—
® Pentalﬁow

open source business inte”igence“”

Embedding the Pentaho Reporting Engine

® Reﬂtaho

en source business iﬂte”igence

This document is copyright © 2004-2010 Pentaho Corporation. No part may be reprinted without written
permission from Pentaho Corporation. All trademarks are the property of their respective owners.

Help and Support Resources

Support-related questions should be submitted through the Pentaho Community Forum at http:/
forums.pentaho.org/. There is also a community documentation effort on the Pentaho Wiki at: http:/
wiki.pentaho.org/ that you may find helpful.

For information about how to purchase enterprise-level support, please contact your sales representative, or
send an email to sales@pentaho.com.

For information about instructor-led training on the topics covered in this guide, visit http://www.pentaho.com/
training.

Limits of Liability and Disclaimer of Warranty

The author(s) of this document have used their best efforts in preparing the content and the programs
contained in it. These efforts include the development, research, and testing of the theories and programs to
determine their effectiveness. The author and publisher make no warranty of any kind, express or implied, with
regard to these programs or the documentation contained in this book.

The author(s) and Pentaho shall not be liable in the event of incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of the programs, associated instructions, and/or
claims.

Trademarks

Pentaho (TM) and the Pentaho logo are registered trademarks of Pentaho Corporation. All other trademarks
are the property of their respective owners. Trademarked names may appear throughout this document. Rather
than list the names and entities that own the trademarks or insert a trademark symbol with each mention of the
trademarked name, Pentaho states that it is using the names for editorial purposes only and to the benefit of
the trademark owner, with no intention of infringing upon that trademark.

Company Information

Pentaho Corporation

Citadel International, Suite 340
5950 Hazeltine National Drive
Orlando, FL 32822

Phone: +1 407 812-OPEN (6736)
Fax: +1 407 517-4575
http://www.pentaho.com

E-mail: _communityconnection@pentaho.com

Sales Inquiries: sales@pentaho.com

Documentation Suggestions: documentation@pentaho.com

Sign up for our newsletter: http://community.pentaho.com/newsletter/

http://forums.pentaho.org/
http://forums.pentaho.org/
http://wiki.pentaho.org/
http://wiki.pentaho.org/
mailto:sales@pentaho.com
http://www.pentaho.com/training
http://www.pentaho.com/training
http://www.pentaho.com
mailto:communityconnection@pentaho.com
mailto:sales@pentaho.com
mailto:documentation@pentaho.com
http://community.pentaho.com/newsletter/

Contents

T oo [N Lol 1 o] o RO P PP PUPPP 2
Required Knowledge and EXPEITISEueiiiiiiiiiie ittt sttt e e e e 2
Obtaining the Pentaho RePOrtiNg SDKcooi ittt e st e e e s rab e e e e s sbbeeeeeeas 3
Using the INCluded ECHPSE PIOJECTeiiiiiiiiiii ettt e e s eab b e e e e e 4
Embedding the Reporting Engine Into a Java ApPlCAtioNcooiiiiiiiiiiiiii e 5
OVEIVIEW ettt ettt ettt ettt e e s bttt e e ook bttt e e+ 42k b et e e o4 oa b bttt e e 4 s be e e e e e 4ab b e et e e s aabbe e e e e e nbb e e e e e annbbeeeesannnneeas 5
Sample 0: The BASE ClASSeiiiiiiiiiiie et e e e et e e e e s bbe e e e e e aeees 7
Sample 1: Static Report Definition, JDBC Input, PDF OUIPULcoeeiiiiiiieiiiiiie e 11
Sample 2: Static Report Definition, JDBC Input, HTML OULPUL ...c.cooiuiiieieiiiiiieie e 13
Pentaho Reporting's Capabilitiesc.ouiiiiiiiiiiiiie e e rereee s 17
TeChNOIOQICAl AUVANTAGESveiiiiiiiiiiee ettt sttt ettt e e s s bbbt e e e s aabbe e e e e sabeeeeesannreeee s 17
1] 081 1Y/ =T S PP P PP P PR P P 17
L@ U1 o 10 L I 01T SO P PP PREPTPPN 18
Pentano REPOIT DESIGNEeiiiiiiiiiiie ettt e ettt e e e sttt e e e s sabbe e e e e aabbaeeeesabreeeaenaaes 18
Other EMDEAdING SCENAIIOS ...coiiiiiiiiiieiiiiiie ettt ettt ettt e et b et e s sbb e e e e s aabb e e e e s abbe et e e s aabbeeeessnnneeaens 20
Building @ Custom RePOrtiNG TOO ...cccoiiuiiiiiiiiiiiiee ettt ettt e e rbbe e e s 20
Hacking Pentaho REPOrt DESIGNETeiiiiiiiiiieie ittt ettt sttt et e e e e e raneeeeas 20
Embedding the Pentaho Bl PIAtfOrMcoooiiiiiiiiii e 20
[Tot=T g Y [l {o T 4 F= Ui o] o H P PP PP T PUPPP 22
Tt =T g L= To 1o o [P PR PURPPO 23
D3V =T (o] o 1=T g U] o] o Lo] 1 A OO OTP PP 24
Anatomy of the Pentaho RepOorting SDKcoiiiiiiiiiiiiiiie et 25
Y S = (=T =T o ol PO PTPPPP 27
SOUICE COUE LINKS ...ttt ettt ettt e e s s bttt e e s aa b b e et e e s bbb et e e s aabbe e e e e anbbaeeesannnreeeeas 29
MOTE EXAMPIES .ttt e bt e e e e ea bt e e e e e b b et e e e e eab bt e e e s e bbbt e e e e aabbe e e e e anbeeeeeeaanreas 31
Sample 3: Dynamically Generated, JDBC Input, SWING OULPULcceeiiiiiiiiiiiiiiiie e 31
Sample 4: Dynamically Generated, JDBC Input, Java Servliet OUIPULcoovvecceiiiiiiiiiieeee s 34

The Pentaho Reporting engine is a small set of open source Java classes that enables
programmers to retrieve information from a data source, format and process it according to specified
parameters, then generate user-readable output. This document provides guidance and instructions
for using the Pentaho Reporting SDK to embed the Pentaho Reporting engine into a new or existing
Java application.

There are four sample applications in this document, all of which are included in the SDK as .java
files. Each adds one level of complexity or shows a different kind of output.

You should read this guide in order, from this point all the way to the end of the second example.
The remaining portion contains extra information about the Pentaho Reporting engine's capabilities,
licensing details, further examples, and information on where to get help and support.

Related Links

This document is strictly for Java software developers. You must be familiar with importing

JARs into a project, and be comfortable reading inline comments in code to figure out advanced
functionality on your own. Proficiency in connecting to data sources is a helpful skill for developing
your own application around the Pentaho Reporting engine, but is not required to follow the
examples.

Related Links

You can download the latest Pentaho Reporting software development kit (SDK) from http://
reporting.pentaho.com.

The SDK is available as both a .tar.gz and a .zip archive; both contain the same files, but the .zip file
format is more Windows-friendly, and .tar.gz is more Mac-, Linux-, and Unix-friendly.

Once downloaded, unpack the Pentaho Reporting SDK archive to a convenient and accessible
location. If you use the Eclipse or IntelliJ IDEA development environments, this directory will also
serve as your workspace.

In an effort to reduce the size of the SDK, the source code of its constituent libraries is not included.
If you need to see the source to any of the software distributed with the Pentaho Reporting SDK,
see on page 29 for instructions.

Using the Included Eclipse Project

If you use the Eclipse or IntelliJ IDEA development environments, you can use the Eclipse project
included with the Pentaho Reporting SDK to work directly with the example source code. Simply
select the unpacked Pentaho Reporting SDK directory as your workspace.

You can also launch the Samplel.java and Sample2.java example applications directly from the
file browser in Eclipse.

