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Figure 1: Soft maps from one model to another computed using our optimization technique. The colored patches on the leftmost

model are mapped to the colored distributions over the models on the right. These soft maps acknowledge discrete left-right

and front-back symmetries as well as localized ambiguities including slippage along the pig’s back.

Abstract
The problem of mapping between two non-isometric surfaces admits ambiguities on both local and global scales.

For instance, symmetries can make it possible for multiple maps to be equally acceptable, and stretching, slippage,

and compression introduce difficulties deciding exactly where each point should go. Since most algorithms for

point-to-point or even sparse mapping struggle to resolve these ambiguities, in this paper we introduce soft maps,

a probabilistic relaxation of point-to-point correspondence that explicitly incorporates ambiguities in the mapping

process. In addition to explaining a continuous theory of soft maps, we show how they can be represented using

probability matrices and computed for given pairs of surfaces through a convex optimization explicitly trading off

between continuity, conformity to geometric descriptors, and spread. Given that our correspondences are encoded

in matrix form, we also illustrate how low-rank approximation and other linear algebraic tools can be used to

analyze, simplify, and represent both individual and collections of soft maps.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

A natural problem in geometry processing is that of finding a
smooth map between two surfaces. A reliable algorithm for
finding such a map can be used in pipelines for texture or an-
notation transfer, segmentation, morphing, and surface edit-
ing, among other applications within graphics. Outside of
graphics, ongoing research in vision and other fields makes
use of shape maps to create links between new inputs and

previously-analyzed data; for instance, a robot navigating an
unknown environment may try to map objects it encounters
to ones in some given database of objects it can manipulate.

Unless shapes are rigid motions or isometric deformations
of each other, it is difficult to define a single “best” map be-
tween most pairs of surfaces at point-to-point granularity.
This difficulty arises because there are at least two geomet-
ric sources of ambiguity complicating the mapping problem:
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Global ambiguity: Symmetric shapes may admit multiple
geometrically equivalent maps; for instance, human mod-
els often have left-right symmetries that generate two
equivalent maps in terms of the amount of geodesic dis-
tance distortion they induce. Note that the shapes might be
symmetric under a rigid transformation of space or under
an intrinsic symmetry (as in e.g. [OSG08, RBBK10]).

Local ambiguity: Shapes that are not exact isometric de-
formations of one another may admit an informative map
at some level of coarseness but not at the point-to-point
level due to scaling, slippage, or the absence of identi-
cal details. For instance, generating maps between a horse
and a dog model makes sense at the segment level be-
cause both animals have similar limb structures, even if
the structures within those limbs are different.

Additional ambiguities can result from a lack of context.
Without knowledge of the process used to obtain the target
from the source, it is impossible to know which maps are
semantically relevant, regardless of geometric cues.

Given these fundamental problems, a limitation of many
mapping algorithms is that they attempt to find a point-to-
point map with no more than a geometric prior, whether it
be rigidity, conformality, isometry, elasticity, or otherwise.
These methods are forced to make somewhat arbitrary deci-
sions as to the user’s desired map or, worse, unsuccessfully
attempt to combine often disjoint acceptable maps. Thus,
mapping algorithms that process a variety of shapes should
incorporate uncertainty when the mapping problem is itself
ambiguous. These ambiguities can be resolved with domain-
specific knowledge, semantic information, or other cues, or
they can be used to prompt the user for guidance.

In this paper, we propose soft maps, which generalize
point-to-point maps by embracing uncertainty as a funda-
mental part of the mapping process. In this setup, maps are
expressed as conditional distributions of a distribution on the
product of the two surfaces, which we call a soft correspon-

dence. In other words, we attach to each pair of regions on
the two surfaces a probability indicating the likelihood that
these regions should be mapped to one another.

A principled discretization of this formulation is possible
by partitioning the surfaces into unions of patches and rep-
resenting a soft correspondence as a probability distribution
over the product of the patch index sets. This construction
results in a discretized soft correspondence represented as a
matrix whose rows and columns are the forward and back-
ward soft maps after normalization. Point-to-point maps can
be represented as soft maps using permutation matrices.

The soft map framework is capable of handling both local
and global ambiguities, as illustrated in Figure 1. Here, given
only geometric information, we can compute a soft mapping
where the front hoof of a pig model is mapped ∼50% to each
of the front hooves on a different pig; the back of the source
pig is mapped to a larger region on the target pig’s back,

since the lack of distinguishing geometric features makes a
more precise mapping impossible. Similarly, the map in Fig-
ure 1 between human models acknowledges their approxi-
mate left-right and front-back symmetries.

