4 below. They use the same basic report logic as before, but render interactive reports in a Swing
window and a Java servlet that you can deploy into a Web application server like Tomcat or JBoss.

Related Links
• Sample 3: Dynamically Generated, JDBC Input, Swing Output Sample 3: Dynamically Generated,
JDBC Input, Swing Output
• Sample 4: Dynamically Generated, JDBC Input, Java Servlet Output Sample 4: Dynamically
Generated, JDBC Input, Java Servlet Output

Sample 3: Dynamically Generated, JDBC Input, Swing Output

Sample3.java generates the same report as created in Sample1.java (using the PRPT file
generated with Report Designer, connecting to the file-based HSQLDB database, and using a few
parameters), but it uses a Swing helper class defined in the Reporting engine to render the report in
a Swing preview window. This basic functionality allows for:

• Runtime dynamic changing of report input parameters (in the Swing window, changes to the
parameters can be submitted by clicking on the Update button)

• Pagination of the report (showing one page at a time)
• Exporting the report in different formats (PDF, HTML, XLS, etc.)

The details of how to use Swing to preview the report are contained in the following engine classes
(see the source files included with the SDK for more information):

• org.pentaho.reporting.engine.classic.core.modules.gui.base.PreviewDialog: The dialog
window that contains the preview pane and handles basic menu functionality

• org.pentaho.reporting.engine.classic.core.modules.gui.base.PreviewPane: The pane that
handles the report generation, page switching, printing, and report export functionality

/*
 * This program is free software; you can redistribute it and/or modify it under
 the
 * terms of the GNU Lesser General Public License, version 2.1 as published by the
 Free Software
 * Foundation.
 *
 * You should have received a copy of the GNU Lesser General Public License along
 with this
 * program; if not, you can obtain a copy at http://www.gnu.org/licenses/old-
licenses/lgpl-2.1.html
 * or from the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT ANY
 WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * Copyright 2009 Pentaho Corporation. All rights reserved.
 *
 * Created July 22, 2009

Embedding the Pentaho Reporting Engine 32

 * @author dkincade
 */
package org.pentaho.reporting.engine.classic.samples;

import java.net.URL;
import java.util.HashMap;
import java.util.Map;

import org.pentaho.reporting.engine.classic.core.ClassicEngineBoot;
import org.pentaho.reporting.engine.classic.core.DataFactory;
import org.pentaho.reporting.engine.classic.core.MasterReport;
import org.pentaho.reporting.engine.classic.core.modules.gui.base.PreviewDialog;
import org.pentaho.reporting.libraries.resourceloader.Resource;
import org.pentaho.reporting.libraries.resourceloader.ResourceException;
import org.pentaho.reporting.libraries.resourceloader.ResourceManager;

/**
 * Generates a report using a paginated Swing Preview Dialog. The parameters for
 this report
 * can be modified while previewing the dialog and the changes can be seen
 instantly.
 * <p/>
 * The report generated in this scenario will be the same as created in Sample1:
 *
 * The report definition file is a .prpt file which will be loaded and parsed
 * The data factory is a simple JDBC data factory using HSQLDB
 * There are no runtime report parameters used
 *
 */
public class Sample3 {

 /**
 * @param args
 */
 public static void main(String[] args) {
 // initialize the Reporting Engine
 ClassicEngineBoot.getInstance().start();

 // Get the complete report definition (the report definition with the data
 factory and
 // parameters already applied)
 Sample3 sample = new Sample3();
 final MasterReport report = sample.getCompleteReportDefinition();

 // Generate the swing preview dialog
 final PreviewDialog dialog = new PreviewDialog();
 dialog.setReportJob(report);
 dialog.setSize(500, 500);
 dialog.setModal(true);
 dialog.setVisible(true);
 System.exit(0);
 }

 /**
 * Generates the report definition that has the data factory and
 * parameters already applied.
 * @return the completed report definition
 */
 public MasterReport getCompleteReportDefinition() {
 final MasterReport report = getReportDefinition();

 // Add any parameters to the report
 final Map<String, Object> reportParameters = getReportParameters();
 if (null != reportParameters) {
 for (String key : reportParameters.keySet()) {
 report.getParameterValues().put(key, reportParameters.get(key));
 }
 }

 // Set the data factory for the report

Embedding the Pentaho Reporting Engine 33

 final DataFactory dataFactory = getDataFactory();
 if (dataFactory != null) {
 report.setDataFactory(dataFactory);
 }

