

ビギナー向けレッスン

旋盤加工:前編

- 3Dデータの準備
- [設定] の作成
- 加工パスの作成 旋盤フェイシング –
- 加工パスの作成 旋盤輪郭粗取り-
- 加工パスの作成 旋盤輪郭仕上げ –
- 警告の確認と修正

3Dデータの準備

サンプルデータを開く

1 [データパネルを表示] をクリック

2

[CAM Samples] をダブルクリック

3Dデータの準備

5

4 [Tutorial6]をダブルクリック

※サンプルデータのため、上書き保存ができません。保存する場合は、[ファイル]
 →[名前を付けて保存]で、ご自身の管理するプロジェクトへ保存してください。

[データパネルを閉じる]をクリック

E Au	todesk Fusion 360		6
	i team 🐱	Q	XX
	データ	共有メンバー	
			\$
ŧ	> CAM Samples > Tutoria	ls	
	0		
æ	TINTO to 2D M	achining_Complete	

6 作業スペースを [製造] に切り替える

[製造]はCAMデータを作成するための作 業スペースです。

	999K	サーフェス	בליט'X	74-1
デサイン 🔻	2	İ 🥽 💽		
デザイン		1年成 •	\times	$\langle \rangle$
ジェネレーティブ デザイン	1 💿	$\overline{\langle}$		\bigcirc
レンダリング	定	\sim	>>	\triangleleft
アニメーション		>>		\geq
シミュレーション	\sim	>>	\sim	≥ 1
製造				\leq
园市	•	$<\!\!<\!\!<$	>>	\triangleleft
איזעשוע 🔲				

単位を確認する

- 1 [単位] が [mm] になっていることを確認
- <
 ✓ 1555
 CAM ルート
 単位:mm
 ● ●
 ● ●
 ● ●
 ● ●
 ● ●
 ● ●
 ● ●
 ● ●
 ● ●
 ● ●
 ● ●
 ● ●
 ● ●
 ● ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

ブラウザ					•
4 • 6	5 CAN 2	$\mathbf{r} \leq$	X		
	単位:mm	2	>	\geq	\mathbb{S}
ליד 🕽	ティブな単位	を変更	\sim	\sim	\bigcirc
\triangleright \circ	🔓 E71	v >	\bigtriangledown	\sim	\supset
0	🗁 設定	\geq			
	\sim	\leq	\leq		
<	>>		< >	\sim	

● アケティブな単位を変更					
単位のタイプ ୟ	ຂຽ% ∽ Ւル 🔹				
既定として設定					
	4OK キャンセル				

ツールパスを作成するときには、はじめに [設定] を作成します。加工機、操作タイプ、座標系、 基準点、加工対象モデル、治具モデルなどが設定できます。

[設定] タブ内の条件の設定

- 1 [操作タイプ] が [旋盤またはミルター ン] になっていることを確認
- 2 [スピンドル] が [プライマリスピンド ル] になっていることを確認
- 3 [方向] が [Z軸/平面、X点を選択] に なっていることを確認

● 設定:設定1					
🗗 設定 🧧	ストック 😨 ポスト処理				
▼ マシン					
マシン	選択				
▼ 設定					
操作タイプ 1	旋盤またはミルターン・				
スピンドル 🙎	2 75イマリスピンドル ・				
▼ ワーク産標系	▼ ワ〜り 産 復 系 (WCS)				
方向 3	Ζ軸/平面、Χ点を選択 ▼				
Z軸(回転軸)	≻				
Ζ軸を反転					
点からの X 軸					
X軸を反転					

[面]と表示されていない場合は、円筒 面を選択してください。

[**Z**軸を反転] にチェック

5

Z軸の正方向が前面から離れる向きに設定 します。

設定:設定1	
🗗 He 🧐	ストック 🔋 ポスト処理
▼ マシン	
マシン	選択
▼ 設定	
操作タイプ	旋盤またはミルターン・
スピンドル	プライマリスピンドル 🔹
▼ ワーク産標系	(WCS)
方向	Ζ軸/平面、Χ点を選択 ▼
Z軸(回転軸)	<u>▶</u> च
Ζ軸を反転	5
点からの X 軸	心筆
<mark>X</mark> 軸を反転	0
原点	ストック フロント 🔹
▼ 回港高を	
回避高を参照	ストック フロント 🔹
オフセット	5 mm 🔹
▼ モデル	6
0	・ OK キャンセル