One important property of soft maps is continuity, which
must be redefined probabilistically to ensure that nearby
points on one surface yield nearby distributions on the other.
We define infinitesimal and discretized notions of soft map
continuity and show how Earth Mover’s Distances can mea-
sure the discrete continuity of a soft map. With this met-
ric and others describing a soft map’s spread and alignment
with geometric features, we provide a convex optimization
approach for computing soft correspondences.

Once we have computed a single soft map between two
shapes or multiple soft maps within a collection of shapes,
the fact that soft maps are expressible as matrices allows for
straightforward analysis using the standard linear-algebraic
toolkit. We show how to make use of Principal Compo-
nents Analysis (PCA) and related methods to reveal structure
within collections of soft maps, obtaining low-dimensional
representations of individual soft maps and pairwise maps
between members of a collection of shapes.

1.1. Contributions

We introduce a probabilistic interpretation of maps between
surfaces and show how they can be obtained, manipulated,
and interpreted. In particular, we provide:

• A theoretical definition of soft maps, including a defini-
tion of continuity and a principled discretization (§3)

• A convex optimization method for finding soft maps that
explicitly trades off between continuity, matching of geo-
metric descriptors, and softness (§4)

• Model reduction methods for analyzing individual and
collections of soft maps (§5)

2. Previous Work

The literature on mapping between surfaces is vast, and we
refer the reader to [vKZHCO10, CLM∗11, BBK08] for gen-
eral summaries of previous work. The idea of computing a
mapping by minimizing descriptor distances and preserving
continuity is common to many of the works surveyed here.

Recent work on mapping reveals several approaches
incorporating geometric cues and matching strategies.
[BBK06] embeds one surface into another using Generalized
Multidimensional Scaling to minimize distortion. [LF09,
KLCF10,KLF11] explore and combine maps from the group
of Möbius transforms of a surface, which can be constructed
efficiently and include isometries. [GBAL09, SOG09] intro-
duces the heat kernel signature (HKS), assigning a pointwise
signature based on heat flow, and [OMMG10] uses a related
technique to find maps with guaranteed behavior for nearly-
isometric surfaces. The HKS construction is applied to the
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wave equation in [ASC11] for experimentally more infor-
mative signatures. The algorithms in these and other papers
find a single sparse or full map, whereas our new represen-

tation of a map can encode multiple correspondences.

The idea of a “fuzzy map” in terms of probability ma-
trices was introduced in [WL78] using simple heuristics
to construct and update maps. More recently, the Möbius
transformations sampled in [LF09] generate a “fuzzy corre-
spondence matrix” guiding point-to-point matching. Fuzzy
schemes are also used to relax point-to-point mappings as
in [BBM05,RCB97]. A probabilistic approach to mapping is
taken in [ASP∗04, TBW∗11], though here distributions are
over non-soft point-to-point mappings and thus subject to
the rigidity of point-to-point schemes. Our optimization for
finding soft maps has commonalities with theirs since their
energy can be separated into unitary and binary terms, al-
though ours is convex and thus not prone to local minima.

Some existing approaches use convex optimizations that
are related to ours. The continuous relaxation of the integer
program in [WSSC11] could be viewed as a soft map, al-
though the output is harder to interpret. The relaxation of the
graph isomorphism problem in [SU97] provides some anal-
ogous constructions to the constraints on and desired prop-
erties of soft maps for graphs; a related construction on hy-
pergraphs is provided in [ZS08]. Earth Mover’s Distances
(EMD) also have been applied to optimizations for several
related vision and geometry problems. For instance, [LD11]
uses them to construct a distance metric between surfaces
invariant to Möbius transformations, and [HZTA04] uses
EMD to guide image registration.

The work closest related to soft mapping, however, is
that on measure couplings and Gromov-Wasserstein dis-
tances [Mém07, Mém09, Mém11]. Here, correspondences
are discretizations of measure couplings, or probability dis-
tributions over the product of two surfaces whose marginal-
izations to the surfaces yield areas. The method is only
acceptable for nearly-isometric surfaces admitting area-
preserving correspondences. Furthermore, the optimization
problem for finding measure couplings is non-convex with
multiple local optima when either surface is symmetric.

Applications of soft maps overlap significantly with those
of point-to-point mapping. Some overlapping applications
are better suited to the probabilistic context. For instance,
annotation transfer and other tasks operating on shapes at a
coarse level can use soft maps directly. Additionally, since
soft maps can encode multiple point-to-point maps, meth-
ods like [NBCW∗11] for finding consistent maps within a
collection may have a higher chance of success.

3. Soft Maps

We introduce soft maps between embedded surfaces
M1,M2 ⊂R

3 and show how their continuous definition leads
to a discretization on triangle meshes. We then show how to

quantify key properties of soft maps that will be incorporated
into our linear programming construction in Section 4

3.1. Continuous Definition

Let M1 and M2 be two surfaces embedded in R
3 with area

measures μ1 and μ2, resp.; we will assume the surfaces
are rescaled so that μ1(M1) = μ2(M2) = 1. We can view
M1 ×M2 as a four-dimensional manifold with volume mea-
sure μ1 ⊗μ2 induced by μ1 and μ2.

