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ABSTRACT
In aerodynamics related design, analysis and optimization
problems, flow fields are simulated using computational fluid
dynamics (CFD) solvers. However, CFD simulation is usu-
ally a computationally expensive, memory demanding and
time consuming iterative process. These drawbacks of CFD
limit opportunities for design space exploration and forbid
interactive design. We propose a general and flexible ap-
proximation model for real-time prediction of non-uniform
steady laminar flow in a 2D or 3D domain based on convo-
lutional neural networks (CNNs). We explored alternatives
for the geometry representation and the network architec-
ture of CNNs. We show that convolutional neural networks
can estimate the velocity field two orders of magnitude faster
than a GPU-accelerated CFD solver and four orders of mag-
nitude faster than a CPU-based CFD solver at a cost of a low
error rate. This approach can provide immediate feedback
for real-time design iterations at the early stage of design.
Compared with existing approximation models in the aero-
dynamics domain, CNNs enable an efficient estimation for
the entire velocity field. Furthermore, designers and engi-
neers can directly apply the CNN approximation model in
their design space exploration algorithms without training
extra lower-dimensional surrogate models.

Keywords
Convolutional Neural Networks; Surrogate Models; Compu-
tational Fluid Dynamics; Machine Learning

1. INTRODUCTION
Computational fluid dynamics (CFD) analysis performs

the calculations required to simulate the physical interac-
tion of liquids and gases with surfaces defined by prescribed
boundary conditions. This analysis process typically in-
volves the solution of partial differential equations, such as
the Navier-Stokes equations of fluid flow. The focus of our
work is the analysis of non-uniform steady laminar flow (Fig-
ure 1).
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Figure 1: Non-uniform steady laminar flow for 2D
geometry. The black box shows the object and the
arrows show the velocity field in the laminar flow.

Laminar flow occurs when a fluid flows in parallel lay-
ers, with no disruption between the layers [2]. There are
no cross-currents perpendicular to the direction of flow, nor
eddies or swirls of fluids. Non-uniform steady flow occurs
when the flow exhibits differences from point to point, but
these differences do not vary over time. The non-uniform
steady laminar flow is most often found at the front of a
streamlined body and it is an important factor in flight and
automobile design. 1

While traditional CFD methods produce high-accuracy
results, they are computationally expensive and the time re-
quired to obtain results is often measured in hours, or even
days for complex prototypes. In many domains, CFD anal-
ysis becomes one of the most intensive and time consuming
processes; therefore it is typically used only for final design
validation.

During the early design stages, designers often need to
quickly iterate over multiple design alternatives to make
preliminary decisions and they usually do not require high-
fidelity simulations. Significant efforts have been made to
make conceptual design software environments interactive,
so that designers can get immediate or real-time feedback for
continuous design iterations. One of the alternatives to high
accuracy CFD simulation is the use of fast approximation
models, or surrogates.

In the design optimization practice, multiple design alter-
natives are explored, evaluated and optimized at the same
time [1]. Guiding this process with fluid dynamics-based
performance is difficult due to the slow feedback from con-
ventional CFD solvers. The idea of speed-accuracy tradeoffs

1The geometry and velocity field representations and the
approximation method would be much different if we at-
tempted to model time-dependent unsteady flow and turbu-
lent flow.



[6] also leads to practical design space exploration and de-
sign optimization in the aerodynamics domain by using fast
surrogate models.

Data-driven surrogate models become more and more prac-
tical and important because many design, analysis and op-
timization processes generate high volume CFD physical or
simulation data. Over the past years, deep learning ap-
proaches (see [5, 26] for survey) have shown great successes
in learning representations from data, where features are
learned end-to-end in a compositional hierarchy. This is
in contrast to the traditional approach which requires the
hand-crafting of features by domain experts. For data that
have strong spatial and/or temporal dependencies, Convo-
lutional Neural Networks (CNNs) [20] have been shown to
learn invariant high-level features that are informative for
supervised tasks.

