
DesignScript: origins, explanation, illustration

Robert Aish

“A programming language that doesn’t change the way you
think is not worth learning”

—Alan Perlis, ‘Epigrams in Programming’

Abstract DesignScript, as the name suggests, is positioned at the intersection of
design and programming. DesignScript can be viewed as part of the continuing tra-
dition of the development of parametric and associative modeling tools for advanced
architectural design and building engineering. Much of the thought processes that
contribute to the effective use of DesignScript builds on the tradition of paramet-
ric design and associative modeling that is already widely distributed amongst the
creative members of the architectural and engineering communities. Many of the ex-
isting parametric and associative modelling tools also support conventional scripting
via connections to existing programming languages. The originality of DesignScript
is that associative and parametric modeling is integrated with conventional scripting.
Indeed, the definition of the associative and parametric model is recorded directly in
DesignScript. But it is not what DesignScript does which is important, more what a
designer can do with DesignScript. It is this change in the way you think that makes
DesignScript worth learning.

1 Introduction

DesignScript is intended to be:

• a production modeling tool: to provide an efficient way for pragmatic designers
to generate and evaluate complex geometric design models

• a fully-fledged programming language: as expected by expert programmers.
• a pedagogic tool: to help pragmatic design professions make the transition to

competent programmer by the progressive acquisition of programming concepts
and practice applied to design.

R. Aish
Director of Software Development, Autodesk

1



2 Robert Aish

Essentially there are three themes interwoven here:

• The programming language theme: DesignScript as a programming language
• The design process theme: The use of DesignScript as a design toolset
• The pedagogic theme: using DesignScript as a way of learning how to design and

to program.

2 Programming Language

From the perspective of a programming language, we might describe DesignScript
as an associative language, which maintains a graph of dependencies between vari-
ables. In DesignScript these variables can represent numeric values or geometric
entities, or other application constructs, including those defined by the user. The
execution of a DesignScript program is effectively a change-propagation mecha-
nism using this graph of variables. This change-propagation also functions as the
update mechanism similar to that found in a conventional CAD application. How-
ever, unlike other CAD update mechanisms or associative and parametric modeling
systems, in DesignScript this mechanism is exposed to the user and is completely
programmable. Figure 1 illustrates the important differences between a conventional
imperative language and an associative language such as DesignScript, while Fig-
ure 2 shows how a program statement in DesignScript can also be interpreted as
natural language. Each term in the statement has an equivalent natural language
interpretation so that whole statement can be understood by its natural language
equivalent.

So a concise but somewhat complex description of DesignScript might be as a
domain-specific, end-user, multi-paradigm, host-independent, extensible program-
ming language (Fig. 3), as follows:

1. domain-specific DesignScript is intended to support the generation of geometric
design models and therefore provides special constructs to assist in the represen-
tation of geometric models. More generally: A domain specific language may
remove certain general purpose functionality and instead adds domain specific
functionality as first class features of the language.

2. end-user DesignScript is intended to be used by experienced designers with a
wide range of programming skill, ranging from non-programmers (who might in-
directly program via interactive direct manipulation), to novice non-professional
(end-user) programmers, and to experienced designers who have substantial ex-
pertise in programing. More generally: An end user language adds simplifying
syntax to the language, while reducing some of restriction often associated with
general purpose languages (intended for experienced programmers).

3. Multi-paradigm DesignScript integrates a number of different programming
paradigms into a single language (including object-oriented, functional and as-
sociative paradigms) and introduces some additional programming concepts



DesignScript: origins, explanation, illustration 3

Fig. 1 Comparing Imperative and Associative interpretation of the same program statements. It is
this change in the way you think that makes DesignScript worth learning.

Fig. 2 Giving a natural language interpretation to a DesignScript statement.

Fig. 3 How DesignScript differs from a regular general purpose programming language



4 Robert Aish

that are relevant to the domain of generative design. More generally: A multi-
paradigm language combines different programming styles into a single language
and allows the user to select which paradigms or combination of paradigms are
appropriate. (See Fig. 4 )

4. host-independent DesignScript is intended to support the generation of geo-
metric models and is therefore designed to be hosted within different CAD ap-
plications and access different geometric, engineering analysis and simulation
libraries. For example, a DesignScript variable (based on specific class) may
maintain a correspondence with a geometric entity in AutoCAD and simulta-
neously with entities within engineering analysis applications such as Ecotect
and Robot.

5. extensible DesignScript can be extended by the user, by the addition of functions
and classes.

Fig. 4 The evolutionary tree for DesignScript (showing its precursors). DesignScript is a multi-
paradigm language embracing imperative, objected oriented, functional and declarative program-
ming concepts

3 Design Process

DesignScript is intended to support a computational approach to design which is
accessible to designers who initially may be unfamiliar with this way of designing.
Conventionally, computer-based design applications enabled the designer to create
models which represent finished designs. The intention in developing DesignScript
is to move beyond the representation of finished designs, and instead to support the



DesignScript: origins, explanation, illustration 5

designer to develop his own geometric and logical framework within which many
different alternative design solutions can be easily generated and evaluated.

