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Abstract

We propose a novel approach to fabricating complex 3D shapes
via physical deformation of simpler shapes. Our focus is on ob-
jects composed of a set of planar beams and joints, where the joints
are thin parts of the object which temporarily become living hinges
when heated, close to a fixed angle defined by the local shape, and
then become rigid when cooled. We call this class of objects Melta-
bles. We present a novel algorithm that computes an optimal joint
sequence which approximates a 3D spline curve while satisfying
fabrication constraints. This technique is used in an interactive
Meltables design tool. We demonstrate a variety of Meltables, fab-
ricated with both 3D-printing and standard PVC piping.

1 Introduction

3D-Printing allows for the direct manufacture of complex 3D
shapes. However, complications often arise, such as the need for
hard-to-remove support structures, or structural weakness caused
by anisotropy in the printing process [Umetani and Schmidt 2013].
Similar complications arise in traditional manufacturing, and one
potential solution is to manufacture the part in an initial configura-
tion, and then form it into the target shape.

In this work we explore the use of forming in 3D-printing contexts.
Our goal is forming which can be easily designed and fabricated,
ideally without any external apparatus. This problem is frequently
explored in the context of self-assembly, where a common modal-
ity is thin planar sheets automatically folding along a network of
creases, essentially self-actuated papercraft [An et al. 2014; Peraza-
Hernandez et al. 2014; Kwok et al. 2015].

Our approach is to use a network of beams connected by joints.
However, rather than physical hinges, our joint is a thin section of
rigid plastic - essentially a notch in the beam - that temporarily be-
comes a living hinge when heated. The joint is ”closed” when one
side of the notch collides with the other, and as a result the shape of
the notch defines the closing angle of the joint. As the object cools,
the living hinge reverts to a rigid state, and the object is assembled.
Hence, the rigid object undergoes a one-way shape change under
the application of heat. We refer to this class of objects as Melta-
bles. Some examples can bee seen in Figure 1.

Meltable joints have nontrivial fabrication constraints, e.g., on the
minimum and maximum joint angles. Given an arbitrary 3D space
curve, we present a dynamic programming algorithm (Section 3)
which finds an optimal Meltable approximation, and an interactive
tool for exploring the design space of Meltables. We demonstrate a
variety of 3D-printed Meltables (Section 4), and also explore large-
scale Meltables based on PVC piping.

Figure 1: Meltables are objects composed of joints and beams
(a), printed in support-free configurations. When heated, the joints
soften and the Meltable can be deformed into a target shape (b),
which becomes rigid upon cooling. Heat-shrink materials can be
used to automatically close joints (c,d) without human intervention.

1.1 Related Work

The body of work on folding algorithms and fabrication strategies
is extensive, we refer the reader to [Demaine and O’Rourke 2007]
for more detailed background. Many works have explored self-
actuated folding of planar sheets, one recent example is [An et al.
2014]. Self-assembly via folding of one-dimensional chains is most
similar to our work. This has been explored both at the micro-scale
using DNA [Douglas et al. 2009] and at macro-scales using 3D-
printed structures that shrink or swell in water [Raviv et al. 2014].
Leung et al [2011] showed that any 3D volume can be approximated
by folding a 1D chain on a lattice.

Using gravity-induced folding as a forming strategy was explored
by Mueller et al [2013], where a laser cutter was used to cut and fold
a planar acrylic sheet by heating at joints. Automatic insertion of
articulated joints has been explored by many works, such as [Zhou
et al. 2014], which then allows folding transformations between two
shape configurations.

2 Overview

We define a Meltable as a rigid object which undergoes a one-way
shape change under the application of heat. This is clearly a large
design space. Our focus is on objects that can be designed with-
out precise simulation of thermoplastic deformation, or precise heat
control. Instead we emulate a mechanical joint with a temporary
living hinge, which allows for design in much the same manner as
one would design an object with articulating hinges.

