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Figure 1. A collection of data sets produced by our technique. While different in appearance, each has the same summary statistics 
(mean, std. deviation, and Pearson’s corr.) to 2 decimal places. (x͞ =54.02, y͞ = 48.09, sdx = 14.52, sdy = 24.79, Pearson’s r = +0.32)

ABSTRACT 
Datasets which are identical over a number of statistical 
properties, yet produce dissimilar graphs, are frequently used 
to illustrate the importance of graphical representations when 
exploring data. This paper presents a novel method for 
generating such datasets, along with several examples. Our 
technique varies from previous approaches in that new 
datasets are iteratively generated from a seed dataset through 
random perturbations of individual data points, and can be 
directed towards a desired outcome through a simulated 
annealing optimization strategy. Our method has the benefit 
of being agnostic to the particular statistical properties that 
are to remain constant between the datasets, and allows for 
control over the graphical appearance of resulting output.  

INTRODUCTION 
Anscome’s Quartet [1] is a set of four distinct datasets each 
consisting of 11 (x,y) pairs where each dataset produces the 
same summary statistics (mean, standard deviation, and 
correlation) while producing vastly different plots (Figure 
2A). This dataset is frequently used to illustrate the 
importance of graphical representations when exploring 
data. The effectiveness of Anscombe’s Quartet is not due to 
simply having four different data sets which generate the 

same statistical properties, it is that four clearly different and 
identifiably distinct datasets are producing the same 
statistical properties. Dataset I appears to follow a somewhat 
noisy linear model, while Dataset II is following a parabolic 
distribution. Dataset III appears to be strongly linear, except 
for a single outlier, while Dataset IV forms a vertical line 
with the regression thrown off by a single outlier. In contrast, 
Figure 2B shows a series of datasets also sharing the same 
summary statistics as Anscombe’s Quartet, however without 
any obvious underlying structure to the individual datasets, 
this quartet is not nearly as effective at demonstrating the 
importance of graphical representations. 

While very popular and effective for illustrating the 
importance of visualizations, it is not known how Anscombe 
came up with his datasets [5]. Our work presents a novel 
method for creating datasets which are identical over a range 
of statistical properties, yet produce dissimilar graphics. Our 
method differs from previous by being agnostic to the 
particular statistical properties that are to remain constant 
between the datasets, while allowing for control over the 
graphical appearance of resulting output.  
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Figure 2. (A) Anscombe’s Quartet, with each dataset having 
the same mean, standard deviation, and correlation. (B) 
Four unstructured datasets, each also having the same 
statistical properties as those in Anscombe’s Quartet. 
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RELATED WORK 
As alluded to above, producing multiple datasets with similar 
statistics and dissimilar graphics was introduced by 
Anscombe in 1973 [1]. “Graphs in Statistical Analysis” starts 
by listing three notions prevalent about graphs at the time: 

(1) Numerical calculations are exact, but graphs are 
rough; 

(2) For any particular kind of statistical data there 
is just one set of calculations constituting a 
correct statistical analysis; 

(3) Performing intricate calculations is virtuous, 
whereas actually looking at the data is cheating. 

While one cannot argue that there is currently as much 
resistance towards graphical methods as when Anscombe's 
paper was originally published, the datasets described in the 
work (Figure 1A) are still effective and frequently used for 
introducing or reinforcing the importance of visual methods. 
Unfortunately, Anscombe does not report how the datasets 
were created, nor suggest any method to create new ones. 

The first attempt at producing a generalized method for 
creating such datasets was published in 2007 by Chatterjee 
and Firat [5]. They proposed a genetic algorithm based 
approach where 1,000 random datasets were created with 
identical summary statistics, then combined and mutated 
with an objective function to maximize the “graphical 
dissimilarity” between the initial and final scatter plots. 
While the datasets produced were graphically dissimilar to 
the input datasets, they did not have any discernable structure 
in their composition. Our technique differs by providing a 
mechanism to direct the solutions towards a specific shape, 
as well as allowing for variety in the statistical measures 
which are to remain constant between the solutions. 

Govindaraju and Haslett developed a method for regressing 
datasets towards their sample means while maintaining the 
same linear regression formula [7]. In 2009, the same authors 
extended their procedure to creating “cloned” datasets [8]. In 
addition to maintaining the same linear regression as the seed 
dataset, their cloned datasets also maintained the same means 
(but not the same standard deviations). While Chatterjee and 
Firat [5] wanted to create datasets as graphically dissimilar 
as possible, Govindaraju and Haslett’s cloned datasets were 
designed to be visually similar, with a proposed application 
of confidentializing sensitive data for publication purposes. 
While our technique is primarily aimed at creating visually 
distinct datasets, by choosing appropriate statistical tests to 
remain constant through the iterations (such as a 
Kolmogorov-Smirnov test) our technique can produce 
datasets with similar graphical characteristics as well. 

In the area of generating synthetic datasets, GraphCuisine [2] 
allows users to direct an evolutionary algorithm to create 
network graphs matching user-specified parameters. While 
this work looks at a similar problem, it differs in that it is 
focused on network graphs, is an interactive system, and 
allows for directly specifying characteristics of the output, 
while our technique looks at 1D or 2D distributions of data, 

is non-interactive, and perturbs the data such that the initial 
statistical properties are maintained throughout the process. 

