
CHI 2008 Proceedings · Menu and Command Selection April 5-10, 2008 · Florence, Italy

 1361

PieCursor: Merging Pointing and Command Selection
for Rapid In-place Tool Switching

George Fitzmaurice, Justin Matejka, Azam Khan, Michael Glueck, Gordon Kurtenbach

Autodesk Research

210 King St. East, Toronto, Ontario, Canada, M5A 1J7

{firstname.lastname}@autodesk.com

Figure 1. The PieCursor concept: a collection of tools arranged in a radial pattern Tracking Menu and shrunk to the size of a cursor.

ABSTRACT

We describe a new type of graphical user interface widget

called the ―PieCursor.‖ The PieCursor is based on the

Tracking Menu technique and consists of a radial cluster

of command wedges, is roughly the size of a cursor, and

replaces the traditional cursor. The PieCursor technique

merges the normal cursor function of pointing with

command selection into a single action. A controlled

experiment was conducted to compare the performance of

rapid command and target selection using the PieCursor

against larger versions of Tracking Menus and a status

quo Toolbar configuration. Results indicate that for small

clusters of tools (4 and 8 command wedges) the PieCursor

can outperform the toolbar by 20.8% for coarse pointing.

For fine pointing, the performance of the PieCursor

degrades approximately to the performance found for the

Toolbar condition.

Author Keywords

Tracking menus, radial menus, marking menus, pie

menus, control menus, flow menus, pen based user

interfaces, floating palette, multifunction cursor.

ACM Classification Keywords

H.5.2 [User Interfaces]: Graphical User Interfaces

(GUI), 3D graphics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00.

INTRODUCTION

Much research has been conducted on finding efficient

ways of selecting commands. Toolbars, floating palettes,

hotkeys, command lines and pop-up menus all offer ways

of switching amongst a collection of tools. Since a user’s

focus of attention is typically at the cursor location, our

investigation explores the potential benefits of adapting

the cursor to both point and switch commands on the fly.

Movement of the cursor is performed for a variety of

purposes: precision pixel pointing; coarse pointing to

select an object; movement to prepare for a subsequent

gesture, manipulation and as a user shifts their visual

focus in anticipation of action; using the cursor as a visual

aid or placeholder when inspecting data; etc. In addition,

many commands do not require any spatial information

from the cursor (e.g. undo), or only require relative

movement during the drag phase as a command parameter

(e.g. panning a 2D image).

Given these observations, we investigate opportunities

where the cursor could both point and select tools at the

same time for the benefit of rapid in-place command

selection and operation. In this paper we introduce the

PieCursor and report on an exploratory study, a formal

performance experiment on the PieCursor, and a set of

usability studies which characterize and show advantages

of the PieCursor over traditional toolbar workflows.

PIECURSOR TECHNIQUE

A PieCursor is a small (e.g., 32 by 32 pixel) semi-

transparent graphical user interface widget that can be

controlled by a mouse, pen, or touch screen input device.

The PieCursor technique is based on a Tracking Menu [8]

design which combines both pointing and selecting a

command at the same time.

CHI 2008 Proceedings · Menu and Command Selection April 5-10, 2008 · Florence, Italy

 1362

Tracking Menus use a click-through paradigm where an

arrow cursor or some tracking symbol moves within a

larger mobile semi-transparent menu of graphical buttons.

However, unlike traditional menus, when the cursor

crosses the exterior edge of the menu, the menu is moved

to keep it under the cursor. The cursor can also be moved

within the menu to highlight items. Clicking on an item

both selects the item and ―clicks-through‖ to provide

pointing to the data beneath the menu.

With the PieCursor, we miniaturize a Tracking Menu

down to cursor-size with a radial layout (based on a

PieMenu [7, 16] design) to arrange commands (see Figure

1). The cursor is hidden and, in effect, the Tracking Menu

itself serves to show cursor location. When the mouse is

moved the PieCursor moves. However, depending on

which direction the mouse is moved, the command in that

direction within the pie layout is highlighted. In our

design, command wedges are color-coded with one wedge

active at all times. A small label is shown below the

PieCursor to indicate the tool name (see Figure 2).

A mouse down event will activate a highlighted command

and the PieCursor is replaced by the appropriate tool

cursor. A user can then drag to operate the command (e.g.

dragging to zoom in/out using the standard zoom tool

cursor). Releasing the mouse button brings back the

PieCursor (see Figure 3). Thus the selection and operation

of any of the commands in a PieCursor is only one button

press ―away‖ and can be performed ―in-place‖.

Furthermore, the one button press indicates both which

command is being activated and the starting point for that

command, thus merging pointing and command selection.

Figure 3 shows an example usage of pointing, command

selection and command operation for the PieCursor. Panel

1 shows the PieCursor motion to highlight a command.

Panel 2 shows clicking to activate the command –a pan

tool. Panel 3 shows dragging to operate the pan tool and

panel 4 shows the release of the mouse button to deselect

the tool and restore the PieCursor.

