
Embree
High Performance Ray Tracing Kernels

Version 2.4.0
December 18, 2014

1

Contents

1 Embree Overview 2
1.1 Supported Platforms . 3
1.2 Embree Support and Contact . 4

2 Compiling Embree 5
2.1 Linux and Mac OS X . 5
2.2 Xeon Phi™ . 7
2.3 Windows . 7

2.3.1 Using the IDE . 7
2.3.2 Using the Command Line 7

3 Embree API 9
3.1 Scene . 10
3.2 Geometries . 12

3.2.1 Triangle Meshes . 12
3.2.2 Subdivision Surfaces . 13
3.2.3 Hair Geometry . 14
3.2.4 User Defined Geometry 15
3.2.5 Instances . 16

3.3 Ray Queries . 17
3.4 Buffer Sharing . 19
3.5 Linear Motion Blur . 20
3.6 Geometry Mask . 20
3.7 Filter Functions . 20
3.8 Displacement Mapping Functions 21
3.9 Sharing Threads with Embree . 22

4 Embree Tutorials 23
4.1 Tutorial00 . 24
4.2 Tutorial01 . 24
4.3 Tutorial02 . 25
4.4 Tutorial03 . 25
4.5 Tutorial04 . 26
4.6 Tutorial05 . 26
4.7 Tutorial06 . 26
4.8 Tutorial07 . 27
4.9 Tutorial08 . 27
4.10 Tutorial09 . 28
4.11 Tutorial10 . 28

2

Chapter 1
Embree Overview

Embree is a collection of high-performance ray tracing kernels, developed at In-
tel. The target user of Embree are graphics application engineers that want to
improve the performance of their application by leveraging the optimized ray
tracing kernels of Embree. The kernels are optimized for photo-realistic ren-
dering on the latest Intel® processors with support for SSE, AVX, AVX2, and the
16-wide Xeon Phi™ vector instructions. Embree supports runtime code selection
to choose the traversal and build algorithms that best matches the instruction set
of your CPU. We recommend using Embree through its API to get the highest
benefit from future improvements. Embree is released as Open Source under the
Apache 2.0 license.

Embree supports applications written with the Intel SPMD Programm Com-
piler (ISPC, https://ispc.github.io/) by also providing an ISPC interface to
the core ray tracing algorithms. This makes it possible to write a renderer in
ISPC that leverages SSE, AVX, AVX2, and Xeon Phi™ instructions without any
code change. ISPC also supports runtime code selection, thus ISPC will select
the best code path for your application, while Embree selects the optimal code
path for the ray tracing algorithms.

Embree contains algorithms optimized for incoherent workloads (e.g. Monte
Carlo ray tracing algorithms) and coherent workloads (e.g. primary visibility and
hard shadow rays). For standard CPUs, the single-ray traversal kernels in Em-
bree provide the best performance for incoherent workloads and are very easy to
integrate into existing rendering applications. For Xeon Phi™, a renderer writ-
ten in ISPC using the default hybrid ray/packet traversal algorithms have shown
to perform best, but requires writing the renderer in ISPC. In general for coher-
ent workloads, ISPC outperforms the single ray mode on each platform. Embree
also supports dynamic scenes by implementing high performance two-level spa-
tial index structure construction algorithms.

In addition to the ray tracing kernels, Embree provides some tutorials to
demonstrate how to use the Embree API. The example photorealistic renderer
that was originally included in the Embree kernel package is now available in a
separate GIT repository (see Embree Example Renderer). Please also check out
the OSPRay Ray Tracing based Rendering Engine for High-Fidelity Visualization
(https://ospray.github.io/) which builds on Embree.

http://www.apache.org/licenses/LICENSE-2.0
https://ispc.github.io/
https://embree.github.io/renderer.html
https://ospray.github.io/

Embree Overview 3

1.1 Supported Platforms
Embree supportsWindows (32 bit and 64 bit), Linux (64 bit) andMac OS X (64 bit).
The code compiles with the Intel Compiler, GCC, CLANG and theMicrosoft Com-
piler. Embree is tested with Intel Compiler 15.0.0, CLANG 3.4.2, GCC 4.8.2, and
Visual Studio 12 2013. Using the Intel Compiler improves performance by ap-
proximately 10%.

Performance also varies across different operating systems. Embree is opti-
mized for Intel CPUs supporting SSE, AVX, and AVX2 instructions, and requires
at least a CPU with support for SSE2.

The Xeon Phi™ version of Embree only works under Linux in 64 bit mode.
For compilation of the the Xeon Phi™ code the Intel Compiler is required. The
host side code compiles with GCC, CLANG, and the Intel Compiler.

Embree Overview 4

1.2 Embree Support and Contact
If you encounter bugs please report them via Embree’s GitHub Issue Tracker.

For questions please write us at embree_support@intel.com.
To receive notifications of updates and new features of Embree please sub-

scribe to the Embree mailing list.
For information about compiler optimizations, see our Optimization Notice.

https://github.com/embree/embree/issues
mailto:embree_support@intel.com
https://groups.google.com/d/forum/embree/
http://software.intel.com/en-us/articles/optimization-notice#opt-en

5

Chapter 2
Compiling Embree

2.1 Linux and Mac OS X
Embree is tested with Intel Compiler 15.0.0, CLANG 3.4.2, and GCC 4.8.2.

Embree also requires the Intel® SPMD Program Compiler (ISPC) to compile.
We have tested ISPC version 1.8.0, but more recent versions of ISPC should also
work. You can download and install the ISPC binaries from ispc.github.io. After
installation, either put the path to the ispc executable permanently into your
PATH:

export PATH=path-to-ispc:$PATH

Or provide the path to the ispc executable to CMake via the ISPC_EXECUTABLE
variable.

You additionally have to install CMake 2.8.12 or higher and the developer
version of GLUT. Under Mac OS X, these dependencies can be installed using
MacPorts:

sudo port install cmake freeglut

Under Linux you can install these dependencies using yum or apt-get. De-
pending on your Linux distribution, some of these packages might already be
installed or might have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake.x86_64
sudo yum install freeglut.x86_64 freeglut-devel.x86_64
sudo yum install libXmu.x86_64 libXi.x86_64
sudo yum install libXmu-devel.x86_64 libXi-devel.x86_64

Type the following to install the dependencies using apt-get:

sudo apt-get install cmake-curses-gui
sudo apt-get install freeglut3-dev
sudo apt-get install libxmu-dev libxi-dev

Finally you can compile Embree using CMake. Create a build directory and
execute “ccmake ..” inside this directory.

mkdir build
cd build
ccmake ..

https://ispc.github.io/downloads.html
http://www.macports.org/

Compiling Embree 6

This will open a configuration dialog where you can perform various config-
urations as described below. After having configured Embree, press c (for con-
figure) and g (for generate) to generate a Makefile and leave the configuration.
The code can be compiled by executing make.

make

The executables will be generated inside the build folder. We recommend to
finally install the Embree library and header files on your system:

sudo make install

If you cannot install Embree on your system (e.g. when you don’t have ad-
ministrator rights) you need to add embree_root_directory/build to your LD_
LIBRARY_PATH (and SINK_LD_LIBRARY_PATH in case you want to use Embree
on Xeon Phi™).