The basic object we consider is a probability measure
P12 ∈ Prob(M1 ×M2), which we call a soft correspondence

between M1 and M2 (see Figure 2(a)). We view P12(U ×V )
as the probability that a pair of points p1 ∈ U ⊆ M1 and
p2 ∈ V ⊆ M2 are related to each other. With this interpre-
tation, the uniform distribution in which all pairs of points
(p1, p2) are deemed equally likely to be related is given by
the measure μ1⊗μ2, while the relationship y = f (x) induced
by the mapping f : M1 → M2 is encoded by a δ-measure
whose support is the surface {x, f (x) : x ∈ M1} ⊆ M1 ×M2.

P12(U ×V ) ∈ [0,1] PU2(B) ∈ [0,1] P1V (A) ∈ [0,1]
P12(M1 ×M2) = 1 PU2(M2) = 1 P1V (M1) = 1

(a) (b) (c)

Figure 2: (a) A soft correspondence as a probability mea-

sure on the product of the surfaces M1 and M2; the soft maps

(b) from M1 to M2 and (c) from M2 to M1.

Given a soft correspondence P12 between M1 and M2, we
use conditional probabilities to define soft maps. In partic-
ular, for U ⊆ M1 and V ⊆ M2, we obtain the conditional
distributions PU2 ∈ Prob(M2) and P1V ∈ Prob(M1) given by

PU2(B)≡ P12(U ×B)

P12(U ×M2)
and P1V (A)≡ P12(A×V )

P12(M1 ×V )

for any A ⊆ M1,B ⊆ M2. We define the distributions PU2
and P1V to be the soft maps from U into M2 and from V

into M1, resp. The quantity PU2(A) gives the probability that
a randomly chosen point p2 ∈ M2 will be in A given that
it possesses a counterpart in U ; an equivalent interpretation
holds for P1V (see Figure 2(b,c)).

3.2. Discretization

We partition M1 and M2 into disjoint subsets U1, . . . ,UN1 ⊆
M1 and V1, . . . ,VN2 ⊆ M2 with M1 = ∪N1

i=1Ui and M2 =

∪N2
i=1Vi. In practice, we model M1 and M2 with triangle

meshes and divide them into patches using geodesic Voronoi
cells about geodesic farthest-point samples. An approxi-
mate version of P12 with piecewise constant density on each
Ui ×Vj with respect to μ1 ⊗μ2 is:

P̂12(E)≡ ∑
i j

ai j ·
μ1 ⊗μ2((Ui ×Vj)∩E)

μ1 ⊗μ2(Ui ×Vj)
∀E ⊆ M1 ×M2

c© 2012 The Author(s)
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Substituting E =Ui×Vj for fixed i, j and enforcing P12(Ui×
Vj) = P̂12(Ui ×Vj) shows that ai j = P12(Ui ×Vj). These sat-
isfy ∑i j ai j = 1 since the partitions of M1 and M2 are dis-
joint, so the matrix A =

(
ai j

)
defines a probability distribu-

tion over {U1, . . . ,UN1}×{V1, . . . ,VN2}. In this construction,
the conditional probabilities P̂Ui2 and P̂1Vj

are given by the
normalized rows or columns of A. Note that point-to-point
maps can be represented by taking A to be a permutation
matrix and varying the sizes of the partitions.

(a) (b) (c)

Figure 3: (a) Two maps from S1 to itself, (b) a soft corre-

spondence superposing the two maps on the torus S1 × S1,

and (c) the corresponding matrix A.

It can be difficult to visualize distributions on the four-
dimensional product M1 × M2. If M1 and M2 are curves,
however, the two-dimensional product M1 ×M2 can be vi-
sualized on the plane or using a toroidal topology. We thus
show an example in Figure 3 of a soft correspondence be-
tween the circle S1 and itself on the torus S1 × S1. This dis-
tribution represents a convex combination of two point-to-
point maps, illustrating the expressive power of soft maps.

3.3. Geometric Properties of Soft Maps

Descriptor Matching. Often with each region U ⊆ Ms for
each s = 1,2 we can associate a descriptor φs(U) ∈ R

k de-
scribing the geometry of U . We measure a soft map’s non-
conformity to these descriptors using the functional:

Eφ(A) = ∑
i j

ai jφi j (1)

where φi j = ‖φ1(Ui)− φ2(Vj)‖. The quantity Eφ(A) is the
expected mismatch φ with respect to the probability distribu-
tion determined by A. If Eφ(A) is small, the correspondences
suggested by A align with the regions matched by φ. We take
φi j to be the mean L1 difference between wave kernel signa-
tures [ASC11] of vertices in Ui and Vj.

