
Typing on Glasses:
Adapting Text Entry to Smart Eyewear
Tovi Grossman1, Xiang 'Anthony' Chen2, George Fitzmaurice1

1Autodesk Research
{firstname.lastname}@autodesk.com

2Carnegie Mellon University
xiangchen@acm.org

ABSTRACT
Text entry for smart eyewear is generally limited to speech-
based input due to constraints of the input channels. The
Swipeboard technique, recently proposed for ultra-small
touch screens such as smart watches, may be particularly
suitable for smart eyewear, as it supports eyes-free input.
We investigate the limitations and feasibility of
implementing Swipeboard on Google Glass, using its side
touch pad for input. Our first study reveals usability and
recognition problems of using the side touch pad to perform
the required gestures. To address these problems, we
propose SwipeZone, which replaces diagonal gestures with
zone-specific swipes. In a text entry study, we show that
our redesign achieved a WPM 15.2% higher than
Swipeboard, with a statistically significant improvement in
the last half of the study blocks. Overall, our main
contributions are the first smart eyewear text entry
techniques that utilize the built-in touch-sensitive input
area, and two studies that investigate their feasibility and
the associated human factor issues.

INTRODUCTION
Smart eyewear (e.g., Google Glass) enables always-
available access to information, yet only provides limited
interaction possibilities due to its small and wearable form,
making tasks like text entry extremely hard. While text
entry may not be a primary task on smart eyewear, there are
scenarios where a user may wish to enter text, e.g., quickly
replying to a text message, or updating one’s status on
social media.

Prior research has explored solutions to enable entering text
while wearing a head-mounted display. One solution is to
use a supplementary device, such as the Twiddler [13].
However, having to carry or be tethered to an additional
device defeats the purpose of smart eyewear, which is
meant to provide unobtrusive and immediate access to
information. Vision-based techniques have also been
explored [12]; yet they remain a suboptimal solution as
such techniques are often computationally expensive and
could potentially be error-prone due to the uncertainty of
the environment. Voice input may be a useful option in
certain situations, but when surrounded by peers its usage

might incur privacy concerns and become socially
unacceptable [21].

Some recent research on wearable text entry has taken a
gesture-based approach using a device’s touch input. For
example, Swipeboard is a watch-based technique that
specifies each character using only two touches: the first
touch selects a subgroup of keys and the second touch
specifies a key within the subgroup [5]. Such gesture-based
methods offer a subtle, effective and low-cost text entry
solution. More importantly, the technique is target-agnostic,
making it a promising candidate for use on, for instance, the
side touch pad of Google Glass. However, this technique
has yet to be implemented, deployed or tested on smart
eyewear.

In this paper we investigate the limitations and feasibility of
applying a gesture-based text entry technique (Swipeboard)
to a smart eyewear form factor (Google Glass). In our
initial study we evaluate the recognition accuracy of the 8
directional swipes required for Swipeboard, and analyze
how well these swipes can be distinguished from one
another, when performed with the Google Glass touchpad.
The results show that the unique configuration of the
Google Glass touch pad makes it difficult to distinguish
between the 8 directional gestures, and that diagonal swipes
take longer to perform.

To address this issue, we proposed a new design called
SwipeZone. SwipeZone takes advantage of the relatively
wider dimension on the side touch pad and divides it into
three zones. The diagonal gestures of Swipeboard are
replaced with zone-specific vertical gestures (Figure 1).

Figure 1. SwipeZone divides the width of the Google Glass side

touch pad into three zones, swiping down on the front zone
selects the lower-left group ‘ZXC’, then swiping to the back

selects ‘C’ – the rightmost key in the group.

Our second study tests both Swipeboard and SwipeZone on
a Google Glass unit through a series of text entry tasks. The
results show that gesture-based text entry is feasible on a
smart eyewear touch pad. The SwipeZone redesign
outperforms the original Swipeboard technique (15.2%

Submitted to
CHI 2015

Page 1

faster), however, only reaches statistical significance in the
final half of the study. Further, we compare the results to
prior studies to show that SwipeZone’s entry speeds are
similar to those achieved on smart watch devices, yet with a
higher error rate. Overall, our main contributions are the
first smart eyewear text entry techniques that utilize the
built-in touch-sensitive input area, and two studies that
investigate the feasibility of the techniques and the
associated human factor issues.

RELATED WORK
To understand the challenges of smart eyewear’s small and
wearable form factors, we review text entry research for
both head-mounted displays and devices with very small
input areas. We also review gesture-based text entry
techniques to inform our design on smart eyewear.

Text Entry Techniques for Head-Mounted Displays
Head-mounted displays have been used to create immersive
or mobile experiences with digital information. However,
their immersive and mobile nature also prevents the user
from accessing regular input devices to perform text entry
tasks. To solve this problem, researchers have experimented
with various customized input devices. Twiddler is a one-
handed chording keyboard that allows for eyes-free text
entry for mobile or wearable devices [13]. The chording
glove embeds the buttons into the glove where users can
specify characters directly using hand gestures [20]. Liu et
al. propose a vision-based mechanism that uses a head-
mounted camera to recognize mid-air handwriting [12].