In particular, we propose a general CNN-based approxi-
mation model for predicting the velocity field in 2D or 3D
non-uniform steady laminar flow. We show that CNN based
surrogate models can estimate the velocity field two orders
of magnitude faster than a GPU-accelerated CFD solver
or four orders of magnitude faster than a CPU-based CFD
solver at a cost of a low error rate. Another benefit of using
a CNN-based surrogate model is that we can collect training
data from either physical or simulation results. The knowl-
edge of fluid dynamics behavior can then be extracted from
data sets generated by different CFD solvers, using different
solution methods. Traditional high accuracy simulation is
still an important step to validate the final design, but fast
CFD approximation models have wide applications in the
conceptual design and the design optimization process.

2. RELATED WORK

2.1 CFD Analysis
Computational methods have emerged as powerful tech-

niques for exploring physical and chemical phenomena and
for solving real engineering problems. In traditional CFD
methods, Navier-Stokes equations solve mass, momentum
and energy conservation equations on discrete nodes (the
finite difference method, FDM) [11], elements (the finite el-
ement method, FEM) [29], or volumes (the finite volume
method, FVM) [24]. In other words, the nonlinear partial
differential equations are converted into a set of non-linear
algebraic equations, which are solved iteratively. Traditional
CFD simulation suffers from long response time, predomi-
nantly because of the complexity of the underlying physics
and the historical focus on accuracy.

The Lattice Boltzmann Method (LBM) [22] was intro-
duced to overcome the drawbacks of the lattice gas cellular
automata. In LBM, the fluid is replaced by fractious parti-
cles. These particles stream along given directions (lattice
links) and collide at the lattice sites. LBM can be consid-
ered as an explicit physical-based approximation method.
The collision and streaming processes are local [23]. LBM
emerged as an alternative powerful method for solving fluid
dynamics problems, due to its ability to operate with com-
plex geometry shapes and to its trivially parallel implemen-
tation nature [31, 21]. Since distinct particle motion can
be decomposed over many processor cores or other hard-
ware units, efficient implementations on parallel computers
are relatively easy. LBM can also handle complex boundary
conditions. However, LBM still requires numerous iterations

and its convergence speed depends on the geometry bound-
aries. In this paper, we use LBM to generate all the training
data for the CNNs, and we compare the speed of our CNN
based surrogate models with both traditional CPU LBM
solvers and GPU-accelerated LBM solvers.

Compared with physical-based simulation and approxima-
tion methods, our approach falls into the category of data-
driven surrogate models (or supervised learning in machine
learning). The knowledge of fluid dynamics behavior can be
extracted from large data sets of simulation data by learning
the relationship between an input feature vector extracted
from geometry and the ground truth data output from a full
CFD simulation. Then, without the computationally expen-
sive iterations that a CFD solver requires to allow the flow
to converge to its steady state, we can directly predict the
steady flow behavior in a fraction of the time. The number of
iterations and runtime in a CFD solver is usually dependent
on the complexity of geometries and boundary conditions,
but they are irrelevant to those factors in the prediction
process. Note that only the prediction runtime of surrogate
models has a significant impact on the design processes. The
training time of the surrogate models is irrelevant.

2.2 Surrogate Modeling in CFD-based Design
Optimization

The role of design optimization has been rapidly increas-
ing and evolving in aerodynamics related fields, such as
aerospace and architecture design [1]. CFD solvers have
been widely used in design optimization (finding the best
design parameters that satisfy project requirements) and de-
sign space exploration (finding multiple designs that satisfy
the requirements). However, the direct application of a CFD
solver in design optimization is usually computationally ex-
pensive, memory demanding and time consuming. The ba-
sic idea of using surrogates (approximation models) is to
replace a high-accuracy, expensive analysis process with a
less expensive approximation. CFD surrogate models can be
constructed from physical experiments [30]. However, high-
fidelity numerical simulation proves to be reliable, flexible,
and relatively cheap compared with physical experiments
(see [1] and references therein).

Various surrogate models have been explored for design
processes, such as polynomial regression [12, 3], multiple
adaptive regression splines (MARS) [10], Kriging [12, 16],
radial basis function network [19], and artificial neural net-
works [7, 4]. The existing approaches only predict a re-
stricted subset of the whole CFD velocity field. For ex-
ample, predict the pressure on a set of points on an ob-
ject surface [32]. Most existing approaches also depend on
domain-specific geometry representations and can only be
applied to low-order nonlinear problems or small scale ap-
plications [10, 18]. The models are usually constructed by
modeling the response of a simulator on a limited number
of intelligently chosen data points. Instead of modeling each
individual low-dimensional design problem, we model the
general non-uniform steady laminar CFD analysis solution,
so that our model can be reused in multiple different, lower-
dimensional optimization processes, and predict the whole
velocity field.

