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ABSTRACT 
Text entry for smart eyewear is generally limited to speech-
based input due to constraints of the input channels. The 
Swipeboard technique, recently proposed for ultra-small 
touch screens such as smart watches, may be particularly 
suitable for smart eyewear, as it supports eyes-free input. 
We investigate the limitations and feasibility of 
implementing Swipeboard on Google Glass, using its side 
touch pad for input. Our first study reveals usability and 
recognition problems of using the side touch pad to perform 
the required gestures. To address these problems, we 
propose SwipeZone, which replaces diagonal gestures with 
zone-specific swipes. In a text entry study, we show that 
our redesign achieved a WPM 15.2% higher than 
Swipeboard, with a statistically significant improvement in 
the last half of the study blocks. Overall, our main 
contributions are the first smart eyewear text entry 
techniques that utilize the built-in touch-sensitive input 
area, and two studies that investigate their feasibility and 
the associated human factor issues. 

INTRODUCTION 
Smart eyewear (e.g., Google Glass) enables always-
available access to information, yet only provides limited 
interaction possibilities due to its small and wearable form, 
making tasks like text entry extremely hard. While text 
entry may not be a primary task on smart eyewear, there are 
scenarios where a user may wish to enter text, e.g., quickly 
replying to a text message, or updating one’s status on 
social media.  

Prior research has explored solutions to enable entering text 
while wearing a head-mounted display. One solution is to 
use a supplementary device, such as the Twiddler [13]. 
However, having to carry or be tethered to an additional 
device defeats the purpose of smart eyewear, which is 
meant to provide unobtrusive and immediate access to 
information. Vision-based techniques have also been 
explored [12]; yet they remain a suboptimal solution as 
such techniques are often computationally expensive and 
could potentially be error-prone due to the uncertainty of 
the environment. Voice input may be a useful option in 
certain situations, but when surrounded by peers its usage 

might incur privacy concerns and become socially 
unacceptable [21]. 

Some recent research on wearable text entry has taken a 
gesture-based approach using a device’s touch input. For 
example, Swipeboard is a watch-based technique that 
specifies each character using only two touches: the first 
touch selects a subgroup of keys and the second touch 
specifies a key within the subgroup [5]. Such gesture-based 
methods offer a subtle, effective and low-cost text entry 
solution. More importantly, the technique is target-agnostic, 
making it a promising candidate for use on, for instance, the 
side touch pad of Google Glass. However, this technique 
has yet to be implemented, deployed or tested on smart 
eyewear. 

In this paper we investigate the limitations and feasibility of 
applying a gesture-based text entry technique (Swipeboard) 
to a smart eyewear form factor (Google Glass). In our 
initial study we evaluate the recognition accuracy of the 8 
directional swipes required for Swipeboard, and analyze 
how well these swipes can be distinguished from one 
another, when performed with the Google Glass touchpad. 
The results show that the unique configuration of the 
Google Glass touch pad makes it difficult to distinguish 
between the 8 directional gestures, and that diagonal swipes 
take longer to perform. 

To address this issue, we proposed a new design called 
SwipeZone. SwipeZone takes advantage of the relatively 
wider dimension on the side touch pad and divides it into 
three zones. The diagonal gestures of Swipeboard are 
replaced with zone-specific vertical gestures (Figure 1).  

 
Figure 1. SwipeZone divides the width of the Google Glass side 

touch pad into three zones, swiping down on the front zone 
selects the lower-left group ‘ZXC’, then swiping to the back 

selects ‘C’ – the rightmost key in the group. 

Our second study tests both Swipeboard and SwipeZone on 
a Google Glass unit through a series of text entry tasks. The 
results show that gesture-based text entry is feasible on a 
smart eyewear touch pad. The SwipeZone redesign 
outperforms the original Swipeboard technique (15.2% 
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faster), however, only reaches statistical significance in the 
final half of the study. Further, we compare the results to 
prior studies to show that SwipeZone’s entry speeds are 
similar to those achieved on smart watch devices, yet with a 
higher error rate. Overall, our main contributions are the 
first smart eyewear text entry techniques that utilize the 
built-in touch-sensitive input area, and two studies that 
investigate the feasibility of the techniques and the 
associated human factor issues.  

RELATED WORK 
To understand the challenges of smart eyewear’s small and 
wearable form factors, we review text entry research for 
both head-mounted displays and devices with very small 
input areas. We also review gesture-based text entry 
techniques to inform our design on smart eyewear. 

Text Entry Techniques for Head-Mounted Displays 
Head-mounted displays have been used to create immersive 
or mobile experiences with digital information. However, 
their immersive and mobile nature also prevents the user 
from accessing regular input devices to perform text entry 
tasks. To solve this problem, researchers have experimented 
with various customized input devices. Twiddler is a one-
handed chording keyboard that allows for eyes-free text 
entry for mobile or wearable devices [13]. The chording 
glove embeds the buttons into the glove where users can 
specify characters directly using hand gestures [20]. Liu et 
al. propose a vision-based mechanism that uses a head-
mounted camera to recognize mid-air handwriting [12]. 