The default configuration in the configuration dialog should be appropriate
for most usages. The following table described all parameters that can be config-
ured:

Option Description Default

BUILD_EMBREE_SHARED_LIB Build Embree as a shared library. ON
BUILD_TUTORIALS Builds the C++ version of the Embree tutorials. ON
BUILD_TUTORIALS_ISPC Builds the ISPC version of the Embree tutorials. ON
CMAKE_BUILD_TYPE Can be used to switch between Debug mode

(Debug) and Release mode (Release).
Release

COMPILER Select either GCC, ICC, or CLANG as compiler. GCC
RTCORE_BACKFACE_CULLING Enables backface culling, i.e. only surfaces facing

a ray can be hit.
OFF

RTCORE_BUFFER_STRIDE Enables the buffer stride feature. ON
RTCORE_INTERSECTION_FILTER Enables the intersection filter feature. ON
RTCORE_RAY_MASK Enables the ray masking feature. OFF
RTCORE_SPINLOCKS Enables faster spinlocks for some builders. OFF
RTCORE_RETURN_SUBDIV_NORMAL Instead of the triangle normal the ray returns a

smooth normal based on evaluating the
subdivision surface patch.

OFF

XEON_ISA Select highest supported ISA on Xeon™ CPUs
(SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX-I,
or AVX2).

AVX2

XEON_PHI_ISA Enables generation of Xeon Phi™ version of
kernels and tutorials (when BUILD_TUTORIALS
is ON).

OFF

Table 2.1 – CMake build options for Embree.

Compiling Embree 7

2.2 Xeon Phi™
Embree supports the Xeon Phi™ coprocessor under Linux. To compile Embree
for Xeon Phi you need to enable the XEON_PHI_ISA option in CMake and have the
Intel Compiler and the Intel Manycore Platform Software Stack (MPSS) installed.

Enabling the buffer stride feature reduces performance for building spatial
hierarchies on Xeon Phi.

2.3 Windows
Embree requires Visual Studio 12 2013 and the Intel SPMD Program Compiler
(ISPC) to compile. We have tested ISPC version 1.8.0, but more recent versions
of ISPC should also work. You can download and install the ISPC binaries from
ispc.github.io. After installation, put the path to ispc.exe permanently into
your PATH environment variable or you need to correctly set the ISPC_EXECUTABLE
variable during CMake configuration.

You additionally have to install CMake (version 2.8.12 or higher). Note that
you need a native Windows CMake installation, because CMake under Cygwin
cannot generate solution files for Visual Studio.

2.3.1 Using the IDE
Run cmake-gui, browse to the Embree sources, set the build directory and click
Configure. Now you can select the Generator, e.g. “Visual Studio 12 2013” for a
32 bit build or “Visual Studio 12 2013 Win64” for a 64 bit build. Most configura-
tion parameters described for the Linux build can be set under Windows as well.
Finally, click “Generate” to create the Visual Studio solution files.

For compilation of Embree under Windows use the generated Visual Studio
solution file embree.sln. The solution is by default setup to use the Microsoft
Compiler. You can switch to the Intel Compiler by right clicking onto the solution
in the Solution Explorer and then selecting the Intel Compiler. We recommend
using 64 bit mode and the Intel Compiler for best performance.

To build Embree with support for the AVX2 instruction set you need at least
Visual Studio 2013 Update 4. When switching to the Intel Compiler to build with
AVX2 you currently need to manually remove the switch /arch:AVX2 from the
embree_avx2 project, which can be found under Properties ⇒ C/C++ ⇒ All
Options⇒ Additional Options.

To build all projects of the solution it is recommend to build the CMake utility
project ALL_BUILD, which depends on all projects. Using “Build Solution” would
also build all other CMake utility projects (such as INSTALL), which is usually
not wanted.

We recommend enabling syntax highlighting for the .ispc source and .isph
header files. To do so open Visual Studio 2008, go to Tools ⇒ Options ⇒ Text
Editor ⇒ File Extension and add the isph and ispc extension for the “Microsoft
Visual C++” editor.

2.3.2 Using the Command Line
Embree can also be configured and built without the IDE using the Visual Studio
command prompt:

cd path\to\embree
mkdir build
cd build
cmake -G "Visual Studio 12 2013 Win64" ..
cmake --build . --config Release

https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://ispc.github.io/downloads.html
http://www.cmake.org/download/

Compiling Embree 8

You can also build only some projects with the -{}-target switch. Addi-
tional parameters after “-{}-” will be passed to msbuild. For example, to build
the Embree library in parallel use

cmake --build . --config Release --target embree -- /m

9

Chapter 3
Embree API

The Embree API is a low level ray tracing API that supports defining and com-
mitting of geometry and performing ray queries of different types. Static and
dynamic scenes are supported, that may contain triangular geometry (including
linear motions for motion blur), instanced geometry, and user defined geometry.
Supported ray queries are, finding the closest scene intersection along a ray, and
testing a ray segment for any intersection with the scene. Single rays, as well as
packets of rays in a struct of array layout can be used for packet sizes of 1, 4, 8,
and 16 rays. Filter callback functions are supported, that get invoked for every
intersection encountered during traversal.

The Embree API exists in a C++ and ISPC version. This document describes
the C++ version of the API, the ISPC version is almost identical. The only differ-
ences are that the ISPC version needs some ISPC specific uniform type modifiers,
and limits the ray packets to the native SIMD size the ISPC code is compiled for.

The user is supposed to include the embree2/rtcore.h, and the embree2/
rtcore_ray.h file, but none of the other header files. If using the ISPC version of
the API, the user should include embree2/rtcore.isph and embree2/rtcore_
ray.isph.

#include <embree2/rtcore.h>
#include <embree2/rtcore_ray.h>

All API calls carry the prefix rtc which stands for ray tracing core. Before
invoking any API call, the Embree ray tracing core has to get initialized through
the rtcInit call. Before the application exits it should call rtcExit. Initializing
Embree again after an rtcExit is allowed.

rtcInit(NULL);
...
rtcExit();

The rtcInit call initializes the ray tracing core. An optional configuration
string can be passed through this function to configure implementation specific
parameters. If this string is NULL, a default configuration is used, that is optimal
for most usages.

API calls that access geometries are only thread safe as long as different
geometries are accessed. Accesses to one geometry have to get sequenced by
the application. All other API calls are thread safe. The rtcIntersect and
rtcOccluded calls are re-entrant, but only for other rtcIntersect and rtcOccluded
calls. It is thus safe to trace new rays when intersecting a user defined object, but
not supported to create new geometry inside the intersect callback function of a
user defined geometry.