Embedding the Pentaho Reporting Engine

This section shows in detail how to build a simple reporting application around the Pentaho
Reporting engine. There are three classes for the two examples shown in this section:

1. AbstractReportGenerator.java
2. Samplel.java
3. Sample2.java

You can find the full example source code, plus the .prpt report file they use, in the / sour ce/ or g/
pent aho/ r eporti ng/ engi ne/ cl assi c/ sanpl es/ directory in the Pentaho Reporting SDK.

Related Links

In the following samples, the interaction with the Reporting engine follows these basic steps:

1. Boot (initialize)

2. Get the report definition

3. Get the data for the report (if it is created outside of the report definition)
4. Get any report generation parameters (optional)

5. Generate the report output in the requested format

With the samples, this allows us to create an abstract base class for all the samples
(AbstractReportGenerator). This class defines the abstract methods:

» getReportDefinition(): this loads/creates/returns the report definition

» getDataFactory(): this returns the data to be used by the reporting engine (if the report
definition does not tell the engine how to retrieve the data).

» getReportParameters(): this returns the set of parameters the reporting engine will use while
generating the report

The generateReport() method tells the reporting engine to generate the report using the above
method, and creates the output in one of the following methods (using the OutputType parameter):
HTML, PDF, or XLS (Excel). A full list of output types is listed later in this guide, but to keep these
examples simple, we'll concentrate on these three.

Samplel.java

In this sample, the getReportDefinition() method loads the report definition from a PRPT file
created using the Pentaho Report Designer. This report definition defines the following:

« Data Query (retrieving a list of customers based on a set of customer names)

» Report Title

» Report Header — set of 4 columns (Customer Number, Customer Name, Postal Code, Country)
» Report Data — set of 4 columns (Customer Number, Customer Name, Postal Code, Country)

The getDataFactory() method returns null to indicate that no data factory is required to be provided.

In this example, the source of data is defined in the report definition.

The getReportParameters() method defines three parameters in a HashMap:

Parameter Name

Parameter Value

Description

Report Title

Simple Embedded Report Example
with Parameters

The value of this parameter will

be placed in the Report Title that
is centered on the top of each
page in the report. In the report
definition, the Report Title field is a
Text Field whose value is “Report
Title”. This indicates that the field
will use the value of the parameter
“Report Title” when the report is
generated.

Col Headers BG Color

yellow

The value of this parameter will

be used as the background color
of the column header fields. In

the report definition, all four of the
column header fields are defined
with a bg-color style of “=[Col
Headers BG Color]". This indicates
that the value of the “Col Header
BG Color” parameter will be used
as that value.

Customer Names

"Ameri can Souvenirs Inc",
"Toys4G ownUps. cont',
"gi ftsbymail . co. uk",
"BG&E Col | ect abl es",

"Classic Gft |deas, Inc"

The value of this parameter
defines a set of Customer Names
that will be used in the data query.
This allows the sample to define
which customers will be used in
the report at the time the report is
generated.

SELECT
" CUSTOVERS" . " CUSTOVERNAME'

" CUSTOVERS" . " POSTALCODE",
" CUSTOVERS" . " COUNTRY",

" CUSTOVERS" . " CUSTOVERNUVBH
FROM
" CUSTOVERS"
VHERE

" CUSTOVERS" . " CUSTOVERNAME'

ixe

I N (${Cust oner Nanes})

The main() method creates an output filename in which the report will be generated and then starts

the report generation process.

Sample2.java

In this sample, the getReportDefinition() method creates a blank report and sets the query name to
“ReportQuery”. It then adds a report pre-processor called RelationalAutoGeneratorPreProcessor.

Report pre-processors execute during the report generation process after the data query has been
executed but before the report definition is used to determine the actual layout of the report. The

benefit of this is that the RelationalAutoGeneratorPreProcessor will use the column information
retrieved from the data query to add header fields in the Page Header and data fields in the Item
Band of the report definition for each column of data in the result set.

The getDataFactory() method first defines the “ DriverConnectionProvider” which contains all the
information required to connect to the database. It then defines the “DataFactory” which will use the
connection provider to connect to the database. The Data Factory then has the query set which will

be used in report generation. The query name “ReportQuery” must match the query name defined
when the report definition was created or else the report will contain no data.

The getReportParameters() method is not used in this example, so it returns null.

The main() method creates an output flename in which the report will be generated and then starts
the report generation process.

Related Links

The AbstractReportGenerator class shown below is extended by the two primary example
applications. It contains the basic logic that creates a report, leaving the details of input and output
to the classes that extend it:

/*

* This programis free software; you can redistribute it and/or nmodify it under
t he

* terns of the GNU Lesser General Public License, version 2.1 as published by the
Free Software

* Foundat i on.

*

* You shoul d have received a copy of the G\U Lesser General Public License al ong
with this

* program if not, you can obtain a copy at http://ww.gnu.org/licenses/ol d-

i censes/lgpl-2.1. htm

* or fromthe Free Software Foundation, Inc.,

* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

*

* This programis distributed in the hope that it will be useful, but WTHOUT ANY
WARRANTY;

* without even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A

PARTI CULAR PURPOSE.

* See the GNU Lesser Ceneral Public License for nore details.

* X X

Copyright 2009 Pentaho Corporation. Al rights reserved.

* Created July 22, 2009

* @ut hor dki ncade

*/

package org. pent aho. reporting. engi ne. cl assi c. sanpl es;

i mport java.io.BufferedQutput Stream
import java.io.File;

import java.io.FileCQutputStream
import java.io.|OException;

i mport java.io.QutputStream

i mport java.util.Map;

i mport org. pentaho. reporting. engi ne. cl assi c. core. C assi cEngi neBoot ;

i mport org. pentaho. reporting. engi ne. cl assi c. core. Dat aFact ory;

i mport org. pentaho.reporting. engi ne.classic.core. Mast er Report;

i mport org. pentaho. reporting. engi ne. cl assi c. core. Report Processi ngExcepti on;

i nport org. pentaho.reporting. engi ne.cl assic.core. | ayout. out put.

Abstract Report Processor;

i mport org. pentaho. reporting. engi ne. cl assi c. core. nbdul es. out put . pageabl e.
base. Pageabl eReport Processor;

i nport org. pentaho. reporting. engi ne.cl assic. core. nodul es. out put . pageabl e.
pdf . Pdf Qut put Processor;

i mport org. pentaho.reporting.engine.classic.core. nodul es. out put.tabl e. base
. Fl owReport Processor;

i nport org. pentaho. reporting. engi ne. cl assi c. core. nodul es. out put . t abl e. base
. St reanReport Processor;

i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es. out put . tabl e. ht m
LAl T temsHE M Printer;

i nport org. pentaho.reporting.engi ne.cl assic. core. nodul es. out put.table.htm
.FileSystemJRLRewr i ter;

i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es. out put . tabl e. ht m
. Ht m Qut put Pr ocessor;

i nport org. pentaho.reporting. engi ne.cl assic. core. nodul es. out put.table. htm
.HmPrinter;

i mport org. pentaho. reporting. engi ne. cl assi c. core. nodul es. out put . tabl e. ht m
. StreantHt m Qut put Processor;

i nport org. pentaho. reporting. engi ne.cl assi c. core. nodul es. out put . tabl e. x
Fl owExcel Qut put Pr ocessor;

i mport org.pentaho.reporting.libraries.repository.ContentlLocation;

i mport org. pentaho.reporting.libraries.repository. Defaul t NameGener at or ;
i mport org.pentaho.reporting.libraries.repository.stream StreanRepository;

S.