Other researchers focused on using a wrist-worn input 
device for text entry, which is also a potential solution for 
typing while wearing a head-mounted display. For example, 
Airwriting employs inertial sensors and machine learning 
techniques to recognize handwriting based on the hand’s 
motion [1]. One-key keyboard augments one single key to 
sense a user’s fingertip position, thus allowing typing on a 
full QWERTY keyboard [8].  

While all this work has demonstrated various possible text 
entry solutions for head-mounted display, they often require 
additional input devices, or rely on vision-based recognition 
that is potentially high-cost and error-prone. Our goal is to 
enable a text entry mechanism that is lightweight and self-
contained within modern head-mounted displays, such as 
the Google Glass.  

Text Entry Techniques for Small Form Factors 
Past work has explored various text entry techniques for 
devices with very small form factors. Some researchers 
propose the use of motion sensors, e.g., using tilting to 
specify characters for text entry [19, 26]. MultiWidget uses 
a dialing gesture along the watch’s edges to specify a 
numeric value [2]. Zoomboard brings the zoomable user 
interface [3] idea to the design of a QWERTY keyboard on 
very small touch screens [18].  

Another approach is using alternate key mapping, such as 
chording, key selections or gestural shortcuts. For example, 

Wigdor and Balakrishnan adds three chording keys to speed 
up typing on a numeric phone keypad [27]. Mackenzie 
demonstrates the use of three keys to enable selection-based 
text entry [14]. The 1line keyboard incorporates touch into 
key selection, reducing the keyboard into one line of keys 
[11]. Gestural shortcuts can also be effective with small 
form factors. EdgeWrite uses stylus-based gestures guided 
by the physical edges of a device, thus making it easier and 
faster to perform [27]. Swipeboard specifies a character by 
two swipes: novices learn the gesture by swiping to locate a 
specific key while experts gradually learn and memorize the 
swipe combination for each character [5].  

Importantly, gesture-based input like Swipeboard is ‘target-
agnostic’ [28], making it promising for smart eyewear, as 
absolute touch coordinates are never required. However, 
aside from a proof-of-concept video of the 1line keybaord1, 
we are unaware of any implementations or evaluations of 
such techniques for smart eyewear. 

Gesture-based Text Entry Techniques 
To take a closer look at gesture-based text entry, we 
summarize two key steps for designing such techniques. 

1) Encoding the characters into a gestural vocabulary. 
Chen et al. summarized two ways of encoding characters: a 
continuous approach maps a word or a character to a 
continuous stroke (e.g., Graffiti [4], EdgeWrite [27], Shark2 
[9]), and a discrete approach maps each character to a 
number of symbolic tokens (e.g., H4-Writer uses a base-4 
encoding [15] and Quikwriting uses base-9 [20]). 

2) Designing techniques to perform the gestures. The next 
step is concerned with designing interaction techniques for 
the users to perform the gesture and specify the encoded 
character. Continuous encoding typically uses touch or 
stylus input as it fits well with its continuous nature. 
Discrete encoding, however, often has design options. A 
naïve approach is simply letting users type in the code from 
their rote memory, such as using Morse code. Most 
successful discrete solutions, however, often employ certain 
menu selection techniques that allow users to recognize and 
choose the codes rather than recalling them. For example, 
Quikwriting [20], H4-Writer [15] and Swipeboard [5] all 
use techniques akin to a marking menu [10].  

However, depending on the form factor of the device and 
its screen real estate, marking menus might not be the best 
choice (for instance, considering a short rectangular touch 
area). There are other techniques that repurpose the original 
marking menu design to overcome its limits. For example, 
Zhao et al. introduced the ideas of zone menu [30], which 
divides a large marking menu into smaller ones located in 
separate zones, thus reducing the complexity of specifying 
precise orientation when selecting an item. Their polygon 
menu [30] has a similar idea: both a stroke’s orientation and 
its position are used to specify an item. To accelerate multi-

1 http://minuum.com/google-glass-keyboard/ 
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level selection, Zhao and Balakrishnan studied the 
technique of using small discrete strokes and found it to be 
faster and more effective than a continuous one [31]. This 
work in menu selection can potentially serve as guidelines 
for our work on gestural text entry on smart eyewear. 

ADAPTING SWIPEBOARD TO SMART EYEWEAR 
To adapt the gesture-based Swipeboard technique to smart 
eyewear, we first review its design and performance model. 
We then describe our implementation and initial experience 
of using it on the Google Glass. 

Reviewing Swipeboard: How It Works 
Swipeboard is a recently developed text entry technique 
that encodes each alphabetic character into a series of two 
touch actions. The technique utilizes the traditional 
QWERTY keyboard layout, to allow users to leverage their 
existing spatial memory of character locations.  