Each user thread has its own error flag in the API. If an error occurs when
invoking someAPI function, this flag is set to an error code if it stores no previous

Embree API 10

error. The rtcGetError function reads and returns the currently stored error
and clears the error flag again. For performance reasons the ray query functions
do not set an error flag in release mode, but do so if Embree is compiled in debug
mode.

Possible error codes returned by rtcGetError are:

Error Code Description

RTC_NO_ERROR No error occurred.
RTC_UNKNOWN_ERROR An unknown error has occurred.
RTC_INVALID_ARGUMENT An invalid argument was specified.
RTC_INVALID_OPERATION The operation is not allowed for the specified object.
RTC_OUT_OF_MEMORY There is not enough memory left to complete the operation.
RTC_UNSUPPORTED_CPU The CPU is not supported as it does not support SSE2.

Table 3.1 – Return values of rtcGetError.

Using the rtcSetErrorFunction call, it is also possible to set a callback func-
tion that is called whenever an error occurs. The callback function gets passed
the error code, as well as some string that describes the error further. Passing
NULL to rtcSetErrorFunction disables the set callback function again. The pre-
viously described error flags are also set if an error callback function is present.

3.1 Scene
A scene is a container for a set of geometries of potentially different types. A
scene is created using the rtcNewScene function call, and destroyed using the
rtcDeleteScene function call. Two types of scenes are supported, dynamic and
static scenes. Different flags specify the type of scene to create and the type
of ray query operations that can later be performed on the scene. The follow-
ing example creates a scene that supports dynamic updates and the single ray
rtcIntersect and rtcOccluded calls.

RTCScene scene = rtcNewScene(RTC_SCENE_DYNAMIC, RTC_INTERSECT1);
...
rtcDeleteScene(scene);

Using the following scene flags the user can select between creating a static
and dynamic scene.

Scene Flag Description

RTC_SCENE_STATIC Scene is optimized for static geometry.
RTC_SCENE_DYNAMIC Scene is optimized for dynamic geometry.

Table 3.2 – Dynamic type flags for rtcNewScene.

A dynamic scene is created by invoking rtcNewScene with the RTC_SCENE_
DYNAMIC flag. Different geometries can now be created inside that scene. Geome-
tries are enabled by default. Once the scene geometry is specified, an rtcCommit

Embree API 11

call will finish the scene description and trigger building of internal data struc-
tures. After the rtcCommit call it is safe to perform ray queries of the type
specified at scene construction time. Geometries can get disabled (rtcDisable
call), enabled again (rtcEnable call), and deleted (rtcDeleteGeometry call). Ge-
ometries can also get modified, including their vertex and index arrays. After
the modification of some geometry, rtcUpdate or rtcUpdateBuffer has to get
called for that geometry to specify which buffers got modified. Each modified
buffer can specified separately using the rtcUpdateBuffer function. In contrast
the rtcUpdate function simply tags each buffer of some geometry as modified.
If geometries got enabled, disabled, deleted, or modified an rtcCommit call has
to get invoked before performing any ray queries for the scene, otherwise the
effect of the ray query is undefined.

A static scene is created by the rtcNewScene call with the RTC_SCENE_STATIC
flag. Geometries can only be created and modified until the first rtcCommit call.
After the rtcCommit call, each access to any geometry of that static scene is in-
valid, including enabling, disabling, modifying, and deletion of geometries. Con-
sequently, geometries that got created inside a static scene can only get deleted
by deleting the entire scene.

The following flags can be used to tune the used acceleration structure. These
flags are only hints and may be ignored by the implementation.

Scene Flag Description

RTC_SCENE_COMPACT Creates a compact data structure and avoids algorithms that consume
much memory.

RTC_SCENE_COHERENT Optimize for coherent rays (e.g. primary rays).
RTC_SCENE_INCOHERENT Optimize for in-coherent rays (e.g. diffuse reflection rays).
RTC_SCENE_HIGH_QUALITY Build higher quality spatial data structures.

Table 3.3 – Acceleration structure flags for rtcNewScene.

The following flags can be used to tune the traversal algorithm that is used by
Embree. These flags are only hints and may be ignored by the implementation.

Scene Flag Description

RTC_SCENE_ROBUST Avoid optimizations that reduce arithmetic accuracy.

Table 3.4 – Traversal algorithm flags for rtcNewScene.

The second argument of the rtcNewScene function are algorithm flags, that
allow to specify which ray queries are required by the application. Calling for
a scene a ray query API function that is different to the ones specified at scene
creation time is not allowed. Further, the application should only pass ray query
requirements that are really needed, to give Embree most freedom in choosing
the best algorithm. E.g. in case Embree implements no packet traversers for some
highly optimized data structure for single rays, then this data structure cannot
be used if the user enables any ray packet query.

Embree API 12

Algorithm Flag Description

RTC_INTERSECT1 Enables the rtcIntersect and rtcOccluded functions (single ray interface) for
this scene.

RTC_INTERSECT4 Enables the rtcIntersect4 and rtcOccluded4 functions (4-wide packet
interface) for this scene.

RTC_INTERSECT8 Enables the rtcIntersect8 and rtcOccluded8 functions (8-wide packet
interface) for this scene.

RTC_INTERSECT16 Enables the rtcIntersect16 and rtcOccluded16 functions (16-wide packet
interface) for this scene.

Table 3.5 – Enabled algorithm flags for rtcNewScene.

3.2 Geometries
Geometries are always contained in the scene they are created in. Each geom-
etry is assigned an integer ID at creation time, which is unique for that scene.
The current version of the API supports triangle meshes (rtcNewTriangleMesh),
Catmull-Clark subdivision surfaces (rtcNewSubdivisionMesh), hair geometries
(rtcNewHairGeometry), single level instances of other scenes (rtcNewInstance),
and user defined geometries (rtcNewUserGeometry). The API is designed in a
way that easily allows adding new geometry types in later releases.

For dynamic scenes, the assigned geometry IDs fulfill the following proper-
ties. As long as no geometry got deleted, all IDs are assigned sequentially, start-
ing from 0. If geometries got deleted, the implementation will reuse IDs later on
in an implementation dependent way. Consequently sequential assignment is
no longer guaranteed, but a compact range of IDs. These rules allow the applica-
tion to manage a dynamic array to efficiently map from geometry IDs to its own
geometry representation.

For static scenes, geometry IDs are assigned sequentially starting at 0. This
allows the application to use a fixed size array to map from geometry IDs to its
own geometry representation.

3.2.1 Triangle Meshes
Triangle meshes are created using the rtcNewTriangleMesh function call, and
potentially deleted using the rtcDeleteGeometry function call.

