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ABSTRACT 
We present RetroFab, an end-to-end design and fabrication 
environment that allows non-experts to retrofit physical 
interfaces. Our approach allows for changing the layout and 
behavior of physical interfaces. Unlike customizing software 
interfaces, physical interfaces are often challenging to adapt 
because of their rigidity. With RetroFab, a new physical 
interface is designed that serves as a proxy interface for the 
legacy controls that are now operated by actuators. RetroFab 
makes this concept of retrofitting devices available to non-
experts by automatically generating an enclosure structure 
from an annotated 3D scan. This enclosure structure holds 
together actuators, sensors as well as components for the 
redesigned interface. To allow retrofitting a wide variety of 
legacy devices, the RetroFab design tool comes with a toolkit 
of 12 components.  We demonstrate the versatility and novel 
opportunities of our approach by retrofitting five domestic 
objects and exploring their use cases. Preliminary user 
feedback reports on the experience of retrofitting devices 
with RetroFab.  
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INTRODUCTION 
Popular computing devices, such as desktops and 
smartphones are easy to interconnect and their graphical user 
interface can be adapted to changing user needs. In contrast, 
devices and appliances such as ovens, thermostats and 
toasters, are often designed to be static and non-adaptive. 
Although smart versions of these appliances have become 
available [30,31] and advancements in sensing technologies 
for the Internet of Things [12,18] have started  

  
Figure 1: Retrofitting a legacy toaster with RetroFab. (a) 
The toaster is scanned, (b) the legacy interface is annotated, 
(c) the attached enclosure is generated, (d) the physical 
interface and behavior of the retrofit interface is adapted, 
(e) the enclosure is fabricated and assembled, (f) the new 
retrofit toaster is perfectly toasting. 

to enable basic forms of interconnectivity, they do so at the 
expense of increased costs or permanent structural changes 
[4]. Additionally, users have to purchase a new smart device 
to replace their existing legacy device even though it may 
still be completely functional. 

The tangibility and rigidity of these legacy devices make it 
hard for an end user to change the user interface, as one may 
do with software applications through plug-ins, reverse 
engineering [7], or runtime toolkit overloading [10]. For 
instance, it is not feasible to resolve design mistakes or adapt 
an interface to users’ evolving or custom needs (e.g., 
impaired users). 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than ACM must be honored. 
Abstracting with credit is permitted. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from Permissions@acm.org. 
CHI'16, May 07-12, 2016, San Jose, CA, USA  
© 2016 ACM. ISBN 978-1-4503-3362-7/16/05�$15.00  
DOI: http://dx.doi.org/10.1145/2858036.2858485 



2 

 

To make changes to legacy infrastructures and allow for 
interconnectivity, one can retrofit the physical user 
interfaces, for example, to augment light switches [32] and 
dials [33,34].  When retrofitting, a redesigned physical 
component is placed over top of the original component, thus 
serving as a proxy interface. Mechanical actuators are often 
used to manipulate the original interface, while sensors 
detect states of the device (e.g., via LED indicators). This 
avoids the complications and risks of fully disassembling and 
rewiring existing electronic components, and is akin to 
customizing a software user interface without accessing or 
modifying its source code [9]. 

Although these appliance specific retrofitting kits [32-34] are 
easy to install, the redesigned interface that is now exposed 
is static and cannot be reconfigured by novices to adapt to 
personal or changing user needs. Davidoff et al. [8] 
experimented with customizable retrofit interfaces using the 
LEGO Mindstorms toolkit. However, the mechanisms had to 
be manually designed and constructed, required precise 
structures and brackets that fit over top of the appliances, and 
did not provide a new physical interface for a user. 

To enable users without a technical background in 3D 
modelling, programming, or electronics to customize and 
enhance devices and appliances, we present RetroFab, a 
design tool that automates the process of retrofitting a 
physical interface (Figure 1). From an annotated 3D scan of 
an existing legacy object (Figure 1b), RetroFab 
automatically generates circuitry, firmware and a physical 
enclosure that precisely fits over top of the legacy interface 
(Figure 1c-f). These enclosures house mechanical actuators 
and sensing components to automatically control the device 
and observe its state (e.g. sensing the state of an LED).  

Similar to “smart” versions of appliances [30-31], retrofit 
interfaces generated with RetroFab allow for automated 
tasks, interconnected devices, remote control through a 
companion mobile app, and analytics. Retrofit interfaces 
designed with RetroFab also go beyond these standard 
“smart” features by interconnecting multiple heterogeneous 
devices, and enabling users to customize their layout and 
behaviors. 

The primary contributions of this paper are in the integrated 
design and fabrication tool that enables custom refactoring 
of physical interfaces. Specifically, we contribute: 

(1) A mechatronic toolkit, consisting of 12 components, 
optimized for actuating common controls used in household 
objects and appliances. The toolkit exposes an easy plug-
and-play electronics interface to the user. 