6 [**Οκ**] をクリック

1 [アクティブなセットアップを同期] をクリック

[アクティブなセットアップとビューを同期] にチェック

定義した平面をもとに、アイソメトリックビューで表示されます。 黒い丸がついている [設定] がアクティブです。

[設定] タブ内の条件の設定(続き)

●「設定1」を右クリック→[編集]をク リック

- 2 [回避高さ参照]を[ストックフロン ト]に設定。
 - 回避高さでは、工具の保持位置を制御し ます。
- 3 [オフセット] を「25mm」に変更。
- 4 [モデル] に [ボディ] と表示されている ことを確認。

複数のモデルが存在する場合は、その中から加工対象モデルを選択します。今回はモ デルが1つなので、自動的に選択されてい ます。

5 [チャックの参照] が [モデルバック] になっていることを確認。

チャックの基準位置とそこからのオフセッ ト値を設定します。

6 [オフセット]を「-12mm」に変更。

	$\sim \sim \sim \sim$
▼ワーク産標示	T(WCS)
方向	Ζ軸/平面、X点を選択 ▼
Z軸(回転軸)	<mark>≽</mark> ⊞ ×
Ζ軸を反転	
点からの X 軸	▶ 無
X軸を反転	
原点	גרשל לעשל איני א
▼ 回邊高を	
回避高を参照	גרשל לעאל 🗸 🗸
オフセット	25 mm 3
▼ モデル	
モデル	ि ग ॅन 4
回転輪郭	
▼ £₽90	
チャックの参照	モデル パック 🗾 🚽 5
オフセット	-12 mm 🗧 6
0	OK キャンセル

[ストック] タブ内の条件の設定

1 [ストック] タブをクリック

 [ストック]の上にマウスカーソルを重ね、 ツールチップス(使い方のヒント)を確認。

旋盤では、円柱を使います。

8 [ストックの寸法] が必要なストック寸法 になっています。

[ポスト処理] タブ内の条件の設定

- 1 [ポスト処理]タブをクリック
- 2 [プログラム名/番号]を「1001」に設定

HaasやFANUCのNCプログラムに表記される O番号になります。

3 [プログラム コメント] に「Turning Intro」 を入力

NCプログラムの冒頭に表記されます。

④ [WCSオフセット]を「1」に設定 ワークコーディネートオフセットになります。

5 [OK] をクリック

● 設定:設定1 → 設定 → ストック				
▼ プログラム				
プログラム名/番号	1001 2			
プログラム コメント	Turning Intro 3			
▼ マシン WCS				
WCS オフセット	1 4			
複数 WCS オフセット				
0	• OK キャンセル			

<u> 加工パスの作成 – 旋盤フェイシング –</u>

旋盤加工の [旋盤フェイシング]を使って、ストックの全面を平坦にします。

2

[旋盤]タブが選択されていることを確認

[旋盤フェイシング] をクリック

[工具]タブ

工具の選択、クーラント、工具方向、送 りと速度を設定できます。

[形状] タブ

スピンドル軸に沿って加工する境界領域 を設定できます。選択したツールパスに よって設定できる内容が変わります。

[半径]タブ

半径方向の境界を設定できます。

[切削]タブ

切削のパラメータ設定です。1回のカット 量、複数カットの取り残し設定などがで きます。

[リンク] タブ

工具の進入、退避の設定が可能です。 [進入&退避]では、切削前後の位置決 めができます。[進入動作]では、工具 の進入方法などが設定できます。

		//
	ミル 旋盤	積層
製造 ▼		
L	」 設定▼ 2	

● 面:面2		
🖣 工具	ด 形状	🍋 半径 🚽 パス 💋 リンク
▼ 工具		
工具		選択
ケーラント <mark>(</mark> (:)	สาน -
工具方向		0 deg
▼ 送りと速	æ	
プリセット		70201 -
一定の面速度を使用		
主軸回転速度		500 rpm
回転あたりの送りを使用		
切削送b速度		1000 mm/min 🛓
進入送り速度		1000 mm/min 🛓
退出送り速度		1000 mm/min 🗘
0		OK キャンセル