The number of triangles, the number of vertices, and optionally the number
of time steps (1 for normal meshes, and 2 for linear motion blur) have to get spec-
ified at construction time of the mesh. The user can also specify additional flags
that choose the strategy to handle that mesh in dynamic scenes. The following
example demonstrates how to create a triangle mesh without motion blur:

unsigned geomID = rtcNewTriangleMesh(scene, geomFlags, numTriangles, numVertices);

The following geometry flags can be specified at construction time of the
triangle mesh:

Geometry Flag Description

RTC_GEOMETRY_STATIC The mesh is considered static and should get modified rarely by the
application. This flag has to get used in static scenes.

Embree API 13

Geometry Flag Description

RTC_GEOMETRY_DEFORMABLE The mesh is considered to deform in a coherent way, e.g. a skinned
character. The connectivity of the mesh has to stay constant, thus
modifying the index array is not allowed. The implementation is free
to choose a BVH refitting approach for handling meshes tagged with
that flag.

RTC_GEOMETRY_DYNAMIC The mesh is considered highly dynamic and changes frequently,
possibly in an unstructured way. Embree will rebuild data structures
from scratch for this type of mesh.

Table 3.6 – Flags for the creation of new geometries.

The triangle indices can be set by mapping and writing to the index buffer
(RTC_INDEX_BUFFER) and the triangle vertices can be set bymapping andwriting
into the vertex buffer (RTC_VERTEX_BUFFER). The index buffer contains an array
of three 32 bit indices, while the vertex buffer contains an array of three float
values aligned to 16 bytes. The 4th component of the aligned vertices can be
arbitrary. All buffers have to get unmapped before an rtcCommit call to the
scene.

struct Vertex { float x, y, z, a; };
struct Triangle { int v0, v1, v2; };

Vertex* vertices = (Vertex*) rtcMapBuffer(scene, geomID, RTC_VERTEX_BUFFER);
// fill vertices here
rtcUnmapBuffer(scene, geomID, RTC_VERTEX_BUFFER);

Triangle* triangles = (Triangle*) rtcMapBuffer(scene, geomID, RTC_INDEX_BUFFER);
// fill triangle indices here
rtcUnmapBuffer(scene, geomID, RTC_INDEX_BUFFER);

Also see tutorial00 for an example of how to create triangle meshes.

3.2.2 Subdivision Surfaces
Catmull-Clark subdivision surfaces for meshes consisting of triangle and quad
primitives (even mixed inside one mesh) are supported, including support for
edge creases, vertex creases, holes, and non-manifold geometry.

A subdivision surface is created using the rtcNewSubdivisionMesh function
call, and deleted again using the rtcDeleteGeometry function call.

unsigned rtcNewSubdivisionMesh(RTCScene scene,
RTCGeometryFlags flags,
size_t numFaces,
size_t numEdges,
size_t numVertices,
size_t numEdgeCreases,
size_t numVertexCreases,
size_t numCorners,
size_t numHoles,
size_t numTimeSteps);

The number of faces (numFaces), edges/indices (numEdges), vertices (numVertices),
edge creases (numEdgeCreases), vertex creases (numVertexCreases), holes (numHoles),
and time steps (numTimeSteps) have to get specified at construction time.

Embree API 14

The following buffers have to get setup by the application: the face buffer
(RTC_FACE_BUFFER) contains the number edges/indices (3 or 4) of each of the
numFaces faces, the index buffer (RTC_INDEX_BUFFER) contains multiple (3 or
4) 32 bit vertex indices for each face and numEdges indices in total, the vertex
buffer (RTC_VERTEX_BUFFER) stores numVertices vertices as single precision x,
y, z floating point coordinates aligned to 16 bytes. The value of the 4th float used
for alignment can be arbitrary.

Optionally, the application can setup the hole buffer (RTC_HOLE_BUFFER) with
numHoles many 32 bit indices of faces that should be considered non-existing.

Optionally, the application can fill the level buffer (RTC_LEVEL_BUFFER) with
a tessellation level for each or the edges of each face, making a total of numEdges
values. The tessellation level is a positive floating point value, that specifies
how many quads along the edge should get generated during tessellation. The
tessellation level is a lower bound, thus the implementation is free to choose a
larger level. If no level buffer is specified a level of 1 is used. Note that some edge
may be shared between (typically 2) faces. To guarantee a watertight tessellation,
the level of these shared edges has to be exactly identical.

Optionally, the application can fill the sparse edge crease buffers to make
some edges appear sharper. The edge crease index buffer (RTC_EDGE_CREASE_
INDEX_BUFFER) contains numEdgeCreases many pairs of 32 bit vertex indices
that specify unoriented edges. The edge creaseweight buffer (RTC_EDGE_CREASE_
WEIGHT_BUFFER) stores for each of theses crease edges a positive floating point
weight. The larger this weight, the sharper the edge. Specifying a weight of
infinity is supported and marks an edge as infinitely sharp. Storing an edge mul-
tiple times with the same crease weight is allowed, but has lower performance.
Storing an edge multiple times with different crease weights results in undefined
behavior. For a stored edge (i,j), the reverse direction edges (j,i) does not have to
get stored, as both are considered the same edge.

Optionally, the application can fill the sparse vertex crease buffers to make
some vertices appear sharper. The vertex crease index buffer (RTC_VERTEX_
CREASE_INDEX_BUFFER), contains numVertexCreases many 32 bit vertex in-
dices to specify a set of vertices. The vertex crease weight buffer (RTC_VERTEX_
CREASE_WEIGHT_BUFFER) specifies for each of these vertices a positive floating
point weight. The larger this weight, the sharper the vertex. Specifying a weight
of infinity is supported and makes the vertex infinitely sharp. Storing a vertex
multiple times with the same crease weight is allowed, but has lower perfor-
mance. Storing a vertex multiple times with different crease weights results in
undefined behavior.

Like for triangle meshes, the user can also specify a geometry mask and addi-
tional flags that choose the strategy to handle that subdivision mesh in dynamic
scenes.

Also see tutorial08 for an example of how to create subdivision surfaces.

3.2.3 Hair Geometry
Hair geometries are supported, which consist of multiple hairs represented as
cubic Bézier curves with varying radius per control point. Individual hairs are
considered to be subpixel sized which allows the implementation to approximate
the intersection calculation. This in particular means that zooming onto one hair
might show geometric artifacts.

Hair geometries are created using the rtcNewHairGeometry function call,
and potentially deleted using the rtcDeleteGeometry function call.

The number of hair curves, the number of vertices, and optionally the num-
ber of time steps (1 for normal curves, and 2 for linear motion blur) have to get
specified at construction time of the hair geometry.

The curve indices can be set bymapping andwriting to the index buffer (RTC_

Embree API 15

INDEX_BUFFER) and the control vertices can be set by mapping and writing into
the vertex buffer (RTC_VERTEX_BUFFER). In case of linear motion blur, two vertex
buffers (RTC_VERTEX_BUFFER0 and RTC_VERTEX_BUFFER1) have to get filled, one
for each time step.

The index buffer contains an array of 32 bit indices pointing to the ID of the
first of four control vertices, while the vertex buffer stores all control points in the
form of a single precision position and radius stored in x, y, z, r order in memory.
All buffers have to get unmapped before an rtcCommit call to the scene.