/**
* This is the base class used with the report generation exanples. It contains
the actual <code>enbeddi ng</code>
* of the reporting engine and report generation. Al exanple enbedded
i mpl enentations will need to extend this class
* and performthe foll ow ng:
*
* <|i>|npl enent the <code>get ReportDefinition()</code> nethod and return the
report definition (how the report
* definition is generated is up to the inplenenting class).
* lnpl ement the <code>get Tabl eDat aFact ory() </ code> nethod and return the data
factory to be used (how
* this is created is up to the inplenenting class).
* lnplement the <code>get Report Paraneters()</code> method and return the set
of report paraneters to be used.
* |f no report paraneters are required, then this nmethod can sinply return
<code>nul | </ code>
*
*/
public abstract class Abstract Report Generat or
{ /**
* The supported output types for this sanple
*/
public static enum Qut put Type

PDF, EXCEL, HTML
}
/**
* Perforns the basic initialization required to generate a report
*/
publ i c Abstract Report Generator ()
{

/1 Initialize the reporting engine
Cl assi cEngi neBoot . get I nstance().start();

}
/**

* Returns the report definition used by this report generator. If this nethod
returns <code>nul | </ code>,

* the report generation process will throw a <code>Nul | Poi nt er Excepti on</ code>.

*

* @eturn the report definition used by thus report generator

>/
public abstract MasterReport get ReportDefinition();

/**

* Returns the data factory used by this report generator. If this nethod
returns <code>nul | </ code>,

* the report generation process will use the data factory used in the report
definition.

*

* @eturn the data factory used by this report generator
*/
public abstract DataFactory getDataFactory();

/**

* Returns the set of paraneters that will be passed to the report generation
process. If there are no paraneters

* required for report generation, this nethod may return either an enpty or a
<code>nul | </ code> <code>Map</ code>

*

* @eturn the set of report parameters to be used by the report generation
process, or <code>null </code> if no

* paraneters are required.

*/

public abstract Map<String, Object> getReportParaneters();

/**

* Generates the report in the specified <code>out put Type</code> and wites it
into the specified
* <code>out put Fi | e</ code>.

*

* @aram out put Type the output type of the report (HTM., PDF, HTM)

* @aramoutputFile the file into which the report will be witten

* @hrows |11 egal Argument Exception indicates the required paranmeters were not
provi ded

* @hrows | OException i ndicates an error opening the file for
writing

* @hrows ReportProcessi ngException indicates an error generating the report
>/
public void generateReport(final CQutputType output Type, File outputFile)

throws |11 egal Argunment Exception, | OException, ReportProcessi ngException
{
if (outputFile == null)
t hrow new || | egal Argunment Excepti on(" The output file was not specified");
}
Qut put St ream out put Stream = nul | ;
try
/1 Open the output stream
out put St ream = new Buf f er edQut put Strean(new Fi | eCut put Streanm(outputFile));
/'l Generate the report to this output stream
gener at eReport (out put Type, out put Strean ;
}
finally
if (outputStream!= null)
out put Stream cl ose() ;
}
}
}
/**

* Generates the report in the specified <code>out put Type</code> and wites it
into the specified

* <code>out put St r eanx/ code>.

* <p/ >

* |t is the responsibility of the caller to close the <code>out put Streanx/ code>

* after this method is executed.

*

* @ar am out put Type the output type of the report (HTM., PDF, HTM.)

* @aram outputStreamthe streaminto which the report will be witten

* @hrows |11 egal Argument Exception indicates the required paranmeters were not
provi ded

* @hrows ReportProcessi ngException indicates an error generating the report
>/

public voi d generateReport(final CQutputType output Type, QutputStream

out put St ream

throws |1 egal Argument Excepti on, ReportProcessi ngException
{
if (outputStream == null)
t hrow new || | egal Argunment Excepti on(" The out put stream was not specified");
}

/1l Get the report and data factory
final MasterReport report = getReportDefinition();
final DataFactory dataFactory = get DataFactory();

/'l Set the data factory for the report
if (dataFactory != null)

~~

report. set Dat aFact or y(dat aFact ory) ;
}

/1 Add any paraneters to the report
final Map<String, Object> reportParaneters = get ReportParaneters();
if (null !'= reportParaneters)

for (String key : reportParaneters. keySet ())

report. get Par amet er Val ues() . put (key, report Paraneters. get(key));

}

/1 Prepare to generate the report
Abstract Report Processor reportProcessor = null;

try

/|l Greate the report processor for the specified output type
switch (output Type)

case PDF:

final PdfQutput Processor outputProcessor =
new Pdf Qut put Processor (report. get Configuration(), outputStream
report.get Resour ceManager());
report Processor = new Pageabl eReport Processor (report, outputProcessor);
br eak;

}
case EXCEL:

final Fl owExcel Qut put Processor target =
new Fl owExcel Qut put Processor (report.get Configuration(),
out put Stream report.get ResourceManager());
report Processor = new Fl owReport Processor(report, target);
br eak;

}
case HTM.:

final StreanRepository targetRepository = new

St reanReposi t ory(out put St rean ;
final ContentlLocation targetRoot = target Repository.getRoot();
final Htm Qutput Processor outputProcessor = new

St reantt m Qut put Processor (report.get Configuration());

final Hm Printer printer = new
Al ltenmsH m Printer(report.get ResourceManager());
printer.setContent Witer(targetRoot, new
Def aul t NameGener at or (t ar get Root, "index", "htm"));
printer.setDataWiter(null, null);
printer.setU |l Rewiter(new Fil eSystemJRLRewriter());
out put Processor. setPrinter(printer);
report Processor = new StreanReport Processor(report, outputProcessor);
br eak;
}
}

/| Generate the report
report Processor. processReport ();

b
finally
if (reportProcessor != null)

report Processor. cl ose();
}
}
}
}

Related Links

The simplest embedding scenario produces a static report (no user input regarding a data source or
query), with JDBC input from the Pentaho-supplied SampleData HSQLDB database, and produces
a PDF on the local filesystem.

/*

* This programis free software; you can redistribute it and/or nmodify it under

t he

* terns of the GNU Lesser General Public License, version 2.1 as published by the
Free Software

* Foundat i on.

*

* You shoul d have received a copy of the G\U Lesser General Public License al ong
with this

* program if not, you can obtain a copy at http://ww.gnu.org/licenses/ol d-

i censes/lgpl-2.1. htm

* or fromthe Free Software Foundation, Inc.,

* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

*

* This programis distributed in the hope that it will be useful, but WTHOUT ANY
WARRANTY;

* without even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A

PARTI CULAR PURPOSE.

* See the GNU Lesser Ceneral Public License for nore details.

Copyright 2009 Pentaho Corporation. Al rights reserved.

E o I

Created July 22, 2009
@ut hor dki ncade

*

>/
package org. pent aho. reporting. engi ne. cl assi c. sanpl es;

inmport java.io.File;

import java.io. | OException;
i mport java. net. URL;

import java.util.Map;

import java.util.HashMap;

i mport org.
i mport org.
i mport org.
i mport org.
i mport org.
i mport org.

~
*

* 0% % %k 3k X X *

~

</ ol >

pent aho
pent aho
pent aho
pent aho
pent aho
pent aho

Cenerates a report

.reporti
.reporti
.reporti
.reporti
.reporti
.reporti

ng.
ng.
ng.
ng.
ng.
ng.

in the
The report definition

<l i >The data factory is a sinple JDBC data factory usi ng HSQ.DB
<l i >There are no runtinme report paraneters used

engi ne. cl assi c. core. Dat aFact ory;

engi ne. cl assi c. core. Mast er Report ;

engi ne. cl assi c. core. Report Processi ngExcepti on;
l'i braries.resourcel oader. Resour ce;
|'ibraries.resourcel oader. Resour ceExcepti on;
|'ibraries.resourcel oader. Resour ceManager ;

foll owi ng scenari o:

fileis a .prpt file which wll

public class Sanpl el extends Abstract Report Gener at or

{

/**

* Default constructor for this sanple report generator

*/

public Sanpl el()

{
}

/**

* Returns the report

this case,

*

* @eturn the | oaded and parsed report

definition which wll
be

the report will
* | oaded and parsed froma file contained in this package.

generati on.

