

Deploying CommunityCommands:

A Software Command Recommender System Case Study

Wei Li Justin Matejka Tovi Grossman George Fitzmaurice

Autodesk Research, Toronto, Canada.

firstname.lastname@autodesk.com

Abstract

In 2009 we presented the idea of using collaborative
filtering within a complex software application to help users
learn new and relevant commands (Matejka et al. 2009).
This project continued to evolve and we explored the design
space of a contextual software command recommender
system and completed a four-week user study (Li et al.
2011). We then expanded the scope of our project by
implementing CommunityCommands, a fully functional and
deployable recommender system. CommunityCommands
was made available as a publically available plug-in
download for Autodesk‟s flagship software application
AutoCAD. During a one-year period, the recommender
system was used by more than 1100 AutoCAD users. In this
paper, we present our system usage data and payoff. We
also provide an in-depth discussion of the challenges and
design issues associated with developing and deploying the
front end AutoCAD plug-in and its back end system. This
includes a detailed description of the issues surrounding
cold start and privacy. We also discuss how our practical
system architecture was designed to leverage Autodesk‟s
existing Customer Involvement Program (CIP) data to
deliver in-product contextual recommendations to end-
users. Our work sets important groundwork for the future
development of recommender systems within the domain of
end-user software learning assistance.

 Introduction

Modern computer programs can have thousands of

commands available to the user, with a general tendency to

increase year after year (Baecher et al. 2000). For example,

AutoCAD is a widely used software application for both

2D and 3D drafting and design. The number of commands

in AutoCAD has been growing linearly and consistently

over time. While the growth of commands increases a

system‟s capabilities, the quantity can make learning the

system a challenge. In particular, a user‟s lack of

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

awareness of relevant functionality can act as a barrier to

their efficiency with the system (Grossman et al. 2009,

Shneiderman 1983).

 In a “best case scenario”, a user would work with an

expert next to them who could recommend commands

when appropriate (Grossman et al. 2009). Indeed, this type

of “over the shoulder” learning has been shown to be

valuable in the workplace (Twidale 2005), yet it is

obviously impractical to assume such assistance would be

readily available.

 One promising way to address this challenge is to

provide users with in-product command recommendations.

Existing techniques, such as “tip-of-day” and “did you

know”, can expose new features, but they may be

irrelevant to the user‟ current task (Fischer 2001, Norman

et al. 1986). An alternative is to provide personalized

command recommendations, based on the user‟s own

history of usage. While some research has been initiated in

this area (Linton and Schaefer 2000, Matejka et al. 2009),

working implementations which deliver these

recommendations have never been embedded within a

target application. We contribute a recommender system

that was released as a plug-in for AutoCAD, and has been

used in real usage scenarios. During a one year period of

time, over a thousand AutoCAD users downloaded and

installed our CommunityCommands plugin from the

official Autodesk
1
 website as a technology preview.

 In this paper, we provide an in-depth discussion of the

important issues and challenges we have encountered

during the development and deployment of this system.

This includes many of the technical details of the

recommender system itself, as well as the system

architecture and implementation details required to make a

real-time command recommender system hosted on a

user‟s local machine, work in practice. In particular, we

1 http://www.autodesk.com

discuss the key challenges associated with the domain of

software functionality recommendations that required us to

diverge from the traditional treatment of recommender

system problems. This includes: cold start issue; contextual

in-product real-time recommendations; and the system

architecture to deliver the personal recommendations to

end-users, while also protecting user privacy.

 In our software command recommender design, we

leverage an existing Customer Involvement Program

(CIP), which provides a mechanism to collect user

command sequence logs anonymously. We also propose a

novel architecture that pushes the item-by-item similarity

matrix to each user‟s computer. For users who have

privacy and data security concerns, this push model can

enable a download-only recommender being deployed to

their systems. In addition to privacy concerns, CIP also

provides valuable data source for solving the cold start

problem. Our hope is that the presentation of these

important details will set the groundwork for the future

development of recommender systems within the domain

of end-user software.

