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Abstract

We present a new method for performing Boolean operations on volumes represented as triangle meshes. In contrast to existing
methods which treat meshes as 3D polyhedra and try to partition the faces at their exact intersection curves, we treat meshes as
adaptive surfaces which can be arbitrarily refined. Rather than depending on computing precise face intersections, our approach
refines the input meshes in the intersection regions, then discards intersecting triangles and fills the resulting holes with high-quality
triangles. The original intersection curves are approximated to a user-definable precision, and our method can identify and preserve
creases and sharp features. Advantages of our approach include the ability to trade speed for accuracy, support for open meshes, and
the ability to incorporate tolerances to handle cases where large numbers of faces are slightly inter-penetrating or near-coincident.
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1. Introduction

Boolean composition is one of the most basic concepts in
geometric modeling. The notion of union, intersection, or dif-
ference of two volumes can be intuitively understood. This con-
ceptual simplicity is in stark contrast to the complexity of im-
plementations of these operators, which remain weak links in
modern CAD tools. The challenge is that most CAD tools in
fact rely on surface or boundary representations (B-reps), such
as NURBS patches or triangle meshes. As a result, volume
composition often requires the computation of intersections be-
tween thousands, or millions, of surface patches. Geometric in-
tersection is numerically challenging, and a single wrong pred-
icate result can render the operation a failure.

Our focus is Boolean operators between triangle meshes.
Existing works treat meshes as 3D polyhedra, and attempt to
find intersection curves that cut the input faces. Our premise,
on the other hand, is that when using meshes as high-resolution
representations of smooth surfaces, it is not necessary to pre-
cisely cut each face. Instead we propose that, given sufficient
mesh density, no individual face is particularly important, and
we are free to locally re-mesh the surface in the course of any
operation. We will refer to this special case of triangle mesh as
an adaptive mesh surface.

Adaptive mesh surfaces have been used in various modeling
contexts. For example, remeshing surfaces during simulation is
common in the physically-based animation of cloth, deformable
solids, and fluids [1]. Adaptive remeshing is also used in fair
surface design [2] and deformation [3]. Recently, interactive
design tools have utilized adaptive meshes to provide more in-
tuitive interactions, such as push/pull deformation [4] and 3D
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sculpting [5]. Autodesk Meshmixer [6] uses similar adaptive
mesh strategies in several of its modeling tools.

We present a novel approach to Booleans suitable for use
with adaptive mesh surfaces. Rather than cutting triangles, our
method simply adds more, deletes enough to separate the input
surfaces into disjoint patches, and then stitches the patches back
together. Our stitching algorithm also takes advantage of mesh
adaptivity. Although this strategy only produces approximate
Booleans, by constraining the free boundaries we can find in-
tersection curves that are accurate up to a pre-defined tolerance,
or trade time for precision. This process is illustrated in Fig-
ure 1. We can also preserve crease edges in the input surfaces
via constraints, and our method can be adapted to produce ap-
proximate Booleans that can be applied to meshes of the same
shape but varying triangulation.

To summarize, contributions of this paper include:

1. A method for connecting pairs of open mesh boundaries
with high-quality triangles

2. A technique to preserve sharp features during mesh re-
finement and hole filling

3. A new approach to mesh Boolean operations based on
mesh refinement and constrained hole filling

2. Related Work

In many computer graphics contexts, we represent solids
via their boundaries (often called B-Reps). Computing Boolean
operations on B-Reps has long been a focus of CAGD research.
For surfaces represented via parametric patches (widely used in
commercial CAD systems) robust implementations are avail-
able in commercial solid-modeling kernels such as ACIS [7].
However, these approaches are not designed for high-resolution
polygonal meshes, and perform extremely poorly in such cases.
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Figure 1: A Boolean union operation performed using our method. Two intersecting meshes (a) are given as input. The meshes are (b) refined in the intersection
region, then (c) triangles in the neighborhod of the intersection are discarded. The resulting hole is filled (d,e) using an adaptive front-marching strategy that
precisely merges the two open boundary loops.