2.1 A Meltable Joint

Our designs consist of masses connected via one-dimensional
joints, similar to a linkage. We create a Meltable joint by subtract-
ing a wedge-shape, leaving a thin connecting strip of material on
one side (Figure 2). The joint is rigid at room temperature, up to the
inherent elasticity of the model material. However, when heated,
the thin strip becomes pliable and the wedge can close. Because the
surrounding shape is thicker, it stays (relatively) rigid over the short
heating time, and hence the effect is that of a living hinge which re-



Figure 2: Parameters ranges (a) of our our meltable joint. Figure
(b) shows four bars falling under gravity, with the joint thicknesses
0.5, 0.75, 1.0, 1.5mm. In (c) and (d) the angular error is measured.

turns to an inflexible state when cooled. If heating is sufficient, the
interior sides of the closed joint will bond, however even without
this, we find that Meltables are quite strong under compression.

3D-Printed Meltables We 3D-printed Meltables in PLA on a
Makerbot Replicator 2, lying flat on the print bed, with the joint
notches upwards or downwards. In this configuration the angle can
be as small as 10◦, although this is not entirely consistent, and 20◦

is a safer minimum. We do not allow joints wider than 90◦. It is
also possible to print shapes vertically with horizontal joint notches.
This allows more shape flexibility but adds constraints on the joints,
and we found printing vertically to be unreliable.

We varied the joint thickness between 2 layers (0.5mm) and 7 lay-
ers (1.5mm). Thicker joints take longer to soften (Figure 2b), so
in self-actuated configurations it is possible to ”time” the folding
of joints by varying this thickness. As filament strands have some
thickness, the joints do not close to the designed angle. This devia-
tion varied from approx 5◦ at 0.5mm joints to 10◦ at 1.5mm.

Large-Scale Meltables 3D-printing is not the only way to fab-
ricate a notched beam. We also explored fabrication of large-scale
Meltables with standard PVC piping. We again kept angles in the
bounds [20◦, 90◦], and used the pipe wall thickness as the joint
thickness. To create the notches we used a manual fabrication pro-
cess (ie saw/knife), guided by 3D-printed jigs (Figure 6). We plan
to explore an automatic notch-cutting machine in future work.

2.2 Affordances of Meltables

There are few Meltable target shapes which cannot be printed di-
rectly (although it is possible to melt into configurations that would
be “impossible” to print due to inaccessible support structures).
However, physical 3D design involves more than a target shape -
physical properties of the final shape are often important, as is fab-
rication complexity. In this context, Meltables provide a variety of
design affordances which can be exploited.

No Support Complex 3D structures often require snap-off sup-
port structures which waste material, mar the print surface, and
in the case of delicate objects, can result in the print being bro-
ken when trying to remove the support. A wide range of complex
3D structures can be formulated as Meltables which can be printed
without support, and then melted into the target configuration.

Strength In-plane filament strands are stronger than inter-layer
bonds. The planar filament lines of a Meltable bend into 3D curves,
which can be designed to follow shape stresses. The resulting parts
are both stronger and more compliant along certain force directions.
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Figure 3: The Meltable beam user interface (left). The target curve
(black) is represented as a spline with control polygon (green).
The approximating Meltable predicted shape (blue) is interactively
computed against the target curve. Its straight configuration with
Meltable joints is shown (right) with its joint wedges (red).

Reduced Complexity Many Meltables could be fabricated by a
multi-component assembly, but the overhead of part management is
often significant. For example the Lamp in Figure 6 would involve
25 very similar parts. A single meltable avoids the possibility of
misassembly.

2.3 Meltable Design Interface

Our Meltable design tool is shown in Figure 3. The user manipu-
lates a target 3D spline curve, and the system interactively computes
a best-approximating 3D-printable Meltable. For PVC-Meltables
the software also automatically creates 3D-printable per-joint jigs
to aid in manual cutting of the PVC pipe (Figure 6).

3 Method
Our algorithm determines Meltable joint locations, closing angles,
and orientations to best approximate a target 3D curve. We achieve
interactive rates for finding such optimal Meltable parameters using
a dynamic programming approach for curve approximation [Bell-
man 1961], but here we consider additional fabrication constraints.

To derive a model for Meltables, we assume that the beam has uni-
form cross section and that each joint is wedge-shaped and sym-
metric, such that the centers of opposing faces meet exactly when
closed. The centerline of the melted shape will then form a polyline
Q = {q0,q1, . . . ,qN+1}, where qi ∈ R3 and N is the number of
joints. The joint fabrication constraints are easily formulated in this
model as restrictions on the turning angles of the polyline.