The keyboard is divided into nine regions (Figure 2a), each 
containing 3 (e.g., ‘ASD’) or 4 (e.g., ‘RTYU’) characters. 
The first touch action is used to select the desired region. 
The swipe is in one of 8 directions (e.g. swiping left for 
“ASD” or up and to the right for “IOP”.) A tap is used to 
select the middle region (“FGH”). Once a region is 
selected, a zoomed in view is displayed (Figure 2b). 

The second action is used to select the desired character 
within a region. Swiping left selects the left character, 
tapping selects the center character, and swiping right 
selects the right character. In the one case of four characters 
(‘RTYU’), swiping left selects ‘R’, up-left selects ‘T’, up-
right selects ‘Y’ and right selects ‘U’. The user can swipe 
down to cancel the selected region and return to the first 
level keyboard view. 

Additional gestures are used for other functions. A double-
swipe down-left deletes a character, and double-swipe 
down-right enters a space, and a double-swipe up switches 
to a symbol and number keyboard. 

An important property of Swipeboard is that it is target 
agnostic: the actions can occur anywhere on the display, 
and no spatial target selection is required. This makes it 
particularly appropriate for smart eyewear, since users 
cannot see where their finger lands on its side touchpad. 

Performance Model 
A four-stage performance model is used to describe the 
execution time (T) for individual characters using the 
Swipeboard technique. Each character consists of two input 
events. Each input event consists of a planning phase, when 
the finger is up  (Tu1, Tu2), and an action phase, when the 
finger is down (Ta1, Ta2). Thus, the completion time for a 
character is as follows: 

T = Tu1 + Ta1+ Tu2 + Ta2 
Chen et al. used previous performance model data to 
estimate that in optimal conditions an expert could perform 
at 464ms per character, or 25.87 WPM. 

 
Figure 2. The original Swipeboard technique. a) The first 
swipe specifies one of the nine regions subdivided from a 

QWERTY keyboard. b) The second swipe specifies the 
character, in this example, ‘D’. Figure from Chen et al. [5]. 

Adaptation to Smart Eyewear 
Adapting any text entry technique to smart eyewear raises 
some questions. First, it is important to discuss the 
motivation for requiring text entry at all. While we do not 
expect users to compose long emails or perform intense 
document editing using smart eyewear, we feel it is likely 
there will be cases where users will want access to text 
entry. Examples include: composing a short tweet or text 
message, looking up information on the web, or searching 
for an app or contact name. While speech input may be 
possible, there are situations where speech is not socially 
acceptable [21], or does not perform well [7]. 

Thus, our goal is to explore alternate approaches to support 
text entry on smart eyewear, focusing on utilizing its built-
in touch-sensitive area. The Swipeboard technique, 
originally deployed on a watch-sized touch screen, is a 
promising candidate for an exploratory implementation. 

Implementation 
In our initial implementation, we used a Google Glass unit 
and developed a standalone Android application using the 
ADT plugin for the Eclipse IDE. The initial implementation 
exactly reproduced the Swipeboard technique. The X and Y 
coordinates of the touch events were obtained through the 
Android MotionEvent object that the Google Glass touch 
pad produces. There were some interesting observations 
from this initial implementation.  

First, it was unclear how to map the X direction from the 
input to display. Because the left and right swipes are 
actually in the forward and backward directions, a 90° 
rotation is required. Depending on the direction of this 
rotation, the X direction could be mapped in two ways. 

Second, there seemed to be an advantage of using the 
Google Glass side touch pad, because the finger never 
occludes the display of the keyboard, unlike the previous 
small display implementation. As such, the user has an 
opportunity to see the character map at all times. 

Third, taps, which were defined by a travel distance of less 
than 10 pixels, were sometimes being recognized as swipes. 
This is due to the higher pixel density of the input device.  

Most importantly, the diagonal swipes, which were detected 
at 45° angles, were difficult to perform. The short and wide 
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nature of the touchpad afforded wider diagonal gestures at 
an angle much less than 45°.  

To better understand and address these final two issues, we 
performed an experiment to investigate how accurately 
users could perform the atomic gestures required for the 
Swipeboard technique, on the Google Glass touch pad.  

STUDY 1 – ATOMIC GESTURES 
The Swipeboard technique uses 8 directional gestures and a 
tap as the building blocks for text entry. The technique was 
successfully validated on a watch-sized input area (12mm 
by 12mm). However, the dimensions of the touch pad on 
smart eyewear may be quite different. For example, with 
Google Glass, the touch pad is 3” by 0.41”, with a 
resolution of 1366x187. It is unclear how well 
Swipeboard’s atomic gestures can be performed and 
distinguished on a touch pad with this unique form factor. 
In this study, we investigate the feasibility of deploying 
Swipeboard’s gestures on the touch pad of Google Glass.  