The CGAL library supports robust Boolean operations on
Nef polyhedra [8] with exact geometric computation [9]. This
precision comes with a cost, with Hachenberger et al. [10] quot-
ing runtimes of hundreds of seconds for relatively simple mod-
els. Arbitrary closed meshes can be converted to Nef polyhe-
dra [11], however this can significantly change the tessellation
of the input surface in planar regions outside the intersection
region.

BSP-based methods are highly effective for mesh Booleans.
With careful design of predicates, provably-robust methods have
been presented [12]. Campen and Kobbelt [13] extended this
technique, improving performance with an adaptive octree and
fixed-precision arithmetic. Wang and Manocha [14] present a
fast and robust technique for extracting an output mesh from
a BSP-tree. However, the output mesh is again completely re-
tessellated. This is problematic in many contexts where the in-
put meshes may have properties bound to geometric elements,
such as UV-maps.

Another class of strategies involves using each input mesh
to cut the faces of the other. The partitioned objects are then
stitched along the new boundary loops and mesh components
are discarded according to the type of Boolean operation being
performed. Publicly-available libraries Cork [15] and Carve [16]
take this approach. Xu and Keyser [17] propose one such ap-
proach, and recently Barki et al. [18] presented a method that
extends this approach to non-manifold input, by handling de-
generate configurations in a systematic way (usually the down-
fall of this approach). Their method is both highly robust and
performant, but does require closed meshes.

With shape representations such as voxels, level sets, or
Layered Depth Images [19], robust Boolean operations are much
simpler to compute. However these techniques require dis-
cretization of input meshes, which can cause the loss of sharp
features and small details. Hybrid approaches have been devel-
oped which limit discretization (and hence resampling) to the
neighborhods around intersection contours [20, 21]. Although
highly robust, these methods have a dependence on the volu-
metric discretization resolution. BSP-trees can be used to cre-
ate precise implicit representations of arbitrary polyhedra [22],
which can be trivially composed using functional operators.
However this is very expensive for high-resolution meshes, and
output mesh extraction again involves global resampling and
potentially the loss of sharp features.

Various other mesh processing techniques have been devel-
oped to provide “Boolean-like” behavior. For example Bern-
stein and Wojtan [23] present a method for adaptively merg-
ing meshes as they collide. Chentanez et al. [24] approximate
Boolean union when intersections are detected during mesh-
based fluid surface tracking. Similar to our approach, their
method deletes overlaps and fill the gaps. However rather than
a simple polygon fill, our method uses adaptive front marching
to closely approximate the intersection curves and can preserve
sharp features on the input.

3. Method

In this section we present our new approach to adaptive
mesh Booleans. The general strategy is to build a mesh “zip-
pering” algorithm on top of a mesh refinement which is used to
create an approximate Boolean operator. Constraints are added
to the refinement and zippering to increase accuracy.

3.1. Mesh Refinement

Local mesh refinement (or remeshing) is a fundamental op-
eration in an adaptive mesh surface. Refinement is used not
only to adapt the current mesh to higher or lower sampling den-
sities, but also to optimize the shape and distribution of triangles
for a given computation. Many approaches have been presented
in the literature, in this section we describe our method.

We largely follow [25], where the mesh is locally modi-
fied using well-known edge split/flip/collapse operators [26], as
well as local vertex-Laplacian smoothing. These operations are
illustrated in Figure 2. We apply these operations in sequential
passes over the mesh, in the order Split, Collapse, Flip, Smooth.
Note that the ordering of operations can have significant im-
pact on the result. For example, in our current implementation,
swapping the Collapse and Flip steps results in a 25% reduction
in performance.

3.1.1. Constraints
Previously we stated that in an adaptive mesh surface, “no

triangle matters”. However, this is not true of edges. Even
in a high-resolution mesh, some edges necessarily define fea-
ture boundaries. In mesh refinement these boundaries must ex-
plicitly be preserved, otherwise they are certain to be lost, as
demonstrated in Figure 3. Similarly, at open mesh boundaries
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Figure 2: Mesh refinement operators

we must apply various constraints depending on the desired be-
haviour. For example, we may wish to exactly preserve bound-
ary edges, or perhaps preserve the boundary segment but allow
resampling. It is useful to think of the network of feature and
border edges as a graph. When enforcing constraints, the path
between graph nodes may be mutable, but we must prevent op-
erations that would change the topology of this graph.