2.3 Convolutional Neural Networks
Convolutional neural networks have been proven success-

ful in learning geometry representations [27, 13]. CNNs



also enable per-pixel predictions in images. For example,
FlowNet [8] predicts the optical flow field from a pair of im-
ages. Eigen, Puhrsch and Fergus [9] estimate depth from a
single image. Recently, CNNs are applied on voxel to voxel
prediction problems, such as video coloring [28].

Our approach applies CNNs to model large-scale non-
linear general CFD analysis for a restricted class of flow
conditions. Our method obtains a surrogate model of the
general high-dimensional CFD analysis of arbitrary geom-
etry immersed in a flow for a class of flow conditions, and
not a model based on predetermined low-dimensional inputs.
For this reason, our model subsumes a multitude of lower-
dimensional models, as it only requires training once and can
be interrogated by mapping lower-dimensional problems into
its high-dimensional input space. The main contribution of
our CNN based CFD prediction is to achieve up to two to
four orders of magnitude speedup compared to traditional
Lattice Boltzmann Method (LBM) for CFD analysis at a
cost of low error rates.

3. CONVOLUTIONAL NEURAL NETWORK
SURROGATE MODELS FOR CFD

We propose a computational fluid dynamics surrogate model
based on deep convolutional neural networks (CNNs). CNNs
have been proven successful in geometry representation learn-
ing and per-pixel prediction in images. The other motivation
of adopting CNNs is its memory efficiency. Memory require-
ment is a bottleneck to build whole velocity field surrogate
models for large geometry shapes. The sparse connectiv-
ity and weight-sharing property of CNNs reduce the GPU
memory cost greatly.

Our surrogate models have three key components. First,
we adopt signed distance functions as a flexible and general
geometric representation for convolutional neural networks.
Second, we use multiple convolutional encoding layers to ex-
tract abstract and high-level geometric representations. Fi-
nally, there are multiple convolutional decoding layers that
map the abstract geometric representations into the compu-
tational fluid dynamics velocity field.

In the rest of this section, we describe the key components
in turn.

3.1 Geometry Representation
Geometry can be represented in multiple ways, such as

boundaries and geometric parameters. However, those rep-
resentations are not effective for neural networks since the
vectors’ semantic meaning varies. In this paper, we use a
Signed Distance Function (SDF) sampled on a Cartesian
grid as the geometry representation. SDF provides a univer-
sal representation for different geometry shapes and works
efficiently with neural networks.

Given a discrete representation of a 2D geometry on a
Cartesian grid, in order to compute the signed distance func-
tion, we first create the zero level set, which is a set of points
(i, j) that give the geometry boundary (surface) in a domain
Ω ⊂ R2:

Z =
{

(i, j) ∈ R2 : f(i, j) = 0
}

(1)

where f is the level set function s.t. f(i, j) = 0 if and only
if (i, j) is on the geometry boundary, f(i, j) < 0 if and only
if (i, j) is inside the geometry and f(i, j) > 0 if and only if
(i, j) is outside the geometry.

Figure 2: A discrete SDF representation of a cir-
cle shape (zero level set) in a 23x14 Cartesian grid.
The circle is shown in white. The magnitude of the
SDF values on the Cartesian grid equals the minimal
distance to the circle.

A signed distance function D(i, j) associated to a level set
function f(i, j) is defined by

D(i, j) = min
(i′,j′)∈Z

∣∣(i, j)− (i′, j′)
∣∣ sign(f(i, j)) (2)

D(i, j) is an oriented distance function and it measures the
distance of a given point (i, j) from the nearest boundary of
a closed geometrical shape Z, with the sign determined by
whether (i,j) is inside or outside the shape. Also, every point
outside of the boundary has a value equal to its distance from
the interface (see Figure 2 for a 2D SDF example).