Like for triangle meshes, the user can also specify a geometry mask and ad-
ditional flags that choose the strategy to handle that mesh in dynamic scenes.

The following example demonstrates how to create some hair geometry:

unsigned geomID = rtcNewHairGeometry(scene, geomFlags, numCurves, numVertices);

struct Vertex { float x, y, z, r; };

Vertex* vertices = (Vertex*) rtcMapBuffer(scene, geomID, RTC_VERTEX_BUFFER);
// fill vertices here
rtcUnmapBuffer(scene, geomID, RTC_VERTEX_BUFFER);

int* triangles = (int*) rtcMapBuffer(scene, geomID, RTC_INDEX_BUFFER);
// fill indices here
rtcUnmapBuffer(scene, geomID, RTC_INDEX_BUFFER);

Also see tutorial07 for an example of how to create and use hair geometry.

3.2.4 User Defined Geometry
User defined geometries make it possible to extend Embree with arbitrary types
of geometry. This is achieved by introducing arrays of user geometries as a spe-
cial geometry type. These objects do not contain a single user geometry, but
a set of such geometries, each specified by an index. The user has to provide
a user data pointer, bounding function as well as user defined intersect and oc-
cluded functions to create a set of user geometries. The user geometry to process
is specified by passing its user data pointer and index to each invocation of the
bounding, intersect, and occluded function. The bounding function is used to
query the bounds of each user geometry. When performing ray queries, Embree
will invoke the user intersect (and occluded) functions to test rays for intersec-
tion (and occlusion) with the specified user defined geometry.

As Embree supports different ray packet sizes, one potentially has to pro-
vide different versions of user intersect and occluded function pointers for these
packet sizes. However, the ray packet size of the called user function always
matches the packet size of the originally invoked ray query function. Conse-
quently, an application only operating on single rays only has to provide single
ray intersect and occluded function pointers.

User geometries are created using the rtcNewUserGeometry function call,
and potentially deleted using the rtcDeleteGeometry function call. The follow-
ing example illustrates creating an array with two user geometries:

struct UserObject { ... };

void userBoundsFunction(UserObject* userGeom, size_t i, RTCBounds& bounds) {
bounds = <bounds of userGeom[i]>;

}

void userIntersectFunction(UserObject* userGeom, RTCRay& ray, size_t i) {
if (<ray misses userGeom[i]>)

Embree API 16

return;
<update ray hit information>;

}

void userOccludedFunction(UserObject* userGeom, RTCRay& ray, size_t i) {
if (<ray misses userGeom[i]>)

return;
geomID = 0;

}

...

UserObject* userGeom = new UserObject[2];
userGeom[0] = ...
userGeom[1] = ...
unsigned geomID = rtcNewUserGeometry(scene, 2);
rtcSetUserData(scene, geomID, userGeom);
rtcSetBounds(scene, geomID, userBoundsFunction);
rtcSetIntersectFunction(scene, geomID, userIntersectFunction);
rtcSetOccludedFunction(scene, geomID, userOccludedFunction);

The user intersect function (userIntersectFunction) and user occluded
function (userOccludedFunction) get as input the pointer provided through the
rtcSetUserData function call, a ray, and the index of the geometry to process.
For ray packets, the user intersect and occluded functions also get a pointer to a
valid mask as input. The user provided functions should not modify any ray that
is disabled by that valid mask.

The user intersect function should return without modifying the ray struc-
ture if the user geometry is missed. If the geometry is hit, it has to update the hit
information of the ray (tfar, u, v, Ng, geomID, primID).

Also the user occluded function should return without modifying the ray
structure if the user geometry is missed. If the geometry is hit, it should set the
geomID member of the ray to 0.

Is is supported to invoke the rtcIntersect and rtcOccluded function calls
inside such user functions. It is not supported to invoke any other API call inside
these user functions.

See tutorial02 for an example of how to use the user defined geometries.

3.2.5 Instances
Embree supports instancing of scenes inside another scene by some transforma-
tion. As the instanced scene is stored only a single time, even if instanced to mul-
tiple locations, this feature can be used to create extremely large scenes. Only
single level instancing is supported by Embree natively, however, multi-level in-
stancing can principally be implemented through user geometries.

Instances are created using the rtcNewInstance function call, and poten-
tially deleted using the rtcDeleteGeometry function call. To instantiate a scene,
one first has to generate the scene B to instantiate. Now one can add an instance
of this scene inside a scene A the following way:

unsigned instID = rtcNewInstance(sceneA, sceneB);
rtcSetTransform(sceneA, instID, RTC_MATRIX_COLUMN_MAJOR, &column_matrix_3x4);

One has to call rtcCommit on scene B before one calls rtcCommit on scene
A. When modifying scene B one has to call rtcModified for all instances of that
scene. If a ray hits the instance, then the geomID and primID members of the
ray are set to the geometry ID and primitive ID of the primitive hit in scene B,

Embree API 17

and the instID member of the ray is set to the instance ID returned from the
rtcNewInstance function.

The rtcSetTransform call can be passed an affine transformation matrix
with different data layouts:

Layout Description

RTC_MATRIX_ROW_MAJOR The 3×4 float matrix is laid out in row major form.
RTC_MATRIX_COLUMN_MAJOR The 3×4 float matrix is laid out in column major form.
RTC_MATRIX_COLUMN_MAJOR_ALIGNED16 The 3×4 float matrix is laid out in column major form,

with each column padded by an additional 4th
component.

Table 3.7 – Matrix layouts for rtcSetTransform.

Passing homogeneous 4×4 matrices is possible as long as the last row is
(0, 0, 0, 1). If this homogeneous matrix is laid out in row major form, use the
RTC_MATRIX_ROW_MAJOR layout. If this homogeneous matrix is laid out in col-
umn major form, use the RTC_MATRIX_COLUMN_MAJOR_ALIGNED16 mode. In
both cases, Embree will ignore the last row of the matrix.

The transformation passed to rtcSetTransform transforms from the local
space of the instantiated scene to world space.

See tutorial04 for an example of how to use instances.