Figure 2. Command wedges chosen by input direction.

To accommodate precision pointing, the user can hit the

keyboard Shift key which will lock-in the currently

highlighted tool in the PieCursor and replace the

PieCursor with an arrow cursor. Holding the Shift key

will also retain the current tool for multiple mouse

movements and allows the user to repeat a command

multiple times until the Shift key is released and the

PieCursor returns.

In addition, we have enhanced the PieCursor wedge

selection by extending the hit zone of the active wedge

(see Figure 4). This allows for a subtle form of wedge

stickiness and also serves to reduce the instability that can

occur if the input point is at the center of the PieCursor.

The hotspot for the PieCursor lies within the active wedge

and is the true cursor position. Since the wedges are fairly

Figure 3. PieCursor usage sequence for highlighting, activating, operating and releasing a command.

CHI 2008 Proceedings · Menu and Command Selection April 5-10, 2008 · Florence, Italy

 1363

Figure 4. Extended wedge regions (dotted lines).

small, and the true cursor position is usually at the outer

edge of the wedge, the hotspot becomes very predictable.

Finally, the PieCursor is not a pop-up menu; rather, like a

regular tool, you select it from the toolbar and it becomes

your cursor thus changing your input mode.

RELATED WORK

Existing commercial GUIs have several solutions for in-

place rapid tool switching. Keyboard hotkeys offer a

solution, as they can be used without moving the cursor,

but require the use of the non-dominant hand and an

available key. Also, a hotkey can be difficult to acquire

and articulate, sometimes requiring the user to look down

at the keyboard. For a UI designer of commercial

applications, a common problem is finding an appropriate

hotkey that is not already assigned. The PieCursor differs

by not requiring a keyboard (except for precise pointing).

Pop-up menus are a common solution to issue commands

at the cursor location but require an explicit input event

(e.g., a right mouse button press) to display the menu and

present a list of menu items. The PieCursor differs in that

no explicit input event is needed to display the menu of

choices and to highlight an item.

The PieCursor is intentionally designed to be similar to

the traditional GUI modal tool. The design intent is that a

PieCursor works ―just like a tool‖ — the user is in a tool

mode and presses and drags to apply that tool to the

displayed data. However, the tracking PieCursor allows

the user to select from several tool modes as they press

down. In effect, it is an attempt to cheat and have several

tools available within one press-and-drag cycle. Figure 5

shows that using a toolbar often requires 3 steps (selecting

a command, pointing at a target and operating the

command) whereas the PieCursor requires only 2 steps by

combining pointing and command selection.

Figure 5. Comparing the “chunking and phrasing” of
interaction events across techniques.

In the Microsoft Office 2007 user interface an interaction

technique called ―mini toolbar‖ displays a small toolbox

close to the cursor after a user completes a drag (after

selecting text). While this is an example of a technique to

keep tools ―close by‖, PieCursors fundamentally differ by

having tool selection occur before the drag action.

A pie menu [7, 16] is a circular popup menu where

selection depends on the spatial direction of the target pie

slice. The PieCursor builds off of the radial pie menu

technique. Our approach differs to be more cursor-like

(with rapid in-place tool switching while the input device

is in the tracking state) instead of using a pop-up menu

paradigm.

A great deal of research has been conducted on radial

menus [29] including marking menus [17, 18, 21], pie

menus [7, 16], control menus [25], and flow menus [12].

These pop-up menus are typically displayed on mouse

down after which a command is selected by dragging. A

PieCursor fundamentally differs in that it is a ―cursor

replacement‖ where the menu is constantly displayed

during the tracking [6] or hover state. The command is

selected not during a drag event but during the tracking

state by mouse movement. These high level ―chunking

and phrasing‖ [5] differences are highlighted in Figure 5.

Figure 6 shows a comparison of the various tool selection

techniques using a visualization modified from the KLM

style interaction notation of Guimbretiere et al. [11]. For

each technique, the input device state and action symbol

are shown along with the menu visibility and tool activity

with respect to time. The comparison shows, for example,

that PieMenus use two input ―press‖ events to select and

then perform an action while the PieCursor uses only one.

Figure 6. Comparison of interaction techniques.

CHI 2008 Proceedings · Menu and Command Selection April 5-10, 2008 · Florence, Italy

 1364

Multifunctional Cursors [23] examines similar issues as

PieCursors – rapid in-place tool switching and function

visibility. The major difference is that the Multifunctional

Cursor assigns different tools to different mouse buttons

whereas the PieCursor only requires one button (and so, is

better suited for pen and touch screen configurations).

HoverWidgets [10] is a technique that addresses in-place

tool switching as well. The major differences from the

PieCursor are that HoverWidgets are designed for pen-

operated devices and use short, ―L‖ shape-based gestures

in the tracking state to display a clickable widget. The

PieCursor uses no gesture recognition and its widget is

constantly displayed, acting as a cursor.