[工具] タブ内の条件を設定する

[工具]の[選択]をクリック

1

[工具を選択] ウィンドウが開きます。 このウィンドウは4つのエリアに分かれ ています。

ローカルで個人用ライブラリとして利用できる工具 ご自身のPCに保存されます

Fusion 360 ライブラリ

ソフトウェアに標準搭載されている工具

加エパスの作成 - 旋盤フェイシング -

[CNMT09T308 – DCLN –R (CNMT Right Hand)]をクリック CNMTは粗加工用の一般的なチップ形状です。

[選択] をクリック

5 [回転あたりの送りを使用] にチェックが 入っていることを確認

[回転あたりの送りを使用]では、カット レートを設定するために、一定の表面速度 を使用したり、実際のスピンドル速度と送 りの設定のために無効にしたりできます。

多くの旋盤加工では、一定の表面速度を使 用して、1回転あたりの表面速度と切削速 度を入力し、速度と送りを設定します。

● ĒĒ : ĒĒ 3				
🎙 工具 🌀 形状	🍋 半径 🚽 パス 🟓 リンク			
▼ 工具				
工具	選択			
	#1 - CNMT?T308 CNMT Right H			
ケーラント <mark>(</mark> C)	สาม			
工具方向	0 deg			
▼ 送りと遠度				
プリセット	既定のプリセット 🔹			
→定の面速度を使用				
サーフェス速度	91.44 m/min			
最大主軸回転速度	5000 rpm			
回転あたりの送りを使用	5			
切削送り/回転数	0.127 mm			
進入送り <mark>/回転</mark> 数	0.127 mm			
退出送り /回 転数	0.127 mm			
0	OK キャンセル			

[形状] タブ内の条件を確認する

[形状] をクリック

[形状] タブでは、加工エリアとなる前 後の面を設定します。

※本レッスンでは、デフォルトで設定されている値を変更しないで進めます。

• 1 :	形状 🔞 半径 🚽 パス 🖕	לכט 💆			
▼ 70>F					
フロント モード	モデル フロント				
オフセット	0 mm	•			
0	OK	キャンセル			

「半径」タブ内の条件を確認する

[半径] をクリック

「移動]

部品の外側に完全に退避したときの位置で す。ツールパスの最初と完了後の位置の安 全な退避位置の設定になります。

[退避]

部品に複数のカットを行うときの、カット 間の工具の退避高さです。通常、加工する ストックから最小限の距離を設定します。

「外側半径]

加工するストックの外周面を表します。

「内側半径]

最終的な切り込み深さを表します。

● 面:面3			
🋐 工具 🏾 🚳 形状 🧐	半径	🦸 หว	jø 1955
▼ 移動			
から	退避		•
オフセット	10 mm	1	•
▼ 退避			
から	ストック	の外径	•
オフセット	5 mm		•
▼ 外側半径			
から	ストッ	の外径	•
オフセット	0 mm		•
▼ 内릠半径			
から	ストッ	の内径	•
オフセット	0 mm		:
内側半径以下の切削距離	0 mm		•
0		OK	キャンセル