3.3 Ray Queries
TheAPI supports finding the closest hit of a ray segmentwith the scene (rtcIntersect
functions), and determining if any hit between a ray segment and the scene exists
(rtcOccluded functions).

void rtcIntersect (RTCScene scene, RTCRay& ray);
void rtcIntersect4 (const void* valid, RTCScene scene, RTCRay4& ray);
void rtcIntersect8 (const void* valid, RTCScene scene, RTCRay8& ray);
void rtcIntersect16(const void* valid, RTCScene scene, RTCRay16& ray);
void rtcOccluded (RTCScene scene, RTCRay& ray);
void rtcOccluded4 (const void* valid, RTCScene scene, RTCRay4& ray);
void rtcOccluded8 (const void* valid, RTCScene scene, RTCRay8& ray);
void rtcOccluded16 (const void* valid, RTCScene scene, RTCRay16& ray);

The ray layout to be passed to the ray tracing core is defined in the embree2/
rtcore_ray.h header file. It is up to the user if he wants to use the ray structures
defined in that file, or resemble the exact same binary data layout with their
own vector classes. The ray layout might change with new Embree releases as
new features get added, however, will stay constant as long as the major Embree
release number does not change. The ray contains the following data members:

Member In/Out Description

org in ray origin
dir in ray direction (can be unnormalized)
tnear in start of ray segment
tfar in/out end of ray segment, set to hit distance after intersection

Embree API 18

Member In/Out Description

time in time used for motion blur
mask in ray mask to mask out geometries
Ng out unnormalized geometry normal
u out barycentric u-coordinate of hit
v out barycentric v-coordinate of hit
geomID out geometry ID of hit geometry
primID out primitive ID of hit primitive
instID out instance ID of hit instance

Table 3.8 – Data fields of a ray.

This structure is in struct of array layout (SOA) for ray packets. Note that the
tfar member functions as an input and output.

In the ray packet mode (with packet size of N), the user has to provide a
pointer to N 32 bit integers that act as a ray activity mask. If one of these inte-
gers is set to 0x00000000 the corresponding ray is considered inactive and if the
integer is set to 0xFFFFFFFF, the ray is considered active. Rays that are inactive
will not update any hit information. Data alignment requirements for ray query
functions operating on single rays is 16 bytes for the ray.

Data alignment requirements for query functions operating on AOS packets
of 4, 8, or 16 rays, is 16, 32, and 64 bytes respectively, for the valid mask and the
ray. To operate on packets of 4 rays, the CPU has to support SSE, to operate on
packets of 8 rays, the CPU has to support AVX-256, and to operate on packets
of 16 rays, the CPU has to support the Xeon Phi™ instructions. Additionally,
the required ISA has to be enabled in Embree at compile time to use the desired
packet size.

Finding the closest hit distance is done through the rtcIntersect functions.
These get the activity mask, the scene, and a ray as input. The user has to ini-
tialize the ray origin (org), ray direction (dir), and ray segment (tnear, tfar).
The ray segment has to be in the range [0,∞), thus ranges that start behind
the ray origin are not valid, but ranges can reach to infinity. The geometry ID
(geomIDmember) has to get initialized to RTC_INVALID_GEOMETRY_ID (-1). If the
scene contains instances, also the instance ID (instID) has to get initialized to
RTC_INVALID_GEOMETRY_ID (-1). If the scene contains linear motion blur, also
the ray time (time) has to get initialized to a value in the range [0, 1]. If ray masks
are enabled at compile time, also the ray mask (mask) has to get initialized. After
tracing the ray, the hit distance (tfar), geometry normal (Ng), local hit coordi-
nates (u, v), geometry ID (geomID), and primitive ID (primID) are set. If the scene
contains instances, also the instance ID (instID) is set, if an instance is hit. The
geometry ID corresponds to the ID returned at creation time of the hit geometry,
and the primitive ID corresponds to the nth primitive of that geometry, e.g. nth
triangle. The instance ID corresponds to the ID returned at creation time of the
instance.

The following code properly sets up a ray and traces it through the scene:

RTCRay ray;
ray.org = ray_origin;
ray.dir = ray_direction;
ray.tnear = 0.f;
ray.tfar = inf;

Embree API 19

ray.geomID = RTC_INVALID_GEOMETRY_ID;
ray.primID = RTC_INVALID_GEOMETRY_ID;
ray.instID = RTC_INVALID_GEOMETRY_ID;
ray.mask = 0xFFFFFFFF;
ray.time = 0.f;
rtcIntersect(scene, ray);

Testing if any geometry intersects with the ray segment is done through
the rtcOccluded functions. Initialization has to be done as for rtcIntersect.
If some geometry got found along the ray segment, the geometry ID (geomID)
will get set to 0. Other hit information of the ray is undefined after calling
rtcOccluded.

See tutorial00 for an example of how to trace rays.

3.4 Buffer Sharing
Embree supports sharing of buffers with the application. Each buffer that can be
mapped for a specific geometry can also be shared with the application, by pass a
pointer, offset, and stride of the application side buffer using the rtcSetBuffer
API function.

void rtcSetBuffer(RTCScene scene, unsigned geomID, RTCBufferType type,
void* ptr, size_t offset, size_t stride);

The rtcSetBuffer function has to get called before any call to rtcMapBuffer
for that buffer, otherwise the buffer will get allocated internally and the call to
rtcSetBuffer will fail. The buffer has to remain valid as long as the geom-
etry exists, and the user is responsible to free the buffer when the geometry
gets deleted. When a buffer is shared, it is safe to modify that buffer without
mapping and unmapping it. However, for dynamic scenes one still has to call
rtcModified for modified geometries and the buffer data has to stay constant
from the rtcCommit call to after the last ray query invocation.

The offset parameter specifies a byte offset to the start of the first element
and the stride parameter specifies a byte stride between the different elements
of the shared buffer. This support for offset and stride allows the application
quite some freedom in the data layout of these buffers, however, some restric-
tions apply. Index buffers always store 32 bit indices and vertex buffers always
store single precision floating point data. The start address ptr+offset and stride
always have to be aligned to 4 bytes on Xeon CPUs and 16 bytes on Xeon Phi™
accelerators, otherwise the rtcSetBuffer function will fail. For vertex buffers,
the 4 bytes after the z-coordinate of the last vertex have to be readable memory,
thus padding is required for some layouts.

The following is an example of how to create a mesh with shared index and
vertex buffers:

unsigned geomID = rtcNewTriangleMesh(scene, geomFlags, numTriangles, numVertices);
rtcSetBuffer(scene, geomID, RTC_VERTEX_BUFFER, vertexPtr, 0, 3*sizeof(float));
rtcSetBuffer(scene, geomID, RTC_INDEX_BUFFER, indexPtr, 0, 3*sizeof(int));

Sharing buffers can significantly reduce the memory required by the applica-
tion, thus we recommend using this feature. When enabling the RTC_COMPACT
scene flag, the spatial index structures of Embree might also share the vertex
buffer, resulting in even higher memory savings.

The support for offset and stride is enabled by default, but can get disabled at
compile time using the RTCORE_BUFFER_STRIDE parameter in CMake. Disabling
this feature enables the default offset and stride which increases performance of
spatial index structure build, thus can be useful for dynamic content.