Apparatus 
The study was performed using a Google Glass unit. The 
study software running on the Google Glass was written 
using the ADT plugin for the Eclipse IDE. The device was 
tethered to a laptop via a USB cable so that the screen 
output could be monitored by the experimenter.  

Participants 
We recruited 10 participants (1 female, 9 male), with an 
average age of 33.2. Nine of the participants were right 
handed and all participants used their right hand for input, 
as this is the side that has the touchpad on the Google Glass 
device. The participants were recruited from our institution 
and were not compensated. None of the participants had 
extensive experience with the Google Glass system.  

Design 
A repeated measures within-participant design was used. 
The independent variables were Direction (N, NE, E, SE, S, 
SW, W, NW, TAP) and Block (1-8). Participants performed 
the study in one session lasting approximately 10 minutes. 
The session was broken up into 8 blocks. Each block 
consisted of 36 trials, with each gesture appearing four 
times, in randomized order. This resulted in a total of 288 
trials per participant, and a total of 2880 data points overall. 

Procedure 
Participants sat in a chair facing a black background, which 
allowed them to clearly see the content on the Google Glass 
display. The background was approximately 2 feet away 
from the user’s head position. We allowed users to rest their 
elbows on the chair armrest to prevent fatigue.   

The trial started by displaying the gesture direction. An 
arrow inside a square was used for the eight directional 
strokes, and a dot in the middle of the square was used for 
TAP (Figure 3a). The user then performed the associated 
gesture by swiping on the side touch pad. We mapped the 
right side of the display to the back of the Google Glass 
touch pad, so a swipe from front to back would perform the 

EAST stroke (Figure 3b). This mapping seemed more 
intuitive to users during pilot testing, and is the default 
Google Glass mapping. 

 
Figure 3. a) Exemplar visual stimulus (NE, TAP, S); b) 

illustration of the mapping of an EAST stroke. 

The start and end coordinates of each touch event were 
logged, as was the time between the two events. There were 
no “errors” for this study, since the purpose was to measure 
users’ accuracy of performing the gestures. However, if 
either the X or Y component of the stroke was in the 
opposite direction of the correct input, the input was 
ignored and the user was prompted to try again. Such cases 
indicated a mistaken interpretation of the desired gesture, 
not an inaccuracy in performing it. When a gesture was 
entered, the next trial was immediately displayed.  

Results and Analysis 
The main focus of our analysis is on the vector (X, Y) 
indicating the directionality of each atomic gesture.  We 
also provide an analysis on execution times. 

Analyzing and Visualizing Swiping on the Glass 
We illustrate the end points for each atomic swipe/tap 
gesture using a scatterplot in Figure 4. Each gesture is 
color-coded. The scatterplot shows the X coordinates of the 
horizontal and diagonal gestures are ‘stretched’, due to the 
wide form factor of the touchpad. Figure 5a shows the 
normalized vectors computed from the original touch event 
data. There is some degree of overlap between adjacent 
gestures, which is further illustrated in Figure 5b: it shows 
the possible ranges of each swipe, computed from their 
mean ±3 standard deviations. It shows that while the 
directionalities of the horizontal swipes (E and W) are fairly 
uniform, the vertical and diagonal swipes, however, are 
widely distributed and overlap with each other. 

 
Figure 4. Scatterplot of each gesture’s end points in Study 1. 

We summarize several key findings from this data. First, 
using the vector angles to determine a stroke’s direction 
may not be effective. Second, even if angles can be used, 
the correct angles cannot be defined by evenly dividing a 
circumference into eight 45° sectors. Due to the short and 
wide form factor of the touch pad, the average angles used 
for the diagonal strokes are highly skewed towards the X 
axis. The average absolute deviation from the X axis for the 
diagonal strokes is 18.8°.  
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Figure 5. Directionalities of the atomic gestures from Study 1: 

scatterplot of the normalized vectors computed from each 
gesture (a); possible ranges of each swipe, computed from 

their mean  ± 3× standard deviation (b). 

Building Models to Recognize Swiping Directions 
To better understand the feasibility of utilizing this gesture 
set, we build customized algorithms to show how well the 
swipes can be recognized. 

We use an iterative search to find the optimal parameters to 
determine swipe direction. The first step in our recognition 
is to classify a tap, which is defined by touch points whose 
distance to the origins is smaller than a certain threshold. 
We use a bounding box with dimensions tapx and tapy. 

The next step distinguishes different swipes. We 
experimented with two potential methods, based on either 
the vector angle, or the vector coordinates.  

Using the angle is a typical approach for determining a 
swipe direction, where each swipe has an upper and lower 
bound angle. For example, for the original Swipeboard 
gestures, the swipes are divided by 45°. For example, if the 
angle is between -22.5° and 22.5° it is recognized as EAST. 
Due to the observed skewing, we parameterize the angles 
for swiping on the Google Glass touch pad, as θ1 and θ2, to 
define all 8 direction zones (Figure 6a).  