Similarly, given a discrete representation of a 3D geometry
on a Cartesian grid, the signed distance function is

D(i, j, k) = min
(i′,j′,k′)∈Z

∣∣(i, j, k)− (i′, j′, k′)
∣∣ sign(f(i, j, k))

(3)
A demonstration of 3D SDF is shown in Figure 3, where
SDF equals to zero on the cube surface. In this paper, we
use the Gudonov Method [14, 25] to compute the signed
distance functions.

Figure 3: Signed distance function for a cube in 3D
domain

The values of SDF on the sampled Cartesian grid not only
provide local geometry details, but also contain additional



information of the global geometry structure. To validate
the efforts of computing SDF values in our experiments, we
compare the geometry representiveness of SDF and a simple
binary representation, where a grid value is 1 if and only if
it is within or on the boundary of geometry shapes. Such
binary representations are easier to compute, but the values
do not provide any global structure information. We empir-
ically show that SDF is more effective in representing the
geometry shapes for convolutional neural networks.

3.2 CFD Simulation
In this paper, we intend to leverage deep neural networks

as real-time surrogate models to substitute traditional time-
consuming Lattice Boltzmann Method (LBM) CFD simula-
tion [22]. LBM represents velocity fields as regular Cartesian
grids, or lattices, where each lattice cell represents the ve-
locity field at that location. The LBM procedure updates
the lattice iteratively, and usually the amount of required
iterations for the flow field to stabilize from a cold start is
large.

In LBM, geometry is represented by assigning an identifier
to each lattice cell. This specific identifier defines whether
a cell lies on the boundary or in the fluid domain. Fig-
ure 4 illustrates this using an example of a 2D cylinder in
a channel. In general, the LBM lattice cell resolution does
not necessarily equal to the SDF resolution. In this work,
we use the same geometry resolution in the LBM simulation
and in the SDF representation. Thus, for a geometry with
H ×W × D SDF representation, its CFD velocity field is
also H ×W × D. A 2D velocity field consists of two com-
ponents x and y to represent the velocity components in
x-direction and y-direction respectively. The velocity field
for 3D geometry has one additional z-component to repre-
sent the velocity component in the z-direction.

Figure 4: 2D channel flow definition for LBM
(1=fluid, 2=no-slip boundary, 3=velocity boundary,
4=constant pressure boundary, 5=object boundary,
0=internal)

3.3 Convolution Encoding
The encoding part takes the SDF, s, as an input, and

stacked convolution layers extract geometry features directly
from the SDF representation. For 2D geometry, s is a matrix
that sij = D(i, j) and the 2D convolution operations are
used for encoding. For 3D geometry, s is a 3D tensor that
sijk = D(i, j, k), and the encoding uses 3D convolution. The

2D convolution encoding

2D convolution decoding 3D convolution decoding

3D convolution encoding

Figure 5: Convolution encoding and decoding.

encoded feature vector henc(s) can be formulated as:

henc(s) = ConvNN(s) (4)

where ConvNN(.) denotes the mapping from the SDF to a
geometry representation vector using multiple convolution
layers and a fully connected layer at the end, each of which
is followed by a rectifier non-linearity (ReLU).

3.4 Convolutional Decoding
We use the ’inverse’ operation of convolution, called de-

convolution, to construct multiple stacked decoding layers.
Deconvolution layers multiply each input value by a filter
elementwise, and sum over the resulting output windows.
In other words, a deconvolution layer is a convolution layer
with the forward and backward passes reversed. 2D decon-
volution maps 1 × 1 spatial region of the input to w × h
convolution kernels. 3D deconvolution maps 1 × 1 × 1 spa-
tial region of the input to w × h× d convolution kernels, as
shown in Figure 5.

In our method, deconvolution operations are used to de-
code high-level features encoded and transformed by the en-
coding layers. The decoding procedure can be represented
as:

t̂x(s) = DeconvNN(henc(s)) (5)

where t̂x(s) denotes the x-component prediction of the CFD
velocity field. DeconvNN(.) is a mapping from the extracted
geometry representation vector to CFD velocity field com-
ponent using multiple deconvolution layers, each of which
is followed by a rectifier non-linearity (ReLU). We decode
the y-component (and z-component for 3D geometry) of the
CFD velocity field in the same way.