Embree API 20

3.5 Linear Motion Blur
Triangle meshes and hair geometries with linear motion blur support are cre-
ated by setting the number of time steps to 2 at geometry construction time.
Specifying a number of time steps of 0 or larger than 2 is invalid. For a tri-
angle mesh or hair geometry with linear motion blur, the user has to set the
RTC_VERTEX_BUFFER0 and RTC_VERTEX_BUFFER1 vertex arrays, one for each
time step.

unsigned geomID = rtcNewTriangleMesh(scene, geomFlags, numTris, numVertices, 2);
rtcSetBuffer(scene, geomID, RTC_VERTEX_BUFFER0, vertex0Ptr, 0, sizeof(Vertex));
rtcSetBuffer(scene, geomID, RTC_VERTEX_BUFFER1, vertex1Ptr, 0, sizeof(Vertex));
rtcSetBuffer(scene, geomID, RTC_INDEX_BUFFER, indexPtr, 0, sizeof(Triangle));

If a scene contains geometries with linear motion blur, the user has to set the
time member of the ray to a value in the range [0, 1]. The ray will intersect the
scenewith the vertices of the two time steps linearly interpolated to this specified
time. Each ray can specify a different time, even inside a ray packet.

3.6 Geometry Mask
A 32 bit geometry mask can be assigned to triangle meshes and hair geometries
using the rtcSetMask call.

rtcSetMask(scene, geomID, mask);

Only if the bitwise and operation of this mask with the mask stored inside the
ray is not 0, primitives of this geometry are hit by a ray. This feature can be used
to disable selected triangle mesh or hair geometries for specifically tagged rays,
e.g. to disable shadow casting for some geometry. This API feature is disabled
in Embree by default at compile time, and can be enabled in CMake through the
RTCORE_ENABLE_RAY_MASK parameter.

3.7 Filter Functions
The API supports per geometry filter callback functions that are invoked for each
intersection found during the rtcIntersect or rtcOccluded calls. The former
ones are called intersection filter functions, the latter ones occlusion filter func-
tions. The filter functions can be used to implement various useful features, such
as accumulating opacity for transparent shadows, counting the number of sur-
faces along a ray, collecting all hits along a ray, etc. Filter functions can also be
used to selectively reject hits to enable backface culling for some geometries. If
the backfaces should be culled in general for all geometries then it is faster to en-
able RTCORE_BACKFACE_CULLING during compilation of Embree instead of using
filter functions.

The filter functions provided by the user have to have the following signature:

void FilterFunc (void* userPtr, RTCRay& ray);
void FilterFunc4 (const void* valid, void* userPtr, RTCRay4& ray);
void FilterFunc8 (const void* valid, void* userPtr, RTCRay8& ray);
void FilterFunc16(const void* valid, void* userPtr, RTCRay16& ray);

The valid pointer points to a valid mask of the same format as expected
as input by the ray query functions. The userPtr is a user pointer optionally
set per geometry through the rtcSetUserData function. The ray passed to the
filter function is the ray structure initially provided to the ray query function

Embree API 21

by the user. For that reason, it is safe to extend the ray by additional data and
access this data inside the filter function (e.g. to accumulate opacity). All hit
information inside the ray is valid. If the hit geometry is instanced, the instID
member of the ray is valid and the ray origin, direction, and geometry normal
visible through the ray are in object space. The filter function can reject a hit by
setting the geomIDmember of the ray to RTC_INVALID_GEOMETRY_ID, otherwise
the hit is accepted. The filter function is not allowed to modify the ray input data
(org, dir, tnear, tfar), but can modify the hit data of the ray (u, v, Ng, geomID,
primID).

The intersection filter functions for different ray types are set for some ge-
ometry of a scene using the following API functions:

void rtcSetIntersectionFilterFunction (RTCScene, unsigned geomID, RTCFilterFunc);
void rtcSetIntersectionFilterFunction4 (RTCScene, unsigned geomID, RTCFilterFunc4);
void rtcSetIntersectionFilterFunction8 (RTCScene, unsigned geomID, RTCFilterFunc8);
void rtcSetIntersectionFilterFunction16(RTCScene, unsigned geomID, RTCFilterFunc16);

These functions are invoked during execution of the rtcIntersect type
queries of the matching ray type. The occlusion filter functions are set using
the following API functions:

void rtcSetOcclusionFilterFunction (RTCScene, unsigned geomID, RTCFilterFunc);
void rtcSetOcclusionFilterFunction4 (RTCScene, unsigned geomID, RTCFilterFunc4);
void rtcSetOcclusionFilterFunction8 (RTCScene, unsigned geomID, RTCFilterFunc8);
void rtcSetOcclusionFilterFunction16(RTCScene, unsigned geomID, RTCFilterFunc16);

See tutorial05 for an example of how to use the filter functions.

3.8 Displacement Mapping Functions
The API supports displacement mapping for subdivisionmeshes. A displacement
function can be set for some subdivisionmesh using the rtcSetDisplacementFunction
API call.

void rtcSetDisplacementFunction(RTCScene, unsigned geomID, RTCDisplacementFunc, RTCBounds* bounds);

A displacement function of NULL will delete an already set displacement
function. The bounds parameter is optional. If NULL is passed as bounds, then
the displacement shader will get evaluated during the build process to properly
bound displaced geometry. If a pointer to some bounds of the displacement are
passed, then the implementation can choose to use these bounds to bound dis-
placed geometry. When bounds are specified, then these bounds have to be con-
servative and should be tight for best performance.

The displacement function has to have the following type:

typedef void (*RTCDisplacementFunc)(void* ptr, unsigned geomID, unsigned primID,
const float* u, const float* v,
const float* nx, const float* ny, const float* nz,
float* px, float* py, float* pz,
size_t N);

The displacement function is called with the user data pointer of the geom-
etry (ptr), the geometry ID (geomID) and primitive ID (primID) of a patch to
displace. For this patch, a number N of points to displace are specified in a struct
of array layout. For each point to displace the local patch UV coordinates (u and
v arrays), the normalized geometry normal (nx, ny, and nz arrays), as well as

Embree API 22

world space position (px, py, and pz arrays) are provided. The task of the dis-
placement function is to use this information and move the world space position
inside the allowed specified bounds around the point.

All passed arrays are guaranteed to be 64 bytes aligned, and properly padded
to make wide vector processing inside the displacement function possible.

The displacement mapping functions might get called during the rtcCommit
call, or lazily during the rtcIntersect or rtcOccluded calls.

Also see tutorial09 for an example of how to use the displacement mapping
functions.

3.9 Sharing Threads with Embree
Embree supports using the application threads when building internal data struc-
tures, by using the

void rtcCommitThread(RTCScene, unsigned threadIndex, unsigned threadCount);

API call to commit the scene. This function has to get called by all threads that
want to cooperate in the scene commit. Each call is provided the scene to commit,
the index of the calling thread in the range [0, threadCount-1], and the number
of threads that will call into this commit operation for the scene. Multiple such
scene commit operations can also be running at the same time, e.g. it is possible
to commit many small scenes in parallel using one thread per commit operation.
Subsequent commit operations for the same scene can use different number of
threads or the Embree internal threads using the

void rtcCommitThread()

call.