Figure 3: The (a) borders of mesh feature regions (here identified by triangle
colors) will (b) be lost during resampling, unless the (c) edge and smoothing
operators are explicitly constrained.

3.1.2. Edge Split
Assume we have chosen a constant maximum edge length

lmax. In a Split pass, we iterate over the mesh and split any
edge longer than lmax by introducing a new vertex. The new
vertex can be placed at the edge midpoint (linear subdivision)
or placed on a curve estimated using local Bézier interpola-
tion [27]. On feature and boundary edges, only linear subdi-
vision is used.

3.1.3. Edge Collapse
We define the minimum edge length lmin as a fraction of the

maximum length lmax. In the context of our Booleans we use
lmin = 0.4lmax. (We use different minimum and maximum val-
ues for other mesh refinement operations in our larger mesh
modeling package.) In Collapse passes, we iterate over the
mesh edges, and if an edge is shorther than lmin, or if the open-
ing angle at either opposing vertex is less than π/12, we attempt
to collapse the edge by replacing it with a single vertex. This
new vertex is placed at the edge midpoint unless one endpoint

of the edge lies on a mesh or feature border, in which case we
collapse to that vertex’s position. If both vertices of an edge lie
on feature constraints, but the edge itself is not a feature edge,
then we cannot collapse this edge as it would change the feature
topology.

3.1.4. Edge Flip
Edge flips can be used to normalize vertex valences [25],

leading to more regular triangles. However, we found that when
adding feature constraints, this policy can lead to poor-quality
triangles around constraint boundaries. Instead we use a “flip-
to-shorter” policy. For a given edge, we can form a second
edge by connecting the opposing vertices in the two connected
triangles. If this second edge is shorter than the current edge,
and the flip does not result in significantly worse aspect ratios
or inverted faces, we perform the flip. Boundary and feature
edges are not flipped.

3.1.5. Smoothing
Laplacian mesh smoothing (moving vertices toward the cen-

troid of their neighborhood) is often used to improve mesh reg-
ularity by driving mesh edges to be equal in length. We use
an inverse-area-weighted smoothing approach. For each vertex
i, we first compute the centroid of its neighborhood, ci. The
vertex position is then set to be:

(1 − αA)vi + αAci

where A is the reciprocal of the mixed area of the vertex [28],
and α is a user-controlled smoothing weight.

3.2. Adaptive mesh zippering
Our mesh zippering approach is illustrated in figure 4. As-

sume we have boundary loops l1 = {v0, v1, . . . , vn} and l2 =

{u0,u1, . . . ,um}. We can define a function nearest(l, x) which
returns the vertex in l which is nearest to x under Euclidean dis-
tance. To merge the loops, we simultaneously evolve l1 and l2
until m = n and for any i, nearest(l1, nearest(l2, vi)) = vi. At
this point we can construct a trivial bijective correspondence,
and the two boundary loops can be merged simply by replac-
ing each vi and nearest(l2, vi) with a new vertex. The resulting
mesh will be manifold in the neighborhood of this boundary.

Our boundary evolution is a basic iterative closest point
strategy:

1. For each vi in l1:
(a) Find vn

i B nearest(l2, vi)
(b) Find the new point vm

i B (1−t)vi+tvn
i , where t ≤ 0.5

2. Repeat for each u j in l2
3. Update the positions in l1 and l2 to the new points vm

i and
um

j
4. Refine the meshes in the neighborhood of l1 and l2.

Steps 1-3 clearly will converge, but will not produce a bi-
jective one-to-one mapping in the general case. Multiple vi will
likely collapse to a single u j, creating degenerate edges in the
loop l1. However, by including a refinement step, any near-
degenerate edges will collapse until a single vertex remains.
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Similarly, if two vertices are pulled sufficiently far apart, an
edge split will introduce a new vertex between them, dealing
with the T-junction case. Figure 4 illustrates this process.