Other researchers focused on using a wrist-worn input
device for text entry, which is also a potential solution for
typing while wearing a head-mounted display. For example,
Airwriting employs inertial sensors and machine learning
techniques to recognize handwriting based on the hand’s
motion [1]. One-key keyboard augments one single key to
sense a user’s fingertip position, thus allowing typing on a
full QWERTY keyboard [8].

While all this work has demonstrated various possible text
entry solutions for head-mounted display, they often require
additional input devices, or rely on vision-based recognition
that is potentially high-cost and error-prone. Our goal is to
enable a text entry mechanism that is lightweight and self-
contained within modern head-mounted displays, such as
the Google Glass.

Text Entry Techniques for Small Form Factors
Past work has explored various text entry techniques for
devices with very small form factors. Some researchers
propose the use of motion sensors, e.g., using tilting to
specify characters for text entry [19, 26]. MultiWidget uses
a dialing gesture along the watch’s edges to specify a
numeric value [2]. Zoomboard brings the zoomable user
interface [3] idea to the design of a QWERTY keyboard on
very small touch screens [18].

Another approach is using alternate key mapping, such as
chording, key selections or gestural shortcuts. For example,

Wigdor and Balakrishnan adds three chording keys to speed
up typing on a numeric phone keypad [27]. Mackenzie
demonstrates the use of three keys to enable selection-based
text entry [14]. The 1line keyboard incorporates touch into
key selection, reducing the keyboard into one line of keys
[11]. Gestural shortcuts can also be effective with small
form factors. EdgeWrite uses stylus-based gestures guided
by the physical edges of a device, thus making it easier and
faster to perform [27]. Swipeboard specifies a character by
two swipes: novices learn the gesture by swiping to locate a
specific key while experts gradually learn and memorize the
swipe combination for each character [5].

Importantly, gesture-based input like Swipeboard is ‘target-
agnostic’ [28], making it promising for smart eyewear, as
absolute touch coordinates are never required. However,
aside from a proof-of-concept video of the 1line keybaord1,
we are unaware of any implementations or evaluations of
such techniques for smart eyewear.

Gesture-based Text Entry Techniques
To take a closer look at gesture-based text entry, we
summarize two key steps for designing such techniques.

1) Encoding the characters into a gestural vocabulary.
Chen et al. summarized two ways of encoding characters: a
continuous approach maps a word or a character to a
continuous stroke (e.g., Graffiti [4], EdgeWrite [27], Shark2
[9]), and a discrete approach maps each character to a
number of symbolic tokens (e.g., H4-Writer uses a base-4
encoding [15] and Quikwriting uses base-9 [20]).

2) Designing techniques to perform the gestures. The next
step is concerned with designing interaction techniques for
the users to perform the gesture and specify the encoded
character. Continuous encoding typically uses touch or
stylus input as it fits well with its continuous nature.
Discrete encoding, however, often has design options. A
naïve approach is simply letting users type in the code from
their rote memory, such as using Morse code. Most
successful discrete solutions, however, often employ certain
menu selection techniques that allow users to recognize and
choose the codes rather than recalling them. For example,
Quikwriting [20], H4-Writer [15] and Swipeboard [5] all
use techniques akin to a marking menu [10].

However, depending on the form factor of the device and
its screen real estate, marking menus might not be the best
choice (for instance, considering a short rectangular touch
area). There are other techniques that repurpose the original
marking menu design to overcome its limits. For example,
Zhao et al. introduced the ideas of zone menu [30], which
divides a large marking menu into smaller ones located in
separate zones, thus reducing the complexity of specifying
precise orientation when selecting an item. Their polygon
menu [30] has a similar idea: both a stroke’s orientation and
its position are used to specify an item. To accelerate multi-

1 http://minuum.com/google-glass-keyboard/

Page 2

level selection, Zhao and Balakrishnan studied the
technique of using small discrete strokes and found it to be
faster and more effective than a continuous one [31]. This
work in menu selection can potentially serve as guidelines
for our work on gestural text entry on smart eyewear.

ADAPTING SWIPEBOARD TO SMART EYEWEAR
To adapt the gesture-based Swipeboard technique to smart
eyewear, we first review its design and performance model.
We then describe our implementation and initial experience
of using it on the Google Glass.

Reviewing Swipeboard: How It Works
Swipeboard is a recently developed text entry technique
that encodes each alphabetic character into a series of two
touch actions. The technique utilizes the traditional
QWERTY keyboard layout, to allow users to leverage their
existing spatial memory of character locations.

The keyboard is divided into nine regions (Figure 2a), each
containing 3 (e.g., ‘ASD’) or 4 (e.g., ‘RTYU’) characters.
The first touch action is used to select the desired region.
The swipe is in one of 8 directions (e.g. swiping left for
“ASD” or up and to the right for “IOP”.) A tap is used to
select the middle region (“FGH”). Once a region is
selected, a zoomed in view is displayed (Figure 2b).

The second action is used to select the desired character
within a region. Swiping left selects the left character,
tapping selects the center character, and swiping right
selects the right character. In the one case of four characters
(‘RTYU’), swiping left selects ‘R’, up-left selects ‘T’, up-
right selects ‘Y’ and right selects ‘U’. The user can swipe
down to cancel the selected region and return to the first
level keyboard view.

Additional gestures are used for other functions. A double-
swipe down-left deletes a character, and double-swipe
down-right enters a space, and a double-swipe up switches
to a symbol and number keyboard.