23

Chapter 4
Embree Tutorials

Embree comes with a set of tutorials aimed at helping users understand how
Embree can be used and extended. All tutorials exist in an ISPC and C version
to demonstrate the two versions of the API. Look for files named tutorialXX_
device.ispc for the ISPC implementation of the tutorial, and files named tutorialXX_
device.cpp for the single ray C++ version of the tutorial. To start the C++ ver-
sion use the tutorialXX executables, to start the ISPC version use the tutorialXX_
ispc executables.

Under Linux Embree also comes with an ISPC version of all tutorials for the
Intel®Xeon Phi™ coprocessor. The executables of this version of the tutorials are
named tutorialXX_xeonphi and only work if a Xeon Phi coprocessor is present
in the system. The Xeon Phi version of the tutorials get started on the host CPU,
just like all other tutorials, and will connect automatically to one installed Xeon
Phi coprocessor in the system.

For all tutorials, you can select an initial camera using the -vp (camera po-
sition), -vi (camera look-at point), -vu (camera up vector), and -fov (vertical
field of view) command line parameters:

./tutorial00 -vp 10 10 10 -vi 0 0 0

You can select the initial windows size using the -size command line param-
eter, or start the tutorials in fullscreen using the -fullscreen parameter:

./tutorial00 -size 1024 1024

./tutorial00 -fullscreen

Implementation specific parameters can be passed to the ray tracing core
through the -rtcore command line parameter, e.g.:

./tutorial00 -rtcore verbose=2,threads=1,accel=bvh4.triangle1

The navigation in the interactive displaymode follows the camera orbitmodel,
where the camera revolves around the current center of interest. With the left
mouse button you can rotate around the center of interest (the point initially set
with -vi). Holding Control pressed while clicking the left mouse button rotates
the camera around its location. You can also use the arrow keys for navigation.

You can use the following keys:

F1 Default shading

F2 Gray EyeLight shading

F3 Wireframe shading

F4 UV Coordinate visualization

Embree Tutorials 24

F5 Geometry normal visualization

F6 Geometry ID visualization

F7 Geometry ID and Primitive ID visualization

F8 Simple shading with 16 rays per pixel for benchmarking.

F9 Switches to render cost visualization. Pressing again reduces brightness.

F10 Switches to render cost visualization. Pressing again increases brightness.

f Enters or leaves full screen mode.

c Prints camera parameters.

ESC Exists the tutorial.

q Exists the tutorial.

4.1 Tutorial00

This tutorial demonstrates the creation of a static cube and ground plane
using triangle meshes. It also demonstrates the use of the rtcIntersect and
rtcOccluded functions to render primary visibility and hard shadows. The cube
sides are colored based on the ID of the hit primitive.

4.2 Tutorial01

Embree Tutorials 25

This tutorial demonstrates the creation of a dynamic scene, consisting of sev-
eral deformed spheres. Half of the spheres use the RTC_GEOMETRY_DEFORMABLE
flag, which allows Embree to use a refitting strategy for these spheres, the other
half uses the RTC_GEOMETRY_DYNAMIC flag, causing a rebuild of their spatial data
structure each frame. The spheres are colored based on the ID of the hit sphere
geometry.

4.3 Tutorial02

This tutorial shows the use of user defined geometry, to re-implement in-
stancing and to add analytic spheres. A two level scene is created, with a trian-
gle mesh as ground plane, and several user geometries, that instance other scenes
with a small number of spheres of different kind. The spheres are colored using
the instance ID and geometry ID of the hit sphere, to demonstrate how the same
geometry, instanced in different ways can be distinguished.

4.4 Tutorial03

This tutorial demonstrates a simple OBJ viewer that traces primary visibility
rays only. A scene consisting of multiple meshes is created, each mesh sharing
the index and vertex buffer with the application. Demonstrated is also how to
support additional per vertex data, such as shading normals.

You need to specify an OBJ file at the command line for this tutorial to work:

./tutorial03 -i model.obj

Embree Tutorials 26

4.5 Tutorial04

This tutorial demonstrates the in-build instancing feature of Embree, by in-
stancing a number of other scenes build from triangulated spheres. The spheres
are again colored using the instance ID and geometry ID of the hit sphere, to
demonstrate how the same geometry, instanced in different ways can be distin-
guished.

4.6 Tutorial05

This tutorial demonstrates the use of filter callback functions to efficiently im-
plement transparent objects. The filter function used for primary rays, lets the
ray pass through the geometry if it is entirely transparent. Otherwise the shad-
ing loop handles the transparency properly, by potentially shooting secondary
rays. The filter function used for shadow rays accumulates the transparency of
all surfaces along the ray, and terminates traversal if an opaque occluder is hit.

4.7 Tutorial06
This tutorial is a simple path tracer, building on tutorial03.

You need to specify an OBJ file and light source at the command line for this
tutorial to work:

./tutorial06 -i model.obj -ambientlight 1 1 1

Embree Tutorials 27

4.8 Tutorial07

This tutorial demonstrates the use of the hair geometry to render a hairball.

4.9 Tutorial08

This tutorial demonstrates the use of Catmull Clark subdivision surfaces. Per
default the edge tessellation level is set adaptively based on the distance to the
camera origin. Embree currently supports three different modes for efficiently
handling subdivision surfaces in various rendering scenarios. These three modes
can be selected at the command line, e.g. -lazy builds internal per subdivision
patch data structures on demand, -cache uses a small (per thread) tessellation
cache for caching per patch data, and -pregenerate to generate and store most
per patch data during the initial build process. The cachemode is most effective

Embree Tutorials 28

for coherent rays while providing a fixed memory footprint. The pregenerate
modes is most effective for incoherent ray distributions while requiring more
memory. The lazy mode works similar to the pregenerate mode but provides
a middle ground in terms of memory consumption as it only builds and stores
data only when the corresponding patch is accessed during the ray traversal. The
cache mode is currently a bit more efficient at handling dynamic scenes where
only the edge tessellation levels are changing per frame.

4.10 Tutorial09

This tutorial demonstrates the use of Catmull Clark subdivision surfaces with
procedural displacement mapping using a constant edge tessellation level.

4.11 Tutorial10

This tutorial loads an .obj file and renders the mesh as a Catmull Clark sub-
division surface object. The edge tessellation level is chosen adaptively based on
the distance to the camera.

	Embree Overview
	Supported Platforms
	Embree Support and Contact

	Compiling Embree
	Linux and Mac OS X
	Xeon Phi™
	Windows
	Using the IDE
	Using the Command Line

	Embree API
	Scene
	Geometries
	Triangle Meshes
	Subdivision Surfaces
	Hair Geometry
	User Defined Geometry
	Instances

	Ray Queries
	Buffer Sharing
	Linear Motion Blur
	Geometry Mask
	Filter Functions
	Displacement Mapping Functions
	Sharing Threads with Embree

	Embree Tutorials
	Tutorial00
	Tutorial01
	Tutorial02
	Tutorial03
	Tutorial04
	Tutorial05
	Tutorial06
	Tutorial07
	Tutorial08
	Tutorial09
	Tutorial10