Figure 4: Our adaptive mesh zippering algorithm. In the first iteration (a,b)
each vertex steps towards its nearest neighbor on the other boundary. One edge
lengthens (c) to the point where an edge split occurs. After the second iteration
(d), an edge has become short enough to collapse (c). At this point Euclidean
distance defines a bijective correspondence between the sets of vertices.

Although very simple, this strategy is remarkably robust,
and can automatically create transitions between meshes with
highly variable resolution. Obviously if l1 and l2 have very
different shapes and arbitrary spatial orientation, the algorithm
above cannot guarantee that the resulting zippered mesh does
not have self-intersections. The loop correspondence produced
may be non-manifold in such cases (Figure 5). It is also pos-
sible to construct pathological cases where the refinement will
not resolve local duplicate triangles. However, within the con-
text of our Mesh Booleans, the two loops lie within a bounded
distance that is on the order of the triangle edge lengths, which
is ideal. This algorithm has been used in the commercial soft-
ware Autodesk Meshmixer [6] for over 3 years and has been
highly reliable in practice.

Figure 5: Complex examples handled by our adaptive mesh zippering algo-
rithm. The cases (a,c,e,g) each have two open boundary loops, which are joined
in the results (b,d,f,h). Note that due to our use of basic Euclidean distance, the
join border in (h) is non-manifold.

3.3. Boolean Operation

We assemble our Boolean operation using the techniques
described above. We begin with the simplified case where there
is a single intersection between the two objects, and then ex-
plain how our method generalizes to multiple intersections.

Assume we have closed convex input meshes M1 and M2,
which have one intersecting region. The first step is to locate
the sets of intersecting triangles. A spatial data structure greatly
accelerates this search; we use triangles sorted into a sparse oc-
tree, however we do not claim that this is the optimal acceler-
ation structure. Note that we do not need to cut the triangles,
simply determine if they intersect. The result is two sets t1 ∈ M1
and t2 ∈ M2, each of which is topologically equivalent to either
an annulus or a disk.

The next step is to delete the sets t1 and t2 from M1 and
M2, respectively. If the newly-created open boundaries con-
tain any “bowtie” vertices (connected to more than one group
of adjacent triangles), we remove those vertices and their one-
rings, and repeat this step until the boundaries are manifold
curves. This produces four separate mesh patches which are
disc-shaped regions with open boundaries. We now need to dis-
card some of these patches. Which to discard depends on the
particular Boolean operation. For a union operation, we would
discard the patch of M2 which is contained inside the original
M1, and vice-versa. For intersection, we discard the opposite
set of patches, but must also reverse the orientation of the re-
maining patches.

In our example case, we are now left with two patches, topo-
logically equivalent to discs, with nearby open boundaries. The
zippering algorithm from the previous section can be directly
applied to merge these open boundaries. The result is an ap-
proximate Boolean composition. Figure 1 illustrates this pro-
cess in action.

Now let us consider cases where there are multiple inter-
sections, and/or non-genus-zero objects. In both cases, the only
added complication is that we will produce more patches and
boundary loops, and we must sort out which loops to zipper to-
gether. We found that a simple voting scheme suffices, where
each loop vertex “votes” for its nearest loop on the other mesh.
Loops that agree are paired.

Similarly, the method does not require closed input meshes.
We can determine containment statistically: for a given patch,
we cast N random rays from the surface and if more than N/2
rays hit the interior side of the containment mesh, this patch
is classified as inside. More advanced techniques such as the
generalized winding-number [29] would further improve this
aspect.

3.4. Robust Boolean

In the development above, we noted that the initial inter-
section regions t1 and t2 needed to be topologically equiva-
lent to annuli. Otherwise, we may have different numbers of
open boundary loops for M1 and M2 and the result will either
contain holes or floating patches. This is the primary failure
mode for our technique. It occurs when either the inexact trian-
gle/triangle intersection tests produce inconsistent results due to
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Figure 6: The torus in (a) is near-coincident with the grey surface, and requires
8 levels of refinement to produce (b) a successful result. Bottom row shows
levels 2 (c), 7 (d), and 8(e).

numerical issues, or when the “feature size” of the intersection
curve is smaller than the current mesh resolution (i.e., there is
local undersampling in the context of the operation we are try-
ing to perform).