 // Return the completed report
 return report;
 }

 /**
 * Returns the report definition which will be used to generate the report. In
 this case, the report will be
 * loaded and parsed from a file contained in this package.
 *
 * @return the loaded and parsed report definition to be used in report
 generation.
 */
 private MasterReport getReportDefinition() {
 try {
 // Using the classloader, get the URL to the reportDefinition file
 // NOTE: We will re-use the report definition from SAMPLE1
 final ClassLoader classloader = this.getClass().getClassLoader();
 final URL reportDefinitionURL = classloader
 .getResource("org/pentaho/reporting/engine/classic/samples/
Sample1.prpt");

 // Parse the report file
 final ResourceManager resourceManager = new ResourceManager();
 resourceManager.registerDefaults();
 final Resource directly =
 resourceManager.createDirectly(reportDefinitionURL, MasterReport.class);
 return (MasterReport) directly.getResource();
 } catch (ResourceException e) {
 e.printStackTrace();
 }
 return null;
 }

 /**
 * Returns the set of runtime report parameters. This sample report uses the
 following three parameters:
 *
 * Report Title - The title text on the top of the report
 * Customer Names - an array of customer names to show in the
 report
 * Col Headers BG Color - the background color for the column
 headers
 *
 *
 * @return <code>null</code> indicating the report generator does not use any
 report parameters
 */
 private Map<String, Object> getReportParameters() {
 final Map parameters = new HashMap<String, Object>();
 parameters.put("Report Title", "Simple Embedded Report Example with
 Parameters");
 parameters.put("Col Headers BG Color", "yellow");
 parameters.put("Customer Names", new String[] { "American Souvenirs Inc",
 "Toys4GrownUps.com", "giftsbymail.co.uk",
 "BG&E Collectables", "Classic Gift Ideas, Inc", });
 return parameters;
 }

 /**
 * Returns the data factory which will be used to generate the data used during
 report generation. In this example,
 * we will return null since the data factory has been defined in the report
 definition.
 *
 * @return the data factory used with the report generator

Embedding the Pentaho Reporting Engine 34

 */
 private DataFactory getDataFactory() {
 return null;
 }
}

Related Links
• More Examples More Examples

Sample 4: Dynamically Generated, JDBC Input, Java Servlet Output

Note: This example assumes you have a Java application server, such as Tomcat or JBoss,
installed, configured, running, and accessible to you.

Sample4.java is an HttpServlet which generates an HTML report similar to Sample2 (dynamically
created report definition based on the data set, a static data set, and no parameters). In the
generateReport(…) method, the report is generates as HTML into an output stream which is routed
directly to the browser. As noted in the comments of this method, a small simple change can be
made to generate PDF output instead of HTML output.

Directions for Running Sample4

To execute Sample4, the following steps will deploy and run it using Tomcat 5.5:

1. Copy Sample4.war into the webapps directory of a working Tomcat instance
2. Start the Tomcat server (bin/startup.sh or bin\startup.bat)
3. In a browser, navigate to the following URL: http://localhost:8080/Sample4/

/*
 * This program is free software; you can redistribute it and/or modify it under
 the
 * terms of the GNU Lesser General Public License, version 2.1 as published by the
 Free Software
 * Foundation.
 *
 * You should have received a copy of the GNU Lesser General Public License along
 with this
 * program; if not, you can obtain a copy at http://www.gnu.org/licenses/old-
licenses/lgpl-2.1.html
 * or from the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT ANY
 WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * Copyright 2009 Pentaho Corporation. All rights reserved.
 *
 * Created July 22, 2009
 * @author dkincade
 */
package org.pentaho.reporting.engine.classic.samples;

import java.io.IOException;
import java.io.OutputStream;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.swing.table.AbstractTableModel;

import org.pentaho.reporting.engine.classic.core.ClassicEngineBoot;

Embedding the Pentaho Reporting Engine 35

import org.pentaho.reporting.engine.classic.core.MasterReport;
import org.pentaho.reporting.engine.classic.core.PageDefinition;
import org.pentaho.reporting.engine.classic.core.ReportProcessingException;
import org.pentaho.reporting.engine.classic.core.TableDataFactory;
import org.pentaho.reporting.engine.classic.core.modules.
output.table.html.HtmlReportUtil;
import org.pentaho.reporting.engine.classic.core.wizard.
RelationalAutoGeneratorPreProcessor;

/**
 * Servlet implementation which generates a report and returns the report as an
 HTML
 * stream back to the browser.
 */
public class Sample4 extends HttpServlet
{
 /**
 * Default constructor for this sample servlet
 */
 public Sample4()
 {
 }