Finally, on the topic of using scatter plots to encode graphics, 
Residual Sur(Realism) [11] produces datasets with hidden 
images which are only revealed when appropriate statistical 
measures are performed. Conversely, our technique encodes 
graphical appearance into the data directly. 

METHOD 
The key insight behind our approach is that while generating 
a dataset from scratch to have particular statistical properties 
is relatively difficult, it is relatively easy to take an existing 
dataset, modify it slightly, and maintain (nearly) the same 
statistical properties. With repetition, this process creates a 
dataset with a different visual appearance from the original, 
while maintaining the same statistical properties. Further, if 
the modifications to the dataset are biased to move the points 
towards a particular goal, the resulting graph can be directed 
towards a particular visual appearance. 

The pseudocode for the high-level algorithm is listed below: 

 

INITIAL_DS is the seed dataset from which the statistical 
values we wish to maintain are calculated. The PERTURB 
function is called at each iteration of the algorithm to modify 
the latest version of the dataset (CURRENT_DS) by moving 
one or more points by a small amount, in a random direction. 
The “small amount” is chosen from a normal distribution and 
is calibrated such that >95% of movements result in the 
statistical properties of the overall dataset remaining 
unchanged (to two decimal places). 

Once the individual points have been moved, the FIT 
function is used to check if perturbing the points has 
increased the overall fitness of the dataset. The fitness can be 
calculated in a variety of ways, but for conditions where we 
want to coerce the dataset to into a shape, fitness is calculated 
as the average distance of all points to the nearest point on 
the target shape. 

The naïve approach of accepting only datasets with an 
improved fitness value results in possibly getting stuck in 
locally-optimal solutions where other, more globally-optimal 
solutions are possible. To mitigate this possibility, we 
employ a simulated annealing technique [9]. With the 
possible solutions generated in each iteration, simulated 
annealing works by always accepting solutions which 

1: current_ds ← initial_ds 
2: for x iterations, do: 
3:     test_ds ← PERTURB(current_ds, temp) 
4:     if ISERROROK(test_ds, initial_ds): 
5:         current_ds ← test_ds 
6:  
7: function PERTURB(ds, temp): 
8:     loop: 
9:         test ← MOVERANDOMPOINTS(ds) 
10:         if FIT(test) > FIT(ds) or temp > RANDOM(): 
11:             return test 



improve the fitness, but also, if the fitness is not improved, 
the solution may be accepted based on the “temperature” of 
the simulated annealing algorithm. If the current temperature 
is less than a random number between 0 and 1, the solution 
is accepted even if it the fitness is worsened. We found that 
using a quadratically-smoothed monotonic cooling schedule 
starting with a temperature of 0.4 and finishing with a 
temperature of 0.01 worked well for the sample datasets. 

Once the perturbed dataset has been accepted, either through 
an improved fitness value or from the simulated annealing 
process, the perturbed dataset is compared to the initial 
dataset for statistical equivalence. For the examples in this 
paper we consider properties to be “the same” if they are 
equal to two decimal places. The ISERROROK function 
compares the statistics between the datasets, and if they are 
equal (to the specified number of decimal places), the result 
from the current iteration becomes the new current state. 

Example Generated Datasets 

Example 1: Coercion Towards Target Shapes 
In this first example (Figure 1), each dataset contains 182 
points and are equal (to two decimal places) for the 
“standard” summary statistics (x/y mean, x/y standard 
deviation, and Pearson’s correlation). Each dataset was 
seeded with the plot in the top left. The target shapes are 
specified as a series of line segments, and the shapes used in 
this example are shown in Figure 3.  

 
Figure 3. The initial data set (top-left), and line segment 
collections used for directing the output towards specific 
shapes. The results are seen in Figure 1. 

With this example dataset, the algorithm ran for 200,000 
iterations to achieve the final results. On a laptop computer 
this process took ~10 minutes. Figure 4 shows the 
progression of one of the datasets towards the target shape. 

 
Figure 4. Progression of the algorithm towards a target 
shape over the course of the cooling schedule. 

Example 2: Alternate Statistical Measures 
One benefit of our approach over previous methods is that 
the iterative process is agnostic to the particular statistical 
properties which remain constant between the datasets. In 
this example (Figure 5) the datasets are derived from the 
same initial dataset as in Example 1, but rather than being 
equal on the parametric properties, the datasets are equal in 

the non-parametric measures of x/y median, x/y interquartile 
range (IQR), and Spearman’s rank correlation coefficient.  

 
Figure 5. Example datasets are equal in the non-parametric 
statistics of x/y median (53.73, 46.21), x/y IQR (19.17, 37.92), 
and Spearman’s rank correlation coefficient (+0.31). 

Example 3: Specific Initial Dataset 
The previous two examples used a rather “generic” dataset of 
a slightly positively correlated point cloud as the starting 
point of the optimization. Alternately, it is possible to begin 
with a very specific dataset to seed the optimization. 