作業画面上でタイトルボックスをドラッグ して、それぞれの位置を調整できます。

各項目の「から」の設定により、設定可能 な範囲に制限があることに留意してくださ い。

各項目がそれぞれ異なる基準を持つことが できます。

※本レッスンでは、デフォルトで設定され ている値を変更しないで進めます。

Fusion 360 CAM ビギナー向けレッスン

加工パスの作成 - 旋盤フェイシング -

[パス] タブ内の条件を設定する

[パス]をクリック

切削ステップを制御します。 [パス] タブ 内の設定項目は、選択したツールパスで変 わります。

旋盤フェイシングでは、端面のカットの設 定になります。

- 2 [複数パス] にチェック
- 3 [切削ピッチ回数を計算する] のチェック を外す

4 [切削ピッチ回数]を「2」に変更

5 [切削ピッチ]を「1mm」に設定

• m : m 3	•
🋐 工具 🏾 🚳 形状 🥞) 半径 🚽 パス 🏓 リンク
▼ <i>I</i> Iス	
公差	0.01 mm
減速された送りを使用	
補正タイプ	
複数パス	2
切削ピッチ回数を計算する	
切削ピッチ回数	2 . 4
切削ピッチ	1 mm 5
仕上げパス	0
🗍 #ተቢፋ	
0	OK キャンセル

[リンク] タブ内の条件を確認する

📙 [リンク] をクリック

カット間の工具位置を設定します。 [進 入&退避]では、加工前の進入位置と加工 後の退避位置が設定できます。

[進入 Z]は加工パス開始時のZ軸位置の 基準を制御します。 [退避 Z軸]は加工パ ス終了時のZ軸位置の基準を制御します。

[進入動作]は、工具のブレンド動作の制 御です。選択したツールパスによって設定 できる内容が変わります。

※本レッスンでは、デフォルトで設定され ている値を変更しないで進めます。

• 🛅 : 🖬 3			
🎙 工具 💊 形状 🍋 半	経 🚽 パス 🏓 リンク		
▼ 955			
退避方法	完全退避 🔻		
高速送りモード	早送り動作を保持 ▼		
▼ 進入&退達			
進入 Z	回避高さ ▼		
退避乙軸	回避高さ 🔹		
回避高を設定のオーパーライド			
▼ 進入動作			
進入			
直線進入長さ	2 mm *		
直線進入角度	45 deg 🔺		
退出			
進入と同じ			
0	2 OK キャンセル		

[OK] をクリック

2

加工パスが生成されました。

加エパスの作成 – 旋盤輪郭粗取り –

旋盤加工の [旋盤輪郭粗取り] を使って、部品の内径、外径を大量に削り取る粗加工の設定を行います。

[工具] タブ内の条件を確認する

[旋盤] タブが選択されていることを確認
 [旋盤] → [旋盤輪郭粗取り] をクリック

 輪郭詛取り:輪郭詛取り1 		
N IA 🔞	形状 🛞 半径 ᢖ パス 🏓 リンク	
▼ 工具		
工具	選択	
	#1 - CNMT?T308 CNMT Right Ha	
ケーラント(C)	オイル・	
テール ストックを使	я 🗍	
▼ モード		
旋盤モード	外側輪郭 ▼	
▼ 工具設定		
▼ 工具設定 工具方向	0 deg	
▼ 工具設定 工具方向 工具りリアランス)	0 deg • ა ი deg •	
▼ 工具設定 工具方向 工具クリアランス / 工具クリアランス /	0 deg ・ ・ いウ 0 deg ・ ロント 0 deg ・	
 ▼ 工具設定 工具方向 工具クリアランス) 工具クリアランス) ▼ 送りと遠度 	0 deg	
 ▼ 工具設定 工具方向 工具クリアランス) 工具クリアランス) ▼ 送りと速度 プリセット 	0 deg ・ 10 deg ・	

[モード]

部品の外側、内側のどちらを加工するか を設定します。

[工具設定]

工具角度の変更、前後の工具クリアラン スが設定できます。

※本レッスンでは、デフォルトで設定されている値を変更しないで進めます。

[形状] タブ内の条件を設定する

[形状]をクリック

[形状] タブでは、加工エリアとなる前 後の面を設定します。

2 [バック]の[オフセット]を「-6mm」 に設定

最終的な部品形状を得るために、外径を 確認して、切り離しを行う工具との干渉 を考慮したモデルバックの設定位置にす ることが必要になります。

部品のバックエッジを超えてカットする ので、オフセット値を調整します。どこ までオフセットするかは、後で使用する 予定の操作によって変わります。

今回はバーから部品を切り離すために、 パーティング加工を行います。これには、 幅5mmのカットツールを使うことになる ので、オフセット値を「-6mm」に設定し ます。