3.5 Network Architecture and
End-To-End Training

SDF

convolution encoding

convolution decoding ith output

jth output

ith components 

of CFD

jth components 

of CFD

Euclidean

Loss

Figure 6: CNN based CFD surrogate model archi-
tecture

We use a shared-encoding and separated-decoding archi-
tecture for our CFD surrogate model in Figure 6. The



shared-encoding saves computations compared to separated-
encoding alternatives. Unlike encoding layers, decoding lay-
ers are interfered by different velocity field components when
a shared-decoding structure is used. In our shared-encoding
and separated-decoding architecture, multiple convolutional
layers are used to extract an abstract geometry representa-
tion, and the abstract geometry representation is used by
multiple decoding parts to generate the various components
of the CFD velocity field. There are two decoding parts for
2D geometry shapes and three for 3D geometry shapes. An
alternative encoding structure is to use separated encoding
layers for each decoding part. In the experiment section, we
show that the prediction accuracy of the separated encoding
structure is similar to the shared encoding structure.

Further, we condition our CFD prediction based on the
SDF to reduce errors. By definition, the velocity inside and
on the boundary of geometry shapes is zero. Thus, the ve-
locity field values change dramatically on the boundary of
geometry shapes. SDF itself fully represents the boundary
information and our neural networks could condition the
prediction by masking out the pixel or voxel inside or on
the boundary of the geometry. Such conditioned predic-
tion eases the training and improve the prediction accuracy.
The final prediction of our model is t̂x ⊗ 1{s > 0}, where
1{s > 0} is a binary mask and has the same size as s. Its
element is 1 if and only if the corresponding signed distance
function value is greater than 0. ⊗ denotes element-wise
product.

We train our model to minimize the mean squared error:

L(θ) =
1

N

N∑
n=1

|t̂x(sn)⊗ 1{sn > 0} − tx(sn)|2

+|t̂y(sn)⊗ 1{sn > 0} − ty(sn)|2
(6)

A similar loss function is defined for 3D geometry shapes:

L(θ) =
1

N

N∑
n=1

|t̂x(sn)⊗ 1{sn > 0} − tx(sn)|2

+|t̂y(sn)⊗ 1{sn > 0} − ty(sn)|2

+|t̂z(sn)⊗ 1{sn > 0} − tz(sn)|2

(7)

4. EXPERIMENT SETUP
In the experiments, we evaluate our proposed method in

both 2D and 3D geometry domains. In the 2D domain, we
train the convolutional neural networks using a collection
of 2D geometric primitives and evaluate the prediction over
a validation dataset of 2D primitives and a test dataset of
2D car shapes (see Figure 7 for examples). We then train a
separate network using a collection of 3D geometry shapes
inside a channel (see Figure 8 for examples) and evaluate the
prediction over a validation dataset of 3D geometry shapes.

We first empirically compare the representiveness of SDF
with the simple binary representations and show that SDF
outperforms binary representations in CFD prediction. Sec-
ond, our CNN based surrogate model outperforms a patch-
based linear regression baseline in predicting CFD for both
2D and 3D geometry shapes. Finally, we compare the time
cost of our proposed method with traditional LBM solvers
to highlight the speedup of our proposed method.

We begin by describing the details of the datasets, LBM
data generation, convolutional neural network architectures,
and training parameters.

4.1 Data and Preprocessing

Figure 7: 2D car dataset visualization.

Figure 8: 3D channel dataset: two 3D primitives (a
rectangular box and a sphere) in a 32-by-32-by-32
channel and the visualization of their SDF on the
Y-Z plane

2D data set. The 2D training and validation datasets con-
sist of 5 types of simple parametric geometric 2D primi-
tives: triangles, quadrilaterals, pentagons, hexagons and do-
decagons. Each set of primitives contains samples that are
different in size, shape, orientation and location. The train-
ing dataset contains 100,000 samples (20,000 random sam-
ples for each kind of primitives), and the validation dataset
contains 10,000 samples (2,000 random samples for each kind
of primitives). The 2D primitives are projected into a 256-
by-128 Cartesian grid and the LBM simulation computes a
256-by-128 velocity field as labels. We construct two kinds
of 2D primitive datasets for different boundary conditions.
In Type I, the primitives are always connected to the lower
boundary. In Type II, the primitives are always above the
lower boundary, and the gap ranges from 15 to 25 pixels.