Much research on multi-point input also involves in-

place, rapid tool switching. Toolglass [4] is another

interaction technique that combines tool selection and the

starting point of a command. Other work [22] has used

finger tracking to perform several operations in place. The

major difference is that the PieCursor technique does not

require multi-point input technology.

Researchers have studied issues surrounding dynamic

cursors [28, 9, 14] and cursor orientations [3, 28].

Findings suggest orientation neutral cursors such as a

circle tend to have better performance compared to arrow

cursors [24]. As well, research has been conducted on

mode switching [26, 20] and inferring modes [27] to stay

in the ―flow‖ of interaction [2, 5].

Techniques that use keyboard presses with the non-

dominant hand to display widgets near the location of the

cursor provide ―in-place‖ tool switching [15, 19]. The

major differences are that the PieCursor does not always

require a keyboard press and it is a cursor sized widget.

Other research has investigated merging command

selection and direct manipulation and studied its benefits

[13]. Our PieCursor technique also attempts to realize a

benefit of merging but examines the merging of pointing

and command selection.

MOTIVATION – REAL-WORLD USAGE

Our motivation for developing the PieCursor results from

our work on 3D CAD programs to make navigation easier

to learn and use for user’s new-to-3D, as well as experts.

Typically, 3D CAD applications add to 2D navigation

tools to handle the extra dimensions of 3D. For example,

2D zoom and pan tools are augmented with other tools

such as ―orbit‖, ―walk‖, ―look‖, and commands such as

―reset view‖ and ―center in view‖. However, in our

studies of new-to-3D users, we found that, although this

additional functionality was present in the application,

many users ignored these additional functions and tried to

perform all their 3D navigation tasks with only the 2D

tools. We believe that these users did not understand that

3D navigation requires additional commands in many

cases. Essentially, users did not recognize that they

needed a small cluster of commands, beyond zoom and

pan, to properly navigate in 3D. Furthermore, even

though the additional 3D tools were placed directly beside

the 2D tools on the application’s toolbar, once a user had

selected a tool, their focus of attention moved away from

the toolbar and onto the 3D viewing area. Thus, these

other functions for 3D navigation were ―out of sight and

out of mind‖. For example, users floundered and became

frustrated when they tried to ―move to the back of a 3D

object‖ using only zoom and pan.

We reasoned that what was needed was some interaction

design that kept these additional tools within the user’s

visual attention after they moved into the 3D viewing

area. One interaction technique which keeps the available

tools in the viewing area is Tracking Menus. Thus we

developed a Tracking Menu that housed a set of

commands which are critical for 3D navigations (Figure 7

front). Subsequent user testing showed that this helped

new-to-3D users discover, understand and use the

additional commands. Furthermore, other benefits of the

Tracking Menu such as reduction of trips to and from the

toolbar, and allowing the visual focus to be kept on the

3D viewing area, improved the overall interaction.

However, one side effect reported by some users using the

Tracking Menu was that they felt their cursor was

―trapped‖ within the Tracking Menu, (which it is, because

that is the way Tracking Menus are defined). With this in

mind we began to experiment with making the Tracking

Menu smaller until it was the size of a cursor and we

could hide the standard cursor. In user testing of these

small versions, no users reported the ―trapped feeling‖

and seem to consider the small widget to be their cursor.

Another motivation for using Tracking Menus to access

3D navigation commands was to make interactions faster

for experienced 3D users by reducing trips to and from

the toolbar to change tools or reduce the need for hotkeys

to quickly access navigation functions. We found that

among the expert 3D users some preferred and used the

large Tracking Menus. Others, however, found the

PieCursor version strongly appealing and very useful.

Figure 7. (front) Tracking Menu (back) PieCursor.

CHI 2008 Proceedings · Menu and Command Selection April 5-10, 2008 · Florence, Italy

 1365

EXPLORATORY STUDY

Another large part of our design rationale was based on

the assumption that users work and prefer to work ―in-

place‖. To get a better understanding of users’ cursor

placement and operating zones, we conducted an informal

usage study to test this assumption.

We created a utility that would constantly monitor and log

the mouse cursor position and input state (cursor tracking

or mouse down). We then asked three expert 3D modelers

to use a professionally available 3D modeling program to

construct a sample 3D bottle. No speed or accuracy

requirements were communicated. We explained that we

just wanted to collect 30 minutes of standard usage data.

Figure 8 shows a sample user’s cursor activity. The red

lines represent mouse dragging activity while the light

grey lines represent cursor movement in the tracking

state. Green dots on the image represent mouse button

presses.

Figure 8. Cursor activity (red = drag; grey = movement,
green dot = click).

Our key observation is that all three users showed a

concentration of mouse clicking and movement in the

center of the application canvas. This reinforces our belief

that preference for operating at the center of canvas seems

to happen regardless of whether this is efficient in terms

of time/motion. For example, some tools can be executed

by dragging at any location on the canvas. Thus, the most

efficient execution of these tools after selecting them from

the toolbar would be to move the cursor just enough

distance to get onto the 3D canvas and then drag.