Prior Work

Collaborative filtering based recommender systems have

become an important tool to help users deal with

information overload and provide personalized suggestions

(Hill et al. 1995, Shardanand and Maes 1995). Examples

include recommending movies (Miller et al. 2003), news

(Resnick et al. 1994), and books (Linden et al. 2003).

However, little research has been conducted to help users

learn and explore a complicated software package using a

recommender system. We are aware of two such systems

that have been proposed in the literature: OWL for

Microsoft Office (Linton and Schaefer 2000) and

CommunityCommands for Autodesk AutoCAD (Li et al.

2011). The OWL System compares a target user‟s

command frequencies to the average command frequencies

of an entire user population. Based on the difference

between these frequencies, OWL recommends commands

that the target user should use either more or less often.

OWL was designed to run within an organization, so it

assumes that all users in the community should share the

same command usage distribution, and in turn, use the

software system in the same way. Across a broad user

community, this assumption is unlikely to hold true. Users

have different tasks, and preferences, so recommendations

should be personalized (Mitchell and Shneiderman 1989).

In contrast, CommunityCommands uses personalized

collaborative filtering to produce recommendations

tailored to an individual (Li et al. 2011). This adds a

significant benefit over the OWL system; commands that

are not relevant to the individual‟s workflow will be

avoided.

 In our previous work (Matejka et al. 2009, Li et al.

2011) we performed several offline evaluations and an

online evaluation with a limited number of study

participants. In this paper, we describe our deployment of

Community-Commands, made available for public

download and usage. We provide a detailed description of

the system architecture, and report and reflect on the data

which was collected from our deployment used by over

1,000 actual AutoCAD users resulting in over 55,000

command recommendations issued over a one year period

of time.

Challenges of Building and Deploying a

Software Command Recommender System

In this section, we describe a number of challenges that we

encountered while preparing our system for public

deployment.

Privacy

The issue of user privacy has been explored by

recommender system users and researchers (Frankowski et

al. 2006, Ramakrishnan et al. 2001). In many

recommender systems, a central server has access to all

user profiles and generates personal recommendations.

This type of architecture may reveal details about the user,

gained through examining their user-item relations. Some

privacy research has focused on using a decentralized

server architecture combined with strong algorithms to

secure user‟s data (Ahmad and Khokhar 2007, Berkovsky

et al. 2007, Shokri et al. 2009), but this still requires user

data to be sent to a network server. The issue of privacy is

a significant concern for CommunityCommands.

Customers often worry that their usage behaviors and data

is being logged. For design software, such as AutoCAD,

customer-generated data can be extremely sensitive. In an

ideal usage situation, software users should have options

and be able to control when to upload their software usage

data.

Cold Start

The “Cold-Start” problem is a well-known issue in

recommendation systems (Schein et al. 2001). For our

implementation, we would have no previous data related to

the individual user‟s behavior, and thus, no information to

base the recommendations on. It is also difficult to

generate the required user-by-user or item-by-item

similarity matrices without an existing software usage data

set, which results in an inability to draw inferences to

recommend items to users. Due to concerns surrounding

privacy, it can be difficult to collect the usage data

necessary to provide useful recommendations.

In-product Recommendation

Another design challenge of our system is that it provides

the recommendations within the product, and they are

updated in real-time. This requires the recommendations to

be available immediately, unlike previous software

recommendation systems in which users receive periodic

email updates (Linton and Schaefer 2000). Because of the

in-product design and the possibility that the users might

not have internet connections, the computations of

recommendations must occur locally.