2D car test data set. This data set is dedicated to test
the generalization ability of our trained models. It contains
various kinds of car prototypes, such as jeeps, vans and sport
cars. The car samples are not visible in the training. Similar
to 2D primitives, the car samples are projected into a 256-
by-128 Cartesian grid and the LBM simulation computes
a 256-by-128 velocity field. We also create two boundary
conditions for the car samples.

3D data set. In order to understand whether interactions
of flow with sets of multiple boundaries can be learned effec-
tively, the 3D dataset contains 0.4 million sphere and rect-
angular prism pairs. Each sphere-prism pair is positioned in
a 32×32×32 channel. Both the location and the parameters
of each 3D object are randomly generated. Then a LBM
simulation is performed on the 3D channel, where the fluid
enters the channel along the x axile.



SDF preprocessing. We performed pixel/voxel-wise mean
removal for SDF and scaled the resulting representation by
0.01 as inputs to the CNNs.

4.2 CFD Solver Configuration
Laminar flow occurs at low Reynolds numbers2, where

viscous forces are dominant, and is characterized by a fluid
flowing in parallel layers, with no disruption between the
layers. In all the experiments, we used a Reynolds number
of 20. For our 2D experiments, we used OpenLB [15], a C++
Lattice Boltzmann library, to generate CFD velocity field.
Because of the lack of GPU support in OpenLB, we ran
each simulation on a single core on a Intel Xeon E5-2640V2
processor. For our 3D experiments, we used a proprietary
GPU-accelerated LBM solver.

4.3 Network Architectures and Training
The architectures and hyper-parameters of our CNN sur-

rogate models for 2D and 3D CFD are shown in Figure 9.
In the CNN architectures, the encoding part is shared by
decoding parts for different CFD dimensions. Alternative
architectures could use a separated encoding part for each
decoding part where each separated encoding part has the
same architecture and hyper-parameters as the shared en-
coding part. We compare these two encoding paradigms in
our experiments.

We implemented the CNNs using Caffe [17]. The parame-
ters of the networks were initialized using Xavier method in
Caffe. We used RMSProp with a batch size of 64 to optimize
the parameters of the convolutional neural networks. The
RMS decay parameter was set to 0.05. We set the initial
learning rate to be 10−4 and multiplied the learning rate by
0.8 for every 2500 iterations.

5. EXPERIMENT RESULTS
We use the average relative error [1] in the CFD literature

to evaluate our prediction. We first compute the difference
between the predicted velocity field and the LBM generated
velocity field. For a pixel/voxel, the relative error is defined
as the ratio of the magnitude of the difference to the LBM
generated velocity field. For 2D geometry shapes, the rela-
tive error at pixel (i, j) in n-th test case is represented as:

errn(i, j) =

√
(t̂xij(sn)− txij(sn))2 + (t̂yij(sn)− tyij(sn))2√

txij(sn)2 + tyij(sn)2

(8)
The average relative error of n-th data case is the mean value
of all the pixels outside the geometry shape:

errn =

∑
i

∑
j errn(i, j)1ij(sn > 0)∑
i

∑
j 1ij(sn > 0)

(9)

where 1ij(sn > 0) is 1 if and only if (i, j) is outside of
the geometry boundary of sn. errn can be extended to
3D geometry shapes straightforwardly by considering the
z-component.

2In CFD modeling, the Reynolds number is defined as a non-
dimensional ratio of the inertial forces to viscous forces and
quantifies their relevance for the prescribed flow condition
[2].

The average relative error over the test data set is the
mean of all the test cases:

err =
1

N

N∑
n=1

errn (10)

5.1 Signed Distance Function vs. Binary Rep-
resentation

One contribution of this paper is proposing using SDF as
geometric representations for the CNN models. We evaluate
the effectiveness of SDF geometric representations by com-
paring with the binary representations in the same CNN ar-
chitectures. In the experiments, the binary representations
use a 256 × 128 binary matrix to represent the geometry.
Its element is 1 if and only if the corresponding position is
on the geometry boundary or inside the geometry.

The results of prediction on 2D primitives are summarized
in the Table 1.