However, in observations of everyday usage we do not

see this behavior and our study here does not show any

evidence of this either. We hypothesize that application

data being in the center of the canvas compels users to

perform these commands at the center of the canvas.

EXPERIMENT

We conducted a formal experiment to investigate the

performance of the PieCursor relative to the larger

Tracking Menu and the status quo toolbar. Specifically

we were interested in the following questions:

Q1: How does the performance of PieCursor differ from

that of the larger Tracking Menu?

Q2: What effect does the number of pie slices in the

PieCursor have on performance?

Q3: How does the performance of the PieCursor change

between pointing to large and small targets?

Q4: Finally, how does the PieCursor compare to the

default base case of simply using tools from the toolbar?

Design

The experiment was conducted using a typical PC

workstation configuration (keyboard and mouse) with a

24 inch flat panel screen at 1920x1200 resolution at 100

dots per inch. The experimental design consisted of three

interaction methods, two command set sizes and three

selection target sizes.

Specifically, three interaction methods were studied: (1)

the PieCursor – as described above having a size of 32x32

pixels; (2) the BigWheel – a Tracking Menu having a size

of 128x128 pixels with the arrow cursor visible and (3)

the Toolbar – a horizontal row of 32x32 adjacent boxes

representing tool icons (see Figure 9).

Two command set sizes were examined: four and eight

commands. For the PieCursor and BigWheel conditions,

four or eight radial wedges were defined whereas the

toolbar condition had four or eight tool icons. We also

included a ―4x4 inner and outer zone layout‖ version of

the BigWheel which was identical to a design we were

using in a real application (see Figure 9).

Figure 9. Seven techniques (three interaction methods
with 4 or 8 commands).

Three rectangular selection target sizes were examined:

small (8x8 pixels); medium (100x100 pixels) and large

(1200x600 pixels) based on the exploratory study. The

small targets represent precise pointing, for example, to

select a control handle or vertex. Medium size targets

represent selecting objects. The large target size reflects

the working area of the application’s canvas.

Task

Our task consisted of selecting a command, clicking on a

target and then performing a command parameter by

dragging the mouse in a specified distance and direction

(see Figure 10). This task represents a common workflow

pattern found in a real world task.

CHI 2008 Proceedings · Menu and Command Selection April 5-10, 2008 · Florence, Italy

 1366

Since we were interested in focusing our study on more

expert behaviors (usability studies follow which report on

first impressions and learning), we designed the task to

not require users to memorize command placement. Thus,

each trial started with a marker indicating the desired

―target command‖. For the PieCursor and Toolbar

condition, we placed a black dot marker next to the target

command. For the BigWheel condition we outlined the

command wedge in a dark grey color. This was necessary

for the 4x4 inner and outer command wedge layouts.

Figure 10. Experiment workspace.

Each trial also had a dark grey box presented to the user

in the center of the screen as the selection target. For the

PieCursor and BigWheel conditions, users had to position

the widget and command wedge over the target and

―click-through‖ to simultaneously select the command

and target. For the small target PieCursor conditions,

subjects were instructed to use the precision mode. That

is, to hit and hold the Shift key to lock in the currently

active command wedge which would also replace the

PieCursor with an arrow cursor. While continuing to hold

the Shift key down, the subject would use the arrow

cursor to select the small target. Releasing the Shift key

would unlock the command selection.

For the Toolbar condition, a strip of buttons representing

icons was centered and placed near the top of the window

(535 pixels above the center of the target). Thus for the

large target size, a gap of (218 pixels) between the

Toolbar and target was present. This was designed to

reflect our observations in the exploratory study that users

move their cursor towards the center of the canvas before

working with the tool. Subjects had to select the tool then

move and select the target.

In addition to marking the target command at the

beginning of the trial, we also continuously indicated the

target drag direction and distance to be performed after

the command and selection target was acquired. A

vertical or horizontal line across the window was

presented and attached to the cursor with a constant

distance of 50 pixels (see Figure 10 which shows a

downward ―Finish Line‖). Once the proper command and

target were currently selected, the finish line would

become stationary during mouse drag events. Subjects

were instructed to drag from the target and cross over the

line. An ink trail was presented to the user during this

dragging for additional feedback. In addition, the target

drag zone was colored with a semi-transparent green

coloring (see Figure 10). Releasing the mouse in the

proper target drag zone (across the finish line) would

complete the trial. The next trial started immediately at

the subject’s current cursor location.

To elucidate more expert behavior, we chose to repeat a

sequence of three commands and drag direction pairings

for the trials. For all conditions the drag directions

followed the sequence: Up, Right, Down. For example,

the 4 wedge PieCursor condition had the sequence: North-

Up; West-Right; and East-Down. The 8 wedge PieCursor

condition had a similar pattern except while we matched

all of the requested drag directions we wanted to have one

―off-axis‖ command wedge and thus chose the sequence:

North-Up; SouthWest-Right; and East-Down. We tried to

match this general command and drag direction pattern

with all of the conditions (see Figure 11).