Customer Involvement Program

Many software applications have Customer Experience

Improvement Programs
2
 (CEIP) or Customer Involvement

Programs
3
 (CIP) to help collect users‟ feedback (called

CIP in the rest of paper). CIP lets users choose to send

usage data to the software designers and developers, so

they can get anonymous information about how their

programs are being used. CIP usually gathers product

usage and system configuration information, such as

system memory, video card, screen resolution, and

operating system details at regular intervals. This type of

data is not particularly sensitive. However, in the

aggregate, data items such as these give software

developers a great deal of insight into what features

customers are using, how well they're working, and where

they could be improved.

Figure 1. Customer Involvement Program (CIP) Enrollment

Interface in AutoCAD 2012.

In AutoCAD, command usage histories are collected as a

part of the CIP data. A CIP participation window is

presented to AutoCAD users during the software

installation process (Figure 1). Sample data and generated

reports are also presented to explain that the user‟s privacy

is still being protected. If the user agrees to participate in

2 http://www.microsoft.com/products/ceip/EN-US/default.mspx
3 http://www.autodesk.com/acip/CIP_Privacy_eng.html

CIP, when they execute a command, this action is recorded

in the form of a (userID, commandID, timestamp) tuple in

a centralized database.

 The voluntary nature of CIP also provides options to

software users to either upload their command log to a

central CIP server or keep the log on their computers.

AutoCAD users can also turn off CIP anytime by clicking

a menu item. Our system leverages CIP to generate

command recommendations while users have the option of

not revealing their personal information. Before the

deployment of CommunityCommands, we used existing

CIP data to solve the cold-start problem and implicitly

define a rating scheme and generate item-by-item

correlations.

Application Description

System architecture

Based on the encouraging results of our one month user

study (Li et al. 2011), we developed our recommender

prototype into a plug-in for AutoCAD and released it to the

public. The system runs as a palette embedded in the

AutoCAD workspace, providing within-application and

real-time recommendations while a user goes about their

normal usage of the software (Figure 2).

Figure 2. System architecture.

Here we describe our architecture design of this fully

functional system for software command

recommendations. The system architecture is composed of

three components: the user's local machine, the

CommunityCommands server, and the main AutoCAD

CIP server (Figure 2). When the plug-in is installed and

connected to the Internet, a 1.8 MB item-by-item similarity

matrix is downloaded (pushed) to the user‟s local machine,

which is used for the item-based recommendation

algorithm. The local machine collects the user‟s command

sequence, and computes the recommendations locally each

time a new command is issued (using an item-based

algorithm). In addition, the CommunityCommands server

continuously receives command sequence logs from

AutoCAD‟s main CIP server. This allows us to generate

recommendations based on usage profiles of AutoCAD

users that may not be running our plug-in. On a monthly

basis, the server computes a new item-by-item similarity

matrix and each user‟s local machine downloads and

replaces their existing matrix. This system architecture

provides two important and unique design properties:

preserving privacy and in-product recommendations.

Push based recommendations

For traditional recommender systems, there is no easy way

to generate personalized recommendations, without some

central system first receiving a user's data. In

CommunityCommands, instead of uploading the users‟

data to the central server, the server pushes the similarity

matrix to the user's local computer. Thus, we can still

generate a personalized recommendation command list

without ever receiving data from that user. The

recommendations are still based on the personal data at the

local computer, and the aggregated CIP data.

In-product recommendations

Recommended commands are placed in a list within the

AutoCAD plug-in palette (Figure 3).

Figure 3. Recommender plug-in palette is opened in

AutoCAD.

Clicking on the command button executes the command. If

a command in the recommendation list is used, it is

immediately removed from the list and displayed in a

“most recently used commands” list. Hovering over the

command button causes the standard AutoCAD tooltip to

appear, and dwelling longer reveals an extended tooltip

with additional usage information (Figure 4).

During our development process, we found it critical to be

minimally disruptive to the computational resources

needed by the main application. Under normal usage,

computation of recommendations is unnoticeable to the

user, so we compute the recommendations after an

individual command has been executed. However, we have

to delay the recommender computation if we observe a

rapid succession of command usage. In addition, since

AutoCAD has a scripting language that can issue multiple

commands without user input, we defer processing the

recommendations and updating the UI until our threshold

idle time of 0.5 seconds has been satisfied.