*/

publ i c MasterReport getReportDefinition()

{
try

/1 Using the cl assl oader,

final
final

be | oaded and parsed

be used to generate the report. In

definition to be used in report

get the URL to the reportDefinition file

Cl assLoader cl assl oader = this.getC ass().getd assLoader();
URL reportDefinitionURL = cl assl oader. get Resour ce("or g/ pent aho/
reporting/ engi ne/ cl assi c/ sanpl es/ Sanpl el. prpt");

/| Parse the report file

Resour ceManager resourceManager = new Resour ceManager () ;

resour ceManager . regi sterDefaul ts();

Resource directly =

resour ceManager. createDirectl y(reportDefinitionURL, MsterReport.class);
return (MasterReport) directly. get Resource();

final

final

catch (ResourceException e)

{

e. printStackTrace();

return null;

}

/**

* Returns the data factory which will
report generation.

*we will
definition.

*

return null

In this exanpl e,

* @eturn the data factory used with the report generator

*/

publ i ¢ DataFactory get Dat aFactory()

{

return null;

}

be used to generate the data used during

since the data factory has been defined in the report

/**

* Returns the set of runtine report paraneters. This sanple report uses the
follow ng three paraneters:

*

* <|i>Report Title - The title text on the top of the report

* <|i>Custonmer Nanmes - an array of custoner nanes to show in the
report

* <|i>Col Headers BG Col or - the background col or for the colum
headers</1li >

*

*

* @eturn <code>nul | </code> indicating the report generator does not use any
report paraneters

*/

public Map<String, Object> getReportParaneters()

final Map paranmeters = new HashMap<String, Object>();
paraneters. put ("Report Title", "Sinple Enbedded Report Exanple with
Paraneters");
paranet ers. put (" Col Headers BG Col or", "yellow');
par anet er s. put (" Cust omer Nanes",
new String [] {
"American Souvenirs |Inc",
"Toys4G ownUps. cont',
"gi ftsbymail . co. uk",
"BG&E Col | ect abl es",
"Classic Gft I|deas, Inc",

1)

return parameters;

/**
* Sinple command |line application that will generate a PDF version of the

report. In this report,
* the report definition has already been created with the Pentaho Report

Desi gner application and
* it located in the sane package as this class. The data query is located in

that report definition

* as well, and there are a few report-nodifying paraneters that will be passed
to the engine at runtine.
* <p/ >

* The output of this report will be a PDF file located in the current directory

and will be named
* <code>Si npl eReport Gener at or Exanpl e. pdf </ code>.

* * X

@ar am ar gs none

@hrows | OException indicates an error witing to the filesystem
* @hrows ReportProcessi ngException indicates an error generating the report
*/

public static void main(String[] args) throws | COException,

Report Processi ngExcepti on

{

/! Create an output filenane
final File outputFilename = new Fil e(Sanpl el. cl ass. get Si npl eNanme() + ".pdf");

/'l Cenerate the report
new Sanpl el() . gener at eReport (Abstract Report Gener at or . Qut put Type. PDF,

out put Fi | enan®) ;

/1 Qutput the location of the file
Systemerr.println("Generated the report [" + outputFil enane. get Absol ut ePat h()

+ 1)
}
}
Related Links

This example produces a static report (no user input regarding a data source or query), with JDBC
input from the Pentaho-supplied SampleData HSQLDB database, and produces an HTML file on the
local filesystem.

/*

* This programis free software; you can redistribute it and/or nmodify it under

t he

* terns of the GNU Lesser General Public License, version 2.1 as published by the
Free Software

* Foundat i on.

*

* You shoul d have received a copy of the G\U Lesser General Public License al ong
with this

* program if not, you can obtain a copy at http://ww.gnu.org/licenses/ol d-

i censes/lgpl-2.1. htm

* or fromthe Free Software Foundation, Inc.,

* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

*

* This programis distributed in the hope that it will be useful, but WTHOUT ANY
WARRANTY;

* without even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A

PARTI CULAR PURPOSE.

* See the G\U Lesser General Public License for nore details.
*

* Copyright 2009 Pentaho Corporation. All rights reserved.
*

* Created July 22, 2009

@ut hor dki ncade

*

>/
package org. pent aho. reporting. engi ne. cl assi c. sanpl es;

inmport java.io.File;
import java.io. | OException;
import java.util.Mp;

i mport org. pentaho. reporting. engi ne. cl assi
i mport org. pentaho.reporting.engine.cl assi
i mport org. pentaho.reporting.engine.cl assi
i mport org. pentaho. reporting. engi ne. cl assi
i mport org. pentaho. reporting. engi ne. cl assi
Rel ati onal Aut oGener at or Pr ePr ocessor ;

i mport org. pentaho.reporting. engine.classic.core. nodul es.
m sc. dat af act ory. sql . SQLRepor t Dat aFact ory;

i mport org. pentaho. reporting. engi ne. cl assi c. cor e. nodul es.
m sc. dat af act ory. sql . Dri ver Connect i onProvi der;

. core. Dat aFact ory;

. core. Mast er Report;

.core. Report Processi ngExcepti on;
.core. PageDefinition;
.core.wzard.

OO0 0O0

/**

* Generates a report in the foll ow ng scenario:

*

The report definition fileis a .prpt file which will be | oaded and parsed
<l i >The data factory is a sinple JDBC data factory usi ng HSQ.LDB

<l i >There are no runtinme report paraneters used

</ ol >

E I

*/
public class Sanpl e2 extends Abstract Report Gener at or

{
private static final String QUERY_NAME = "Report Query";

/**

* Default constructor for this sanple report generator
>/

public Sanpl e2()

{
}

/**

* Returns the report definition which will be used to generate the report. In
this case, the report will be

* | oaded and parsed froma file contained in this package.

*

* @eturn the | oaded and parsed report definition to be used in report
generati on.

*/
publ i c MasterReport getReportDefinition()
{

final MasterReport report = new MasterReport();

report.set Query(QUERY_NAME) ;

report.addPreProcessor (new Rel ati onal Aut oGener at or PreProcessor());

return report;
}
/**

* Returns the data factory which will be used to generate the data used during
report generation. In this exanple,

*we will return null since the data factory has been defined in the report
definition.

*

* @eturn the data factory used with the report generator

*/
publ i c DataFactory get Dat aFactory()

final DriverConnectionProvi der sanpl eDriver Connecti onProvi der = new
Dri ver Connecti onProvi der () ;

sanpl eDri ver Connect i onProvi der. set Driver ("org. hsql db. j dbcDriver");

sanpl eDri ver Connect i onProvi der.set Ul ("j dbc: hsqgl db: . /sql / sanpl edata");

sanpl eDri ver Connect i onProvi der. set Property("user", "sa");

sanpl eDri ver Connect i onProvi der. set Property("password", "");

final SQLReportDataFactory dataFactory = new
SQLReport Dat aFact or y(sanpl eDri ver Connecti onProvi der) ;
dat aFact ory. set Quer y(QUERY_NAME,
"sel ect CUSTOVERNAME, CITY, STATE, POSTALCODE, COUNTRY from CUSTOVERS
order by UPPER(CUSTOVERNAME) ") ;

return dataFactory;

}
/**
* Returns the set of runtine report paraneters. This sanple report does not use

report paraneters, so the
* method will return <code>null </ code>

*

* @eturn <code>nul | </code> indicating the report generator does not use any
report paraneters

>/
public Map<String, Object> getReportParaneters()
{
return null;
}

public static void main(String[] args) throws | CException,
Report Processi ngExcepti on
{
/'l Create an output filename
final File outputFilename = new Fil e(Sanpl e2. cl ass. get Si npl eNane() + ".htm");

/1 Cenerate the report
new Sanpl e2() . gener at eReport (Abst r act Report Gener at or. Qut put Type. HTM_,
out put Fi | enane) ;

/1 Qutput the location of the file
Systemerr.println("Generated the report [" + outputFil enane. get Absol ut ePat h()
+ 1)
}
}

Related Links
* Embedding the Reporting Engine Into a Java Application Embedding the Reporting Engine Into a
Java Application

Embedding the Pentaho Reporting Engine 16

Now that you are familiar with the basic functions of the Pentaho Reporting engine, you're prepared
to learn more about its advanced features, explained in the subsections below.