DataSet Encoding Type SDF Binary
2D Type I shared 1.98% 54.60%

separated 1.76% 55.25%
2D Type II shared 2.86% 74.52%

separated 3.08% 80.71%

Table 1: 2D CFD prediction results of SDF and bi-
nary representations.

The results show that the errors of using SDF are signif-
icantly smaller than the errors of using binary representa-
tions. Given that the deep neural networks are the same,
the results imply that the SDF representations are more ef-
fective than the binary representations. Each value in the
SDF representations carries a certain level global informa-
tion while the values in binary representations only carry
restricted local information. Due to such difference, binary
representations may require more complex architectures to
capture whole geometric information properly. We also com-
pare the SDF representations to the first order gradients of
the SDF representations, the prediction accuracy improve-
ment is not significant, so we focus our contributions on us-
ing SDF because of its computation simplicity. The results
also show that the prediction accuracy of shared encoding is
similar to that of separated encoding.

5.2 Patch-wise Linear Regression Baseline
A patch-wise linear regression model is applied as a base-

line to evaluate our proposed models. For 2D geometry
shapes, the 256 × 128 SDF inputs are divided into 32 ×
32 patches without overlap. The patch-wise linear regres-
sion model takes 32 × 32 patches as inputs and predicts 32
× 32 patches to construct the CFD velocity field for each
component. The predicted 32× 32 patches are concatenated
without overlap to form the x-component or y-component of
the CFD velocity field. For 3D geometry shapes, the 32 ×
32 × 32 SDF inputs are divided into 8 × 8 × 8 patches
without overlap, and the predicted 8 × 8 × 8 patches are
then concatenated to form the velocity field.

The prediction results of CNNs and baseline are summa-
rized in Table 2. The results show that our proposed CNN
models outperform the patch-wise linear regression models.
The CNN’s prediction errors are significantly smaller than
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Figure 9: (Top) Network architecture for 2D geometry, (Bottom) Network architecture for 3D geometry.
Black cubes/rectangles represent the feature maps. The dimensionalities of feature maps are indicated
below. Brown cubes are for SDF and CFD components. Conv, Conv3D, Deconv and Deconv3D represent
2D/3D convolutions and 2D/3D deconvolutions respectively. The number of filters and the kernel size are
shown below the operations. The strides for 2D convolutional and deconvolutional layers are the same as
kernel sizes. All layers are followed by a rectifier non-linearity except output layers. Arrows indicate the
forward operation directions.

the ones reported by the patch-wise linear regression. The
prediction accuracy advantage comes from the fact that our
CNN models learn a high-level representation of the entire
geometry, while the patch-wise linear regression model only
takes a local region of SDF as input, thus the input infor-
mation may not be sufficient to provide accurate prediction
for the CFD components. The loss of global geometry infor-
mation degrades the prediction accuracy much more for 3D
case because there are two geometry shapes and the global
structure information is even more critical for CFD predic-
tion. Even though a non-patch-wise linear regression model
could also take the entire SDF as input, the number of pa-
rameters would be too large to handle and thus it is not
applicable in practice.

We visualize the CNN’s output in Figure 10 and Figure 11
for understanding of the errors from our model. Figure 10
visualizes the CNN prediction on 2D geometry. We visualize
the LBM ground truth, the CNN prediction and prediction
errors in columns. The shared encoding model’s predictions
are used in generating the CNN’s results. The geometry
shapes are visualized in dark blue. The results show that
the errors are centered on the geometry boundaries, and the
errors are much less than the CFD ground truth. Following
the same column order, in our 3D visualization (Figure 11),
we show three slices of the velocity fields on the X-Y, X-Z
and Y-Z planes.

Data Set Separated Shared PatchLR
2D Type I 1.76% 1.98% 22.86%
Car Type I 11.09% 9.04% 29.03%
2D Type II 3.08% 2.86% 27.66%
Car Type II 15.34% 16.53% 35.96%
3D - 2.69% 334.19%*

Table 2: CFD prediction results of CNNs and patch-
wise linear regression baseline. (*Based on Equation
10, if the error is larger than the true value, then
error is larger than 1.)

5.3 Performance Analysis
The main motivation for our surrogate models is that

CNN prediction of non-uniform steady laminar flow is con-
siderably faster than traditional LBM solvers. Furthermore
CNNs utilize GPU to evaluate the CFD results and the com-
putation overhead per instance could therefore be reduced
by allowing multiple predictions to be executed in parallel.