Figure 11. Trial sequences: 1, 2, 3. Command and drag
direction shown (a) PieCursor4 and BigWheel4 (b)
PieCursor8 and BigWheel8 (c) BigWheel8 4+4, (d)
Toolbar4, (e) Toolbar8.

A trial time started when the stimuli were presented to the

subject and then finished when they successfully selected

the command, target and crossed the finish line (with a

mouse up event). Subjects were instructed to work as

quickly and accurately as possible. Before each new

condition combination of technique, command size and

target size, we demonstrated the interaction technique and

had subjects practice until they felt comfortable (this

lasted from a few seconds to a few minutes). Three blocks

of 12 trials were presented for each condition and subjects

could rest between blocks.

A total of 12 subjects were used (6 men and 6 women)

between the ages of 21 and 38 (all experienced computer

users). A within-subjects design was used with each

subject using all three methods: Toolbar, PieCursor, and

BigWheel. A total of 7 techniques were studied: (1)

PieCursor4 – four command size; (2) PieCursor8 – eight

command size; (3) BigWheel4; (4) BigWheel8; (5)

CHI 2008 Proceedings · Menu and Command Selection April 5-10, 2008 · Florence, Italy

 1367

BigWheel8 with 4x4 layout; (6) Toolbar4 and (7)

Toolbar8. This resulted in 12 subjects x 7 techniques x 3

selection sizes x 3 blocks x 12 trials = 9,072 data points.

Trials were grouped by technique and counter balanced

with 1/3 of the subjects using the Toolbar conditions first,

1/3 using the PieCursor first and 1/3 using the BigWheels

first. The remaining factors were randomly presented.

For every trial, we logged the time for the subject to

complete the trial and recorded errors such as missed

target, wrong command selected, and we also logged

cursor movement. The system waited for a positive match

before proceeding to the next trial. After completing the

experiment, subjects were given a short questionnaire to

determine their preferences for the three methods.

Results

We performed an analysis of variance on the performance

data for blocks 2 and 3 (block 1 was dropped to reduce

learning effects). A significant difference between the

three methods (PieCursor, BigWheel and Toolbar) was

found with F(2, 22) = 141.87, p < .0001. The PieCursor

and BigWheel performance was faster than the baseline

Toolbar method by 13.5% and 17.5% respectively. No

statistical significance in performance was found between

the PieCursor and BigWheel methods (see Figure 12).

Thus for Q1: How does the performance of PieCursor

differ from that of the larger Tracking Menu? We

conclude that miniaturizing the Tracking Menu down to

the size of a cursor does not significantly degrade

performance.

And for Q4: How does the PieCursor compare to the

default base case of simply using tools from the tool bar?

We conclude the PieCursor has significant performance

advantage.

We found a significant difference based on whether 4 or 8

commands presented F(1, 11) = 136.43, p < .0001. That

is, it took less time to complete the task with 4 rather than

8 commands. When we group the data based on

technique, there is still a significant difference F(2, 22)

=13.86; p < .0001 (see Figure 13). A Tukey pair-wise T-

test of means (p < .05) showed no significant differences

between the 4 and 8 command Toolbar conditions but

statistical differences for the 4 and 8 command PieCursor

and BigWheel (4, 8 and 4+4) conditions.

Figure 12. Trial performance mean by method.

Thus for Q2: What effect does the number of pie slices in

the PieCursor have on performance? We conclude that

performance is slightly but significantly degraded with

more pie slices.

Figure 13. Trial performance mean by technique and
number of commands (4 or 8).

Grouping the data by selection target size, we get a

significant difference in performance F(2, 22) = 3281.93;

p < .0001 (see Figure 14). A significant interaction was

found between target size and method (PieCursor,

BigWheel and Toolbar) F(4, 44) = 82.59; p < .0001. In

general, the large selection target condition experienced

the best performance for the PieCursor compared to the

toolbar with a 20.8% speed improvement. There was a

statistically significant performance advantage for the

BigWheel compared to the PieCursor and Toolbar

conditions for large targets with a 38.6% speed

improvement with the BigWheel compared to the Toolbar

condition. The larger hit zones of the BigWheels really

make a difference at the cost of being a much larger

widget than the PieCursor. For medium sized targets the

differences between the PieCursor and BigWheel

decreases. The PieCursor performs 21.2% faster than the

baseline Toolbar method. Lastly, for the small targets

(8x8 pixels) the three methods performed roughly the

same, as the act of fine precision target pointing

dominated the task.

Thus for Q3: How does the performance of the PieCursor

change between pointing to large and small targets? We

conclude that the PieCursor and Tracking Menu

advantage does degrade as targets get smaller but getting

no worse than traditional ―toolbar selection, then point‖.