Optimizing Eφ would place a single 1 in the entry of A

corresponding to the smallest value of φi j. Restricting A to
have equal row and column sums is not a strong enough reg-
ularizer, as this (when N1 = N2) yields a linear assignment
problem [BDM09], whose solution is a permutation matrix.
These techniques do not incorporate higher-order relation-
ships between pairs of points. Thus, we must introduce ad-
ditional energy terms to find a reasonable soft map.

Continuity. A desirable soft map should have some de-
gree of continuity, which we define using the generalized

Earth Mover’s Distance (GEMD) as in [PW09] for the dis-
tance between rows or columns of A. That is, suppose c =
(c1, . . . ,cN) and c′ = (c′1, . . . ,c

′
N) with ci,c

′
i ≥ 0 ∀i and the

cost for transport between buckets i and j is di j > 0. Further-
more, since we won’t assume ∑i ci = 1 or ∑ j c′j = 1, we take
a “garbage bin” cost d ≥ di j∀i, j. Then we define

EGEMD(c,c
′) = min

fi j ,gi,g′j

[
d

(
∑

i

gi +∑
j

g
′
j

)
+∑

i j

di j fi j

]

subject to gi +∑
j

fi j = ci ∀i g
′
j +∑

i

fi j = c
′
j ∀ j

fi j,gi,g
′
j ≥ 0 ∀i, j (2)

EGEMD measures the minimum flow ∑i j fi j from one distri-
bution to another with ground distance di j with the option of
disposing mass g at cost d. It is easy to show that EGEMD is
a distance metric between distributions c,c′ ∈ (R+)N .

Continuity for soft maps means that nearby regions on
one surface should map to nearby distributions with respect
to GEMD on the other. Thus we define both E1 = {(i, j) :
Ui and Uj are neighbors on M1} and E2 analogously for M2,
and we measure the continuity of a map using the energy

Econt(A) = max
{

max
(i, j)∈E1

EGEMD(Arow i,Arow j),

max
(i, j)∈E2

EGEMD(Acol i,Acol j)
}
.

The costs are given by geodesic distances between Voronoi
centroids. While Econt is nonlinear in A, it can be computed
using a linear program in A and the flow values fi j,gi,g

′
j.

The above energy is well-founded in the continuous ver-
sion of the soft maps formalism. To see how, we first define
a map Ψ : M1 → Meas(M2) from points in M1 to measures
on M2 as follows. If P12 ∈ Prob(M1 ×M2) satisfies dP12 =
ρdμ1 ⊗ dμ2 for some density ρ : M1 × M2 → R, then we
let Ψ(x)≡ ρ(x, ·) dμ2. The distance between such measures
can be defined using a variant of the L1-Wasserstein dis-

tance between probability measures and computed by solv-
ing a Monge-Kantorovich optimal transportation problem

[Vil03]. This is the continuous version of the GEMD. Note
that this formulation makes available other optimal trans-
portation distances such as the Lp-Wasserstein distances.
Now if M1 carries the topology induced by geodesic distance
and Meas(M2) the topology induced by continous GEMD,
then the local Lipschitz constant of Ψ at x ∈ M1 is

Lipx(Ψ) = lim
r→0

sup
x′∈Br(x)\{x}

EGEMD(Ψ(x),Ψ(x′))
dist(x,x′)

and the Lipschitz constant of Ψ is supx∈M1
Lipx(Ψ). There-

fore Econt can be understood, up to a distance factor on the
order of the distance between Voronoi centers, as a mea-
sure of the Lipschitz constant of Ψ and of the map Ψ′ :
M2 → Meas(M1) constructed as above with the roles of M1
and M2 reversed. From this point of view, our approach to

c© 2012 The Author(s)
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soft mappings can be seen as a generalization of Lipschitz-
minimizing maps (e.g. [MST06]) to a probabilistic setting.

Sharpness. Suppose M1 and its accompanying patches ad-
mit an exact self-symmetry τ : M1 → M1, as in the left-right
symmetry of an idealized human model. Then, modifying
P12 ∈ Prob(M1 ×M2) via P̃12(U ×V )≡ P12(τ(U)×V ) will
not affect a soft map’s descriptor matching or continuity. In
this case, it is unclear whether an optimization trading off be-
tween continuity and descriptor matching should return P12,
P̃12, or a convex combination thereof.