An important property of Swipeboard is that it is target
agnostic: the actions can occur anywhere on the display,
and no spatial target selection is required. This makes it
particularly appropriate for smart eyewear, since users
cannot see where their finger lands on its side touchpad.

Performance Model
A four-stage performance model is used to describe the
execution time (T) for individual characters using the
Swipeboard technique. Each character consists of two input
events. Each input event consists of a planning phase, when
the finger is up (Tu1, Tu2), and an action phase, when the
finger is down (Ta1, Ta2). Thus, the completion time for a
character is as follows:

T = Tu1 + Ta1+ Tu2 + Ta2
Chen et al. used previous performance model data to
estimate that in optimal conditions an expert could perform
at 464ms per character, or 25.87 WPM.

Figure 2. The original Swipeboard technique. a) The first
swipe specifies one of the nine regions subdivided from a

QWERTY keyboard. b) The second swipe specifies the
character, in this example, ‘D’. Figure from Chen et al. [5].

Adaptation to Smart Eyewear
Adapting any text entry technique to smart eyewear raises
some questions. First, it is important to discuss the
motivation for requiring text entry at all. While we do not
expect users to compose long emails or perform intense
document editing using smart eyewear, we feel it is likely
there will be cases where users will want access to text
entry. Examples include: composing a short tweet or text
message, looking up information on the web, or searching
for an app or contact name. While speech input may be
possible, there are situations where speech is not socially
acceptable [21], or does not perform well [7].

Thus, our goal is to explore alternate approaches to support
text entry on smart eyewear, focusing on utilizing its built-
in touch-sensitive area. The Swipeboard technique,
originally deployed on a watch-sized touch screen, is a
promising candidate for an exploratory implementation.

Implementation
In our initial implementation, we used a Google Glass unit
and developed a standalone Android application using the
ADT plugin for the Eclipse IDE. The initial implementation
exactly reproduced the Swipeboard technique. The X and Y
coordinates of the touch events were obtained through the
Android MotionEvent object that the Google Glass touch
pad produces. There were some interesting observations
from this initial implementation.

First, it was unclear how to map the X direction from the
input to display. Because the left and right swipes are
actually in the forward and backward directions, a 90°
rotation is required. Depending on the direction of this
rotation, the X direction could be mapped in two ways.

Second, there seemed to be an advantage of using the
Google Glass side touch pad, because the finger never
occludes the display of the keyboard, unlike the previous
small display implementation. As such, the user has an
opportunity to see the character map at all times.

Third, taps, which were defined by a travel distance of less
than 10 pixels, were sometimes being recognized as swipes.
This is due to the higher pixel density of the input device.

Most importantly, the diagonal swipes, which were detected
at 45° angles, were difficult to perform. The short and wide

Page 3

nature of the touchpad afforded wider diagonal gestures at
an angle much less than 45°.

To better understand and address these final two issues, we
performed an experiment to investigate how accurately
users could perform the atomic gestures required for the
Swipeboard technique, on the Google Glass touch pad.

STUDY 1 – ATOMIC GESTURES
The Swipeboard technique uses 8 directional gestures and a
tap as the building blocks for text entry. The technique was
successfully validated on a watch-sized input area (12mm
by 12mm). However, the dimensions of the touch pad on
smart eyewear may be quite different. For example, with
Google Glass, the touch pad is 3” by 0.41”, with a
resolution of 1366x187. It is unclear how well
Swipeboard’s atomic gestures can be performed and
distinguished on a touch pad with this unique form factor.
In this study, we investigate the feasibility of deploying
Swipeboard’s gestures on the touch pad of Google Glass.

Apparatus
The study was performed using a Google Glass unit. The
study software running on the Google Glass was written
using the ADT plugin for the Eclipse IDE. The device was
tethered to a laptop via a USB cable so that the screen
output could be monitored by the experimenter.

Participants
We recruited 10 participants (1 female, 9 male), with an
average age of 33.2. Nine of the participants were right
handed and all participants used their right hand for input,
as this is the side that has the touchpad on the Google Glass
device. The participants were recruited from our institution
and were not compensated. None of the participants had
extensive experience with the Google Glass system.

Design
A repeated measures within-participant design was used.
The independent variables were Direction (N, NE, E, SE, S,
SW, W, NW, TAP) and Block (1-8). Participants performed
the study in one session lasting approximately 10 minutes.
The session was broken up into 8 blocks. Each block
consisted of 36 trials, with each gesture appearing four
times, in randomized order. This resulted in a total of 288
trials per participant, and a total of 2880 data points overall.

Procedure
Participants sat in a chair facing a black background, which
allowed them to clearly see the content on the Google Glass
display. The background was approximately 2 feet away
from the user’s head position. We allowed users to rest their
elbows on the chair armrest to prevent fatigue.

The trial started by displaying the gesture direction. An
arrow inside a square was used for the eight directional
strokes, and a dot in the middle of the square was used for
TAP (Figure 3a). The user then performed the associated
gesture by swiping on the side touch pad. We mapped the
right side of the display to the back of the Google Glass
touch pad, so a swipe from front to back would perform the

EAST stroke (Figure 3b). This mapping seemed more
intuitive to users during pilot testing, and is the default
Google Glass mapping.

Figure 3. a) Exemplar visual stimulus (NE, TAP, S); b)

illustration of the mapping of an EAST stroke.