Related Links

The Pentaho Reporting engine offers unique functionality not found in competing embeddable
solutions:

Does not require a JDK at runtime. While you do need a Java Development Kit installed on
your development machine, you do not need a JDK to run a program that embeds the Pentaho
Reporting engine -- just a standard Sun Java Runtime Environment.

All processing is done in memory. No temporary files are created by the Reporting engine.
A program that relies on the Pentaho Reporting engine for report generation can run on a
diskless system.

Potentially backwards-compatible to JDK 1.2. The Pentaho Reporting architect has given
special consideration to users and developers on legacy systems. While Pentaho focuses its
in-house development and QA efforts on JRE 1.6.0, it is possible to use the Reporting engine
in older JREs by adding JDBC and JNDI libraries.

Dynamically and automatically adjustable components. The Pentaho Reporting engine
detects JARs that add functionality at runtime, so you can add new JARs to expand the
engine's capabilities, or remove unnecessary JARs to reduce your application's memory and
disk space footprint.

Low memory footprint. A Pentaho Reporting-based application can run with as little as 64MB
of memory (though 128MB would dramatically increase report processing speed).

Totally configurable through runtime parameterization. Every style, function, query, and
report element is fully customizable by passing parameters to the Reporting engine when you
render a report.

OpenFormula integration. OpenFormula is an open standard for mathematical formulas.
You can easily create your own custom formulas, or you can customize the ones built into the
Pentaho Reporting engine with this clearly and freely documented standard.

Simple resource management. Using the OpenDocument Format (ODF), the Pentaho
Reporting engine bundles all report resources, including the data source connection
information, query, and even binary resources like images into one canonical file. This
simplifies physical resource management and eliminates relative path problems.

Related Links

The Pentaho Reporting engine can connect to virtually any data source:

JDBC

JNDI

Kettle (Pentaho Data Integration)
Simple SQL (JDBC Custom)
Pentaho Metadata

Mondrian MDX

OLAP4]

XML

Simple table

Scripting data sources (JavaScript, Python, TCL, Groovy, BeanShell)
Java method invocation
Hibernate

If your data source is not directly supported, you can use Pentaho Data Integration to transform it
into a more report-friendly format, or you can design your own custom data source interface.

Related Links

The Pentaho Reporting engine can create reports in a variety of relevant file formats:

PDF
HTML
Excel
Ccsv
RTF
XML
Plain text

All of the output types listed above are highly customizable in terms of style, formatting, and
pagination. You can also specify your own output type if none of the standard choices are sufficient.

Related Links

The examples in this guide accept data source input and create user-readable output, which is
essentially what the Pentaho Report Designer does with its graphical user interface. In addition to
being a powerful report creation and design tool, Report Designer is also an extraordinary example
of a Java application that embeds the Pentaho Reporting engine.

Pentano Report Designer = <master

File Edit View Format Dat Help

[2]=]al2] [e] [»] [%] x]

<master-report> B

B [sfo |~ [B]r]u| s~ [0
. 1.0 . 15 . 2.0 . 2.5 . 3.0 . 3.5 .

200% .05 40 . 45 . 50 . 55 . 60

Page Header

Employee Status Report

IEMPLOYEENUMBER ILASTNAME IFIRSTNAME POETITLE

Bar Chart

Bl eowBEtBE000R BE+E3EEEE R

Cat... Cat...

Cat...

Category

W First ™ Second © Third

[R=]

¢ [C1IDBC SampleData (Hypersonic)

|/ Functions
= Parameters

Query 1
[} EMPLOYEENUMBER (EMPLOYEENUME
[} LASTNAME (LASTNAME, String)

[} FIRSTNAME (FIRSTNANE, String)
[} EXTENSION (EXTENSION, String)
[0y EMAIL EMAIL, String)

[} OFFICECODE (OFFICECODE, String)
[} REPORTSTO (REFORTSTO, Integer)

h-align
v-align
ftext-color
ba-color

anti-alias
aspect-r.

invisible-
dtynamic
preferre...

preferre

Value | Formula

mmmmmmnmmlmmmmmm@

<

| 327670 & |

89,607 1765

You can also create report definition files with Report Designer, then use your custom Reporting

engine-based application to render them at a later time.

Related Links
» Pentaho Reporting's Capabilities Pentaho Reporting's Capabilities

Embedding the Pentaho Reporting Engine

19

Pentaho offers many embeddable structures -- not just the Reporting engine. You can also embed
or extend the Pentaho Analysis engine (Mondrian), the Pentaho BI Platform, part or all of Pentaho
Data Integration (Kettle), and the Weka data mining engine. This guide is focused on reporting,
however, so the below scenarios only involve the reporting components of the Pentaho BI Suite.

Related Links

The examples in this guide have covered simple scenarios that don't involve a high degree

of user interactivity. It's easy to imagine how far you can expand the example code, even to

the point of building your own client tools. On a slightly smaller scale, you could build a report-
generation program that merely takes some parameters from a user, then silently emails the report
to designated recipients via the Java mail component. You could also design a reporting daemon or
service that listens for incoming requests and outputs reports to a Web server.

Pentaho Report Designer is built on the Pentaho Reporting engine, as is the ad hoc reporting
functionality built into the Pentaho User Console in the Bl Platform. If you need a graphical report
creation tool, it would be easier to modify Report Designer than it would be to rewrite it from scratch.
For Web-based ad hoc reporting, you will have an easier time embedding the entire Bl Platform than
trying to isolate and embed just the ad hoc component.

Related Links

Perhaps you do not need to create a whole new content creation program around the Pentaho
Reporting engine; instead, you can enhance or reduce the functionality of Pentaho Report Designer
to match your needs.

Report Designer is both modular and extensible, so you can remove or disable large portions of
it, or create your own custom data sources, output formats, formulas, and functions. You can also
customize Report Designer with your own background images, icons, language, and splash screen.

Related Links

If your Web-based reporting application needs scripting, scheduling, and security functionality,
it makes more sense to embed the slightly larger Pentaho Bl Platform instead of writing a large
amount of your own code to add to the Reporting engine. The Bl Platform contains powerful
scripting and automation capabilities, an email component, report bursting functionality, user
authorization and authentication features, and a cron-compatible scheduling framework.

The BI Platform is the heart of the larger Pentaho Bl Server, which is a complete J2EE Web
application that provides engines for Pentaho Reporting, Data Integration, and Analysis, as well as
a fully customizable Web-based user interface that offers ad hoc reporting, real-time analysis views,
and interactive dashboard creation.

The BI Server is fully customizable, so your options range from simple rebranding to removing entire
components or developing your own plugins to add major user-facing functionality.

Related Links

License Information

The entire Pentaho Reporting SDK is freely redistributable. Most of it is open source software, but
its constituent JARs are under a few different licenses. If you intend to embed and distribute any
part of this SDK, you must be familiar with the licensing requirements of the pieces you use.

You can read all of the relevant licenses in text files in the licenses subdirectory in the Pentaho
Reporting SDK.

Embedding the Pentaho Reporting Engine 22

Pentaho Reporting 3.5 For Java Developers (ISBN: 1847193196), written by Pentaho VP of
Engineering Will Gorman, covers every imaginable aspect embedding the Pentaho Reporting
engine. It is a far more comprehensive guide than this document.