Thus, one final useful quantity for understanding soft
maps characterize how spread out the probabilities are in the
mapping matrix. We measure this sharpness via

Es(A) = ∑
i j

a
2
i j = ‖A‖2

Fro . (3)

This quantity is convex in the entries of A and achieves its
maximum value at a permutation matrix and its minimal
value at the uniform distribution. It allows us to distinguish
between different soft maps that equally obey continuity and
descriptor matching constraints. Since we do not want to add
artificial information that is not signalled by the geometry,
we seek the maximally spread map of all possible ones with
similar descriptor matching and soft continuity.

4. Creating Soft Maps

4.1. Finding Soft Correspondences via Optimization

We propose optimizing the following energy functional to
find soft correspondences between M1 and M2:

Emap(A) = Eφ(A)+λEcont(A)+βEs(A) (4)

where a “softness factor” λ∈ [0,∞) and a “sharpness factor”
β ∈ [0,∞) control the tradeoff between descriptor matching,
continuity, and sharpness.

While optimizing Eφ alone yields a trivial matrix A match-
ing one pair of patches, adding Econt allows the optimal cor-
respondence to be soft. It encourages a tradeoff between the
quality of the descriptor match and continuity needed to re-
solve local and global ambiguities in the matching problem.
The parameter λ controls this tradeoff; as λ becomes suffi-
ciently large, A becomes the uniform 1/N1N2 matrix satisfy-
ing Econt(A) = 0. Large β also encourages the uniform ma-
trix, but in our case as explained in Section 4.2 we actually
choose relatively small β so that the Es term acts as a tie-
breaker when the other terms are ambivalent about multiple
maps. This is analogous to the role of Tikhonov regulariza-
tion in least squares problems [TA77].

As we showed in Section 3.3, each term in (4) is com-
putable using a convex program in A and some auxiliary
variables. To reduce the number of variables, we use the for-
mulation of EMD stated in [Tak10], approximating geodesic
distances on the surface with distances along the patch con-
nectivity graph with edge lengths using geodesic distances

between patch centers; we find this approximation yields
much faster output with little to no difference in map quality.

4.2. Finding λ and β

For fixed λ,β, the optimization problem (4) provides a con-
vex formulation for obtaining a soft map. We choose a small
value of β and propose an automatic choice of λ as follows.

Figure 4: The two terms in (4) as functions of λ for a typi-

cal pair of meshes. Note the sharp transition to the uniform

distribution when λ becomes large.

As illustrated in Figure 4, for fixed β, the transition of A

to a uniform matrix as λ increases is not smooth but rather
has a phase transition. We find that the largest λ before the
map becomes uniform yields the best soft maps without in-
stabilities due to values φi j being close but not identical.

When β = 0 we can examine the dual of the resulting lin-
ear program to reveal a modification that computes the exact
λ value we desire and its accompanying soft map. This sur-
prising result, outlined in Appendix A, avoids binary search
on λ and instead allows our computation to occur in a single
step. We also show how to modify the resulting objective to
deal with the β > 0 case for small β.

Figure 5 shows examples of soft maps computed using
the technique above. Our method reliably and robustly gen-
erates continuous maps that respect geometric criteria. Maps
between near-isometric shapes tend to produce the sharpest
soft maps, while those between non-isometric but related
shapes (e.g. ants to quadrupeds) contain larger spread.

4.3. Implementation Details

Our method for computing soft maps was implemented in
C++ using IBM CPLEX as a convex solver [IBM]. Run-
ning on a four-core 2.4 GHz i7 notebook processor with 8
GB of memory, the optimization from Section 4 took two to
five minutes to generate each of the 80-patch maps in Fig-
ure 5. Figures in this paper take the garbage cost d in (3.3)
to be 10× the maximal geodesic distance between adjacent
Voronoi centers. The main part of our pipeline taking appre-
ciable time is the convex optimization for computing maps.

5. Analysis and Decomposition of Soft Maps

Unlike point-to-point maps, the probability matrices we have
computed are amenable to linear-algebraic analysis to under-
stand the information they encode.

c© 2012 The Author(s)
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→ → →

→ → →

→ →
Figure 5: Examples of soft maps (source models on the left and targets on the right). To save space, we superimpose individual

soft maps like those in Figure 1 in a single target image. Multiple copies of a target are shown when the map is too spread-out

for superposition. The first two examples here show this technique applied to the same initial examples from Figure 1.

5.1. Bases for Mapping

Suppose we are given a soft correspondence matrix A= (ai j)
computed using the method in Section 4. Since our corre-
spondence is written in the identity basis, each row or col-
umn of A encodes a map from a single patch on M1 or M2,
resp. This representation is not necessarily the most com-
pact. For instance, if a surface admits a symmetry that can-
not be resolved by φ, then symmetric patches always should
be coupled. Similarly, if there is not enough evidence to dis-
tinguish nearby patches, they also can be coupled.