The development of DesignScript assumes that the designer wants to adopt this
more exploratory approach to design and that he appreciates that this may involve
some re-factoring of the design process so as to include a more explicit externaliza-
tion of particular aspects of design thinking, for example:

• Explicitly identifying the key variables that drive the design
• Building the geometric and logical dependencies between these driver variables

and the constructive geometry: potentially these dependencies can be complex
long chains.

• Defining appropriate performance measures that can describe the resulting de-
sign solutions

• Exercising the complete model (by changing the design drivers and observing
changes in the geometry and resulting performance measures) to explore more
appropriate solutions

• Changing the geometric and logical dependencies in order to explore more alter-
natives

4 Pedagogic perspective

From a pedagogic perspective, DesignScript is designed around the concept of
a learning curve and supports a very gradual approach to learning programming
(Fig. 5):

Fig. 5 DesignScript as conceived as a composite learning curve spanning different types of mod-
elling and programming.

1. For modelling by direct manipulation, the designer immediately obtains some
interesting result for the modelling effort he makes, yet to change or refine or
increase the complexity of the model may require an exhaustive amount of addi-
tional effort. Therefore the perceptive designer may search for a way to overcome
the limitations of direct manipulation.



6 Robert Aish

2. For Associative or parametric modelling, the designer may have to initially
make some more effort to create the first associative model (than he did with reg-
ular modelling). Although the initial results may be unimpressive, he is investing
in an associative model with higher semantic value. Because of this investment in
design logic the designers ability to change and refine that model becomes com-
paratively easy (compared to non-associative modelling). The designer is not just
investing his time and effort, but also has to learn new skills: in particular how
to think associatively. However, the perceptive designer may recognise that some
types of design logic are difficult to express in an associative modelling system,
therefore the perceptive designer may search for a way to overcome the limita-
tions of associative modelling.

3. With scripting and programming, considerable time and effort may be ex-
pended apparently without much evidence of success. Nothing works until it all
works, but then the complexity of the model and the ability to re-generate the
model with radically different design logic appears more powerful than what can
be achieved with associative modelling.

We can summarise this as:

• Learning by doing, for example, by interactive modelling
• Learning by observing the correspondence between the DesignScript notation

and geometry, for example, by comparing the geometric model with the graph
based symbolic model and with the DesignScript notation displayed in the IDE)

The following example illustrates the use of DesignScript. The design problem is
to model a wave roof, based on a complex wave formation. The first step is to recog-
nise that we should not attempt to directly model the wave formations with regular
modelling tools. Instead we should recall that most complex wave forms can be con-
structed as the aggregate effect of simpler waves combined with related harmonic
waves. In this case, the geometry is constructed by using a series of low and high
frequency sine waves running orthogonally in the X and Y direction (Fig 6). The
amplitude and number of peaks in the waves are controlled by root parameters. The
X, Y and Z coordinates of the 2D field of points is defined by combining these sine
waves (Fig 7). The number of peaks can be varied (Fig 8). The X, Y and base Z
coordinates of the points can be derived from points in the UV parametric space of
a surface, thereby giving the effect that the wave geometry is draped (and offset)
from an underlying surface (Fig 9). Finally, the control vertices of the underlying
surface can be modified giving the effect that the underlying surface is controlling
the wave roof (Fig 10).

This presents the exactly the combination of direct modelling, associative mod-
elling and scripting suggested in the learning curve in Fig. 5. It is not just the model
(or the computation of the model) which is spanning this different approaches. It is
the thought processes of the designer which is combining these different ways of
thinking.



DesignScript: origins, explanation, illustration 7

Fig. 6 High and Low frequency waves in the X and Y directions

Fig. 7 The resulting wave roof is created by aggregating these orthogonal waves

Fig. 8 The number of peaks can be varied

5 Discussion

The three themes which are interwoven here (the programming language theme, the
design process theme and the pedagogic theme) all come together when we address



8 Robert Aish

Fig. 9 Draping (and offsetting) the wave roof from an underlying surface

Fig. 10 The control vertices of the underlying surface can be modified giving the effect that the
underlying surface is controlling the wave roof

the central issue: How can a computational tools invoke a computational mindset
and in turn contribute to design thinking?

Using DesignScript is a new way of designing with its own expressive possibil-
ities. But there is a level of understanding required to harness this expressiveness
and this suggests a level of rigor and discipline. The argument is that the experience
of learning and using DesignScript contributes not just to the expressiveness and
clarity of the resulting design but also to the skills and knowledge of the user.

In short,“a new toolset suggests a new mindset”.