The start and end coordinates of each touch event were
logged, as was the time between the two events. There were
no “errors” for this study, since the purpose was to measure
users’ accuracy of performing the gestures. However, if
either the X or Y component of the stroke was in the
opposite direction of the correct input, the input was
ignored and the user was prompted to try again. Such cases
indicated a mistaken interpretation of the desired gesture,
not an inaccuracy in performing it. When a gesture was
entered, the next trial was immediately displayed.

Results and Analysis
The main focus of our analysis is on the vector (X, Y)
indicating the directionality of each atomic gesture. We
also provide an analysis on execution times.

Analyzing and Visualizing Swiping on the Glass
We illustrate the end points for each atomic swipe/tap
gesture using a scatterplot in Figure 4. Each gesture is
color-coded. The scatterplot shows the X coordinates of the
horizontal and diagonal gestures are ‘stretched’, due to the
wide form factor of the touchpad. Figure 5a shows the
normalized vectors computed from the original touch event
data. There is some degree of overlap between adjacent
gestures, which is further illustrated in Figure 5b: it shows
the possible ranges of each swipe, computed from their
mean ±3 standard deviations. It shows that while the
directionalities of the horizontal swipes (E and W) are fairly
uniform, the vertical and diagonal swipes, however, are
widely distributed and overlap with each other.

Figure 4. Scatterplot of each gesture’s end points in Study 1.

We summarize several key findings from this data. First,
using the vector angles to determine a stroke’s direction
may not be effective. Second, even if angles can be used,
the correct angles cannot be defined by evenly dividing a
circumference into eight 45° sectors. Due to the short and
wide form factor of the touch pad, the average angles used
for the diagonal strokes are highly skewed towards the X
axis. The average absolute deviation from the X axis for the
diagonal strokes is 18.8°.

Page 4

Figure 5. Directionalities of the atomic gestures from Study 1:

scatterplot of the normalized vectors computed from each
gesture (a); possible ranges of each swipe, computed from

their mean ± 3× standard deviation (b).

Building Models to Recognize Swiping Directions
To better understand the feasibility of utilizing this gesture
set, we build customized algorithms to show how well the
swipes can be recognized.

We use an iterative search to find the optimal parameters to
determine swipe direction. The first step in our recognition
is to classify a tap, which is defined by touch points whose
distance to the origins is smaller than a certain threshold.
We use a bounding box with dimensions tapx and tapy.

The next step distinguishes different swipes. We
experimented with two potential methods, based on either
the vector angle, or the vector coordinates.

Using the angle is a typical approach for determining a
swipe direction, where each swipe has an upper and lower
bound angle. For example, for the original Swipeboard
gestures, the swipes are divided by 45°. For example, if the
angle is between -22.5° and 22.5° it is recognized as EAST.
Due to the observed skewing, we parameterize the angles
for swiping on the Google Glass touch pad, as θ1 and θ2, to
define all 8 direction zones (Figure 6a).

Alternatively, the swiping directions can be defined by
Cartesian coordinates (corresponding to the end points of
the swipes). As shown in Figure 6b, we can define 8
quadrants by a δx and δy parameter. For example, a stroke
with X > δx and Y > δy would be classified as NE.

To find the optimal parameter values we perform a naïve
stepwise iterative search across all possible combinations of
the parameter pairs. We iterate with steps of 1px for δ and
0.1° for θ. We calculated the optimal parameters and
resulting accuracy on a per-user basis, and also across the
entire data set of all users. Defining accuracy on a per-user
basis shows what accuracies would be possible if there was
a required calibration, whereas the accuracies across the
entire data set show a more realistic scenario where a fixed
heuristic is applied for all users.

Figure 6. The gestures can be determined based on 1) angles,
θ1 and θ2, which divide the circumference into eight sectors; or
2) coordinates, δx and δy, which groups the end points of each

swipe into eight swiping directions.

Accuracy of Recognition
The algorithm first calculated the optimal values for
recognizing a TAP (tapx = 53, tapy = 42). The accuracy of
this step was 99.97%, indicating its high generalizability
across users. We fixed these parameters without further per-
user tuning.

The optimized values of θ1 and θ2 for each participant are
shown in Table 1, together with the resulting accuracies.
The average of all per user accuracies is 95.9%. When
optimizing across the entire data set, the values of θ1 and θ2
are 48.6 and 4.8, with an accuracy of 93.5%. This method
would result in a 6.5% error rate.

The optimal values of δx and δy are also shown in Table 1,
together with the resulting accuracies. The average of all
per user accuracies is 96.7%. When optimizing across the
entire data set, the values of δx and δy are 136 and 59, with
an accuracy of 94.0%. This method would result in a 6%
error rate.

Subject θ1 θ2 Accuracy δx δy Accuracy
1 44 2.6 97.2 175 39 98.6
2 43.8 7.8 98.6 112 62 97.9
3 49.2 5.4 85.1 268 60 91.3
4 50.4 5.6 96.9 134 57 95.8
5 33.2 3.6 92.7 189 58 92.7
6 44.8 11.2 99.0 92 65 99.0
7 51.6 6.4 96.2 82 62 98.3
8 49.2 3.8 97.6 141 56 97.6
9 20.2 4.2 99.3 190 67 98.3
10 47.6 6 96.2 83 83 97.6

Average 95.9 96.7
All 48.6 4.8 93.5 136 59 94.0

Table 1. Parameter values and resulting accuracies for θ1 and
θ2. Parameter values and resulting accuracies for δx and δy.