● 輪郭 10:	輪郭詛取り1
🖣 I# 🕲	形状 🔞 半径 ᢖ パス 🏓 リンク
🔲 モデル	
▼ 702F	
フロント モード	モデル フロント・・・
オフセット	0 mm 📫
接線延長	0 mm
▼ Ko5	
パック モード	モデル パック
オフセット	-6mm
工具の制限	接点 🔹
接線延長	0 mm 🛓
🗌 取残し加工	
0	OK キャンセル

[半径] タブ内の条件を確認する

「半径」をクリック

X方向に横切る半径方向のクリアランス位 置と切削領域を設定します。

「移動]

部品の外側に完全に退避したときの位置で す。最初の位置と、ツールパス完了後高さ で、安全な退避位置を表します。

「外側半径]

加工するストックの外周面を表します。

「内側半径]

最終的な切り込み深さを表します。 基準が [ストックの内径] に設定されてい ても、工具が部品の中心線に到達すること はありません。

※本レッスンでは、デフォルトで設定され ている値を変更しないで進めます。

 輪郭祖取り:輪郭祖取り1 		
🎙 工具 🏾 🔞 形状 📢	半径 🚽 パス 🏓 リンク	
▼ 移動		
から	ストックの外径 🔹	
オフセット	10 mm 🔹	
▼ 外側半径		
から	ストックの外径 ・	
オフセット	0 mm	
▼ 内側半径		
から	ストックの内径 🔹	
オフセット	0 mm 🔹	
工具の制限	接点 🔻	
内側半径以下の切削距離	0 mm 📮	
0	OK キャンセル	

[パス] タブ内の条件を設定する

[パス]をクリック

[サイクルと方向]

カットの向きを設定できます。[方向] で設定したカットに対応した工具を使用 しているかの確認が必要ですので、ご注 意ください。

[固定サイクルを使用]を有効にすると、 ポストプロセッサーがこの機能をサポー トするように設定されている場合、CNC制 御の定型な粗削りサイクルが設定されま す。これにより、NCプログラムのサイズ が小さくなり、機械側でのツールパスの 調整が容易になります。

しかし、 [固定サイクルを使用] を有効 にすると、一般的なCNC制御の定型サイク ルではサポートされない特殊なツールパ ス機能が数多く削除されます。これを選 択すると、 [パス] グループからオプ ションが削除されます。

[パス]

[最大切削深さ]で1回あたりのピッチ量を設定します。

[仕上げ代]

必要に応じて、X軸とZ軸で異なる量を残 しておくとよいでしょう。

2

[最大切削深さ] を「3 mm」に設定

実際のカット量は変動しますが、この値を 超えることはありません。

 輪郭祖取り:輪郭祖取り1 		
🋐 工具 🏾 🔕 形状	🔞 半径 🚽 パス 🏓 リンク	
▼ サイクルと方向		
サイクル	平坦部パス 🔻	
方向	フロントからパック 🔹	
溝切り	径方向の溝切りを許可 ▼	
固定サイケルを使用		
▼ パス		
公差	0.01 mm	
最大切削深さ	3 mm 🔹	
均等な切削の深さ	0	
シャープコーナー作成		
ドラッグ仕上げなし		
ペックを使用		
▼ 🖉 #±೮₭		
X軸仕上げ代	0.1 mm	
Ζ軸仕上げ代	0.1 mm	
ストックまで延長		
0	OK キャンセル	