You can buy it from any bookseller, or online from Amazon.com:
. Mr. Gorman will gladly autograph your copy if you send it, along with a prepaid, self-
addressed return envelope, to:

Pent aho Cor porati on

ATTN. WIIl Gornan

5950 Hazeltine National Dr.
Suite 340

Ol ando, FL 32822

http://www.amazon.com/Pentaho-Reporting-3-5-Java-Developers/dp/1847193196
http://www.amazon.com/Pentaho-Reporting-3-5-Java-Developers/dp/1847193196

The example applications in this guide are simple and easy to follow, but with more complex
requirements come more advanced programs. While reading the source code comments can
help quite a bit, you may still need help to develop an enterprise reporting application within a
reasonable timeframe. Should you need personal assistance, you can have direct access to the
most knowledgeable support resources through a Pentaho Enterprise Edition annual subscription:

If phone and email support are not enough, Pentaho can also arrange for an on-site consulting
engagement:

http://www.pentaho.com/services/isv_oem_support/
http://www.pentaho.com/services/consulting/

SDK Directory Structure

i censes

ampl es
WebCont ent

.. [META- | NF

.. [VNEB- | NF

...]lib

lib
source
..lorg
/. ./ pentaho
/..lreporting
[..l../lengine
[..l../]..lclassic
[..[..]..]..]sanples

docunent ati on
I
s

e e e

I.
I
I
/.
I

sq

Directory

Content Description

Documentation

Where the Embedding the Pentaho Reporting Engine
PDF is located

Licenses

Contains text files with licensing information

Samples

The eclipse project directory, which contains the
samples shown in this guide

Samples/WebContent

WebContent information used with Sample 4 (mainly
the WEB-INF/web.xml)

Samples/lib

The lib directory which makes up the Reporting
Engine SDK

Samples/source

The source files used to make up the four reporting
samples

Samples/sql

The file-based HSQLDB instance used with the
samples

Content of the Samples Directory

File

Purpose

build.properties

Ant properties used with the build script

build.xml

Ant build script

common_build.xml

Ant Build Script

ivysettings.xml

Settings for Ivy (used with build)

ivy.xml Dependencies for project (used with Ivy — used with
build)

.project Eclipse project file

.classpath Eclipse classpath file

samples.iml

IntelliJ project file

Sample*.bat

Runs the sample (1/2/3) program on Windows

Sample *.launch

Runs the sample (1/2/3) program from within Eclipse

Sample*.sh

Runs the sample (1/2/3) project on linux

Sample4.war

The WAR that can be dropped in a Servlet Container
(Tomcat) and executed

The Pentaho Reporting SDK consists of the following Pentaho-authored JARS:

JAR File Name

Purpose

libbase

The root project for all reporting projects. Provides
base services like controlled boot-up, modularization,
configuration. Also contains some commonly used
helper classes.

libdocbundle

Support for ODF-document-bundle handling.
Provides the engine with the report-bundle
capabilities and manages the bundle-metadata,
parsing and writing.

libfonts

Font-handling library. Performs the mapping between
physical font files and logical font names. Also
provides performance optimized font-metadata and
font-metrics.

libformat

A performance optimized replacement for JDK
TextFormat classes. Accepts the same patterns as
the JDK classes, but skips the parsing. Therefore
they are less expensive to use in terms of CPU and
memory.

libformula

Our OpenFormula implementation. Provides a
implementation of the OpenFormula specification.
Basically a way to have Excel-style formulas without
the nonsense Excel does.

libloader

Resourceloading and caching framework. Used
heavily in the engine to load reports and other
resources in the most efficient way.

libpixie

Support for rendering WMF (windows-meta-files).

librepository

Abstraction-layer for content-repositories. Heavily
used by LibDocbundle and our HTML export.

libserializer

Helper classes for serialization of Java-objects. A
factory based approach to locate serializers based on
the class of the object we want to serialize. needed
as major parts of the JDK are not serializable on their
own.

libxml

Advanced SAX-parsing framework and namespace
aware XML writing framework used in the engine and
libdocbundle.

pentaho-reporting-engine-classic-core

The Pentaho Reporting engine core, which itself
consists of modular sub-projects.

Included third-party JARs

JAR File Name

Purpose

activation

The JavaBeans Activation Framework, which
determines the type of the given data, encapsulates
it, discovers the operations available on it, and to
instantiates the appropriate bean to execute those
operations.

backport-util-concurrent

A library which implements concurrency capabilities
found in Java 5.0 and 6.0, which allows building fully-
portable concurrent applications for older JREs.

batik-awt-util, batik-bridge, batik-css, batik-dom, batik-
ext, batik-gui-util, batik-gvt, batik-parser, batik-script,
batik-svg-dom, batik-util, batik-xml

The core Batik SVG toolkit, which adds scalable
vector graphics support to a Java application.

bsf The Apache Jakarta Bean Scripting Framework,
which provides scripting language support within
Java applications, and access to Java objects and
methods from scripting languages.

bsh The Bean Shell, which dynamically executes

standard Java syntax and extends it with common
scripting conveniences such as loose types,
commands, and method closures like those in Perl
and JavaScript.

commons-logging-api

The Apache Commons Logging library, which allows
writing to a variety of different logging services in a
common format.

itext Enables dynamic PDF generation.

jsrl07cache A Java cache API specification.

ehcache A distributed cache library that uses the jsr107cache
API.

mail The Java Mail API, which allows you to send email
from a Java application without requiring a separate
mail server.

poi A Java API that allows you to read from and write to
Microsoft file formats.

xml-apis The Apache Commons XML DOM library, which

allows you to read from, write to, and validate XML
files.

JARs exclusive to the embedding samples

JAR File Name

Purpose

hsqldb

HSQLDB database engine and JDBC driver.

pentaho-reporting-engine-classic-samples

The sample applications explained in this guide.

Pentaho maintains a Subversion repository for Pentaho Reporting. It consists of many individual,
modular projects, all of which are listed below. You can also traverse the repository with a Web
browser by replacing the svn:// with an http:// . As is customary with Subversion repositories, the
trunk is where active development happens; tags represent snapshots of official releases; and
branches are separate codelines generally established for new releases.

JAR File Name

Source Code Repository

libbase svn://source.pentaho.org/pentaho-reporting/libraries/
libbase

libdocbundle svn://source.pentaho.org/pentaho-reporting/libraries/
libdocbundle

libfonts svn://source.pentaho.org/pentaho-reporting/libraries/
libfonts

libformat svn://source.pentaho.org/pentaho-reporting/libraries/
libformat

libformula svn://source.pentaho.org/pentaho-reporting/libraries/
libformula

libloader svn://source.pentaho.org/pentaho-reporting/libraries/
libloader

libpixie svn://source.pentaho.org/pentaho-reporting/libraries/
pixie

librepository svn://source.pentaho.org/pentaho-reporting/libraries/
librepository

libserializer svn://source.pentaho.org/pentaho-reporting/libraries/
libserializer

libxml svn://source.pentaho.org/pentaho-reporting/libraries/

libxml

pentaho-reporting-engine-classic-core

svn://source.pentaho.org/pentaho-reporting/engines/
classic/trunk/core

Included third-party JARs

Below are URLSs for the source code for the third-party JARs included in the SDK:

JAR File Name

Source Code Repository

backport-util-concurrent-3.0.jar

https://sourceforge.net/projects/backport-jsr166/files/
backport-jsr166/backport-util-concurrent-3.0-src.tar.gz

batik-awt-util-1.6.jar, batik-bridge-1.6.jar, batik-
css-1.6.jar, batik-dom-1.6.jar, batik-ext-1.6.jar, batik-
gui-util-1.6.jar, batik-gvt-1.6.jar, batik-parser-1.6.jar,
batik-script-1.6.jar, batik-svg-dom-1.6.jar, batik-
util-1.6.jar, batik-xml-1.6.jar

http://archive.apache.org/dist/xmligraphics/batik/batik-
src-1.6.zip

bsf-2.4.0.jar

http://mirror.its.uidaho.edu/pub/apache/jakarta/bsf/
source/bsf-src-2.4.0.tar.gz

bsh-1.3.0.jar

svn:/likayzo.org/svn/beanshell

commons-logging-api-1.0.4.jar

http://www.gossipcheck.com/mirrors/apache/
commons/logging/source/commons-logging-1.1.1-
src.tar.gz

itext-1.5.2.jar

svn://itext.svn.sourceforge.net/svnroot/itext/tags/
iText_ 1 5 2/

jsrl07cache-1.0.jar

svn://jsrl07cache.svn.sourceforge.net/svnroot/
jsrl07cache/

ehcache-1.4.1.jar

svn://ehcache.svn.sourceforge.net/viewvc/ehcache/
branches/ehcache-1.4.1/

mail-1.4.1.jar

http://kenai.com/projects/javamail/downloads/
download//javamail-1.4.2-src.zip

poi-3.0.1-jdk122-final-20071014 jar

http://www.uniontransit.com/apache/poi/release/src/
poi-src-3.0.1-FINAL-20070705.tar.gz

xml-apis-1.0.b2.jar

http://svn.apache.org/repos/asf/xml/commons/tags/
xml-commons-1_0_b2/

JARs exclusive to the embedding samples

JAR File Name

Source Code Repository

hsqldb

svn://hsqgldb.svn.sourceforge.net/svnroot/hsqgldb

pentaho-reporting-engine-classic-samples

svn://source.pentaho.org/pentaho-reporting/engines/
classic/trunk/samples

SDK assembly project

svn://source.pentaho.org/pentaho-reporting/engines/
classic/trunk/sdk

If you have successfully worked with the first two sample applications and want to see a Pentaho
report render in a more realistic user-facing application scenario, then continue on to samples 3 and
4 below. They use the same basic report logic as before, but render interactive reports in a Swing
window and a Java servlet that you can deploy into a Web application server like Tomcat or JBoss.

Related Links

Sample3.java generates the same report as created in Samplel.java (using the PRPT file
generated with Report Designer, connecting to the file-based HSQLDB database, and using a few
parameters), but it uses a Swing helper class defined in the Reporting engine to render the report in
a Swing preview window. This basic functionality allows for:

* Runtime dynamic changing of report input parameters (in the Swing window, changes to the
parameters can be submitted by clicking on the Update button)

« Pagination of the report (showing one page at a time)

» Exporting the report in different formats (PDF, HTML, XLS, etc.)

The details of how to use Swing to preview the report are contained in the following engine classes
(see the source files included with the SDK for more information):

« org.pentaho.reporting.engine.classic.core.modules.gui.base.PreviewDialog: The dialog
window that contains the preview pane and handles basic menu functionality

e org.pentaho.reporting.engine.classic.core.modules.gui.base.PreviewPane: The pane that
handles the report generation, page switching, printing, and report export functionality

/*

* This programis free software; you can redistribute it and/or nodify it under

t he

* terms of the GNU Lesser General Public License, version 2.1 as published by the
Free Software

* Foundat i on.

*

* You shoul d have received a copy of the GNU Lesser General Public License al ong
with this

* program if not, you can obtain a copy at http://ww.gnu.org/licenses/old-
licenses/lgpl-2.1. htm

* or fromthe Free Software Foundation, Inc.,

* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

*

* This programis distributed in the hope that it will be useful, but WTHOUT ANY
WARRANTY;

* without even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A

PARTI CULAR PURPOSE.

* See the GNU Lesser General Public License for nore details.

*

* Copyright 2009 Pentaho Corporation. All rights reserved.
*

* Created July 22, 2009

* @ut hor dki ncade
*
/
package org. pentaho.reporting. engi ne. cl assi c. sanpl es;

i nport java. net. URL;
i mport java.util.HashMap;
import java.util.Map;

i nport org. pentaho. reporting. engi ne. cl assic. core. d assi cEngi neBoot ;

i mport org. pentaho. reporting. engi ne. cl assi c. core. Dat aFact ory;

i mport org. pentaho.reporting.engi ne.classic.core. Mast er Report;

i mport org. pentaho. reporting. engi ne. cl assi c. cor e. nodul es. gui . base. Previ ewbi al og;
i mport org. pentaho.reporting.libraries.resourcel oader. Resour ce;

i mport org.pentaho.reporting.libraries.resourcel oader. Resour ceExcepti on;

i mport org.pentaho.reporting.libraries.resourcel oader. Resour ceManager;

/**

* Generates a report using a pagi nated Swing Preview Di al og. The paraneters for
this report
* can be nodified while previewing the dialog and the changes can be seen

instantly.
* <p/>
* The report generated in this scenario will be the sane as created in Sanpl el:
*
* <|i>The report definition file is a .prpt file which will be | oaded and parsed
* <|i>The data factory is a sinple JDBC data factory usi ng HSQ.DB
* <|i>There are no runtinme report paraneters used
*
*/
public class Sanple3 {
/**
* @aram args
*/

public static void main(String[] args) {
/1 initialize the Reporting Engi ne
Cl assi cEngi neBoot . get I nstance().start();

/1l Get the conplete report definition (the report definition with the data
factory and

/| paraneters already applied)

Sanpl e3 sanpl e = new Sanpl e3();

final MasterReport report = sanple. get Conpl et eReportDefinition();

/'l Generate the swi ng preview dial og
final PreviewDi al og dial og = new Previ ewhi al og();
di al og. set Report Job(report);
di al og. set Si ze(500, 500);
di al og. set Modal (true);
di al og. set Visi bl e(true);
System exit(0);
}
/**
* Cenerates the report definition that has the data factory and
* paraneters al ready applied.
* @eturn the conpleted report definition
*/
public MasterReport getConpl et eReportDefinition() {
final MasterReport report = getReportDefinition();

/1 Add any paranmeters to the report
final Map<String, Object> reportParaneters = get ReportParaneters();
if (null !'= reportParaneters) {
for (String key : reportParaneters. keySet ()) {
report. get Par amet er Val ues() . put (key, report Paraneters. get(key));

}
/1l Set the data factory for the report

final DataFactory dataFactory = getDataFactory();
if (dataFactory != null)

report. set Dat aFact or y(dat aFact ory) ;
}

/! Return the conpleted report
return report;

}

/**

* Returns the report definition which will be used to generate the report. In
this case, the report will be

* | oaded and parsed froma file contained in this package.

*

* @eturn the | oaded and parsed report definition to be used in report

generati on.
*/
private MasterReport getReportDefinition() {
try {
/1 Using the cl assl oader, get the URL to the reportDefinition file
/1 NOTE: W& will re-use the report definition from SAVPLEL
final O assLoader classloader = this.getd ass().getd assLoader();
final URL reportDefinitionURL = classl oader
. get Resour ce(" or g/ pent aho/ r eporti ng/ engi ne/ cl assi c/ sanpl es/

Sanpl el. prpt");

/| Parse the report file
final ResourceManager resourceManager = new ResourceManager () ;
resour ceManager . r egi st er Def aul t s() ;
final Resource directly =
resour ceManager. createDirectl y(reportDefinitionURL, MsterReport.class);

return (MasterReport) directly. getResource();

} catch (ResourceException e) {
e.printStackTrace();

}

return null;

}
/**

* Returns the set of runtine report paraneters. This sanple report uses the
followi ng three paraneters:

*

* <|i>Report Title - The title text on the top of the report

* <|i>Cust omer Names - an array of custoner nanmes to show in the
report

* <|i>Col Headers BG Col or - the background color for the colum
headers</1i >

*

*

* @eturn <code>nul | </code> indicating the report generator does not use any
report paraneters

*/
private Map<String, Object> getReportParaneters() {

final Map paraneters = new HashMap<String, Object>();

paraneters. put ("Report Title", "Sinple Enbedded Report Exanple with
Par aneters");

paranet ers. put ("Col Headers BG Color", "yellow');

par anet ers. put (" Cust omer Nanes", new String[] { "American Souvenirs |nc",
"Toys4G ownUps. cont', "giftsbymail.co.uk",

"BGE Col | ectabl es”, "Classic Gft ldeas, Inc", });
return paraneters;

/**

* Returns the data factory which will be used to generate the data used during
report generation. In this exanple,

*we will return null since the data factory has been defined in the report
definition.