Figure 14. Trial performance mean by method and target
size.

CHI 2008 Proceedings · Menu and Command Selection April 5-10, 2008 · Florence, Italy

 1368

In terms of error rate, while significant differences are

shown between the conditions, the rates do not greatly

differ from the error rates of the toolbar conditions, thus

indicating that the different techniques all have acceptable

error rate in practice. Means for error rates were

significantly different F(2, 22) = 11.32; p < .001 across

the three methods. Examining the error data, we found

that the PieCursor4 had similar error rates (7.75%) to that

of the Toolbar conditions (8.2%). However, the

PieCursor8 had significantly more errors than the

Toolbar8 (10.4% vs. 7.1%). Selecting the off-axis

command in the PieCursor seemed more challenging.

This agrees with other studies on radial menu selection

[18] and implies that less frequently used items should be

placed in off-axis wedges. The BigWheels had fewer

errors than both the Toolbar and PieCursor.

For each trial we logged the cursor distance and found

that the Toolbar conditions had significantly more cursor

travel (i.e., mouse movement) than both the PieCursor

conditions and BigWheel conditions independent of

command size and selection target size (see Figure 15).

For example, on large targets, 4 times the amount of

cursor travel is performed in the toolbar conditions

compared to the PieCursor conditions.

Figure 15. Average mouse travel distances (pixels) per
trial, grouped by target size and method.

Overall, consistent with the performance results, subjects

indicated that they preferred to work in-place (preferring

either the PieCursor or BigWheels over the Toolbar), see

Figure 16. However, some subjects commented that the

Toolbar conditions seemed easier – since selecting the

target command icon felt very familiar and stationary –

even though they were doing significantly more mouse

movement.

Figure 16. Subjective preference.

GENERAL DISCUSSION

While the experiment reported above shows the PieCursor

having performance improvements over the baseline

toolbar workflow, the controlled experimental set-up only

captures some of the usage situations. For example, in a

real-world application context, the user is creating,

inspecting or manipulating application data. In the

experiment, there was no penalty for looking away from

the center of the screen since no application data was

presented during the trials. As well, the significant

differences of the visual footprint between the BigWheel

and PieCursor were not the focus of the study (the

interaction footprint was). Expert users often want to

minimize the visual interference with the tools and

application data.

While the PieCursor and Tracking Menu produced

significantly faster task performance times than the

toolbar, we were surprised that the toolbar was so fast.

This did not seem to match up with our own strong

personal preferences for the PieCursor and Tracking

Menu over the toolbar for our real work 3D navigation

tasks. We hypothesized that subjects in the experiment

seem to move much faster that users doing real work and

found evidence to support this. In the experiment, subjects

moved to the toolbar with an average speed of 593

pixels/sec. In contrast, in our exploratory study of users

doing a real modeling task (i.e. Figure 8), users moved to

the toolbar at a dramatically (3.6 times) lower average

speed of 163 pixels/sec. Similarly, the average speed used

in selecting an item with the PieCursor and Tracking

Menu in the experiment was 157 pixels/sec. We speculate

that this may be evidence that fast operation of toolbars is

possible but requires more effort than using the PieCursor

or Tracking Menu hence the preference for the latter in a

real world task.

The PieCursor offers two styles of command selection:

on-site and on-approach. With on-site selection, users are

either already at their selection target or roughly move to

the target and then make a fine adjustment to the

PieCursor to select the desired command. In contrast, on-

approach behaviors alter the vector towards the target e.g.

a user may approach a target from below and then move

up to simultaneously reach the target and select the

―north‖ wedge in the PieCursor.

We have noticed that, in practice, both the on-site and on-

approach behaviors for selecting a command with the

PieCursor feel very lightweight. Examining the PieCursor

interaction design more closely, we have introduced a

contrast in tension between the act of tool selection as a

―lightweight‖ activity (i.e. mouse tracking) and command

operation as a ―stronger‖ activity (i.e. mouse dragging).

This contrast seems to be significant and useful. This

design differs from say marking menus which use the

same ―mouse-down and drag‖ activity for both command

selection and command operation. Control menus also use

the same activity (mouse drag) for both command

CHI 2008 Proceedings · Menu and Command Selection April 5-10, 2008 · Florence, Italy

 1369

selection and operation. Removing the tension during

command selection allows for easy and rapid switching

between a collection of commands.

The tradeoff in the PieCursor design is the challenge of

precision pointing and locking-in a command/tool mode.

We currently solve this by introducing a keyboard mode

(using the Shift key) to lock-in a command/tool and to

offer precision pointing by temporarily replacing the

PieCursor with an arrow cursor. Future research is needed

to determine if alternative designs can address this issue.

Showing the standard arrow cursor within the PieCursor

makes a visually heavy and confusing design. We have

investigated alternative designs (see Figure 17) such as

offering a smaller dot cursor (what we call the ―flea‖) or a

miniaturized arrow cursor within the PieCursor that

indicates the precise mouse input and active hotspot.