[リンク] タブ内の条件を確認する

[リンク] をクリック

カット間の工具位置を設定します

※本レッスンでは、デフォルトで設定され ている値を変更しないで進めます。

2 [OK] をクリック

ツールパスが生成されました。

 輪郭祖取り:輪郭祖取り1 		
🋐 工具 🛛 🐟 形状 🏾 🏀 半	経 🚽 パス 🏓 リン!	7
▼ リンケ		
高速送りモード	早送り動作を保持	•
次の切削深さまで早送り		
▼ 進入&退禮		
進入 Z	回避高さ	•
退避 乙軸	回避高さ	•
回避高を設定のオーパーライド		
▼ 移動		
Z 軸クリアランス	1.5 mm	•
X 軸クリアランス	1.5 mm	•
🔲 角度付き進入		
▼ 退虐		
退避距離	1 mm	•
0	2 OK *r	ンセル

[加工部品のバックサイドや溝の部分を見ると、外径に対して凹んでいます。 Fusion 360 ではできるかぎり多くの材料を削り取ろうとしているためです。 このカットをまっすぐにするには、ツールパスの修正が必要です。

ツールパスの確認と修正

「輪郭粗取り1」を右クリック→ [編集]
 をクリック

2 [パス] をクリック

3 [溝切り] を [溝切りを許可しない] に変 更

[溝切りを許可しない]は、溝の部分に、 工具が入り込むことを防ぎます。

🖣 工具 🔞 形状	🔞 半径 🚮 パス 🏓 リンク	
▼ サイクルと方向		
サイクル	平坦部パス	•
方向	フロントからパック	•
溝切り	3 時切りを許可しない	•
固定サイクルを使用		
▼ パス		
公差	0.01 mm	•
最大切削深さ	3 mm	•
均等な切削の深さ		
シャープコーナー作成		
ドラッグ仕上げなし		
ペックを使用		
▼ 🖉 #⊥೮₭		
X軸仕上げ代	0.1 mm	•
Ζ軸仕上げ代	0.1 mm	•
ストックまで延長		
0	4 OK キャン	ルル

4 [OK] をクリック

ツールパスが再生成されました。 バックサイドや溝部のツールパスが修正さ れていることが確認できます。

加エパスの作成 – 旋盤輪郭仕上げ –

旋盤加工の[旋盤輪郭仕上げ]を使って、仕上げの設定を行います。

1 [ビューキューブ] の角をクリック

モデル全体が見えるようにします。

[工具] タブ内の条件を設定する

[旋盤]→[旋盤輪郭仕上げ]をクリック

 輪郭仕上げ:輪郭仕上 	:Ø1
🋐 工具 _(©) 形状	🔞 半径 🚽 パス 💋 リンク
▼ I#	
I.H.	2
	#1 - CNMT?T308 CNMT Right Hi
ケーラント(C)	オイル ・
テール ストックを使用	
▼ モ~ド	
旋盤モード	外側鏡郭

2 [工具]の[選択]をクリック

[工具を選択] ウィンドウが開きます。

4 [VNMT09T302 – DVLN – R (VNMT Right Hand)] をクリック VNMTは仕上げ加工用の一般的なインサート形状です。

[選択] をクリック

5

▶ 工具を選択						- 0	×
				フィルタ	情報		
	+ 2 b h e			詳細(D)		VNMT Righ	nt Hand
. A				ベンダー	·(V)		
	🔅 名前 🔨			ナーキ プロダク	トID(P)		
• Local		CEN IN (TO DOTING)	0.01	プロダク	トリンク		
Library	ID Grooving		0.8 r	mm 形状		V	
Tutorial4	OD Grooving		0.8 r	nm ער-כ	角度	0度	
∨ Fusion 360 ライブラリ	OD Grooving		0 mr	m 加 公差		М	
Holders - Standard Taper B	OD Throading		0 mr			Т	
Sample Holders	ob Threading		0 111	″インサー	トのサイズ	9.68703 m	m
Sample Holders (Inch)	OD Threading		0 mr	m 厚さ		3.96875 m	m
Sample Holders (Inch)	TNMT09T308 - D	TAN-N (TNMT Neutral)	0.8 r	mm コーナー	·半径	0.2 mm	
Sample Probes	VNMT09T302 - D	VLN-L (VNMT Left Hand)	0.2 n	nm タイプ		turning ge	neral
Sample Probes (Inch)	VNMT09T302 - D	VLN-R (VNMT Right Hand	d) 0.2 n	nm			
Sample Profile Tools (Inch)				=	•		
Sample Profile Tools (Metri							
Sample Tools - Inch	切削デーク	于韩回新律母	サーフェフ速度	1711201:			
Sample Tools - Metric	4JHJ		リーノエス速度	40190			
Taps - ANSI	既定のプリセット	0 rpm	91.44 m/min				
Taps - ISO							
Turning - Sample Tools							
Tutorial - Inch							
Tutorial - Metric					5		1 cm ب
4.25.0					選択	キャンセ	ll I