It can be seen in Table 1 that Subject 3 has lower accuracies
compared to the other users. Upon examining the data,
there is a slight rotation in Subject 3’s data points. This
could be due to how the user wore the glasses, and how
they oriented their head during the study.

Figure 7. Data points for Subject 3 are slightly rotated.

Page 5

Execution Times
A repeated measures ANOVA showed that the direction
had a significant effect on the execution time of the gestures
(F7, 63 = 6.753, p < .0001). Figure 8a shows that the
diagonals seem to be consistently slower than their adjacent
non-diagonal (straight) strokes. To confirm this, we
performed an additional analysis comparing the gesture
types (Straight, Diagonal, or Tap). The analysis showed
that the gesture type had a significant effect on the
execution time (F2, 18 = 43.4, p < .0001). The average times
were 163.04ms for Straight, 195.99ms for Diagonal, and
87.26ms for Tap (Figure 8b). Post-hoc pairwise comparison
using Bonferroni correction showed that the difference
between all pairs was significant (p < .05).

Figure 8. Execution time by gesture shows diagonal swipes
took significantly longer. Error bars are standard error.

SWIPEZONE
The results of our first study suggest that distinguishing
between Swipeboard’s eight-direction swiping may be
feasible, however with some level of error. The results also
show that diagonal strokes are significantly slower than
non-diagonal swipes and taps.

These results motivate us to propose an alternative design
that fits the input characteristics of smart eyewear. Our
proposed technique, called SwipeZone, requires only the
tap and four Straight swiping gestures, thus eliminating the
need to swipe diagonally, lowering the potential recognition
errors and reducing users’ execution time.

Our first modification in designing SwipeZone is to slightly
change to the layout of the QWERTY keyboard used in the
Swipeboard technique. The original layout requires swiping
diagonally at the second level when typing from the group
‘RTYU’. To eliminate diagonal swipes, we move ‘P’ to the
second row, and ‘L’ to the third, replacing the comma
(Figure 9). This provides a more consistent grouping, as
each group now contains three characters, eliminating the
need for diagonal swipes in the second level. It also
provides a more visually aligned layout.

Our second modification is to eliminate diagonals from the
first level, by replacing them with zone specific vertical
swipes, similar in spirit to Zone Menus [30]. In particular,
we leverage the relatively wide dimensions of the Google
Glass touch pad, dividing it horizontally into three equally
sized zones (front, middle and back, marked in Figure 10).

Figure 9. Swipeboard’s layout is consistent with QWERTY but

has a 4-character group. Our modified layout shifts the
locations of ‘P’ and ‘L’ so each group has three characters.

With SwipeZone, the diagonal gestures are replaced by
vertical swipes in the corresponding zones, as shown in
Figure 11a: for NE and SE the user swipes up and down in
the front zone; for NW and SW the user swipes up and down
in the back zone: for N and S, the user swipes up and down
in the middle zone. The taps and horizontal swipes are still
target agnostic. For example, to type ‘C’, the user first
swipes down in the front zone, which selects ‘ZXC’. The
user then swipes horizontally to select ‘C’ (Figure 1).

For tactile reference, we include a strip of tape on the
middle zone (Figure 10). The tape’s rough surface is easily
distinguishable from the other two zones’ smooth surfaces
and does not impact the touch sensing capabilities.

Figure 10. A strip of blue tape helps distinguish the three

zones through tactile feedback.

Figure 11. Visual lines help distinguish the characters which

require a swipe in one of the side zones. Level 2 shows the
selected region in-place, so the entire keyboard is still visible.

We draw borders around the four regions that require zone-
specific swipes, to help remind users that a zone-based
gesture is required (Figure 11a). We also show the zoomed-
in region in-place while keeping the entire keyboard visible
in the background. This allows users to plan their next
character in parallel to performing the second level gesture
for the current character (Figure 11b).

STUDY 2 – EVALUATING SWIPEZONE
To evaluate our SwipeZone technique for text entry on
smart eyewear, we use a traditional text entry task to
measure its performance in comparison with Swipeboard.
We are not aware of any existing technique that has been
implemented to use the side touch pad of smart eyewear for
text entry. Thus, we do not include a baseline technique for

Page 6

comparison; however, we can contrast our results to prior
studies on text entry. Our primary goals are to understand
how feasible text entry is, if at all, on smart eyewear, and to
identify if there are any performance differences in the
SwipeZone and Swipeboard techniques.

Apparatus
The apparatus was the same as the first study. A pair of
Google Glass was used, and the software was written using
the ADT plugin for the Eclipse IDE. The device was
tethered to a laptop via a USB cable so that the screen
output could be monitored by the experimenter.

Participants
We recruited 16 participants (7 female, 9 male), with an
average age of 28.3. All of the participants were right
handed and all used their right hand for the text entry task.
The participants were recruited from an external recruiting
list and were provided with $50 gift card. None of the
participants had prior experience using Google Glass.

Design
A repeated measures mixed design was used. The between-
participant independent variable was the technique
(Swipeboard, SwipeZone). The within-participant
independent variable was Block (1-20). We chose a
between-subject design for the techniques so that we could
provide adequate training time for each participant, and
reduce cross-technique learning effects.