Figure 4. Recommended and recently used commands.

Tooltip appears when mouse is hovered over the command.

Training before recommending

To further address the cold start problem, the plug-in

begins in a training period, where commands are logged,

but no recommendations are presented. Determining the

right length of this training period is difficult – we wanted

the recommendations to start as soon as possible, but only

after we reliably know what commands the user is already

aware of. To minimize the time needed for training, we ran

a pilot test by analyzing data from 27 users (Li et al. 2011).

On a daily interval, we measured the rate at which new

commands were used (had not been previously observed

for that user), across a period of 4 weeks (Figure 5). The

data showed that the rate of using “new commands” levels

off quickly. For example, after 8 days, 50% of users had

less than 3 new commands per day. However, because

users will have different daily usage rates, this public

released recommender exits the training phase when the

user performs less than 3 new commands on two

consecutive days. To ensure enough data has indeed been

collected, it also requires that the training phase was active

for at least 10 usage days, or, until at least 200 commands

have been captured.

Figure 5. New command adoption rates based on 27 users.

During this training phase, we display a message to the

user, and use the pallet to provide access to recently used

commands. This gives the users some value, while waiting

for the recommendations to begin (see Figure 6).

Figure 6. Recommender training phase UI

Use of AI Technology

As alluded to in our review of the related work, there are a

number of unique considerations to address in developing a

collaborative filtering system for software commands.

Ratings

Standard collaborative filtering algorithms work by

viewing a dataset as a rating matrix. These ratings are

either captured implicitly, for example, through purchase

records and browsing histories, or explicitly, by asking

users to rate the items. We need to map users‟ command

history onto a rating matrix.

 One approach is to allow a user to give explicit ratings

for each command. This approach would not utilize the

user‟s historical data and would thus suffer from the cold

start problem (Schein et al. 2001). Moreover, an explicit

rating system would be impractical, since software

application users will be focused on their primary task, not

on rating the functions which they use. In addition,

research has shown that users may be reluctant to provide

explicit ratings (Shardanand and Maes 1995). As such, the

implicit acquisition of user preferences of software

commands is more favorable in practice.

Our method uses the command frequency to imply the

rating for the user (Li at el 2011). To model how important

a command is to a particular user within a community, and

to suppress the overriding influence of commands that are

being used frequently and by many users, we have adapted

tf-idf (Jones 1972) into a command frequency, inverse user

frequency (cf–iuf) rating function. We first take the

command frequency (cf) to give a measure of the

importance of the command ci to the particular user uj.

∑

where nij is the number of occurrences of the considered

command for user uj, and the denominator is the number of

occurrences of all commands for user uj.

The inverse user frequency (iuf), a measure of the

general importance of the command, is based on the

percentage of total users that use it:

| |

|{ }|

where:

| |: total number of users in the community

|* +|: Number of users who use ci.

With those two metrics we can compute the cf-iuf as

 –

A high rating in cf–iuf is obtained when a command is used

frequently by a particular user, but is used by a relatively

small portion of the overall population.

For each user uj, we populate the command vector Vj

such that each cell, Vj(i), contains the cf-iuf value for each

command ci, and use these vectors to compute user

similarity.

Rather than matching users based on their command

usage, our item-based collaborative filtering algorithm

matches the active user„s commands to similar commands.

Similar to user-based approach, each cell, Vi(j), contains

the cf-iuf value for each user uj. In our released

recommender, we applied item-based approach and

customized our suggested commands based on active

user‟s short term preference (session-based command

history) to generate contextual in-product real-time

recommendations (Li et al. 2011).

Novelty evaluation metrics

Command recommendation is a top-N recommendation

problem, which identifies a set of N commands that will be

of interest to a user (Karypis 2001, Herlocker et al. 2004).