(2) An end-to-end design and fabrication tool that 
automatically generates 3D printable enclosures that attach 
RetroFab toolkit components to legacy devices. 
Additionally, the tool assists users in the assembly process, 
as well as the design of new proxy interfaces. 

(3) The presentation of a set of sample objects generated 
using RetroFab, and an exploration of some of the use cases 
enabled by RetroFab.  

Preliminary user feedback assesses the usability and utility 
of RetroFab, and demonstrates the system’s ease of use. 

RELATED WORK 
This work draws from, and builds upon prior work in 3D 
model generation, intercepting interactions with legacy 
objects and design tools for sensor-based interactions. While 
our work is also related to smart appliances and home 
automation, a review of such literature is beyond the scope 
of this work. We refer the reader to existing extensive 
surveys on such topics [1,4,5,24]. 

Automating 3D Modeling and Fabrication Processes 
The current popularity of 3D printing and digital fabrication 
has led to a number of recent works in the HCI literature 
related to modeling and fabrication processes. 

Closest to our own work, a number of projects have 
developed techniques to aid the construction of physical 
objects that contain electronic or interactive components. 
Makers’ Marks [21] is a system that allows users to create 
complex physical objects that incorporate elements such as 
hinges, parting lines and electronics using sculpting material 
and stickers for annotation. Enclosed [28] is a software tool 
that enables users to easily generate laser-cuttable enclosures 
for electronic components. PipeDream [22] automatically 
routes pipes through 3D models to allow for post hoc 
insertion of conductive materials. Our work similarly aids 
the fabrication of objects which can house electronic 
components, but for the specific purpose of retrofitting an 
existing physical interface. 

We also build upon work that automates, simplifies, or 
accelerates the design and fabrication process. For example, 
Fabrickation [16] allows users to rapidly prototype 
functional 3D objects by integrating LEGO blocks into the 
design, thus reducing print time. Lau et al. provide a system 
that decomposes 3D models of furniture into its constituent 
components and connectors, allowing users to fabricate the 
discrete elements [14]. RetroFab takes inspiration from this 
line of research, automating the 3D modeling of the physical 
enclosure which houses electronic components. 

Also related to our work is the recent concept of fabricating 
directly onto existing objects, or patching [25]. This can be 
accomplished by placing the existing object on a 5 axis 
rotating platform [25] or on a custom 3D printed support 
stand [6].  MixFab [29] provides users with a mixed-reality 
environment where they can incorporate real-world objects 
into the design of virtual, 3D objects which can then be 
fabricated, thus making it easier for users to design with 
existing, tangible objects. RetroFab extends such work by 
not only printing parts that fit onto existing physical objects, 
but embedding electronic components which can retrofit an 
existing object’s user interface.  



3 

 

Intercepting Interactions with Legacy Objects 
Several researchers have developed novel sensing techniques 
to provide interaction possibilities to existing objects without 
dramatically modifying the original object. Touché [20] uses 
swept-frequency capacitive sensing to detect users’ touches 
and gestures on existing objects. Touch and activate uses a 
similar approach but uses ultrasonic signals rather than 
capacitive [17]. Patel et al. [18] describe a method for 
detecting when appliances are powered on by unobtrusively 
monitoring electrical noise within the home, opening up 
possibilities for user-friendly sensing within a smart home. 
ElectricSense [12] proposes a similar approach, but both of 
these technologies are limited to sensing and provide no 
actuation or control capabilities.  

Davidoff et al. [8] introduced the idea of mechanical 
hijacking – using motors to actuate existing controls. Their 
work explored bespoke designs to actuate specific controls. 
Recently, there have been several commercial products that 
capitalize on mechanical hijacking, such as SwitchMate [32], 
Meld [33], and Lockitron [34]. These devices fit over top of 
existing light switches, oven knobs, and deadbolts to turn 
existing controls into smart controls. While user-friendly and 
easy to install, each device can only interface with a very 
specific type of control. In contrast to these works, we 
provide a complete design tool that allows users to easily 
scan, annotate, and fabricate a new set of controls to retrofit 
a wide variety of controls. 

Design Tools for Sensor-Based Interactions 
There are a number of products and research projects that 
have enabled novices to build electronic devices, such as 
Phidgets [11], littleBits [3], and .NET Gadgeteer [27]. These 
plug-and-play devices are easy to use and provide a standard 
set of compatible components. However, for novice users, it 
is not always clear which components are required or 
suitable for a given process, and many of these components 
still require some programming or electronics knowledge.  

Many methods and techniques have been proposed to allow 
end users to program devices and smart objects more easily. 
Using simple trigger-action mappings, IFTTT [35] allows 
users to map events to actions (e.g., a user’s GPS location 
can cause smart light bulbs to turn on or off). While simple, 
this programming paradigm has been found to be suitable for 
many of the home automation tasks users desire [26]. 