Once we have computed A, however, we can seek bases
on M1 and M2 that better respect such couplings a posteri-

ori. In particular, projecting the uniform vector of ones out of
the columns of A and performing a singular decomposition
mimics the steps of Principal Components Analysis, yield-
ing an orthogonal basis (including the uniform vector) for
the column space of A. This basis provides a simple repre-
sentation of the couplings exhibited in the column marginals
of A, and the singular values provide an indication of the im-
portance of each basis vector. Explicitly including the uni-
form vector allows us to guarantee that our basis can repre-
sent probability distributions. A similar process can be car-
ried out on the rows of A for a basis on the target surface.

Figure 7: Singular values for

the basis in Figure 6.

Figure 6 shows eight
members of the basis M2
resulting from SVD anal-
ysis of a map in Fig-
ure 5. The basis reveals
patterns on M2 that should
be mapped together, re-
specting symmetries that
are not disambiguated by
φ; the basis on M1 is sim-
ilar. Such bases indicate
the mapping resolution and couplings that should be ex-
pected for continuous maps respecting a given φ. Figure 7

(a)

(b)

Figure 6: (a) The first eight SVD basis vectors from the first

map in Figure 5, sorted by decreasing singular value, and

(b) the same vectors “untangled” using [SBCBG11] to bet-

ter show their support. Bases are colored using the scale

below the images. These respect symmetries and are spread

depending on the usefulness of φ for mapping each patch.

shows a plot of the singular values from our decomposition.
These singular values have a relatively long tail, so low-rank
approximations of A can be obtained by projecting onto a re-
stricted basis; Figure 8 shows such a projection onto the first
nine basis vectors.

→
Figure 8: A low-rank map using the basis from Figure 6; it

is nearly indistinguishable from the original map.

c© 2012 The Author(s)
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5.2. Understanding Collections of Shapes

Using SVD bases as in Section 5.1 makes it possible to ex-
press a single map using a few basis vectors and a smaller
correspondence matrix. In some sense, the compactness here
is not surprising, since the bases are tailor-made for the map
in question. The two bases, however, live on M1 and M2 in-

dividually, so in some sense the map is only expressed in the
reduced correspondence matrix.

Consider now a collection of shapes M1, . . . ,Mn, each
with its own patch decomposition. We seek a “probabilistic
basis” on each shape that captures its maps to all the others.
Computing such a basis is a simple extension of our previ-
ous method: we simply concatenate the outgoing maps to all

other shapes, project out the uniform distribution, and per-
form SVD. Figure 9 shows the results of an experiment in
which a database of twenty shapes is mapped pairwise us-
ing the method in Section 4 and analyzed using this tech-
nique. The resulting bases, illustrated for one shape in Fig-
ure 9(b), are more robust than those from Figure 6 since they
are not subject to the particularities of a single map; they can
be “untangled” using the method in [SBCBG11] (shown in
Figure 9(c)) to illustrate their support more clearly, although
this process does not affect their span. Figure 9(d) shows that
approximation using these non-map-specific bases remains
relatively effective, demonstrating their generality.

Some of the highest “errors” in Figure 9(d) are along the
diagonal, which represents self maps. The fact that descrip-
tors match exactly can make the identity map dominate soft
mapping output regardless of symmetries, see Figure 10(a);
thus we leave them out of the SVD computation. Projecting
onto the shape’s mapping basis can alleviates this issue and
makes for more symmetric self mappings as in Figure 10(b).

(a) (b) (c)

Figure 10: Maps from a shape to itself with source (a) us-

ing the optimization from Section 4 (b) and after projecting

onto the reduced basis (c). The maps on the right are more

symmetric at the cost of being more spread out.

6. Discussion and Limitations

As a new map representation, soft correspondences have
properties and limitations that should be considered for fu-
ture research and for the using the algorithms as stated. Most
obviously, our method depends strongly on the choice of the
dissimilarity measure φ, and as noted in [ASC11] much work

remains to be done to find effective descriptors in the non-
isometric case. That said, as illustrated in Figure 11, our
method is more robust to errors and inaccuracies in φ than
methods that match the values directly, since the continuity
term can help sharpen and disambiguate matchings.

Figure 11: A Gaussian in φi j from a map in Figure 1

(same source patches). Our optimization taking into account

GEMD continuity greatly sharpens the map and corrects the

incorrect tail-to-ear match shown in red.

Our optimization does not allow the shapes of the patches
on M1 and M2 to change. Choosing patches that align with
geometric features may make soft maps simpler or more
sparse, and choosing an effective φ in this case may be easier.
Even so, Figure 12 illustrates that our maps are fairly insen-
sitive to the choice of patches by showing maps to a surface
with different choices of Voronoi centers, except when they
group salient features in different ways. Also, our optimiza-
tion can handle surface decompositions on the order of hun-
dreds of patches but cannot generate soft correspondences at
the triangle level; while such dense mappings might be use-
ful in some applications, we find that our decompositions are
sufficient for capturing most geometric relationships.