LBM are well suited to massively parallel architectures,
as each cell in the lattice can be updated independently at
every time step. A widely accepted performance metric for
LBM based solvers is Million Lattice Updates per Second
(MLUPS). For example, if a 2D LBM solver achieves a per-



Figure 10: 2D prediction result visualization. The first column shows the magnitude of the LBM ground truth.
The second column shows the magnitude of the CNN prediction. The third column shows the magnitude of
the difference between the CNN prediction and LBM results.

formance of up to 20 MLUPS, it is the equivalent of per-
forming 1000 time steps per second at a resolution of 200
× 100 lattice points. Modern LBM solvers that are algo-
rithmically optimized for GPU hardware can achieve 820
MLUPS [31, 21]. Using MLUPS as the performance metric,
we can estimate the run time of each individual LBM exper-
iment we performed if they had been running at the speed
of the state-of-the-art GPU optimized LBM solvers, which
is approximately 2 seconds. The average time cost per in-
stance results for LBM solvers are summarized in Table 3.

Methods LBM CPU LBM GPU
Time cost 82.64s 2.02s
MLUPS 20.11 820

Table 3: Time of LBM solver on CPU and GPU.

The time results of our CNNs are in Table 4. The time cost
measures the average time to generate the CFD given the
geometry shape’s SDF input. Since CNN based surrogate
models could amortize computational overhead per instance
by predicting multiple instance in parallel. We measure the
average time cost for different batch sizes. Moreover, we
compare the time cost of the shared encoding and separated
encoding3. First, the results show that the average time
cost decreases significantly as the batch size becomes larger.
Second, the separated encoding takes more time than the
shared encoding on different batch sizes. The prediction
accuracy of shared and separated encoding architectures is
close, but the shared encoding outperforms the separated
encoding in terms of time cost.

We use the shared encoding CNNs to compute the speedup,

3The time cost of separated encoding measures the total
time of sequential prediction of different CFD components.

CNN batch size 1 10 100
shared encoding 0.0145s 0.0077s 0.0069s
separated encoding 0.0182s 0.0085s 0.0072s

Table 4: Time of CNN models on GPU.

compared to LBM on CPU and GPU. The speedup results
are summarized in Table 5.

Batch Size Speedup (CPU) Speedup (GPU)
1 5699 139
10 10732 262
100 11977 292

Table 5: Speedup results of our CNN surrogate
models compared to LBM for different batch sizes.

The speedup results show that (1) GPU accelerated CNN
model achieves up to 12K speedup compared to traditional
LBM solvers running on a single CPU core, (2) the CNN
model achieves up to 292 speedup compared to GPU-accelerated
LBM solver, and (3) the speedup increases as batch size in-
creases because the overtime in using GPU is amortized.

6. FUTURE WORK AND CONCLUSION
Even though for many domains, such as architectural de-

sign, low Reynolds number flows [2] are usually sufficient,
we intend to explore higher Reynolds number flows in the
future, to extend the approach to other areas of design op-
timization.

It would also be worthwhile investigating whether we could
use the results from our approximation models as an initial
setup to warm start high-accuracy CFD simulations. Since
the predictions are fairly close representations of the final,



fully converged results, the number of iterations required
to converge to steady state could be greatly reduced, and
therefore high-accuracy traditional CFD methods could be
made to converge much more quickly.

In this paper, we apply deep Convolutional Neural Net-
works to Computation Fluid Dynamics modeling. Our main
motivation is to provide lightweight (fast and less-accurate)
interior and exterior flow performance feedback to improve
interactivity of early design stages, design exploration and
optimization. Using this approach, designers can easily gen-
erate immense amounts of design alternatives without facing
the time-consuming task of evaluation and selection. Our re-
sults show that our CNN based CFD predictions achieve 2-4
orders of magnitude speedup compared to traditional CFD
methods to model steady state laminar flow at a cost of low
error rates.
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Figure 11: 3D prediction visualization. The first column shows the magnitude of the LBM ground truth.
The second column shows the magnitude of the CNN prediction. The third column shows the magnitude of
the difference between the CNN prediction and LBM results.