Ash et al. [2] describe a visual programming language based 
on Scratch that allows users to program the functionality of 
their smart objects. However, this requires the device to 
already have smart functionality and support for their 
language. Similarly, Modkit [15] allows users to program 
Arduino microcontrollers using Scratch and a custom shield, 
and Jigsaw [13] provides a visual programming language for 
smart objects. These languages, however, still require users 
to have some knowledge of programming and electronics 
components to select the right components.  

The Pulsation paradigm proposed in PaperPulse [19] allows 
for more complex logic definition by supporting linear 

regression mappings, in addition to mapping discrete triggers 
and actions. Additionally, Pulsation supports programming 
by demonstration, allowing for the construction of complex 
logic rules without programming experience. However, 
Pulsation was only implemented within the context of paper 
circuit creation, which we extend to physical user interfaces 
by centralizing the interpreter on a single PC and adding 
networking support to facilitate intercommunication. 

RETROFAB 

Overview and Definitions 
The key idea behind this work is to refactor physical 
interfaces by mounting a redesigned proxy interface over top 
of the existing form factor that is able to intercept user input 
and redirect it to the original object using mechanical 
actuators, while also intercepting device output and 
redirecting it to the user (Figure 2).  

We define the legacy interface as the target object which the 
user wishes to modify. The legacy interface consists of one 
or more components: legacy controls for input (e.g., buttons) 
and legacy indicators for output (e.g., LEDs).  

 
Figure 2: Overview of the retrofitting process. Sensors and 
actuators are placed on the legacy interface, with new 
controls and indicators placed on a new, retrofit interface.  

RetroFab automatically generates a 3D enclosure structure 
from an annotated 3D scan of the legacy interface. The 
system allows the user to define retrofit controls and retrofit 
indicators as the input and output components that make up 
the new retrofit interface. A layer of actuators and sensors 
are used to interface between the retrofit and legacy 
interfaces. 

Walkthrough: Refactoring a Toaster 
The following walkthrough illustrates the process of 
retrofitting a legacy interface using RetroFab (Figure 1). We 
use the example of a toaster, and in later sections describe 
additional functionality and use cases. For the toaster, the 
legacy interface is composed of the various buttons (cancel, 
bagel, defrost, and reheat), a dial for temperature control, a 
lever to push the toast up and down, and a set of indication 
LEDs.  
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The following example shows how RetroFab can be used to 
intercept all interactions and add one extra button on the 
toaster as a shortcut to a preferred setting – a defrost cycle to 
thaw the bread, then a mild toasting. 

Step 1:  3D Scanning and Annotating Controls 
The user starts by 3D scanning the toaster using the Skanect 
3D scanning software1 and a Microsoft Kinect. Before the 
scan, the buttons and LEDs are highlighted by covering them 
with tape to ensure their visibility even in low quality 3D 
scans by novices (Figure 1a). The user loads the 3D model 
in the RetroFab design tool and annotates the position of the 
legacy controls and indicators using the brushes in the 
toolbar on the left. The system contains one brush for every 
type of supported legacy control and indicator (Figure 1b). 

Step 2: Automated Enclosure Design 
Once the annotations are finished, RetroFab positions the 
housings for all actuators and sensors: linear actuators for the 
pushbuttons and lever, stepper motors for dials and light 
sensors for LEDs (Figure 3a). RetroFab highlights the region 
that will be redesigned, and thus covered by the new physical 
enclosure. The user extends this region to include the area 
where the new shortcut button will be positioned (Figure 3b).      

 
Figure 3: (a) The orange region depicts the enclosure region 
that RetroFab derives based on the specified components. 
(b) The user manually extends the region to have additional 
space for the new shortcut button. 

RetroFab responds by generating the 3D model of the 
enclosure (Figure 1c). Finally, the user specifies the 
preferred location of the mounting brackets (using a brush) 
that attaches the enclosure structure to the toaster (Figure 4).    

 
Figure 4: The mounting brackets allow the enclosure to 
easily be added to or removed from a legacy object.  

                                                           
1 http://skanect.occipital.com 

Step 3: Redesigning the Interface and Behavior 
RetroFab automatically integrates a retrofit interface in the 
front panel of the enclosure structure that serves as a proxy 
for the legacy interface. If desired, the user can redesign this 
front panel by repositioning the retrofit components or by 
replacing them with alternative components available in the 
toolbar. Figure 1d shows an additional pushbutton being 
added to the toaster that will serve as a shortcut to the user’s 
favorite toast setting. 

By default, retrofit controls are configured to mirror the 
actions of their associated legacy controls: pushing the new 
retrofit defrost button on the enclosure structure will cause 
the legacy defrost button on the toaster to be pushed. 
Similarly, output is redirected from the toaster to the 
enclosure structure: when the legacy LED representing the 
defrost state on the toaster turns on, the corresponding 
retrofit LED on the enclosure lights up. 