Participants performed the study in one session lasting
approximately 80 minutes. The session was broken up into
20 blocks. Each block consisted of 10 trials. In each trial,
the user typed in a single 5-letter word, randomly chosen
from Mackenzie’s phrase set [15]. This resulted in a total of
200 trials per participant, and a total of 3200 trials overall.

Procedure
Before the study began, the assigned technique was
demonstrated to participants using a Samsung Galaxy S4
phone. After explaining the technique, users performed a
warm-up block on the phone, which consisted of 10 words.

Participants sat in a chair facing a black background that
allowed them to clearly see the content on the Google Glass
display. The background was approximately 2 feet away
from the user’s head position. We allowed users to rest their
elbows on the chair’s armrest to prevent fatigue.

Before the start of each trial, the system displayed a 5-letter
word. After reading the word the participant tapped to begin
the trial. The word then disappeared and the keyboard was
displayed. The participant used the assigned technique to
transcribe the word (Figure 12). If the user typed the wrong
character a beep was sounded and the correct word was
displayed on the screen. However, the incorrect letter was
not typed, so that users would not need to delete characters.
The user would need to retry until they typed the correct
character. This was recorded as a “hard error”. We also
recorded “soft errors” when the user’s initial stroke

activated the wrong region of the keyboard. The trial was
completed when all five characters were correctly typed.

A message was displayed at the start of each block
indicating how many blocks remained. Users were told they
could take breaks between blocks to rest their eyes or arms.

Figure 12. Users performed the text entry task on a Google
Glass unit. Correctly typed letters are displayed in
white.For Swipeboard, we used the updated layout with
each group containing only 3 characters (for consistency
with SwipeZone). The Cartesian tessellation (Figure 6b)
was used to classify the gestures as it had higher
recognition accuracy than the angle-based approach.

Based on observations from the first study, we allowed
users to choose the input display mapping for the horizontal
direction. We set this mapping automatically using a short
calibration. The user was shown a series of 20 alternating
East and West arrows, and was asked to swipe in the
direction they thought each arrow represented. We then
automatically set the mapping based on this individual
preference.

Results and Analysis

Character Entry Time
The main measurement was the character entry time. Our
analysis is based on error-free characters (we also provide
an analysis of errors later in this section). Similar to prior
work [5] we divide each character entry time into four
phases: the time until the first touch event (First Up), the
time taken for the first swipe or tap (First Action) the time
until the second touch event (Second Up) and the time taken
for the second swipe or tap (Second Action). The total
character entry time was the sum of these four phases.

We first analyze the per-character completion time for
error-free trials. A repeated measures ANOVA showed a
main effect for block (F19,266 = 34.9, p < .0001), but did not
quite reach significance at the p < .05 level for the keyboard
type (F1,14 = 3.350, p = 0.089). However, Figure 13 does
show an apparent trend in the data. The overall per-
character completion times were 1.97s for Swipeboard and
1.67s for SwipeZone.

The lack of a significant effect, despite a 15.2%
performance difference, is likely due to the fact that the

Page 7

Technique was a between-subject variable. However, based
on the statistical test, we cannot make definite claims about
the performance differences of the two techniques.

Figure 13. Error-free character completion time by block.

As illustrated in Figure 13, the performance differences do
seem to increase as training continues. When we repeat the
analysis on just the last 10 blocks, the difference does reach
a significant level (F1,14 = 5.136, p < 0.05). The entry times
for the last 10 blocks are 1.812s and 1.467s for Swipeboard
and SwipeZone, respectively.

We also looked at the character entry time for each of the
five characters in the tested words. As shown in Figure 14.
There was a significant effect (F4,56 = 14.041, p < .0001). A
post hoc pairwise comparison with Bonferroni adjustment
shows that the first character is significantly slower than the
others (p < .05 in all cases). This was likely caused by the
keyboard not being visible until the trial started. Thus, there
was a longer visual search for the first character. For
remaining characters, the user could look ahead while
entering the previous character. This, in part, validates our
design decision to show the characters in place, instead of
replacing the entire keyboard with a zoomed-in region.

Figure 14. Completion times for the 5 characters in each word.

The first character is significantly slower than the others.

The effect of the actual character being entered was also
significant (F25,375=16.9, p < .0001). Figure 15 illustrates the
character entry times for each character. The entry times for
most common characters are fairly uniform. Unsurprisingly,
‘G’ is one of the fastest, since its gesture consists of two
taps. The three slowest characters are those that appear

rarely in the vocabulary set (J, X, Q). This shows evidence
that learning with the technique occurs not only at the
technique level, but also at the individual character level.

Figure 15. Completion times for each character. Uncommon
characters (e.g., J, X, Q) took significantly longer, suggesting

learning also happened at the individual character level.

Words Per Minute (WPM)
Figure 16 shows the error-free WPM rates for each of the
techniques. In the last block, the WPM rates were 8.73 for
SwipeZone, and 7.14 for Swipeboard. Both rates increase
according to the Power Law of Learning, fitting to the
curves at R2 = 0.95 for SwipeZone and R2 = 0.90 for
Swipeboard. If these trends continued, SwipeZone would
reach 10 WPM after a total of 40 blocks.

Figure 16. WPM rates and the associated power curves.