We assume that the target 3D curve P is given with arclength
parameter 0 ≤ s ≤ send, and with position and unit tangent
parametrizations p(s) ∈ R3 and t(s) = dp

ds
, respectively. Let

the arclengths at the points of a Meltable {q0,q1, . . . ,qN+1} be
given by {s0, s1, . . . , sN+1} with s0 = 0 and si < si+1. We as-
sume that the Meltable and target curve have the same root point
(i.e., q0 = p(0)) and the same total length (i.e., sN+1 = send).
To better approximate the target shape, we further assume they are

s=0

s=send

t(s)
p(s)
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qi
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Figure 4: Notation for a target curve P and Meltable polyline Q
that are in tangent correspondence.



in tangent correspondence: at the midpoint of a segment in Q the
tangent of P should be the same as that of the segment, i.e.,

qi+1 − qi

si+1 − si
= t

(si + si+1

2

)
= ti+1/2. (1)

A Meltable Q is then uniquely determined from a sequence of ar-
clengths {s0 = 0, s1, . . . , sN , sN+1 = send} along P by solving
from q0 = p(0) the tangent correspondence equation rewritten as

qi+1 = qi + (si+1 − si)ti+1/2. (2)

Joint Orientation and Constraints For each joint, its closing
angle is given by θi = arccos(ti−1/2 · ti+1/2) and its hinge axis
is given by ωi = ti−1/2 × ti+1/2. To understand the orientation
of a joint in space we equip Q with a Bishop frame [Bergou et al.
2008], an adapted twist-free frame found by parallel transporting
two orthonormal basis vectors from the root segment. If we denote
this frame by (ex

i , e
y
i , e

z
i = ti+1/2), then a joint i faces in the angle

atan2(ωi · ey
i ,ωi · ex

i ) in the xy-plane of this frame.

As explained in the previous section, there is a constraint on the
joint closing angles given by

θmin ≤ θi ≤ θmax, i = 1, . . . , N. (3)

We used θmin = 20◦ and θmax = 90◦ for all our examples. Addi-
tionally, neighboring joint wedges must not collide with each other.
To prevent collisions we ensure that half the closing width of a joint
is less than half the length of its smallest neighboring segment.

r

∣∣∣∣tanθi2
∣∣∣∣ < min

{si − si−1

2
,
si+1 − si

2

}
, 1 ≤ i ≤ N, (4)

where r is the maximum distance from the beam’s cross section
boundary to its centerline, e.g., r is the radius for a beam with cir-
cular cross section.

Approximation Energy A Meltable polyline is uniquely deter-
mined from a sequence of arclengths by solving (2). We use the
following energy to choose arclength parameters {s1, . . . , sN} so
that the resulting Meltable best approximates the target curve, while
satisfying the above joint constraints. We define the approximation
error of the segment [s, t] of Q by

h(s, t) =

∫ t

s

||p(s)− q(s)||2 ds, t > s. (5)

Furthermore, to penalize invalid joints, h(si, si+1) returns +∞ if
either the angle constraints (3) or the no-collision constraint (4) for
joint angle θi is violated. The total energy to minimize is given by

E =

N∑
i=0

h(si, si+1), 0 ≤ i ≤ N. (6)

Observe that h(si, si+1) only depends on the parameters
{s0, . . . , si+1}, which allows the following minimization using dy-
namic programming.

Optimization using Dynamic Programming We find a
Meltable polyline Q close to an input target curve P by minimiz-
ing the approximation energy E with respect to the number of
joints N and their arclengths. Note that we need to optimize the
number of joints because of our Meltable fabrication constraint —
if N is very large or the input curve is close to straight, the joint
angles become very small and violate minimum angle constraints.

To make this optimization problem more tractable, we restrict each
arclength parameter to be from a finely equally sampled version of
the target curve. More precisely, for a large positive integer M and
for all 1 ≤ i ≤ N we restrict to si in the set S = { jsend

M
| j =

0, 1, 2, . . . ,M}. We also set a maximum number of joints N ≤
Nmax. Therefore, we have the following discrete optimization:

Emin = min
N, s1,...,sN

E s.t.