Alternatively, the swiping directions can be defined by 
Cartesian coordinates (corresponding to the end points of 
the swipes). As shown in Figure 6b, we can define 8 
quadrants by a δx and δy parameter. For example, a stroke 
with X > δx and Y > δy would be classified as NE.  

To find the optimal parameter values we perform a naïve 
stepwise iterative search across all possible combinations of 
the parameter pairs. We iterate with steps of 1px for δ and 
0.1° for θ. We calculated the optimal parameters and 
resulting accuracy on a per-user basis, and also across the 
entire data set of all users. Defining accuracy on a per-user 
basis shows what accuracies would be possible if there was 
a required calibration, whereas the accuracies across the 
entire data set show a more realistic scenario where a fixed 
heuristic is applied for all users. 

  

Figure 6. The gestures can be determined based on 1) angles, 
θ1 and θ2, which divide the circumference into eight sectors; or 
2) coordinates, δx and δy, which groups the end points of each 

swipe into eight swiping directions. 

Accuracy of Recognition 
The algorithm first calculated the optimal values for 
recognizing a TAP (tapx = 53, tapy = 42). The accuracy of 
this step was 99.97%, indicating its high generalizability 
across users. We fixed these parameters without further per-
user tuning. 

The optimized values of θ1 and θ2 for each participant are 
shown in Table 1, together with the resulting accuracies. 
The average of all per user accuracies is 95.9%. When 
optimizing across the entire data set, the values of θ1 and θ2 
are 48.6 and 4.8, with an accuracy of 93.5%. This method 
would result in a 6.5% error rate. 

The optimal values of δx and δy are also shown in Table 1, 
together with the resulting accuracies. The average of all 
per user accuracies is 96.7%. When optimizing across the 
entire data set, the values of δx and δy are 136 and 59, with 
an accuracy of 94.0%. This method would result in a 6% 
error rate. 

Subject θ1 θ2 Accuracy δx δy Accuracy 
1 44 2.6 97.2 175 39 98.6 
2 43.8 7.8 98.6 112 62 97.9 
3 49.2 5.4 85.1 268 60 91.3 
4 50.4 5.6 96.9 134 57 95.8 
5 33.2 3.6 92.7 189 58 92.7 
6 44.8 11.2 99.0 92 65 99.0 
7 51.6 6.4 96.2 82 62 98.3 
8 49.2 3.8 97.6 141 56 97.6 
9 20.2 4.2 99.3 190 67 98.3 
10 47.6 6 96.2 83 83 97.6 

Average   95.9   96.7 
All 48.6 4.8 93.5 136 59 94.0 

Table 1. Parameter values and resulting accuracies for θ1 and 
θ2. Parameter values and resulting accuracies for δx and δy. 

It can be seen in Table 1 that Subject 3 has lower accuracies 
compared to the other users. Upon examining the data, 
there is a slight rotation in Subject 3’s data points. This 
could be due to how the user wore the glasses, and how 
they oriented their head during the study.  

 
Figure 7. Data points for Subject 3 are slightly rotated. 
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Execution Times 
A repeated measures ANOVA showed that the direction 
had a significant effect on the execution time of the gestures 
(F7, 63 = 6.753, p < .0001). Figure 8a shows that the 
diagonals seem to be consistently slower than their adjacent 
non-diagonal (straight) strokes. To confirm this, we 
performed an additional analysis comparing the gesture 
types (Straight, Diagonal, or Tap). The analysis showed 
that the gesture type had a significant effect on the 
execution time (F2, 18 = 43.4, p < .0001). The average times 
were 163.04ms for Straight, 195.99ms for Diagonal, and 
87.26ms for Tap (Figure 8b). Post-hoc pairwise comparison 
using Bonferroni correction showed that the difference 
between all pairs was significant (p < .05).  
  

 
Figure 8. Execution time by gesture shows diagonal swipes 
took significantly longer. Error bars are standard error. 

SWIPEZONE 
The results of our first study suggest that distinguishing 
between Swipeboard’s eight-direction swiping may be 
feasible, however with some level of error. The results also 
show that diagonal strokes are significantly slower than 
non-diagonal swipes and taps.  

These results motivate us to propose an alternative design 
that fits the input characteristics of smart eyewear. Our 
proposed technique, called SwipeZone, requires only the 
tap and four Straight swiping gestures, thus eliminating the 
need to swipe diagonally, lowering the potential recognition 
errors and reducing users’ execution time.  

Our first modification in designing SwipeZone is to slightly 
change to the layout of the QWERTY keyboard used in the 
Swipeboard technique. The original layout requires swiping 
diagonally at the second level when typing from the group 
‘RTYU’. To eliminate diagonal swipes, we move ‘P’ to the 
second row, and ‘L’ to the third, replacing the comma 
(Figure 9). This provides a more consistent grouping, as 
each group now contains three characters, eliminating the 
need for diagonal swipes in the second level. It also 
provides a more visually aligned layout. 