 /**
 * Initializes the servlet - we need to make sure the reporting engine has been
 initialized
 */
 public void init()
 {
 // Initialize the reporting engine
 ClassicEngineBoot.getInstance().start();
 }

 /**
 * Handles the GET request. We will handle both the GET request and POST request
 the same way.
 */
 protected void doGet(final HttpServletRequest req, final HttpServletResponse
 resp) throws ServletException, IOException
 {
 generateReport(req, resp);
 }

 /**
 * Handles the POST request. We will handle both the GET request and POST
 request the same way.
 */
 protected void doPost(final HttpServletRequest req, final HttpServletResponse
 resp) throws ServletException, IOException
 {
 generateReport(req, resp);
 }

 /**
 * Generates a simple HTML report and returns the HTML output back to the
 browser
 */
 private void generateReport(final HttpServletRequest req, final
 HttpServletResponse resp) throws ServletException, IOException
 {
 // Generate the report definition
 final MasterReport report = createReportDefinition();

 // Run the report and save the HTML output to a byte stream
 resp.setContentType("text/html"); // Change to "application/pdf" for PDF
 output
 OutputStream out = resp.getOutputStream();
 try
 {
 // Use the HtmlReportUtil to generate the report to a Stream HTML

Embedding the Pentaho Reporting Engine 36

 HtmlReportUtil.createStreamHTML(report, out);

 //NOTE: Changing this to use PDF is simple:
 // 1. Change the above setContent call to use "application/pdf"
 // 2. Instead of HtmlReportUtil, use the following line:
 // PdfReportUtil.createPDF(report, out)
 }
 catch (ReportProcessingException rpe)
 {
 rpe.printStackTrace();
 }
 finally
 {
 out.close();
 }
 }

 private MasterReport createReportDefinition()
 {
 // Create a report using the autogenerated fields
 final MasterReport report = new MasterReport();
 report.addPreProcessor(new RelationalAutoGeneratorPreProcessor());

 // Add the data factory to the report
 report.setDataFactory(new TableDataFactory("Sample4Query", new
 Sample4TableModel()));
 report.setQuery("Sample4Query");

 // return
 return report;
 }

 /**
 * The table model used for this sample.
 *

 * In a real situation, this would never happen (a JNDI datasource connected up
 to
 * customer data would be more normal). But for a sample, some hard coded
 * data is to be expected.
 */
 private static class Sample4TableModel extends AbstractTableModel
 {
 /**
 * The sample data
 */
 private static final Object[][] data = new Object[][]
 {
 new Object[] { "Acme Industries", 2500, 18.75 },
 new Object[] { "Brookstone Warehouses", 5000, 36.1245 },
 new Object[] { "Cartwell Restaurants", 18460, 12.9 },
 new Object[] { "Domino Builders", 20625, 45.52 },
 new Object[] { "Elephant Zoo Enclosures", 750, 19.222 },
 };

 /**
 * Returns the number of columns of data in the sample dataset
 */
 public int getColumnCount()
 {
 return data[0].length;
 }

 /**
 * Returns the number of rows in the sample data
 */
 public int getRowCount()
 {
 return data.length;
 }

Embedding the Pentaho Reporting Engine 37

 /**
 * Returns the data value at the specific row and column index
 */
 public Object getValueAt(int rowIndex, int columnIndex)
 {
 if (rowIndex >= 0 && rowIndex < data.length && columnIndex >= 0 &&
 columnIndex < data[rowIndex].length)
 {
 return data[rowIndex][columnIndex];
 }
 return null;
 }

 }
}

Related Links
• More Examples More Examples

	Introduction
	Required Knowledge and Expertise

	Obtaining the Pentaho Reporting SDK
	Using the Included Eclipse Project
	Embedding the Reporting Engine Into a Java Application
	Overview
	Sample 0: The Base Class
	Sample 1: Static Report Definition, JDBC Input, PDF Output
	Sample 2: Static Report Definition, JDBC Input, HTML Output

	Pentaho Reporting's Capabilities
	Technological Advantages
	Input Types
	Output Types
	Pentaho Report Designer

	Other Embedding Scenarios
	Building a Custom Reporting Tool
	Hacking Pentaho Report Designer
	Embedding the Pentaho BI Platform

	License Information
	Further Reading
	Developer Support
	Anatomy of the Pentaho Reporting SDK
	JAR Reference
	Source Code Links
	More Examples
	Sample 3: Dynamically Generated, JDBC Input, Swing Output
	Sample 4: Dynamically Generated, JDBC Input, Java Servlet Output