Another design we studied was not to show the PieCursor

but display a modified arrow cursor. When the arrow

cursor moves into a new command wedge from the

invisible PieCursor, we change the visible cursor to the

corresponding tool cursor. We thought this would work

well but due to a lack of predictability, it did not. Yet

another approach would use a click-hold design during

command activation within the PieCursor technique to

lock-in/release a command/tool mode. Lastly a velocity

based solution may serve as a means of switching

between command selection (high velocity mouse

movement) and precision pointing (low velocity mouse

movement).

Figure 17. (a) flea cursor; (b) mini-arrow; (c) directional
arrow.

Through our development of the PieCursor technique, we

have found that it works well for pen based systems. In

addition, it performs fairly well for touch-based systems

since the user can use the PieCursor as an anchor position

and touch in the corresponding virtual wedge that extends

beyond the PieCursor to both move the PieCursor and

select a command during the initial touchdown state

USABILITY STUDIES

We have also extensively evaluated both Tracking Menus

and the PieCursor as part of a project to add these

techniques to several commercial 3D CAD applications.

User experience observation studies were used where

users were asked to perform real 3D navigation tasks and

―think aloud‖ to elucidate their initial impressions and

experience with these new widgets. Our first study

involved thirty users —a mixture of experienced and

inexperienced 3D users— using Tracking Menus. In

general, users within a minute or two understood how the

technique worked and successfully completed tasks after

a few minutes. A small number of users even understood

and reported back the benefits of Tracking Menus for ―in-

place‖ work over the toolbars. Also from these studies

came the comments mentioned earlier from some users

that they ―felt their cursor was trapped‖ or ―the Tracking

Menu was too large‖.

We subsequently developed the PieCursor to address

these issues and tested it, versus the Tracking Menu in

similar ―think aloud‖ observational studies with 10 users

who were professional users of 3D CAD architectural

applications. With this set of users we found that after a

minute or so 9 out of 10 users understood and started to

use the technique and, after 15 minutes of experience, all

users could comfortably use the two techniques for a

variety of 3D navigation tasks. Users were split about

50/50 in terms of preference for the PieCursor over the

Tracking Menu. No user reported ―feeling trapped‖ in the

PieCursor, nor did they report that their ―cursor was

missing‖—it seemed to go without saying that the

PieCursor was the cursor. In general, the amount of on-

screen feedback in the design of the PieCursor seems

sufficient for users to quickly overcome the novelty of the

interaction technique.

CONCLUSIONS & FUTURE RESEARCH

We can conclude from our exploratory study, experiment,

and usability studies that the PieCursor is a useful and

advantageous interaction technique, especially for the

application of in-place command selection and operation.

Both the PieCursor and Tracking Menu methods

outperformed the Toolbar method, especially when the

user did not need to always point to very small targets. In

effect, the PieCursor does allow a user to have several

tools attached to the cursor at the same or lower cost than

having one tool from the toolbar.

While we addressed pointing to small targets by the ―Shift

key‖ function for the PieCursor, future research would

look at ways which do not rely on the keyboard. Other

limits of the PieCursor technique such as number of

items, and support for persistent tools are also subjects for

future design and research.

Other tool and command selection techniques may have

obvious performance advantages and comparisons to such

techniques, such as hotkeys, are valid but perhaps more

interesting for future research are investigations that look

at the combination of techniques. In a similar vein, while

this paper has shown advantages over toolbars, it is

interesting to consider the design implications of having

PieCursors as tools on a toolbar, collapsing 4 or 8 toolbar

icons down into one thereby reducing toolbar clutter.

Moreover, PieCursors may serve as an interesting

example for new interaction model explorations such as

Instrumental Interaction [11] which could be extended to

include the size dimension of the widget.

Additional contributions of this work include evidence of

a preference and behavior for working in-place, in the

CHI 2008 Proceedings · Menu and Command Selection April 5-10, 2008 · Florence, Italy

 1370

center of an application, and evidence of large differences

in mouse movement speed between experimental

laboratory settings and during real world tasks.

Finally, the PieCursor is a new technique which can

perform 20% faster than a toolbar. It is a general solution

that can be easily added to existing applications.

REFERENCES

1. Beaudouin-Lafon, M. Instrumental Interaction: An

Interaction Model for Designing Post-WIMP User

Interfaces. In Proc. CHI 2000, ACM Press (2000),

446-453.

2. Bederson, B.B. Interfaces for Staying in the Flow. In

Ubiquity 5, 27, ACM Press (2004).

3. Bederson, B.B. LiveCursor – A Jazz Applet,

University of Maryland, http://www.cs.umd.edu/

~bederson/livecursor/

4. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., and

Derose, T.D. Toolglass and magic lenses: The see-

through interface. In SIGGRAPH’93. (1993), 73-80.