Although heuristics and repairs could be applied to handle
some cases, a more reliable strategy is to apply our adaptivity
assumption, and simply repeat the process with increased mesh
density. After finding the initial intersection regions t1 and t2,
we grow each region to include its one-ring and apply mesh
refinement as described above. This process may need to be
repeated several times, but at some sufficient mesh resolution,
the intersection regions will have the correct topology and the
operation will succeed. This process is illustrated in Figure 6.

In practice, we cannot subdivide infinitely, due to both mem-
ory and floating-point limitations. In our implementation we
use a fixed number of iterations (5) and allow the user to add
more if necessary. Note that the previous intersection and re-
finement steps can be re-used during the next round.

Currently we apply uniform refinement in both the initial in-
tersection regions and during the zippering operation. A useful
extension would be to adapt the mesh density to the local fea-
ture size of the (approximate) intersection curves. This would
significantly improve results, particularly at higher levels of re-
finement.

3.5. Reprojection Constraint

So far, our Boolean as described is only approximate, as
the zippering step will pull the boundary loops away from the
input surfaces as they evolve towards each other. Instead, we
would like to constrain this evolution so that rather than moving
freely through 3D space, each loop can only “slide” along the
original surface it came from. To accomplish this we employ a
reprojection step, where after any loop vertex v is moved, we
immediately project it to the nearest point on the input mesh

vs. Although this slows convergence somewhat, in most cases
it results in a high-quality intersection curve, see Figure 7.

Figure 7: Our basic method produces (a) an approximate Boolean. By adding
a reprojection constraint, we can (b) approximate the intersection curve up to a
user-defined tolerance.

3.6. Sharp Edge Constraints

In the discussion of mesh refinement above, we mentioned
that some edges represent critical features on the mesh surface,
and we introduced constraints to prevent the loss of such fea-
tures during refinement. Similarly, we must be careful during
the reprojection step of our Boolean algorithm. Figure 8b shows
a simple case where a naı̈ve implementation of our Boolean
will mangle sharp edges in the neighborhood of the intersection.
This is due not only to careless edge flips and smoothing (which
can be remedied using the refinement constraint mechanism in-
troduced earlier), but also to the vertex movement during the
reprojection step. To preserve sharp edges we must constrain
this vertex movement.

Assume we have a set of constraint edges forming one or
more 3D polylines. Each vertex v initially lying on a constraint
polyline l is associated with l. During the projection step for
v, instead of moving the vertex to the nearest on-surface point
vs, we find the nearest point vl on the polyline l and move the
vertex there.

Figure 8: We (a) constrain vertices on the detected crease curve l by first tak-
ing a step towards vn, then reprojecting onto l. Combined with remeshing con-
straints, the smoothing of sharp edges in (b) is mitigated (c) by this reprojection
step.
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3.6.1. Corner Gaps
Although our zippering technique is highly robust, intro-

ducing sharp edge constraints brings with it an additional com-
plication, as illustrated in Figure 9. Without the constraint, the
corner vertex would move towards one of its adjacent neigh-
bors, leading to an edge collapse that would remove the extra
vertex. However, the edge constraint prevents this from happen-
ing, resulting in a triangular hole. Once the evolution has con-
verged, this case is easily identifiable because the constrained
vertex will not be “nearest” to any vertex on the opposing loop,
and so we can directly append the missing triangle.

Figure 9: The circled vertex is constrained to the dashed red line, but the
opposing edge is not long enough to split, leaving a hole.

3.6.2. Border Edges
A second complication of our approach to maintaining sharp

edges occurs if the step that deletes triangles in the neighbor-
hood of the intersection discards triangles adjacent to a sharp
edge. When this occurs, the vertices constrained to remain on
the sharp edge cannot move towards the intersection crease, re-
sulting in a failure to converge.