[形状] タブ内の条件を設定する

[形状]をクリック

● 輪部分1分:	輪部仕上げ1
🖣 Iļ 🚳	形状 🔞 半径 🚽 パス 🏓 リンク
□ モデル	
▼ 702F	
フロント モード	モデル フロント 🔹
オフセット	0 mm
接線延長	0 mm +
▼ K95	
パック モード	モデル パック
オフセット	-6 mm
工具の制限	接点
接線延長	0 mm +
🗌 取残し加工	
0	OK キャンセル

2 [バック]の[オフセット]を「-6mm」 に設定

旋盤輪郭粗取りの設定と同様、5mm幅の 工具を使ったパーティング加工が必要な ためです。

[半径] タブ内の条件を確認する

1 [半径]をクリック

※本レッスンでは、デフォルトで設定され ている値を変更しないで進めます。デフォ ルト値と同じになっているかをご確認くだ さい。

 ● 輪郭仕上げ:輪郭仕上げ1 		
🖣 工具 🏾 🔞 形状 🤞	半径 🛃 パス 💋 リンク	
▼ 終動		
から	ストックの外径 🔹	
オフセット	10 mm	
▼ 外書半径		
から	ストックの外径 🔹	
オフセット	0 mm 🔹	
▼ 内書半径		
から	ストックの内径 🔹	
オフセット	0 mm 🔺	
工具の制限	接点 🔹	
内側半径以下の切削距 雄	0 mm	
0	OK キャンセル	

[パス] タブ内の条件を設定する

- 1 [パス] をクリック
- [溝切り] に [溝切りを許可しない] を選
 択

- 3 [切肖
 - [切削ピッチ]を「9mm」に設定

 輪郭仕上げ:輪郭仕上げ1 		
🋐 工具 🏾 🔞 形状	🔞 半径 🎒 パス 🧾 リンク	
▼ サイクルと方向		
方向	フロントからパック 🔹	
溝切り	溝切りを許可しない ・	
▼ パス		
公差	0.01 mm	
補正タイプ	בשעב 🔹	
切削ビッチ回数	1 *	
切削ビッチ	9 mm 🔒	
シャープコーナー作成		
スプリング パス	0	
ドラッグ仕上げなし		
🗋 #ተዋቂ		
0	OK キャンセル	

[リンク] タブ内の条件を確認する

1 [リンク] をクリック

※本レッスンでは、デフォルトで設定され ている値を変更しないで進めます。

 輪郭仕上げ:輪郭仕上げ1 		
🋐 工具 🏾 🐟 形状 🏾 🏀 半	·径 🚽 パス 🎾 リン!	,
▼ 955		
高速送りモード	早送り動作を保持	•
セーフ距離	2 mm	•
▼ 進入&退遣		
進入 Z	回避高さ	•
退避乙軸	回避高さ	•
回避高さ設定のオーバーライド		
▼ 進入動作		
進入		
進入半径	0 mm	•
直線進入長さ	2 mm	•
直線進入角度	45 deg	•
退出		
進入と同じ		
進入でストック切削を許可		
0	2 OK **	シセル

[OK] をクリック

2

ツールパスが生成されました。

警告の確認と修正

1

警告を確認し、その解消のために設定を修正します。

「輪郭仕上げ1」の [警告アイコン] をク リック

ツールパスを安全に使用できるように、 Fusion 360 が自動で修正したことが記載さ れています。「退避はストック形状を考 慮して修正されました」という主旨の記 載が確認できます。