We consider good recommendations to be those where the

user was not previously familiar with the command, but

after seeing the suggestion, will use it. As such, we were

required a metric that would indicate usefulness and

novelty. To do so, we developed a k-tail evaluation which

dynamically measures the usefulness of an algorithm based

on the sequential information in a user‟s command log

(Matejka et al. 2009). Here, we propose to approximate a

command recommendation‟s novelty factor using its

binomial probability. We call this the binomial novelty

indicator (BNI).

To evaluate the novelty of the recommendations, we

compute the probability that a command, which was

correctly predicted by the recommender, would appear in

the testing set by random chance. We do this by using the

binomial probability formula, based on a command‟s

overall frequency across the entire user community:

 () (

) ()

where P(k) is the probability of a specific command C

executed exactly k times in a commands sequence of

length l, and p is the overall probability of C being

executed in the dataset. The cumulative distribution

function for k can be expressed as:

 () ∑(

) ()

F(l,l,p) represents the chance of seeing command C at least

once. So we define the binomial novelty indicator (BNI)

as:

 () ∑(

) ()

This gives us an explicit measurement as to the likelihood

a recommended command would have appeared in the

sequence by chance. For example, consider a command A

that has a frequency of 0.036 and a command B that has a

frequency of 0.002, across all users, and a testing set with

13000 commands. We compute that there is a 95% chance

that A appears in the testing set once or more, and a 3%

chance that B appears once or more. If the recommender

predicts both A and B correctly, we can be reasonably

certain that the user more likely knew A than B. Comparing

this across all correctly recommended commands, we can

get a measurement of how novel, overall, the commands

that a recommender algorithm generates are. Thus, we

combine BNI with k-tail offline evaluation by computing

the mean of BNI for every unique command in R∩T,

where l is the length of T. Our deployed recommender uses

both k-tail and BNI to select collaborative filtering

algorithms and tuning parameters.

Application Use and Payoff

Overall Usage

We report how long the CommunityCommands plugin was

deployed on the user‟s system. This deployment time was

calculated using the time stamps of the first and last time

the user ran the recommender. During the one year period

after we released this recommender system, approximately

1100 AutoCAD users downloaded and installed the plug-

in. 983 users used the plug-in for at least one day. 709

users used the plug-in for more than 30 days. On average,

the plug-in was installed at the user‟s computer for more

than two months (69.8 days). We also observed that most

users who have very short usage times did not pass their

training phase before they uninstalled or disabled the plug-

in.

Recommendation adoption

Our hope is that users of the recommender system would

start using the recommended commands. We hope they not

only try the command a few times, but adopt the

recommendations into their regular workflows. Figure 7

shows the number of recommended commands being used

by the users who have moved past the training phase. The

figure contains the recommended commands being used at

least once, three times, ten times and twenty times. We call

those commands adopted recommendations or useful

recommendations. On average, 21.4 recommendations

were used by users at least once. 14 new recommendations

were used by users more than three times, 9.6 for 10 times

and 7.3 for 20 times.

Figure 7. Recommended command adoption

Figure 8. Total adopted useful recommendations over

deployed time. The horizontal axis shows the percentage of

time passed.

Figure 8 shows the distribution of the total adopted

recommendations over time. Here we assume all users start

at the same time and spend the same amount time using the

system. This figure shows 50% recommendation adoptions

happened during the first 19% of the entire period of

system usage time.

CommunityCommands only recommend commands that

had never been executed in the user‟s command history.

But there may be commands used by the user before the

installation of the plug-in. As such, some of these adopted

commands may have already been known to the user.

CIP Enrollment

CIP is a key component for solving the users‟ privacy

concerns and cold-start problem. A large group of users

(71.3%) who downloaded the CommunityCommands plug-

in enrolled in CIP. This of course means that 28.7% of

users did not enroll into CIP, mostly due to privacy and

technical concerns. As such, our system needs to work for

both user groups.