The user can alter this default behavior or add extra logic for 
new components using a Programming by Demonstration 
paradigm [19]. Users demonstrate actions directly on top of 
the 3D models of the respective retrofit components and can 
also record functional relationships between these actions. 
Figure 5 shows the user specifying the logic of the new 
button on the toaster: If pressed, the lever goes down, and the 
defrost button is pushed. Additionally, the user can specify 
that when defrosting is finished (sensed by the LED next to 
the defrost button), the toast goes back in for a second time 
at a higher temperature, resulting in perfectly crisp toast!  

 
Figure 5: The user manually specifies a logic rule using the 
Pulsation engine to program the perfect toast setting. 

Step 4: Fabrication and Assembly 
When the design is complete, RetroFab generates: (1) STL 
files to be printed out using a 3D printer (FDM printer for 
our prototypes), (2) Microcontroller code that can be directly 
uploaded to an Arduino platform, and (3) Assembly 
instructions to guide users in connecting the actuators and 
sensors to the microcontroller. 
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Figure 1e shows the assembled 3D printed enclosure and its 
embedded actuators, sensors, and retrofit components. 
Finally, the enclosure structure is attached to the toaster by 
gluing the feet of the mounting brackets to the appliance 
(Figure 1f). The mounting bracket is designed so that the 
enclosure structure is easy to detach using screws, leaving 
only the feet of the mounting brackets behind (Figure 1e). 

Once the enclosure structure is attached, RetroFab guides the 
user through a process to calibrate all the actuators and 
sensors.  

Step 5: Deployment 
All logic defined using RetroFab runs on a central PC which 
communicates continuously to the retrofit interface. This 
makes it possible to reconfigure the behavior of devices at 
run time and allow for interconnectivity. Figure 6 shows the 
user linking the “snooze” button of his retrofitted alarm clock 
to his personal “perfect toast” shortcut button on the toaster.  

 
Figure 6: As all of a user’s retrofit objects share the same 
workspace, they can be interconnected to link their 
functionality and enable home automation tasks.  

When the user launches the companion RetroFab mobile 
application, all retrofitted devices are automatically loaded, 
and display their functionalities to allow for remote control 
(Figure 7). 

 
Figure 7: All of the functionality of a retrofit interface is also 
available in the companion Android application. 

                                                           
2 https://www.adafruit.com/products/1438 

RetroFab Toolkit 
To enable retrofitting a wide variety of devices, RetroFab 
comes with a set of electrical and mechanical primitives to 
retrofit common physical interface components, such as 
pushbuttons, rotary dials, rocker and wall switches, and 
LEDs. 

Figure 8 shows the full RetroFab toolkit, consisting of (a) 
actuators, (b) sensors, (c) controls, and (d) indicators. The 
actuators and sensors are positioned inside the enclosure and 
concealed, while the controls and indicators are positioned 
on the outside of the surface, forming the retrofit interface.  

For every component in the toolkit, the RetroFab design tool 
has a specific component housing that is integrated in the 
enclosure structure to facilitate assembly and ensure precise 
positioning. This is particularly important for the actuators, 
which operate the underlying legacy controls. 

 
Figure 8: The RetroFab Toolkit; Left) actuators and 
sensors; the white material of the dial and linear actuator is 
the parametric component of the design which conforms to 
the scanned control. Right) controls and indicators. 

To make it possible for users without electronics knowledge 
to use the RetroFab toolkit, wires have a color coding scheme 
and integrate the necessary electronic components, such as 
resistors, in them. Our toolkit is easiest to deploy using the 
Adafruit Motor Shield2, which avoids complex H-bridge 
electronic constructions. As such, components are connected 
directly to the microcontroller by following instructions 
provided in the RetroFab design tool, avoiding the need for 
complex electronic wiring designs on breadboards.  

 
Figure 9: Inside view of a) push actuator, b) wall switch 
actuator and c) rocker switch actuator. 
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Our custom designed mechanical actuators use off-the-shelf 
DC, servo, and stepper motors, in combination with 3D 
printed transmission mechanisms, to achieve the desired 
mechanical movement. Figure 9a shows how the pushbutton 
actuator uses a threaded rod to convert rotational movement 
of a geared DC motor to linear movement. A pressure sensor 
is attached to the tip of the piston to reverse the motor when 
the pressure on the push button reaches the calibrated value. 
In contrast, the rocker switch and wall switch actuators use 
micro servos and eccentric crank mechanisms (Figure 9b-c). 

The components that make up legacy interfaces come in 
different shapes and sizes and are often closely packed 
together on control panels. Our actuators are therefore 
designed to be as small as possible while still having 
sufficient force. The width of our pushbutton actuator is 
12mm (Figure 8), making it even possible to actuate legacy 
controls that have that same distance between their center 
points. Additionally, actuators are represented in RetroFab 
by parametric 3D models, to allow them to scale to different 
sizes and shapes (white material in Figure 8). RetroFab 
adjusts the size of the rack used in the linear actuator, for 
example, using information of the 3D scanned model. 
Similarly, the parameters of the rotary dial actuator allow it 
to take on the exact inverse shape of the knob of the dial in 
the 3D scanned model.  