In most cases adaptive refinement will resolve this issue,
as eventually the subdivision level will be such that the faces
adjacent to the crease will not be deleted. However, we can ac-
celerate the process by adding a small strip of triangles around
the cut border. This gives us a set of free edges/vertices on the
boundary, which can safely be evolved. See Figure 10 for an
example.

Figure 10: In case (a), when the intersecting triangles (c) are deleted, an edge
of the original box lies on the open boundary. Preserving this edge as a sharp
constraint results in a hole (d). If we append a strip of border triangles (b), the
result converges (e).

3.7. Postprocessing
One drawback of our method described thus far is that it

can drastically increase the triangle density in regions of inter-
section. For example, a so-called “low-poly” mesh is not really
an adaptive mesh surface, as each triangle is critical to the over-
all shape. In such cases our Boolean will subdivide many times
in the intersection neighborhoods, which may be undesirable
for computational or aesthetic reasons. Hence, similar to [21],
we include automatic simplification of the intersection region
as a postprocess. Figure 11 demonstrates this capability.

Figure 11: When performing Booleans with (a) low-resolution meshes, our
approach will (b) significantly refine triangles in the (mesh-topological) neigh-
borhood of the intersection. We (c) reduce the result automatically as a post-
process.

4. Evaluation

We have experimented extensively with our techniques, and
they have also been in widespread use in publicly-available free
software (See section 4.4). In this section we briefly detail some
of our experiences. We emphasize that our method is based on
the assumption that the input meshes are adaptive mesh sur-
faces, i.e. where the sampling rate is high relative to the scale
of salient shape features. If this does not hold, then a polyhedral
Boolean may be more appropriate (although our method does
often produce good results in these cases, e.g., see Figure 11).

4.1. Robustness
Robustness is a major problem for mesh Booleans. The

main challenge is degenerate configurations, such as coplanar
triangles, or a vertex of one triangle lying on the face of an-
other. In floating-point arithmetic, such cases can be unstable:
for a patch of co-planar triangles, some may be identified as in-
tersecting and others will not. After cutting the existing faces
and removing internal regions, the result may be non-manifold,
and stitching the sets of remaining faces may be ambiguous.

When attempting to compute exact triangle mesh intersec-
tions, as many existing Boolean libraries attempt to do, increas-
ing reliability often comes at the expense of performance. The
CGAL polyhedral Booleans are generally considered the most
robust, but are extremely slow for large meshes. We also exper-
imented with Carve [16] and Cork [15], two open-source mesh
Boolean libraries used in commercial products and by other re-
search projects. For each library, we could find many cases
where that method failed and ours was successful (see Fig-
ure 12). However, we could also find cases where our current
implementation failed, and CGAL, Cork, or Carve succeeded.
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Figure 12: Cases where (a) Carve, (b) CGAL, and (c) Cork fail (either crash
or produce nonmanifold output), and our method succeeds. Left column shows
the two objects, middle shows the successful result computed by our method,
and Right column shows planar cuts through the result, demonstrating that they
are solid (top,bottom) or manifold (middle), as expected.

Many mesh Boolean techniques assume the input meshes
are closed (no boundary edges). This is the ideal case, however
in practice many input meshes will not be closed. One benefit
of our local-remeshing-based approach is that we do not depend
on mesh properties outside the intersection regions, except for
the ray-intersection tests used to statistically determine point
containment (Section 3.3). Hence, we can perform “Boolean”
operations with meshes that are not remotely solid (Figure 13).
Only the Cork library was capable of similar operations.

Figure 13: A cylinder intersecting with an object with complex open bound-
aries (a) is (b) added and (c) subtracted. In an even more extreme case, we
subtract (d) a cylinder and show via cut-away (e) that the correct topology and
orientation is produced.

The most common failure we encountered was due to our
iterative refinement not proceeding far enough to resolve some
geometric ambiguity. As we use uniform refinement, we may
require extreme triangle counts in near-coplanar cases. Because
we capped the refinement level, the operation would abort be-
fore reaching a suitable triangle density.