Performance Model
To further understand the difference in the two techniques,
we look at a breakdown of the character entry time, by each
stage of the performance model (Figure 17).

An interesting effect is that the character entry times are
dominated by the First Up phase, where the user locates
their character and plans the gesture input. Anecdotally, we
observed that users, after some blocks of training, started to
plan for both levels of the gesture before performing the
associated actions. This could explain why the Second Up
phase is much shorter. Figure 17 also shows that the actual
stroke times (First Action, Second Action) were much
shorter than the two phases that involved decision-making.

Page 8

The other interesting observation is that the main difference
between the two techniques is at the Second Up phase. The
average Second Up times were 564ms for Swipeboard and
408ms for SwipeZone. This difference was the one phase
where Technique had a significant effect (F1,14 = 10.695, p
< .01). This increased time seemed to be a result of the
Swipeboard users waiting to see if their first stroke was
successful. Users had a higher tendency to do this in the
Swipeboard condition because of the difficulty of
distinguishing between the 8 directional gestures. In
contrast, with SwipeZone, users performed no diagonal
swipes and had tactile feedback during their stroke to
inform them if it would be successful. Thus, the SwipeZone
users could potentially require no ‘wait time’ for any visual
or audio feedback and could immediately proceed to the
next level of the gesture.

Figure 17. Times for the four phases of the performance model

(based on Chen et al. [5]). SwipeZone contributed to a
significantly shorter Second Up phase. (*p < .01)

Errors
We analyzed both soft errors (errors in the first level
gesture) and hard errors (errors at the second level gesture).
The soft error rates were 17.8% for Swipeboard and 15.8%
for SwipeZone. The difference was not significant. The
hard error rates were also not significantly different – 9.3%
for Swipeboard and 9.1% for SwipeZone. The majority of
the hard errors were due to errors made at the first level:
users continued with the character entry (causing a hard
error) rather than cancelling the erroneous first-level
selection (causing a soft error). The hard error rate, when
the first-level selection was correct, was 2.4% and 1.8% for
Swipeboard and SwipeZone, respectively (Figure 18).

These results show that the majority of errors made with the
techniques resulted from the first level. And while the
SwipeZone technique reduced the execution time in Second
Up phase, the technique itself is still error prone. Although
it is difficult to analyze, we hypothesize, based on our
observations, that a proportion of these errors are caused by
users choosing the wrong gesture to perform (e.g. E instead
of W), as a pose to choosing the right gesture but
performing that gesture improperly (e.g. swiping in the
wrong zone).

Figure 18. Error rates for each technique. Soft errors were

made in the first step (L1), hard error in the second step (L2).
We also show hard errors rates when L1 was correct.

DISCUSSION AND FUTURE WORK
While the results over our second study are encouraging,
our data also shows that there is still room for performance
improvements. SwipeZone users improved over time, and
achieved almost 9 WPM by the end of the trials. However,
this was lower than the performance in the original
Swipeboard study [5], for various possible reasons.
Foremost, the original Swipeboard study was run on a
simulated watch-sized screen using an iPad rather than an
actual wearable device. As such, usability challenges due to
a small form factor were simulated but not fully tested.
Second, the prior study was based on a reduced phrase set
consisting of only 5 letters, to intentionally accelerate
learning times. While this shed light on the novice to expert
transition, it makes it difficult to directly compare our results.

The observed error rates will also need to be addressed
before our tested techniques could be deployed. Our initial
study shows that there is inherent user error in the gestures
being performed. Our second study shows that eliminating
diagonal gestures helps, but doesn’t eliminate errors.

One possible enhancement would be to increase the fidelity
of the tactile feedback on the touchpad. For example, a
gradient could be used instead of a uniform texture, so users
could feel exactly where their finger is within the middle
zone. For the Swipeboard technique, thin lines on the
touchpad surface could potentially be used as ‘tracks”
which the finger could follow, similar to EdgeWrite [29].

For the SwipeZone technique, the tactile feedback allowed
users to know where their finger was, but only once it was
down. Users had to rely on their proprioception to touch
down on the correct area. Technologies that provide mid-air
tactile feedback could be an interesting way to allow users
to know which zone their finger was above, before touching
down on the touchpad.

Our studies also revealed an interesting issue related to the
mental rotation required to perform gestures on the side
touchpad. There is a certain level of ambiguity as to how
the horizontal direction is mapped from the display to the
input area. In our second study, nine participants used our

Page 9

default mapping (Figure 3b), while 7 preferred to have the
mapping reversed. A calibration, as we performed in our
second study, would be recommended for future gesture-
based techniques. Our first study also showed that a user’s
gestures could be impacted by the current tilt of their head.
This suggests that the device’s accelerometer could
potentially be useful in normalizing the stroke directions.
We leave this topic for future research.

Fatigue is another issue to be explored further. Because of
our prolonged study, we allowed users to rest their elbow
during the text entry task, and to perform the study from a
seated position. It would be important for future work to
formally investigate fatigue issues and look at how the text
entry would be impacted by different postures (standing,
lying down) or activities (standing, walking, riding a bus).

CONCLUSION
We have investigated the feasibility and human factors
associated with performing gesture-based text entry on the
side touch pad of smart eyewear, and both demonstrated
and compared two methods of performing text entry using
this input area. Our study reveals that our redesign of the
Swipeboard technique offers benefits, and that text entry is
possible using smart eyewear as both the input and output
device. We hope this work can inform and inspire future
work on gesture-based text entry for smart eyewear devices.