To measure properties of controls that are not visible in the 
3D scanned model, such as movement range of pushbuttons 
and dials or brightness range of indicator LEDs, RetroFab 
employs a calibration procedure. Once the user connects the 
(temporary) calibration button to the microcontroller of the 
retrofit interface after the fabrication and assembly phase, the 
states of each actuator/sensor are calibrated one by one. 
During this procedure, actuators/sensors are activated and 
the user presses the calibration button when the 
actuator/sensor is in the requested state e.g. on/off state for 
light sensors observing indicator LEDs, min/max state or 
discrete states for rotary dial actuators. The RetroFab UI 
supports removing calibration samples and averaging 
multiple samples. 

Enclosures 
RetroFab supports the design of two types of enclosures: 
attached enclosures, which attach directly to the legacy 
interface and remote enclosures, which can optionally house 
the retrofit interface separately from the attached enclosure. 
Below the design considerations for these two types of 
enclosures are outlined. Once designed, the method for 
specifying their behaviors are equivalent. 

Attached Enclosures 
Attached enclosures are computationally designed with 
RetroFab and always consist of three layers that are printed 
separately (Figure 11): (a) the feet of the mounting brackets, 
(b) the back structure, and (c) the front panel.  

The front panel of the enclosure structure consists of 
component housings for attaching the retrofit controls and 

indicators that define the new retrofit interface that is 
exposed to end-users (Figure 11). 

The back structure holds housings for components in place 
inside the structure to precisely position the RetroFab 
actuators and sensors. Figure 11 shows how rigid support 
structures connect component housings inside the enclosure 
design to the outside structure. 

Last, the mounting brackets fit the curvature of the legacy 
interface to ensure a sturdy connection. Figure 10 shows how 
enclosure structures designed with RetroFab fit on devices 
with different surface curvatures. 

 
Figure 10: left) Mounting feet conform to the curved surface 
of a desk lamp, right) the retrofit dial allows for greater 
positioning accuracy when tuning the frequency of an alarm 
clock radio. 

This layered approach facilitates the assembly of retrofit 
components on the front panel and back structure which are 
later glued together. In contrast, the back structure is 
mounted on top of the feet of the mounting brackets using 
screws. This is enabled by the T-slot design inside the 
mounting brackets (Figure 11). As a result, only the feet of 
the mounting brackets need to be glued to the legacy device. 
Afterwards, the enclosure structure can be easily removed 
using the screws, leaving only the feet of the mounting 
brackets behind (Figure 1e).  

 
Figure 11: Exploded view of a RetroFab attached enclosure. 
The mounting bracket (a) is bolted to the mounting feet, 
which are glued to the legacy device. The back structure (b) 
holds the motors and sensors which interact with the new 
retrofit interface on the the front panel (c).  
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While adding the mounting brackets to the design, RetroFab 
leaves a gap (approximately 1 cm) between the legacy 
interface and the enclosure structure. This gap makes it easier 
to mount the enclosure structure and allows the end-user to 
observe the state of legacy components while calibrating the 
actuators and sensors. 

Remote Enclosures 
RetroFab also allows users to optionally construct a remote 
enclosure that is not mounted over top of the legacy interface. 
These types of enclosures only consist of retrofit controls and 
indicators and communicate wirelessly via a central PC to 
actuators and sensors that are inside one or multiple attached 
enclosures. Remote enclosures can be used to design remote 
controls, reposition an interface to a more convenient 
location, or introduce new controls to an environment. 

To design a remote enclosure, the user loads in any hollow 
3D model and adds RetroFab controls and indicators to the 
front panel. RetroFab responds by integrating component 
housings in the 3D model that will hold the retrofit controls 
and indicators in place. Once the design of the remote 
enclosure structure is finished, the user specifies the behavior 
between the new retrofit interface and the actuators and 
sensors in the associated attached enclosures. 

Logic and Intercommunication 
Besides redesigning the physical interface of legacy devices, 
RetroFab can also change the behavior of devices. By 
default, retrofit components on the front panel of the attached 
enclosure structure mirror all actions to RetroFab actuators 
behind them: controlling a RetroFab push button or dial on 
the front panel causes similar actions on the original controls 
using the RetroFab actuators behind these controls. 
Similarly, output is redirected from the legacy indicators to 
the enclosure structure using RetroFab sensors: a light 
sensor, observing the state of an LED on the legacy device 
redirects this state to an LED on the front panel. 

The user can alter this default behavior, add extra logic, or 
define logic of additional RetroFab components that were 
added using the Pulsation programming by demonstration 
technique [19]. With Pulsation, users define logic between 
electronic components by demonstrating actions on top of 
the respective components and record functional 
relationships between these actions. The pulsation interpreter 
supports both causal relationships (if-then rules) as well as 
linear regressions (map-to rules). 