*

* @eturn the data factory used with the report generator

*/
private DataFactory getDataFactory() {
return null;

}
}

Related Links

Note: This example assumes you have a Java application server, such as Tomcat or JBoss,
installed, configured, running, and accessible to you.

Sampled.java is an HttpServlet which generates an HTML report similar to Sample2 (dynamically
created report definition based on the data set, a static data set, and no parameters). In the
generateReport(...) method, the report is generates as HTML into an output stream which is routed
directly to the browser. As noted in the comments of this method, a small simple change can be
made to generate PDF output instead of HTML output.

Directions for Running Sample4
To execute Sample4, the following steps will deploy and run it using Tomcat 5.5:

1. Copy Sample4.war into the webapps directory of a working Tomcat instance
2. Start the Tomcat server (bin/startup.sh or bin\startup.bat)
3. In a browser, navigate to the following URL: htt p: / /| ocal host : 8080/ Sanpl e4/

/*

* This programis free software; you can redistribute it and/or nmodify it under

t he

* terms of the GNU Lesser General Public License, version 2.1 as published by the
Free Software

* Foundat i on.

*

* You shoul d have received a copy of the GNU Lesser General Public License al ong

with this

* program if not, you can obtain a copy at http://ww.gnu.org/licenses/ol d-

i censes/lgpl-2.1. htm

* or fromthe Free Software Foundation, Inc.,

* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

*

* This programis distributed in the hope that it will be useful, but WTHOUT ANY
WARRANTY;

* without even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A

PARTI CULAR PURPOSE.

See the GNU Lesser General Public License for nore details.

E I I

Copyright 2009 Pentaho Corporation. Al rights reserved.

* Created July 22, 2009

* @ut hor dki ncade

*/

package org. pent aho.reporting. engi ne. cl assi c. sanpl es;

import java.io. | OException;
i mport java.io.CQutputStream

i mport javax.servlet. Servl et Excepti on;

import javax.servlet.http. HtpServlet;

i mport javax.servlet.http. HtpServl et Request;
import javax.servlet.http. HtpServl et Response;
i mport javax.sw ng.tabl e. Abst ract Tabl eMbdel ;

i mport org. pentaho. reporting. engi ne. cl assi c. core. C assi cEngi neBoot ;

i nport org. pentaho. reporting. engi ne. cl assi
i mport org. pentaho. reporting. engi ne. cl assi
i mport org. pentaho.reporting.engine.cl assi
i mport org. pentaho. reporting. engi ne. cl assi
i nport org. pentaho. reporting. engi ne. cl assi
output.table.htm . H M Report Uil ;

i mport org. pentaho. reporting. engine.classic.core.w zard.
Rel at i onal Aut oGener at or Pr ePr ocessor ;

.core. Mast er Report;

.core. PageDefinition;

.core. Report Processi ngExcepti on;
. core. Tabl eDat aFact ory;

. core. nodul es.

OO0 0O0

/**

* Servlet inplenentation which generates a report and returns the report as an
HTML

* stream back to the browser.

*/

public class Sanpled4 extends H tpServl et

/**

* Default constructor for this sanple servlet
*/

publ i c Sanpl e4()

{

}

/**

* Initializes the servliet - we need to nake sure the reporting engi ne has been
initialized

*/

public void init()

/1 Initialize the reporting engi ne
Cl assi cEngi neBoot . get I nstance().start();

}
/**
* Handl es the CET request. We will handl e both the GET request and POST request
the same way.
*/
protected void doGet(final HttpServletRequest req, final HttpServletResponse
resp) throws Servl et Exception, | OException
{

gener at eReport (req, resp);

/**

* Handl es the POST request. We will handle both the GET request and POST
request the same way.

*/

protected void doPost (final HttpServletRequest req, final HttpServl et Response
resp) throws Servl et Exception, | OException

gener at eReport (req, resp);
}
/**

* Generates a sinple HTML report and returns the HTM. out put back to the
br owser

*/
private void generateReport(final HttpServletRequest req, final
Ht t pSer vl et Response resp) throws Servl et Exception, | COException
{

/'l Generate the report definition

final MasterReport report = createReportDefinition();

/1 Run the report and save the HTM. output to a byte stream

resp. set Content Type("text/htm"); // Change to "application/pdf" for PDF
out put

Qut put Stream out = resp. get Qut put Strean() ;

try
/1l Use the Hm ReportUtil to generate the report to a Stream HTM.

Ht ml Report Util . createStreanHTM_(report, out);

/I NOTE: Changing this to use PDF is sinple:

/1 1. Change the above setContent call to use "application/pdf"
/1 2. Instead of Hm ReportUil, use the follow ng |ine:

/1 Pdf Report Util.createPDF(report, out)

catch (ReportProcessi ngException rpe)
rpe. printStackTrace();
finally

out.cl ose();

}

private MasterReport createReportDefinition()
{
/1l Create a report using the autogenerated fields
final MasterReport report = new MasterReport();
report. addPreProcessor (new Rel ati onal Aut oGener at or PreProcessor());

/1 Add the data factory to the report

report. set Dat aFact or y(new Tabl eDat aFact or y(" Sanpl e4Query", new
Sanpl e4Tabl eMvbdel ()));

report.set Query("Sanmpl e4dQuery");

/] return
return report;

}

/**

* The tabl e nodel used for this sanple.

* <pr/>

* In a real situation, this would never happen (a JNDI datasource connected up
to

* custoner data would be nore nornal). But for a sanple, some hard coded
* data is to be expected.

*/
private static class Sanpl e4Tabl eMbdel extends Abstract Tabl eModel
{ /**
* The sanpl e data
*/
private static final Object[][] data = new Qoject[][]
{
new Object[] { "Acne Industries”, 2500, 18.75 },
new Cbject[] { "Brookstone Warehouses", 5000, 36.1245 },
new bject[] { "Cartwell Restaurants", 18460, 12.9 },
new Obj ect[] { "Domino Buil ders", 20625, 45.52 },
new Object[] { "El ephant Zoo Encl osures", 750, 19.222 },
1
/**
* Returns the number of colums of data in the sanple dataset
*/
public int getCol umCount ()
{
return data[O0].!|ength;
}
/**
* Returns the number of rows in the sanple data
*/
public int get RowCount ()
{

return data.l ength;

}

/**

* Returns the data value at the specific row and col um i ndex
*/

public Object getVal ueAt(int row ndex, int columml ndex)

if (rowmndex >= 0 & rowl ndex < data.length & columlndex >= 0 &&
col uml ndex < data[row ndex] .| engt h)

{

return data[row ndex] [col uml ndex] ;

return null;

}

}
}

Related Links
* More Examples More Examples

Embedding the Pentaho Reporting Engine

37

	Introduction
	Required Knowledge and Expertise

	Obtaining the Pentaho Reporting SDK
	Using the Included Eclipse Project
	Embedding the Reporting Engine Into a Java Application
	Overview
	Sample 0: The Base Class
	Sample 1: Static Report Definition, JDBC Input, PDF Output
	Sample 2: Static Report Definition, JDBC Input, HTML Output

	Pentaho Reporting's Capabilities
	Technological Advantages
	Input Types
	Output Types
	Pentaho Report Designer

	Other Embedding Scenarios
	Building a Custom Reporting Tool
	Hacking Pentaho Report Designer
	Embedding the Pentaho BI Platform

	License Information
	Further Reading
	Developer Support
	Anatomy of the Pentaho Reporting SDK
	JAR Reference
	Source Code Links
	More Examples
	Sample 3: Dynamically Generated, JDBC Input, Swing Output
	Sample 4: Dynamically Generated, JDBC Input, Java Servlet Output