Command usage visualization

To help visualize the data which was collected during our

deployment, we developed Personal Software Usage DNA

diagrams for the users of our plug-in. These diagrams are

generated by looking at the command usage patterns of

each individual user. By ordering the commands based on

the community‟s overall usage, and coloring them based

on the individual‟s usage, we can see commands that an

individual is using more (or less) often than the community

as a whole. By looking at how densely the individual row

is filled in, we can also see if the individual uses a lot, or

relatively few commands.

Figure 9. Legend of software usage DNA diagram

Figure 9 presents the information included in each DNA

diagram. A red command name means that the command

was recommended but was removed by the user from the

recommendation list. A green command name means that

it was normally showed in the recommendation list. The

brightness of the command background represents the

usage frequency of that command. So a green command on

a bright background is a strongly adopted recommendation.

Figure 10 shows the 17 most active users‟ DNA diagram,

with the top user enlarged. In the future, it could be

interesting to present these Personal Software Usage DNA

diagram to the end users, to encourage usage reflection and

further command adoption.

Conclusion and Future Work

Based on our experiences, we believe that recommender

systems have a rich future for use within software

applications. We have provided a detailed treatment of the

issues surrounding the development of a command

recommender system and the architecture used for its

deployment. Our hope is that this research will serve as

groundwork and inspiration for future efforts in this area.

We have shown that collaborative filtering algorithms

can identify commands that will be useful to a user. This

leads us to believe that such systems could also be used to

recommend higher-level task flows and relevant tutorial

materials.

The item-based collaborative filtering provides relevant

and novel recommendations. It aggregates user-item

relations into item-item relations. When combined with the

system architecture we proposed here, the item-based

algorithm can also preserve user's privacy, which is a

desirable feature for many business applications.

Certain software applications, including AutoCAD, have

a main version, but also “parallel” customized versions for

specific user groups. By using collaborative filtering

technology, we will be able to recommend customized

software features to the appropriate user groups. For

example, AutoCAD has vertical versions for mechanical

engineers, electric engineers, civil engineers and architects.

Recommending commands commonly used by civil

engineering to architects, when those commands fit the

current workflow, could increase the diversity and novelty

of current recommendations.

Another issue is related to software upgrades. In e-

commerce situations, when new products or services

emerge, the interest of customers and the temporal feature

of the ratings in collaborative filtering may change.

Previous work (Ding and Li 2005) has used a time

weighted item-by-item correlation to track concept

drifting. It would be interesting to apply this same idea to

help introduce new commands in each release of a

software package to the users and allow the newer and

Figure 10. Software usage DNA diagrams from the 17 most active users.

potentially more efficient commands to be recommended.

In summary, the novel contribution of our work is the

description of system architecture that has allowed us to

embed a software command recommender system within a

target application, during real usage situations. Software

command/feature recommendation opens a new domain for

recommender system research. Many interesting problems

arise which open up areas for future work.

Acknowledgement

We would like to thank Joseph A. Konstan for providing

valuable suggestions and participating discussions during

this project development.

References

Ahmad, W. and Khokhar, A. (2007). An Architecture for Privacy

Preserving Collaborative Filtering on Web Portals. Proceedings

of the Third International Symposium on Information Assurance

and Security. 273-278.

Baecker, R., Booth, K., Jovicic, S., McGrenere, J. and Moore, G.

(2000). Reducing the gap between what users know and what

they need to know. Universal Usability-2000. 17-23.

Berkovsky, S., Eytani, Y., Kuflik, T. and Ricci, F. (2007).

Enhancing privacy and preserving accuracy of a distributed

collaborative filtering. Proceedings of the 2007 ACM conference

on Recommender systems. 9-16.

Ding, Y. and Li, X. (2005). Time weight collaborative filtering.

Proceedings of the 14th ACM international conference on

Information and knowledge management. 485-492.

Fischer, G. (2001). User Modeling in Human\–Computer

Interaction. User Modeling and User-Adapted Interaction. 11(1-

2):65-86.