(
si ∈ S, si < si+1,
0 ≤ i ≤ N ≤ Nmax

)
. (7)

Brute force optimization of the approximation energy E is slow
since all possible combinations of {s1, . . . , sN} in S must be com-
puted. Namely, this approach has a large computational complexity
of order MNmax . However, the following dynamic programming
approach significantly accelerates this process by caching interme-
diate data. The problem is reduced to computing a table of spe-
cially defined subproblems yielding a computational cost of order
M ×Nmax. This approach achieves interactive rates for M = 100
and Nmax = 15 for single-threaded code on a 2015 MacBook Pro
(3GHz core i7 CPU).

For each 0 ≤ i ≤ Nmax define the function fi : S → R that
returns the best approximation of the target curve from the root s0
up to s that is split by i number of joints.

f0(s) = h(s0, s) for s ∈ S
fi(s) = min

si<s, si∈S
(fi−1(si) + h(si, s))

(8)

Dynamic programming accelerates this computation by caching the
value fi(s) once it is computed for some s ∈ S and 0 ≤ i ≤ Nmax.
The minimum of the approximation energyE for i number of joints
is given by fi(send). The optimal number of joints N is then given
by 0 ≤ i ≤ Nmax that minimize fi(send). The corresponding
arclengths are found by tracing back the sequence of arguments of
the minimization of fi(s) in (8). In practice, we approximate the
integral hi in (5) as a sum of discretely sampled values at s ∈ S.
We also precompute the positions p(s) and tangents t(s) for all
s ∈ S as well as the midpoints of all segments.

4 Results
We designed a wide range of Meltables and performed many ex-
periments. Some examples are shown in Figure 5. These parts
were fabricated either horizontally or vertically, without support,
and then melted into the configurations shown.

For printed Meltables, we found that heating the PLA to 150◦C
allowed for manual forming. For automated assembly we focused
on gravity-based folding and also closing joints with heat-shrink
tubing (attached with pins). In this case there is a trade-off because
the lower the temperature, the stiffer the joints, and (particularly at
small scales) the part may not have enough mass to fully close the
joints. At higher temperatures the joints close easily but the rest of
the part may begin to deform. Adding additional masses resolves
this complication, as does printing at higher density (ideally solid).

Attaching heat-shrink to close joints adds an additional level of ca-
pability (and complexity) to self-assembling Meltables. Correctly
placing the strips, which shrink to roughly half their length, was a
challenge. We believe this could be automated in the design tool.
Figure 6 shows a lamp created using a PVC-Meltable.

As mentioned in Section 2.2, with careful design we can heat-form
planar filament loops into 3D curves. This can impart additional
strength on the part, as most breakage in 3D-prints occurs when
layers de-laminate. Although our notches cut through large portions
of the shape, we observed that when they are under compression,
the resulting Meltables are often stronger than the directly-printed
shape. This is illustrated by experiment in Figure 7.



Figure 5: A menagerie of Meltables. In the figure on the right, the curved portion falls into a cavity. This shape could not be printed directly
without the use of inaccessible (and hence unremovable) support structures.

Figure 6: A Meltable lamp fabricated from a 1.1m section of PVC
pipe. Based on the designed curve (a), 3D-printed jigs are gener-
ated and used to cut 12 precise notches (b,c). Each joint is heated
with a hot-air gun and manually closed to create the lamp arm (d,e).

4.1 Conclusion

We investigate Meltables, shapes composed of planar beams and
joints that are heat-formed into more complex configurations via
folding at the joints. A novel algorithm and design tool are pre-
sented to find Meltable beams which optimally approximate 3D
space curves, under fabrication constraints. We explore both man-
ual and automated (”self-”) assembly of Meltables, with printed ob-
jects and PVC pipes, and demonstrate various benefits, including
increased strength, avoidance of support structures in 3D-printing,
and creation of objects which would be difficult to print directly.

Figure 7: A Meltable hangar (a) with a 110◦ arc and 10mm sides
contains curved filament strands aligned with the shape (inset). We
performed stress-tests (b) by pulling downwards with a simple fish-
ing scale. The Meltable (c) withstands 24.9 pounds (11.3kg), while
a print of the target configuration (d) breaks at 19.5 pounds (8.8kg).
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