→
Figure 12: Two maps from the source on the left to differ-

ent discretizations of the same shape; both are qualitatively

similar despite the differences in discretization of M2.

There are some applications for which point-to-point
methods need considerable adjustment to make use of soft
maps. For instance, it is not obvious how to transfer texture
directly from one surface to another using a soft map, since
using “expected” texture values likely will lead to smear-
ing and blurring. More generally, some intuition for point-
to-point mapping may stem from the diffeomorphism prop-
erties of a map, which no longer exist in the soft case.

c© 2012 The Author(s)
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(a) (b) (c) (d)

Figure 9: Pairwise maps between the models in (a) yield bases for mapping on the shapes including those in (b), which can

be untangled to yield bases (c). A subset of the models used in the paper is shown. The untangled basis reveals the power of

the reduced-rank representation, directly coupling symmetric patches that cannot be disambiguated using φ or continuity. For

instance, feet and legs are coupled in the untangled basis and thus always are mapped together. L2 soft correspondence matrix

approximation error using the truncated twenty-vector basis is shown in (d); the color bar scales between 0% and 25% error.

Test case Soft maps [KLF11]
Eav Emax ES Eav Emax ES

Pigs .67 .76 .017 .50 .74 .46
Humans .64 .76 .027 .45 .73 .46
Bearings .46 .60 .026 .30 .59 .48
Chairs .77 .86 .019 .26 .40 .25
Cats .72 .87 .020 .35 .63 1.87
Ants .73 .86 .021 .52 .81 .46
Four-legged .62 .72 .037 .42 .62 .47
Teddies .62 .73 .017 .36 .67 .46

Table 1: Validation and scaled sharpness for maps in Fig-

ure 5 and comparison with maps computed using [KLF11].

6.1. Validation

Using traditional measures of map distortion and agree-
ment with ground truth can be difficult for soft corre-
spondences, since they encode maps in a novel way. Even
so, given a sparse set of ground truth correspondences
(x1,y1), . . . ,(xm,ym) ∈ M1 × M2 we generate a validation
score as follows. Choose ki and li such that xi ∈ Uki

and
yi ∈Vli . Then, we score a map using the metric:

E(A) = 1
m

m

∑
i=1

1
2

(
Akili

max j Aki j
+

Akili

maxk Ak ji

)
∈ [0,1] (5)

This metric rewards soft correspondences whose peaks align
with the (xi,yi) pairs. We do not punish correspondences that
contain symmetries, so maps with high sharpness alone are
not rewarded. We show both average and maximum values
of E(A) when multiple ground truth maps are available.

Table 1 contains validation scores E and sharpness val-
ues ES for the maps displayed in Figure 5, scaled so that
patch-to-patch permutation maps have sharpness 1. We find
that our optimization yields maps whose peaks align well
with ground truth correspondences, even when WKS val-
ues do not match well. For comparison, we convert maps
from [KLF11] to soft correspondences by tabulating how
many points from each source patch are mapped to points
in each target patch in forward and backward maps and
re-normalizing; as expected, these maps have much higher
sharpness ES since they are converted from nearly contin-
uous point-to-point maps, but their average symmetric and

(a) (b)

Figure 13: Box plot of validation scores (a) and scaled

sharpness scores (b) for the pairwise human maps.

maximum validation scores are lower. Note that it is difficult
to accomplish a reverse comparison in which our soft cor-
respondences are converted to point-to-point maps, as the
process for “sharpening” a soft map to one or many point-
to-point maps is a topic for future research.

Figure 13 shows the results of a larger experiment in
which all pairs of twenty human models from the SHREC
2007 database were mapped to each other; validation scores
and scaled sharpness values ES for the resulting maps as well
as their SVD projections onto different numbers of bases
are shown. Interestingly, the validation scores increase af-
ter SVD projection due to phenomena like that illustrated in
Figure 10, at the cost of decreased sharpness.

7. Conclusions and Future Work

There are many ways to view soft correspondences within
the larger context of mapping algorithms. Primarily, they
serve as a new map representation acknowledging uncer-
tainty in the mapping problem, improving upon dissimilar-
ity matrices using continuity to cull false matches. They can
also be viewed as superpositions of symmetric or slippage-
prone point-to-point maps whose spread reflects potential
mapping quality latent in a given descriptor. Regardless
of interpretation, soft correspondences deal with local and
global ambiguities gracefully, admit straightforward analy-
sis, and can be computed using convex optimization.