Frankowski, D., Cosley, D., Sen, S., Terveen, L. and Riedl, J.

(2006). You are what you say: privacy risks of public mentions.

Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information

retrieval. 565-572.

Grossman, T., Fitzmaurice, G. and Attar, R. (2009). A Survey of

Software Learnability: Metrics, Methodologies and Guidelines.

ACM CHI conference on Human Factors in Computing Systems.

10 pages.

Herlocker, J. L., Konstan, J. A., Terveen, L. G. and Riedl, J. T.

(2004). Evaluating collaborative filtering recommender systems.

ACM Trans. Inf. Syst. 22(1):5-53.

Hill, W., Stead, L., Rosenstein, M. and Furnas, G. (1995).

Recommending and evaluating choices in a virtual community of

use. Proceedings of the SIGCHI conference on Human factors in

computing systems. 194-201.

Jones, K. S. (1972). A statistical interpretation of specificity and

its application in retrieval. Journal of Documentation. 60(5):10.

Karypis, G. (2001). Evaluation of Item-Based Top-N

Recommendation Algorithms. Proceedings of the tenth

international conference on Information and knowledge

management. 247-254.

Linden, G., Smith, B. and York, J. (2003). Amazon.com

Recommendations: Item-to-Item Collaborative Filtering. IEEE

Internet Computing. 7(1):76-80.

Linton, F. and Schaefer, H.-P. (2000). Recommender Systems for

Learning: Building User and Expert Models through Long-Term

Observation of Application Use. User Modeling and User-

Adapted Interaction. 10(2-3):181-208.

Matejka, J., Li, W., Grossman, T. and Fitzmaurice, G. (2009).

CommunityCommands: Command Recommendations for

Software Applications. Proceedings of the 22nd Symposium on

User Interface Software and Technology.193-202.

Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A. and Riedl, J.

(2003). MovieLens unplugged: experiences with an occasionally

connected recommender system. Proceedings of the 8th

international conference on Intelligent user interfaces. 263-266.

Mitchell, J. and Shneiderman, B. (1989). Dynamic versus static

menus: an exploratory comparison. SIGCHI Bull. 20(4):33-37.

Norman, D. A. and Draper, S. W., User Centered System Design;

New Perspectives on Human-Computer Interaction. 1986: L.

Erlbaum Associates Inc. 526.

Schein, A., Popescul, A., Ungar, L., Pennock, D. (2001).

Generative Models for Cold-Start Recommendations. the 2001

SIGIR Workshop on Recommender Systems.

Ramakrishnan, N., Keller, B. J., Mirza, B. J., Grama, A. Y. and

Karypis, G. (2001). Privacy Risks in Recommender Systems.

IEEE Internet Computing. 5(6):54-62.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J.

(1994). GroupLens: an open architecture for collaborative

filtering of netnews. Proceedings of the 1994 ACM conference on

Computer supported cooperative work. 175-186.

Shardanand, U. and Maes, P. (1995). Social information filtering:

algorithms for automating "word of mouth". Proceedings of the

SIGCHI conference on Human factors in computing systems.

210-217.

Shneiderman, B. (1983). Direct Manipulation: A Step Beyond

Programming Languages. Computer. 16(8):57-69.

Shokri, R., Pedarsani, P., Theodorakopoulos, G. and Hubaux, J.-

P. (2009). Preserving privacy in collaborative filtering through

distributed aggregation of offline profiles. Proceedings of the

third ACM conference on Recommender systems. 157-164.

Twidale, M. B. (2005). Over the Shoulder Learning: Supporting

Brief Informal Learning. Comput. Supported Coop. Work.

14(6):505-547.

Li, W., Matejka, J., Grossman, T., Konstan, J. A. and

Fitzmaurice, G. (2011) Design and Evaluation of a Command

Recommendation System for Software Applications. ACM Trans.

Comput.-Hum. Interact.,18(2):6:1-6:35