Finally, as two input surfaces meeting at some intersection
region approach co-planarity, it takes progressively longer for
the boundaries to converge. The boundary vertices take steps
that are nearly parallel to the local normals of their projection
surfaces, and then are projected back in nearly the same direc-

tion (Figure 14). To avoid this, we can compute a set of approx-
imate intersection line segments between triangles, and include
steps towards this shared intersection curve in our evolution.
Note that this does require computing per-triangle intersection
segments, however it does not require chaining these segments
together into consistent loops.

Figure 14: Subtracting a sphere from a polyhedra (a,b) produces many near-
coplanar intersection regions. Our projection strategy will converge very slowly
in this case because (c) the zipper-step directions are near-perpendicular to the
projection surfaces (diagram shows cross-section perpendicular to sharp edge,
red line shows path of evolving point). By (d) also stepping towards the per-
triangle intersection segments, the result is improved.

4.2. Coplanar and Near-Coincident Regions

Co-planar regions, or near-coincident curved regions, are
perhaps the most problematic special case for mesh Booleans.
In the curved case the mesh is often not precisely coincident,
but from the standpoint of the user, is the “same shape”, for ex-
ample two spheres with different tessellations. This is a case
that is highly problematic for polyhedral Booleans based on
precise intersection testing, as shown in Figure 15. If the op-
eration does not fail entirely, the output is generally not what
the user imagines, and often may be non-manifold.

One significant advantage of our approach is that we have
the freedom to be aggressive in identifying intersecting trian-
gles For example, we can incorporate a tolerance by intersect-
ing thickened triangles. With a sufficiently-large threshold all
the noisy triangles are discarded and we can zipper the remain-
ing free boundaries. Figure 15 shows an example of this.

4.3. Performance

As we noted, during the iterative zippering process we can
reduce (or increase) the desired mesh density at the boundary
to trade speed for precision. Figure 16 shows a zoomed-in
region of the Dragon case (Figure 16), with increasing target
edge length. Note the highly regular edge lengths along the
intersection boundary. In our analysis, we observed standard
deviations of less than 20% of the target edge length for the
zippered boundary edges. This is in sharp contrast to many ex-
act Boolean methods, which necessarily produce large numbers
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Figure 15: Here we remove the head of the bunny (a), close the base, and
remesh. The result (b) has a large number (c) of near-coplanar intersections
with the original. Subtraction produces (d) many tiny components. Increas-
ing tolerance in the intersection test produces (e) fewer intersections, and then
(f) the desired approximate Boolean result. Cork (g) produces a mesh which,
though manifold, is not particularly useful in most practical applications.

of tiny edges and near-degenerate triangles along the intersec-
tion curves. Although this can be repaired with post-process
remeshing, such remeshing usually done without awareness of
the inputs to the Boolean and hence will produce an inferior
approximation of the intersection curve.

Figure 18 compares runtimes for various precision levels on
the Dragon case in Figure 16. Our Boolean algorithm is imple-
mented inside a general-purpose mesh modeling kernel meant
for production use, and hence must support change tracking.
The Overhead bar includes the cost of making copies of the
input meshes and journaling triangle deletions, which are con-
stant regardless of the solution accuracy. The Intersection bar
includes identifying the intersection strips and determining loop
correspondences, and is also relatively constant, but does hap-
pen more quickly on lower-resolution meshes. Finally the Zip-
per bar is the time to solve the constrained zippering problem.

The zippering process is essentially O(N) in the number
of boundary vertices, and hence benefits most from reduced
resolution. Zippering is roughly twice as fast in the Approx-
imate solution, as the reprojection step is quite expensive. The
join/reproject steps are also trivially parallelizable, so the Zip-
per step sees the largest gains when more CPU cores are avail-
able.

Figure 19 compares our computation times with the CGAL,
Cork, and Carve libraries, for the four examples shown in Fig-
ure 16. These tests were performed on a 2014 quad-core 64-bit
Macbook Pro, and hence the Dragon case takes slightly longer
than in Figure 18. We find that our method is generally compet-

Figure 16: The test cases we used for performance profiling. The triangle
counts of each mesh are 676340 (Dragon), 12600 (Sphere), 22600 (Box), 80888
(Bunny), and 24760 (Gremlin).