邌 輪郭仕上け	′1 ×
🗹 🔶 I7 -	フィーチャ フラヴ: setup-sheet-viewer
✓ ▲ 警告 ✓ ● ヒント	警告: Lead-Out has been modified due to a gouge with the remaining stock
✓ 情報	生成は 230.3ms の警告 1 で正常に完了しました。
	2
Q、 <u>1個の項目</u>	でオートデスクを検索

[閉じる]をクリック

警告の確認と修正

 輪郭仕上げ:輪郭仕上げ1 	
🋐 工具 🏾 🔞 形状 🛛 🔞 🗄	ド径 🚽 パス 🏓 リンク
▼ 955	
高速送りモード	早送り動作を保持 ▼
セーフ距離	2 mm ÷
▼ 進入&退達	
進入 Z	回避高さ 🔹
退避 乙軸	回避高さ 🔹
回避高を設定のオーパーライド	
▼ 進入動作	
進入	
進入半径	0 mm *
直線進入長さ	2 mm 🔹
直線進入角度	45 deg
退出	
進入と同じ	
進入でストック切削を許可	
0	OK キャンセル

4 [リンク] をクリック

警告内容について

部品のバックサイドにズームインすると、退出時のパスの動きが確認できます。赤い部分を切削 しないように、退出時の加工パスを真上(赤い矢印)に修正したため(設定した指示を Fusion 360 が自動で修正しているため)、警告アイコンが表示されています。 ただし、エラーではないのでこの表示のまま、次の作業に入ることも可能です。

より詳しく警告内容を理解するために、進入・退出の設定について、説明します。

[直線進入角度]は、切削パス開始時の進入角度を指定します。 この角度は最初の切削基準となり、緑色で示している進入角度です。 対応前の設定では、進入・退出の角度を45°にしていたため、ストックに衝突します。

警告の解消方法について

警告アイコン解消の方法(1)

退出角度の設定をストックエリアへの進入を 絶対に許可しないように、[進入と同じ]を オフにし、[直線退出角度]を「90°」にし ます。

 輪郭仕上げ:輪郭仕上げ1 	
🖣 工具 🛛 🗞 形状 🌀 4	経 🎒 パス 🔎 リンク
\sim	\sim
▼ 進入動作	
進入	
進入半径	0 mm 🔶
直線進入長さ	2 mm *
直線進入角度	45 deg 🛟
退出	
進入と同じ	
放射状延長	
退出半径	0 mm 🔹
直線退出長さ	2 mm 🔹
直線退出角度	90 deg
進入でストック切削を許可	
0	OK キャンセル

警告アイコン解消の方法(2)

[進入と同じ]をオンにし、残りストックを 切削してもよい[進入でストック切削を許 可]もオンにします。

※本レッスンでは、方法(2)で進めます。

 輪郭仕上げ:輪郭仕上げ1 		
🋐 工具 🏾 🗞 形状 🏾 🏀	半径 🚽 パス 🟓 リンク	
\sim	$\sim\sim\sim\sim$	
▼ 進入動作		
進入		
進入半径	0 mm	
直線進入長さ	2 mm 🔹	
直線進入角度	45 deg	
退出		
進入と同じ		
進入でストック切削を許可		
0	OK キャンセル	

警告の確認と修正

 輪郭仕上げ:輪郭仕上げ1 		
🖣 工具 💊 形状 🍥 ¥	経 🦸 パス 🔎 リンク	
▼ UD5		
高速送りモード	早送り動作を保持 ▼	
セーフ距離	2 mm *	
▼ 進入&退避		
進入 Z	回避高さ 🔹	
退避Z軸	回避高さ 🔹	
回避高さ設定のオーパーライド		
▼ 進入動作		
進入		
進入半径	0 mm •	
直線進入長さ	2 mm *	
直線進入角度	45 deg 🔹	
退出		
進入と同じ 5		
進入でストック切削を許可 6		
0	7 OK キャンセル	

Fusion 360 旋盤加工:前編はこれで終わりです。 お疲れ様でした。