Our second modification is to eliminate diagonals from the 
first level, by replacing them with zone specific vertical 
swipes, similar in spirit to Zone Menus [30]. In particular, 
we leverage the relatively wide dimensions of the Google 
Glass touch pad, dividing it horizontally into three equally 
sized zones (front, middle and back, marked in Figure 10). 

      
Figure 9. Swipeboard’s layout is consistent with QWERTY but 

has a 4-character group. Our modified layout shifts the 
locations of  ‘P’ and ‘L’ so each group has three characters. 

With SwipeZone, the diagonal gestures are replaced by 
vertical swipes in the corresponding zones, as shown in 
Figure 11a: for NE and SE the user swipes up and down in 
the front zone; for NW and SW the user swipes up and down 
in the back zone: for N and S, the user swipes up and down 
in the middle zone. The taps and horizontal swipes are still 
target agnostic. For example, to type ‘C’, the user first 
swipes down in the front zone, which selects ‘ZXC’. The 
user then swipes horizontally to select ‘C’ (Figure 1). 

For tactile reference, we include a strip of tape on the 
middle zone (Figure 10). The tape’s rough surface is easily 
distinguishable from the other two zones’ smooth surfaces 
and does not impact the touch sensing capabilities.  

 

 
Figure 10. A strip of blue tape helps distinguish the three 

zones through tactile feedback. 

    
Figure 11. Visual lines help distinguish the characters which 

require a swipe in one of the side zones. Level 2 shows the 
selected region in-place, so the entire keyboard is still visible. 

We draw borders around the four regions that require zone-
specific swipes, to help remind users that a zone-based 
gesture is required (Figure 11a). We also show the zoomed-
in region in-place while keeping the entire keyboard visible 
in the background. This allows users to plan their next 
character in parallel to performing the second level gesture 
for the current character (Figure 11b). 

STUDY 2 – EVALUATING SWIPEZONE 
To evaluate our SwipeZone technique for text entry on 
smart eyewear, we use a traditional text entry task to 
measure its performance in comparison with Swipeboard. 
We are not aware of any existing technique that has been 
implemented to use the side touch pad of smart eyewear for 
text entry. Thus, we do not include a baseline technique for 
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comparison; however, we can contrast our results to prior 
studies on text entry. Our primary goals are to understand 
how feasible text entry is, if at all, on smart eyewear, and to 
identify if there are any performance differences in the 
SwipeZone and Swipeboard techniques. 

Apparatus 
The apparatus was the same as the first study. A pair of 
Google Glass was used, and the software was written using 
the ADT plugin for the Eclipse IDE. The device was 
tethered to a laptop via a USB cable so that the screen 
output could be monitored by the experimenter.  

Participants 
We recruited 16 participants (7 female, 9 male), with an 
average age of 28.3. All of the participants were right 
handed and all used their right hand for the text entry task. 
The participants were recruited from an external recruiting 
list and were provided with $50 gift card. None of the 
participants had prior experience using Google Glass.  

Design 
A repeated measures mixed design was used. The between-
participant independent variable was the technique 
(Swipeboard, SwipeZone). The within-participant 
independent variable was Block (1-20). We chose a 
between-subject design for the techniques so that we could 
provide adequate training time for each participant, and 
reduce cross-technique learning effects.  

Participants performed the study in one session lasting 
approximately 80 minutes. The session was broken up into 
20 blocks. Each block consisted of 10 trials. In each trial, 
the user typed in a single 5-letter word, randomly chosen 
from Mackenzie’s phrase set [15]. This resulted in a total of 
200 trials per participant, and a total of 3200 trials overall. 

Procedure 
Before the study began, the assigned technique was 
demonstrated to participants using a Samsung Galaxy S4 
phone. After explaining the technique, users performed a 
warm-up block on the phone, which consisted of 10 words. 

Participants sat in a chair facing a black background that 
allowed them to clearly see the content on the Google Glass 
display. The background was approximately 2 feet away 
from the user’s head position. We allowed users to rest their 
elbows on the chair’s armrest to prevent fatigue.   

Before the start of each trial, the system displayed a 5-letter 
word. After reading the word the participant tapped to begin 
the trial. The word then disappeared and the keyboard was 
displayed.  The participant used the assigned technique to 
transcribe the word (Figure 12). If the user typed the wrong 
character a beep was sounded and the correct word was 
displayed on the screen. However, the incorrect letter was 
not typed, so that users would not need to delete characters. 
The user would need to retry until they typed the correct 
character. This was recorded as a “hard error”. We also 
recorded “soft errors” when the user’s initial stroke 

activated the wrong region of the keyboard. The trial was 
completed when all five characters were correctly typed. 

A message was displayed at the start of each block 
indicating how many blocks remained. Users were told they 
could take breaks between blocks to rest their eyes or arms.  