Figure 17: We can solve for the intersection curve at variable mesh resolution,
to trade accuracy for performance - default (a), 2x (b), and 3x (c).

itive with these other libraries, although none of these cases re-
quired multiple refinement iterations to resolve loop-matching
failures. Our computation times can grow significantly if this is
necessary.

4.4. Interactive Use

A version of our adaptive mesh Booleans are implemented
in Autodesk Meshmixer, and have been in active use since 2011.
As a result, we have collected extensive feedback from users,
and some examples are shown in Figure 20.

The current Meshmixer implementation does not include
the sharp-edge enhancements we described above, and also does
not increase refinement if the loop-matching fails, so users do
experience frequent failures. However, we have observed that
many users learned to troubleshoot Boolean failures by manu-
ally applying similar refinement strategies. Meshmixer includes
local remeshing capabilities, and these users realized that sim-
ply by adding more triangles in the intersection regions, they
could “fix” a failing Boolean. One user even reported that he
preferred our unreliable Boolean operation to those available
in other software. The reason was that although the alterna-
tives had higher success rates, when they failed, there was no
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Figure 18: Computation time for Dragon test in Figure 16 on a 16-core Win-
dows 7 64-bit workstation. Parallel computations use 30 hyperthreads, except
for rightmost bars. 1/2 and 1/3 resolution bars have reduced intersection pre-
cision, shown in Figure 17.

Dragon

Spheres
Boxes

Bunny/Gremlin

CarveCGAL Cork Ours37w/o Overhead)

29.932
0.982

6.329

--

0.459
0.174

0.106

14.734

1.058
0.182

0.210

13.142

0.132
0.318

0.118

11.681

Figure 19: Computation times (s) for Boolean operations shown in Figure 16,
with CGAL, Cork, Carve, and our method. The time to convert to/from the
mesh representation required by each library is not included. This is not sig-
nificant for Cork and Carve, but the Nef conversion used by CGAL can take as
much (or more) time that the Boolean operation.

clear way to identify and resolve the problem, while with our
Boolean the failures were easily fixed.

Figure 20: Models created by users that involved many Boolean operations.

5. Conclusions

We have presented a method for performing approximate
Boolean operations on general triangle meshes. Our approach
is based on the premise that when a triangle mesh is being em-
ployed as a discretization of an underlying smooth surface, no
single triangle is important, allowing us to locally adapt and
modify the triangles as necessary. We call this an adaptive
mesh surface. Our zippering approach is a variation of adaptive
front marching, and can also be used, for example, to join open
meshes together or to repair holes in a general triangle mesh.
Our constrained zippering approach to adaptive mesh Booleans
produces high-quality triangulations that can be tuned to be fast
and approximate, or more precise by spending more computa-
tion time.

Performance is competitive with modern polyhedral Boolean
libraries, and we expect to see significant performance gains in
the future with a more optimized mesh refinement implementa-
tion. In addition it may be possible to incorporate the efficient
GPU techniques used by Chentanez et al. [24] which would fur-
ther improve the capabilities of our approach.

Another interesting aspect to explore is that we do not have
to use the input mesh as the projection constraint. Consider
the case where we know underlying analytic geometry for one
or both of the given meshes. We can reproject onto the analytic
geometry, rather than the approximate meshes, to produce more
accurate Boolean results. Figure 21 shows a simple example
with two spheres. This approach will allow us to, for example,
compute a Boolean operation between a NURBS model and an
Implicit surface, without needing to actually solve the analytic
intersection problem. Although one might argue that the result
will only be an approximation, meshes remain the primary rep-
resentation for both rendering and manufacturing, and so high-
quality meshes that are accurate up to a user-defined tolerance
are in fact all that is needed in practice.

Figure 21: Two (a) coarse mesh approximations of spheres produce have (b)
an irregular intersection curve. However if the underlying analytic spheres are
known, then we can solve (c) for the precise intersection curve by constraining
vertices to the analytic geometry during our boundary evolution.
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