In contrast to PaperPulse [19], where the Pulsation 
interpreter runs independently on every microcontroller, here 
the interpreter is modified to run on a central logic module 
(i.e. Windows PC or microcontroller supporting .NET MF), 
making intercommunication an inherent part of RetroFab. 
The individual Arduino microcontrollers that control the 
enclosure structures run a generic firmware that handles the 
GPIO pins as well as the wireless communication. Even for 

                                                           
3 http://www.openscad.org 

retrofitted devices that do not intercommunicate, user input 
and sensor data from the retrofitted interface is first 
transmitted from the Arduino microcontroller to the central 
PC. This module then decides to turn on specific RetroFab 
actuators and sensors, controlled by the same or a different 
Arduino microcontroller. This approach makes it possible to 
change the behavior and interconnect retrofitted devices 
even after the design and fabrication is completed. Multiple 
independent logic modules can be deployed to avoid single 
points of failure. 

IMPLEMENTATION 
The RetroFab design tool is implemented using .NET/C# and 
builds on the Meshmixer 3D modeling program [23]. The 
companion mobile application was developed in Java for the 
Android platform. 

Computationally Generated Enclosure Designs 
To attach enclosure structures, the automated design process 
starts with a 3D scanned model that has user annotated 
regions, specifying the type and position of legacy controls. 
RetroFab loads and positions component housings related to 
the annotated controls on top of the scanned model. When 
components are closely packed together, RetroFab mitigates 
overlaps between these housings by optimizing their 
orientation. During this process, the system rotates the 
intersecting housings one by one, around the normal vector 
of the annotated region, until all overlaps are resolved. When 
no solution is found or the process is interrupted by the user, 
the housings can be manually repositioned  

Once the housings of all components inside the enclosure 
structure are correctly positioned (Figure 12a), RetroFab 
generates the enclosure design. To support legacy interfaces 
with different surface curvatures (Figure 10), an enclosure 
structure is created by extruding the surface region of the 3D 
scanned model, thus preserving its curvature. The average 
orientation of the RetroFab actuators and sensors defines the 
direction of extrusion. Defining the minimal surface region 
for the extrusion involves the following steps. First, the 
bounding box of the housing for every component is 
projected onto the surface along the extrusion direction 
(Figure 12b). Second, the surface curvature between each 
component is sampled, resulting in another set of vertices. 
Together with the vertices calculated in the first step, a mesh 
of the convex hull is calculated using OpenSCAD3. All faces 
inside this convex hull define the minimal surface region to 
be extruded to enclose the housings for all RetroFab 
actuators and sensors (Figure 12c). 

When components are located on different sides of the 
legacy interface, the minimal surface region required for the 
extrusion can increase substantially (Figure 13a). In these 
situations, the user can decide to have a separate attached 
enclosure structure for some components (Figure 13b). 
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Figure 12: Computing the minimal surface region for the 
extrusion of an enclosure model. (a) The component 
housings, (b) the projected surface region underneath 
components, (c) the final minimum surface region. 

 
Figure 13: Depending on the surface region covered by the 
enclosure structure, users can decide to (a) combine 
actuators in a single enclosure, or (b) group some of them in 
a separate enclosure structure. 

Once the final region for extrusion is defined, it is smoothed 
and enlarged with 3 mm to account for the thickness of the 
walls. This surface region is then extracted to a new mesh 
which serves as the front panel of the enclosure structure 
(thickness of the front panel; Figure 11). In another copy of 
this mesh, only the faces on the outermost 3 mm are 
preserved, resulting in a ring-like shape that will serve as the 
side panel of the enclosure structure after the faces are 
extruded (Figure 11). The wall thickness (3mm) was 
determined through iterative testing. Combined with the 
support structure that hold actuators in place, these walls 
provide enough stability during actuation. Thicker walls 
could cover undesired regions of the legacy interface or 
make the enclosure heavy and prone to tipping 

To connect the component housings to the enclosure 
structure, RetroFab casts rays from predefined support 
locations on the component housings towards the enclosure 
structure. When a valid intersection is found, a cylinder 
shaped support structure is created (Figure 11). 

After the user specifies the locations of the mounting 
brackets, that connect the retrofit interface to the legacy 
interface, a predesigned mounting bracket is put in place. To 
ensure that the feet of the mounting brackets matches the 
surface curvatures, the Boolean difference is taken between 
the faces of the mounting bracket and the 3D model, resulting 
in the removal of all faces that are in inside the 3D model 
(Figure 14). 

In contrast to the housing the components inside the 
enclosure structure that require a support structure to hold 

them in place, housings of the components in the front panel 
are supported by the front panel itself. A Boolean difference 
operation between the front panel and all the components 
creates the necessary holes in the front panel (Figure 11). 

 
Figure 14: The mounting feet fit the curvature of the legacy 
object by using a Boolean difference operation with the 
scanned model. 

Since remote enclosure structures only consist of retrofit 
controls and indicators, only the steps described in the 
paragraph above are needed to integrate component housings 
within the custom 3D model. 