 
Figure 12. Users performed the text entry task on a Google 
Glass unit. Correctly typed letters are displayed in 
white.For Swipeboard, we used the updated layout with 
each group containing only 3 characters (for consistency 
with SwipeZone). The Cartesian tessellation (Figure 6b) 
was used to classify the gestures as it had higher 
recognition accuracy than the angle-based approach. 

Based on observations from the first study, we allowed 
users to choose the input display mapping for the horizontal 
direction. We set this mapping automatically using a short 
calibration. The user was shown a series of 20 alternating 
East and West arrows, and was asked to swipe in the 
direction they thought each arrow represented. We then 
automatically set the mapping based on this individual 
preference. 

Results and Analysis 

Character Entry Time 
The main measurement was the character entry time. Our 
analysis is based on error-free characters (we also provide 
an analysis of errors later in this section). Similar to prior 
work [5] we divide each character entry time into four 
phases: the time until the first touch event (First Up), the 
time taken for the first swipe or tap (First Action) the time 
until the second touch event (Second Up) and the time taken 
for the second swipe or tap (Second Action). The total 
character entry time was the sum of these four phases. 

We first analyze the per-character completion time for 
error-free trials. A repeated measures ANOVA showed a 
main effect for block (F19,266 = 34.9, p < .0001), but did not 
quite reach significance at the p < .05 level for the keyboard 
type (F1,14 = 3.350, p = 0.089). However, Figure 13 does 
show an apparent trend in the data. The overall per-
character completion times were 1.97s for Swipeboard and 
1.67s for SwipeZone.  

The lack of a significant effect, despite a 15.2% 
performance difference, is likely due to the fact that the 
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Technique was a between-subject variable. However, based 
on the statistical test, we cannot make definite claims about 
the performance differences of the two techniques. 

 
Figure 13. Error-free character completion time by block. 

As illustrated in Figure 13, the performance differences do 
seem to increase as training continues. When we repeat the 
analysis on just the last 10 blocks, the difference does reach 
a significant level (F1,14 = 5.136, p < 0.05). The entry times 
for the last 10 blocks are 1.812s and 1.467s for Swipeboard 
and SwipeZone, respectively. 

We also looked at the character entry time for each of the 
five characters in the tested words. As shown in Figure 14. 
There was a significant effect (F4,56 = 14.041, p < .0001). A 
post hoc pairwise comparison with Bonferroni adjustment 
shows that the first character is significantly slower than the 
others (p < .05 in all cases). This was likely caused by the 
keyboard not being visible until the trial started. Thus, there 
was a longer visual search for the first character. For 
remaining characters, the user could look ahead while 
entering the previous character. This, in part, validates our 
design decision to show the characters in place, instead of 
replacing the entire keyboard with a zoomed-in region. 
 

 
Figure 14. Completion times for the 5 characters in each word. 

The first character is significantly slower than the others. 

The effect of the actual character being entered was also 
significant (F25,375=16.9, p < .0001). Figure 15 illustrates the 
character entry times for each character. The entry times for 
most common characters are fairly uniform. Unsurprisingly, 
‘G’ is one of the fastest, since its gesture consists of two 
taps. The three slowest characters are those that appear 

rarely in the vocabulary set (J, X, Q). This shows evidence 
that learning with the technique occurs not only at the 
technique level, but also at the individual character level.  
 

 
Figure 15. Completion times for each character. Uncommon 
characters (e.g., J, X, Q) took significantly longer, suggesting 

learning also happened at the individual character level. 

Words Per Minute (WPM) 
Figure 16 shows the error-free WPM rates for each of the 
techniques. In the last block, the WPM rates were 8.73 for 
SwipeZone, and 7.14 for Swipeboard. Both rates increase 
according to the Power Law of Learning, fitting to the 
curves at R2 = 0.95 for SwipeZone and R2 = 0.90 for 
Swipeboard. If these trends continued, SwipeZone would 
reach 10 WPM after a total of 40 blocks. 

 
Figure 16. WPM rates and the associated power curves. 

Performance Model 
To further understand the difference in the two techniques, 
we look at a breakdown of the character entry time, by each 
stage of the performance model (Figure 17).  

An interesting effect is that the character entry times are 
dominated by the First Up phase, where the user locates 
their character and plans the gesture input. Anecdotally, we 
observed that users, after some blocks of training, started to 
plan for both levels of the gesture before performing the 
associated actions. This could explain why the Second Up 
phase is much shorter. Figure 17 also shows that the actual 
stroke times (First Action, Second Action) were much 
shorter than the two phases that involved decision-making.  
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The other interesting observation is that the main difference 
between the two techniques is at the Second Up phase. The 
average Second Up times were 564ms for Swipeboard and 
408ms for SwipeZone. This difference was the one phase 
where Technique had a significant effect (F1,14 = 10.695, p 
< .01). This increased time seemed to be a result of the 
Swipeboard users waiting to see if their first stroke was 
successful. Users had a higher tendency to do this in the 
Swipeboard condition because of the difficulty of 
distinguishing between the 8 directional gestures. In 
contrast, with SwipeZone, users performed no diagonal 
swipes and had tactile feedback during their stroke to 
inform them if it would be successful. Thus, the SwipeZone 
users could potentially require no ‘wait time’ for any visual 
or audio feedback and could immediately proceed to the 
next level of the gesture.  