5. Buxton, W.A. Chunking and phrasing and the design

of human-computer dialogues. In Human-Computer

interaction: Toward the Year 2000, R.M. Baecker, J.

Grudin, W.A. Buxton, and S. Greenberg, Eds.

Morgan Kaufmann Publishers, (1995), 494-499.

6. Buxton, W. Three-state model of graphical input.

Interact Conference, (1990), 449-456.

7. Callahan, J., Hopkins, D., Weiser, M., and

Shneiderman, B. An empirical comparison of pie vs.

linear menus. Proc. CHI 1988, ACM Press, 95-100.

8. Fitzmaurice, G., Khan, A., Pieke, R., Buxton, B., and

Kurtenbach, G. Tracking Menus. In ACM UIST

Symposium. (2003), 71-79.

9. Grossman, T. and Balakrishnan, R. The bubble

cursor: enhancing target acquisition by dynamic

resizing of the cursor's activation area. In Proc. CHI

2005, ACM Press (2005), 281-290.

10. Grossman, T., Hinckley, K., Baudisch, P., Agrawala,

M., and Balakrishnan, B. Hover Widgets: Using the

Tracking State to Extend the Capabilities of Pen-

Operated Devices. In Proc CHI 2006, ACM Press

(2006), 861-870.

11. Guimbretière, F., Dixon, M. and Hinckley, K.

ExperiScope: An Analysis Tool for Interaction Data.

In Proc CHI 2007, ACM Press (2007), 1333-1342.

12. Guimbretière, F., Stone, M. and Winograd, T. Fluid

interaction with high-resolution wall-size displays. In

ACM UIST Symposium. ACM Press (2001), 21-30.

13. Guimbretière, F. Benefits of Merging Command

Selection and Direct Manipulation. In ACM

Transactions on Computer-Human Interaction, 12, 3,

ACM Press (2005), 460-476.

14. Hertzum, M. and Hornbaek, K. Input Techniques that

dynamically change their cursor activation area: A

comparison of bubble and cell cursors. In

International Journal of Human-Computer Studies,

65, 10 (2007), 833-851.

15. Hinckley, K., Guimbretiere, F., Baudisch, P., Sarin,

R., Agrawala, M., Cutrell, E. The Springboard:

Multiple Modes in One Spring-Loaded Control. ACM

CHI 2006. ACM Press (2006), 181-190.

16. Hopkins, D. The design and implementation of pie

menus. In Dr. Dobb's J. 16, 12 (Dec. 1991), 16-26.

17. Kurtenbach, G. The design and evaluation of marking

menus. Ph.D. Thesis. University of Toronto. (1993).

18. Kurtenbach, G., and Buxton, W. The limits of expert

performance using hierarchical marking menus. In

ACM CHI’93. ACM Press (1993), 35-42.

19. Kurtenbach, G., Fitzmaurice, G., Owen, R., and

Baudel, T. The Hotbox: Efficient Access to a Large

Number of Menu-items. ACM CHI’99, 231-237.

20. Li, Y., Hinckley, K., Guan, Z., and Landay, J.A.

Experimental analysis of mode switching techniques

in pen-based user interfaces. In Proc. CHI 2005,

ACM Press (2005), 461-470.

21. McGuffin, M.J., Burtnyk, N., and Kurtenbach, G.

FaST Sliders: Integrating Marking Menus and the

Adjustment of Continuous Values. In Graphics

Interface, (2002), 35-41.

22. Moscovich, T., and Hughes, J.F., Multi-finger Cursor

Techniques, In Graphics Interface, (2006), 1-6.

23. Muller, M.J., Multifunctional Cursor for Direct

Manipulation User Interfaces, Proc. CHI ’88, 89-94.

24. Po, B.A., Fisher, B.D. and Booth, K.S. Comparing

cursor orientations for mouse, pointer, and pen

interaction, Proc. CHI 2005, ACM Press, 291-300.

25. Pook, S., Lecolinet, E., Vaysseix, G. and Barillot, E.

Control menus: Execution and control in a single

interactor. In ACM CHI 2000, ACM Press, 263-264.

26. Sellen, A., Kurtenbach, G., and Buxton, W. The

Prevention of Mode Errors through Sensory

Feedback. In Journal of Human Computer

Interaction. (1992), 141-164.

27. Saund, E. and Lank, E. Stylus input and editing

without prior selection of mode. In ACM UIST '03

Symposium, ACM Press (2003), 213-216.

28. Tian, F., Ao, X., Wang, H., Setlur, V., and Dai, G.

The tilt cursor: enhancing stimulus-response

compatibility by providing 3d orientation cue of pen.

In Proc. CHI2007, 303-306.

29. Wiseman, N. E., Lemke, H. U., and Hiles, J. O.

PIXIE: A New Approach to Graphical Man-machine

Communication. Proc. of 1969 CAD Conference

Southhampton, 463, IEEE Conf. Publication 51.