Parametric Component Designs 
For components that consist of parametric parts (white 
material parts in Figure 8), additional steps are required. 
RetroFab uses a plane cut to trim the track of the linear 
actuator to a length that is manually specified by the user 
(range of movement). For rotatory dial actuators, additional 
extrusions and plane cuts are applied to create an adaptor that 
has the inverse shape of the knob of the legacy dial. This 
approach can also handle dials with an off-centered knob 
successfully. 

Communication with Microcontroller 
The automatic instantiation of the generic Arduino firmware 
on the microcontrollers requires an automatic assignment of 
control pins. The control pins of RetroFab components can 
often be connected to multiple pins on an Arduino. If binary 
output suffices, a digital pin can sometimes be used in place 
of an analog pin. The system takes this into account and first 
uses the specified behavior to assign a set of valid control 
pins to every component. Next, the algorithm selects those 
pins that maximize the number of components that can be 
connected given the limited set of pins on the Arduino 
microcontroller. 

Once pin assignments are finished, the central PC 
communicates the type of components that are used and the 
pins they connect to the microcontroller. The microcontroller 
then responds by instantiating code for controlling these 
components. Afterwards, updates on components’ states are 
communicated to the central PC over XBee or using a wired 
serial connection. 

Communication with the Companion Mobile Application 
The mobile application communicates to the central PC 
using Wi-Fi. Once connected, all retrofit controls and 
indicators present are transmitted to the mobile device. The 
companion RetroFab mobile application then automatically 
instantiates the necessary GUI elements for controlling those 
components and compiles everything into a single user 
interface. 
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Figure 15: Example retrofit interfaces created using RetroFab: (a) two wall switches, (b) a desk lamp, (c) a toaster, (d) an alarm 

clock with companion Android application, (e) an oven with remote enclosure.

EXAMPLE DESIGNS AND USE CASES 
Using the RetroFab design tool, 5 legacy interfaces were 
retrofitted: (a) a wall switch, exposing a rocker switch on the 
retrofitted interface, (b) A lamp, converting a legacy rocker 
switch into a push button, (c) the toaster discussed in the 
walkthrough, (d) an alarm clock with buttons for setting the 
time (i.e., hours + minutes), setting alarms, and a snooze 
button, and (e) a stove with a retrofit remote control 
containing 2 dials and an indicator LED notifying the user 
when the heating element is warm. Below we discuss a 
number of use cases that these example design illustrate. 

Remote Interactions 
Every retrofit interface created by the user is available 
through the RetroFab mobile application. This makes it 
possible to control devices and appliances remotely, such as 
the light switch when one forgets to turn off the lights. A 
retrofit interface can also serve as a remote for another 
retrofit interface. Turning the lamp off when going to bed, 
turns off the lighting in the room as well, using the retrofitted 
wall switches. 

Locking Out Controls 
Digital, as well as physical remotes, make it easy to hide 
potentially hazardous controls for children. The remote 
control for the stove can be relocated to a more secure area, 
or protected further using a key lock (Figure 15e). At the 
same time, the attached control on the oven contains no 
physical interface, making it impossible to operate without 
the remote control.  

Resolving Design Flaws and Frustrations 
RetroFab also facilitates the process of resolving poor design 
decisions found in physical interfaces. Controlling the dials 
located on the back panel of the stove requires moving one’s 
arm over a number of elements, which could have pots or 
frying pans on them.  RetroFab allows for repositioning these 
controls to a more convenient or safe location, such as the 
side panel of the stove.  

Setting the time and alarm on an ordinary alarm clock 
(Figure 15d) is often tiring. By retrofitting the interface using 
RetroFab, a shortcut can be designed for automatically 

setting the current time after the lock is unplugged or a power 
outage occurs. This is done by instructing the actuators to 
press and hold the hour and minute buttons for a calibrated 
time interval, to increase the time from the known 12:00 start 
position to the current time. 

Shortcuts for Frequently Used or Personalized Actions 
As highlighted in the walkthrough, the retrofit interface for 
the toaster can integrate a personalized button for 
automatically toasting bread to one’s favorite toast settings. 
Similarly, by retrofitting different wall switches in the home, 
one can make new buttons that serve as shortcuts for 
different lighting settings.  

Facilitating Interactions for Users with Special Needs 
People with disabilities are often unable to operate controls 
that are found on most devices, as they require considerable 
amounts of force or fall outside the range of motion they are 
capable of.  The retrofitted desk lamp illustrates how a rocker 
switch can be converted to a lower force control, such as a 
push button. A similar push button is used in the retrofit 
interface of the toaster to replace the heavy mechanical lever. 

Statistics on Appliance Usage 
Since RetroFab intercepts interactions for every retrofitted 
control, actions can be tracked and visualized in real time on 
a fine-grained level (Figure 16). Using this information, 
statistics over longer periods of time can be compiled to give, 
for example, data on how often someone presses the snooze 
button on their alarm clock.  