 
Figure 17. Times for the four phases of the performance model 

(based on Chen et al. [5]). SwipeZone contributed to a 
significantly shorter Second Up phase. (*p < .01) 

Errors 
We analyzed both soft errors (errors in the first level 
gesture) and hard errors (errors at the second level gesture). 
The soft error rates were 17.8% for Swipeboard and 15.8% 
for SwipeZone. The difference was not significant. The 
hard error rates were also not significantly different – 9.3% 
for Swipeboard and 9.1% for SwipeZone. The majority of 
the hard errors were due to errors made at the first level: 
users continued with the character entry (causing a hard 
error) rather than cancelling the erroneous first-level 
selection (causing a soft error). The hard error rate, when 
the first-level selection was correct, was 2.4% and 1.8% for 
Swipeboard and SwipeZone, respectively (Figure 18). 

These results show that the majority of errors made with the 
techniques resulted from the first level. And while the 
SwipeZone technique reduced the execution time in Second 
Up phase, the technique itself is still error prone. Although 
it is difficult to analyze, we hypothesize, based on our 
observations, that a proportion of these errors are caused by 
users choosing the wrong gesture to perform (e.g. E instead 
of W), as a pose to choosing the right gesture but 
performing that gesture improperly (e.g. swiping in the 
wrong zone).  

 
Figure 18. Error rates for each technique. Soft errors were 

made in the first step (L1), hard error in the second step (L2). 
We also show hard errors rates when L1 was correct. 

DISCUSSION AND FUTURE WORK 
While the results over our second study are encouraging, 
our data also shows that there is still room for performance 
improvements. SwipeZone users improved over time, and 
achieved almost 9 WPM by the end of the trials. However, 
this was lower than the performance in the original 
Swipeboard study [5], for various possible reasons. 
Foremost, the original Swipeboard study was run on a 
simulated watch-sized screen using an iPad rather than an 
actual wearable device. As such, usability challenges due to 
a small form factor were simulated but not fully tested. 
Second, the prior study was based on a reduced phrase set 
consisting of only 5 letters, to intentionally accelerate 
learning times. While this shed light on the novice to expert 
transition, it makes it difficult to directly compare our results. 

The observed error rates will also need to be addressed  
before our tested techniques could be deployed. Our initial 
study shows that there is inherent user error in the gestures 
being performed. Our second study shows that eliminating 
diagonal gestures helps, but doesn’t eliminate errors. 

One possible enhancement would be to increase the fidelity 
of the tactile feedback on the touchpad. For example, a 
gradient could be used instead of a uniform texture, so users 
could feel exactly where their finger is within the middle 
zone. For the Swipeboard technique, thin lines on the 
touchpad surface could potentially be used as ‘tracks” 
which the finger could follow, similar to EdgeWrite [29]. 

For the SwipeZone technique, the tactile feedback allowed 
users to know where their finger was, but only once it was 
down. Users had to rely on their proprioception to touch 
down on the correct area. Technologies that provide mid-air 
tactile feedback could be an interesting way to allow users 
to know which zone their finger was above, before touching 
down on the touchpad. 

Our studies also revealed an interesting issue related to the 
mental rotation required to perform gestures on the side 
touchpad. There is a certain level of ambiguity as to how 
the horizontal direction is mapped from the display to the 
input area. In our second study, nine participants used our 
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default mapping (Figure 3b), while 7 preferred to have the 
mapping reversed. A calibration, as we performed in our 
second study, would be recommended for future gesture-
based techniques. Our first study also showed that a user’s 
gestures could be impacted by the current tilt of their head. 
This suggests that the device’s accelerometer could 
potentially be useful in normalizing the stroke directions. 
We leave this topic for future research. 

Fatigue is another issue to be explored further. Because of 
our prolonged study, we allowed users to rest their elbow 
during the text entry task, and to perform the study from a 
seated position. It would be important for future work to 
formally investigate fatigue issues and look at how the text 
entry would be impacted by different postures (standing, 
lying down) or activities (standing, walking, riding a bus). 

CONCLUSION 
We have investigated the feasibility and human factors 
associated with performing gesture-based text entry on the 
side touch pad of smart eyewear, and both demonstrated 
and compared two methods of performing text entry using 
this input area. Our study reveals that our redesign of the 
Swipeboard technique offers benefits, and that text entry is 
possible using smart eyewear as both the input and output 
device. We hope this work can inform and inspire future 
work on gesture-based text entry for smart eyewear devices. 
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