Soft maps are a new way of representing and understand-
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ing maps that brings many possible avenues for future in-
quiry. Soft maps as we have computed them can be used
for tasks such as transfer of labels and other information
between meshes using expectations. Allowing Voronoi cen-
ters to shift or be clustered might make soft maps more
versatile, and replacing Voronoi regions with regions that
better conform to salient surface geometry may provide
more intuitive maps. Formalizing additional properties of
soft maps such as the behavior of modes may help gain
higher-level understanding of the underlying point-to-point
maps. Methods for sharpening soft maps would make meth-
ods like [NBCW∗11] applicable to cycle-based analysis of
soft map collections despite the increased spread resulting
from composition around long cycles. Our mapping basis
computations might provide methods for expressing the pos-
sible maps between surfaces in a collection using few pa-
rameters. It also may be possible to combine probabilistic
and functional approaches to mapping for alternative dense
and compact map representations [OBCS∗12].
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Appendix A: Parameter Choice

Let M1, M2 be two surfaces split into N1, N2 patches, respec-
tively. Let (Ū ,E1), (V̄ ,E2) be the “segment graphs” on M1,
M2, where Ū = {U1, . . . ,UN1}, V̄ = {V1, . . . ,VN2}, and E1,
E2 encode the adjacency of patches on the two models. Take
Φ to be the matrix of descriptor distances, and let A be the
soft correspondence matrix we wish to compute.

Consider the optimization (4). For now assume β = 0, so
that our problem becomes a linear program (LP). For con-
venience, we use φ,a ∈ R

N1N2 for the entries of Φ and A in
vector form. Then, the primal linear program takes the form:

minimize φT a +λy

subject to

(α) 1T a = 1

(γe) Cea +Dex = 0 ∀e ∈ E1 ∪E2

(ze) dT
e x − y ≤ 0 ∀e ∈ E1 ∪E2

Here, x is a vector of auxiliary variables required to compute
the GEMD, and Ce,De contain coefficients used to constrain
the GEMD computation explained in Section 3.3. The vec-
tor de contains unit coefficients for any variables containing
GEMD values and zeros elsewhere; thus, the constraint (ze)
ensures that y contains the maximum GEMD. Variables in
the above program are also constrained to be nonnegative.
The dual of this LP is as follows:

maximize α
subject to

(a) α1 + ∑
e∈E1∪E2

CT
e γe ≤ φ

(x) ∑
e∈E1∪E2

DT
e γe + ∑

e∈E1∪E2

zede ≤ 0

(y) − ∑
e∈E1∪E2

ze ≤ λ

The variables ze are constrained to be nonpositive and other
variables are unconstrained. We modify this dual to find the
value λ where the optimal soft correspondence A switches
from being nonuniform to uniform. Since λ is isolated in the
dual, we can turn it from a constant into a variable and turn
the old dual objective into a constraint (σ):

maximize −λ
subject to

(a) α1 + ∑
e∈E1∪E2

CT
e γe ≤ φ

(x) ∑
e∈E1∪E2

DT
e γe + ∑

e∈E1∪E2

zede ≤ 0

(y) − ∑
e∈E1∪E2

ze −λ ≤ 0

(σ) α =
||φ||1
N1N2

Intuitively, this LP seeks the minimal λ yielding a uniform
soft correspondence. In particular, the new constraint (σ) ap-
plies strong duality to enforce a uniform optimal correspon-
dence, since the optimal energy of the primal LP for the uni-
form map is ||φ||/N1N2, the sum of descriptor differences with
no contribution from GEMD. Again, ze is nonpositive. We
simplify this program by substituting α = ||φ||/N1N2 and then
dual this modified dual to get a new primal LP:

minimize φT a− ||φ||1
N1N2

1T a

subject to

(γe) Cea +Dex = 0 ∀e ∈ E1 ∪E2

(ze) dT
e x − y ≤ 0 ∀e ∈ E1 ∪E2

(λ) − y =−1

All variables again are constrained to be nonnegative. Fi-
nally, we eliminate y to obtain our final program:

minimize φT a− ||φ||1
N1N2

1T a

subject to

(γe) Cea +Dex = 0 ∀e ∈ E1 ∪E2

(ze) dT
e x ≤ 1 ∀e ∈ E1 ∪E2

If we solve this LP, then the optimal objective is equal to the
threshold −λ, where any larger λ would provide a uniform
distribution. Additionally, this LP finds the soft correspon-
dence A/||A||1 whose matching score is as good as possible
to make up for its EMD error at the λ threshold. To incorpo-
rate spread-based regularization, we simply add β‖A‖2

Fro to
the objective above for small β > 0. This modification main-
tains the convexity of the program, so interior-point solvers
do not suffer due to nonlinearity; in fact, the regularization
increases the conditioning of the convex program, which in
practice converges much faster with such a modification.
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