 
Figure 16: Real-time monitoring of the RetroFit appliance 
state from the PC. 
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PRELIMINARY USER FEEDBACK 
To understand the experience of working with RetroFab, an 
informal guided design session was conducted with four 
participants. Two participants (P1, P2) were experienced 
CAD users, while the other two (P3, P4) had only limited 
experience with 3D modelling. P1 had extensive experience 
in electronic circuit designs, whereas P2 and P3’s knowledge 
was limited to basic prototyping with Arduino, and P4 had 
no experience with electronic circuits. Each session lasted 
for approximately 45 minutes. 

Participants were first introduced to the concept of 
retrofitting legacy devices. Then, the participants were 
introduced to the RetroFab design tool using the example of 
the retrofitted wall switch (Figure 15a). Once they 
understood the different concepts, participants were 
instructed to retrofit the desk lamp using RetroFab (Figure 
15b). Due of time restrictions, the generated enclosure 
structure was 3D printed beforehand and was given to the 
user during the assembly phase, after they successfully 
designed their own retrofit enclosure structure. Participants 
then assembled the 3D printed objects and the electronic 
circuit by following instructions on the screen. Finally, they 
deployed the retrofitted desk lamp and controlled it from the 
RetroFab mobile application. Participants reported their 
experience with RetroFab through a questionnaire. 

All participants were able to retrofit the desk lamp in less 
than 25 minutes and saw clear benefits in using RetroFab. 
Participants perceived the entire process as enjoyable and 
were satisfied with the end result. They reported that the 
outcome met their expectations.  

Three participants (P1, P2, P3) felt they could design a 
working prototype without using RetroFab, however, they all 
agreed it would involve multiple iterations and span multiple 
days. All participants appreciated the straightforward, step-
by-step process of RetroFab. They indicated RetroFab would 
be very useful to them for retrofitting legacy devices in the 
future. P4 highlighted that RetroFab was an enabling 
technology for him as he would not know how to retrofit 
devices without the tool. 

P1, P2 and P4 mentioned they are looking forward to see how 
future versions of RetroFab allow for more customization of 
generated enclosure structures, such as embedding the 
enclosure structure design inside a 3D model of choice or 
giving a retrofitted object a cartoon-like appearance. At the 
same time, these participants noted that precise placement of 
RetroFab components inherently allow for 
anthropomorphism, e.g. making a smiley face with RetroFab 
components. 

Participants recognized that this approach would be useful in 
different situations, such as controlling the heating at home 
remotely and saving energy, or for adapting interfaces for 
impaired users. They all indicated that they would consider 
deploying this technology at home.  

LIMITATIONS AND FUTURE WORK 
RetroFab has three important limitations, which we hope can 
be addressed in future work: 

First, RetroFab only generates attached enclosure structures 
when there is space on the 3D scanned model for attaching 
the structure. For instance, very small controls are not 
supported, such as lamps that have small rocker switches 
integrated in the power cable. To retrofit these devices, 
future versions could support wraparound enclosure 
structures that entirely enclose these kind of controls. 

Second, the RetroFab toolkit currently supports actuators 
optimized for operating basic controls used in appliances. In 
the future, multiple actuators could be developed of various 
shapes and sizes to reduce size and cost and provide an 
optimal actuator for each use case. Bigger and more powerful 
actuators would, for example, allow for retrofitting heavy 
duty mechanical controls, such as the linear actuator already 
supported, controls used in industrial machines, and handles 
to adjust car seats.  Another interesting direction for future 
research is the support of more high-fidelity sensors, such as 
microphones and cameras, besides the light sensor that is 
already supported. Cameras and image processing 
techniques, could allow retrofitting more complex legacy 
interfaces that communicate states using displays.  

Last, the current implementation of RetroFab requires 
actuators and sensors to be positioned directly in front of 
legacy controls. In the future, advanced transmission 
mechanisms could be supported to relocate the actuators out 
of sight, behind the legacy device, in order to improve the 
aesthetic appearance of enclosure structures. One could 
imagine using a single actuator to activate multiple controls 
to make the retrofit interface smaller. Besides this, the 
aesthetic appearance could be improved by allowing the user 
to remodel the enclosure design. 

CONCLUSION 
As home automation and the development of smart objects 
continues to rise in popularity, users will desire additional 
functionality from their existing objects. RetroFab is able to 
augment these legacy infrastructures using a simple 
workflow. Many people could benefit from retrofitting 
interfaces, most prominently members of the maker 
community, IoT-developers, and researchers. One 
particularly interesting target audience for retrofit devices 
are caregivers for disabled or elderly individuals. Retrofitting 
could allow people with disabilities regain independence and 
operate legacy interfaces they would otherwise be unable to.  
Retrofit objects can be interconnected, allowing for simple 
remote control or automation, or can be used to suit a users’ 
individual needs. The discussion throughout this work shows 
there are many potential use cases yet to explore, and many 
opportunities for future work. 
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