REFERENCES
1. Amma, C., Georgi, M., & Schultz, T. Airwriting:

Hands-free mobile text input by spotting and continuous
recognition of 3D-space handwriting with inertial
sensors. ISWC ’12. 52-59.

2. Blasko, G. and Feiner, S. Evaluation of an Eyes-Free
Cursorless Numeric Entry System for Wearable
Computers. Wearable Computers, (2006), 21–28.

3. Bederson, B. B., Hollan, J. D., Perlin, K., Meyer, J.,
Bacon, D., & Furnas, G. Pad++: A zoomable graphical
sketchpad for exploring alternate interface
physics. JVLC. 1996, 7(1), 3-32.

4. Castellucci, S. J., & MacKenzie, I. S. Graffiti vs.
unistrokes : an empirical comparison. CHI ’08. 305-308.

5. Chen, X. A., Grossman, T., & Fitzmaurice, G.
Swipeboard: A Text Entry Technique for Ultra-Small
Interfaces That Supports Novice to Expert Transitions.
To appear UIST ’14.

6. Isokoski, P. Text input methods for eye trackers using
off-screen targets. ETRA ’00. 15-21.

7. Gong, Y. Speech recognition in noisy environments.
(1996). Speech communication, 16(3), 261-291.

8. Kim, S., Sohn, M., Pak, J., & Lee, W. One-key
keyboard: a very small QWERTY keyboard supporting
text entry for wearable computing. OzCHI ’06. 305-308.

9. Kristensson, P. O., & Zhai, S. SHARK 2: a large
vocabulary shorthand writing system for pen-based
computers. UIST ’04. 43-52.

10. Kurtenbach, G., & Buxton, W. User learning and
performance with marking menus. CHI ’94. 258-264.

11. Li, F. C. Y., Guy, R. T., Yatani, K., & Truong, K. N.
The 1line keyboard: a QWERTY layout in a single line.
UIST ’11. 461-470.

12. Liu, Y., Liu, X., & Jia, Y. Hand-gesture based text input
for wearable computers. ICVS ’06. 8-14.

13. Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A.,
Drew, A., & Looney, E. W. Twiddler typing: One-
handed chording text entry for mobile phones. CHI ’04.
671-678.

14. MacKenzie, S. Mobile text entry using three keys. CHI
’02. 27-34.

15. MacKenzie, I. S., & Soukoreff, R. W. Phrase sets for
evaluating text entry techniques. CHI '03 EA. 754-755.

16. MacKenzie, I. S., Soukoreff, R. W., & Helga, J. 1
thumb, 4 buttons, 20 words per minute: Design and
evaluation of H4-Writer. UIST ’11. 471-480.

17. Ni, T., & Baudisch, P. Disappearing mobile devices.
UIST ’09. 101-110.

18. Oney, S., Harrison, C., Ogan, A., & Wiese, J..
ZoomBoard: a diminutive QWERTY soft keyboard
using iterative zooming for ultra-small devices. CHI ’13.
2799-2802.

19. Partridge, K., Chatterjee, S., Sazawal, V., Borriello, G.,
& Want, R. TiltType: accelerometer-supported text
entry for very small devices. UIST ’02. 201-204.

20. Perlin, K. Quikwriting: continuous stylus-based text
entry. UIST ’98. 215-216.

21. Rico, J., & Brewster, S. Usable gestures for mobile
interfaces. CHI ’10. 887-896.

22. Rosenberg, R., & Slater, M. The chording glove: a glove-
based text input device. ToSMC. 1999, 29(2), 186-191.

23. San Agustin, J., Skovsgaard, H., Hansen, J. P., &
Hansen, D. W. Low-cost gaze interaction: ready to
deliver the promises. CHI ’09 EA. 4453-4458.

24. Thomas, B., Tyerman, S., and Grimmer, K. Evaluation
of text input mechanisms for wearable computers.
Virtual Reality 3, no. 3 (1998). 187-199.

25. Ward, D. J., Blackwell, A. F., & MacKay, D. J. Dasher -
a data entry interface using continuous gestures and
language models. UIST ’00. 129-137.

26. Wigdor, D., & Balakrishnan, R. TiltText: using tilt for
text input to mobile phones. CHI ’03. 81-90.

27. Wigdor, D., & Balakrishnan, R. A comparison of
consecutive and concurrent input text entry techniques
for mobile phones. CHI ’04. 81-88.

28. Wobbrock, J.O., Fogarty, J., Liu, S.-Y.S., Kimuro, S.,
and Harada, S. The angle mouse: target-agnostic
dynamic gain adjustment based on angular deviation.
CHI ’09, 1401–1410.

29. Wobbrock, J. O., Myers, B. A., & Kembel, J. A.
EdgeWrite: a stylus-based text entry method designed for
high accuracy and stability of motion. UIST ’06. 61-70.

30. Zhao, S., Agrawala, M., & Hinckley, K. Zone and polygon
menus: using relative position to increase the breadth of
multi-stroke marking menus. CHI ’06. 1077-1086.

31. Zhao, S., & Balakrishnan, R. Simple vs. compound mark
hierarchical marking menus. UIST ’04. 33-42.

Page 10