 
Figure 6. Creating a collection of datasets based on the 
“dinosaurus” dataset. Each dataset has the same summary 
statistics to two decimal places: (x͞ =54.26, y͞ = 47.83, sdx = 
16.76, sdy = 26.93, Pearson’s r = -0.06). 

Alberto Cairo produced a dataset called the “Datasaurus” [4]. 
Like Anscombe’s Quartet, this serves as a reminder to the 
importance of visualizing your data, since, although the 
dataset produces “normal” summary statistics, the resulting 
plot is a picture of a dinosaur. In this example we use the 
“datasaurus” as the initial dataset, and create other datasets 
with the same summary statistics (Figure 6). 

Example 4: Simpson’s Paradox 
Another instrument for demonstrating the importance of 
visualizing your data is Simpson’s Paradox [3, 10]. This 
paradox occurs with data sets where a trend appears when 
looking at individual groups in the data, but disappears or 
reverses when the groups are combined. 

To create a dataset exhibiting Simpson’s Paradox, we start 
with a strongly positively correlated dataset (Figure 7A), and 
then perturb and direct that dataset towards a series of 

Iteration: 1
Temperature: 0.4

Iteration: 50,000
Temperature: 0.35

Iteration: 100,000
Temperature: 0.2

Iteration: 200,000
Temperature: 0.01

Iteration: 1 Iteration: 20,000 Iteration: 80,000 Iteration: 200,000



negatively sloping lines (Figure 7B). The resulting dataset 
(Figure 7C) has the same positive correlation as the initial 
dataset when looked at as a whole, while the individual 
groups each have a strong negative correlation. 

 
Figure 7. Demonstration of Simpson's Paradox. Both 
datasets (A and C) have the same overall Pearson's 
correlation of +0.81, however after coercing the data 
towards the pattern of sloping lines (B), each subset of data 
in (C) has an individually negative correlation. 

Example 5: Cloned Dataset with Similar Appearance 
As discussed by Govindaraju and Haslett [8] another use for 
datasets with the same statistical properties is the creation of 
“cloned” datasets to anonymize sensitive data [6]. In this 
case, it is important that individual data points are changed 
while the overall structure of the data remains similar.  This 
can be accomplished by performing a Kolmogorov-Smirnov 
test within the ISERROROK function for both x and y. By only 
accepting solutions where both the x and y K-S statistic is 
<0.05 we ensure that the result will have a similar shape to 
the original (Figure 8). This approach has the benefit of 
maintaining the x/y means and correlation as accomplished 
in previous work [8], and additionally the x/y standard 
deviations as well. This could also be useful for “graphical 
inference” [12] to create a collection of variant plots 
following the same null hypothesis. 

 
Figure 8. Example of creating a “mirror” dataset as in [8]. 

Example 6: 1D Boxplots 
To demonstrate the applicability of our approach to non 2D-
scatterplot data, this example uses a 1D distribution of data 
as represented by a boxplot. The most common variety of 
boxplot, the “Tukey Boxplot”, presents the 1st quartile, 
median, and 3rd quartile values on the “box”, with the 
“whiskers” showing the location of the furthest datapoints 
within 1.5 interquartile ranges (IQR) from the 1st and 3rd 
quartiles. Starting with the data in a normal distribution 
(Figure 9A) and perturbing the data to the left (B), right (C), 

edges (D, E), and arbitrary points along the range (F) while 
ensuring that the boxplot statistics remain constant produces 
the results shown in Figure 9.  

 
Figure 9. Six data distributions, each with the same 1st 
quartile, median, and 3rd quartile values, as well as equal 
locations for points 1.5 IQR from the 1st and 3rd quartiles. 
Each dataset produces an identical boxplot. 

LIMITATIONS AND FUTURE WORK 
When the source dataset and the target shape are vastly 
different, the produced output might not be desirable. An 
example is show Figure 10, where the data set from Figure 
7A is coerced into a star (Figure 10). This problem can be 
mitigated by coercing the data towards “simpler” patterns 
with more coverage of the coordinate space – such as lines 
spanning the grid, or pre-scaling and positioning the target 
shape to better align with the initial dataset. 

 
Figure 10. Undesirable outcome (C) when coercing a 
strongly positively correlated dataset (A) into a star (B). 

The currently implemented fitness function looks only at the 
position of individual points in relation to the target shape, 
which can result in “clumping” of data points and sparse 
areas on the target shape. A future improvement could 
consider an additional goal to “separate” the points to 
encourage better coverage of the target shape in the output. 

The parameters chosen for the algorithm (95% success rate, 
quadratic cooling scheme, start/end temperatures, etc.) were 
found to work well, but should not be considered “optimal”. 
Such optimization is left as future work. 

The code and datasets presented in this work are available at 
www.autodeskresearch.com/publications/samestats. 

CONCLUSION 
We presented a technique for creating visually dissimilar 
datasets which are equal over a range of statistical properties. 
The outputs from our method can be used to demonstrate the 
importance of visualizing your data, and may serve as a 
starting point for new data anonymization techniques. 
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