
C H I 9 9 1 5 - 2 0 M A Y 1 9 9 9 P a p e r s

The Hotbox: Efficient Access to a Large Number of Menu-items

Gordon Kurtenbach, George W Fitzmaurice, Russell N. Owen and Thomas Baudel*

Alias I Wavefront
210 King Street East

Toronto, Ontario, Canada, M5A 1J7

ABSTRACT
The proliferation of multiple toolbars and UI widgets
around the perimeter of application windows is an indica-
tion that the traditional GUI design of a single menubar is
not sufficient to support large scale applications with
numerous functions. In this paper we describe a new widget
which is an enhancement of the traditional menubar which
dramatically increases menu-item capacity. This widget,
called the “Hotbox” combines several GUI techniques
which are generally used independently: accelerator keys,
modal dialogs, pop-up/pull down menus, radial menus,
marking menus and menubars. These techniques are fitted
together to create a single, easy to learn yet fast to operate
GUI widget which can handle significantly more menu-
items than the traditional GUI menubar. We describe the
design rationale of the Hotbox and its effectiveness in a
large scale commercial application. While the Hotbox was
developed for a particular application domain, the widget
itself and the design rationale are potentially useful in other
domains.

KEYWORDS: menus access, menubars, two-handed input,
transparency, marking menus

INTRODUCTION
In this paper we describe the design of a menu access wid-
get in Alias |Wavefront’s professional 3D computer anima-
tion and design application, Maya [14]. Because Maya is a
professional’s tool it presents many challenging user inter-
face requirements. First and foremost, Maya allows com-
plex and sophisticated controls over 3D data and the
behavior of 3D data over time. For example, Maya is used
for computer graphics special effects in blockbuster Holly-
wood movies like “Jurassic Park” and “Toy Story”. This
sophisticated functionality results in an application with
hundreds of commands. Professional users also require effi-
cient access to commands since they may spend a huge
number of hours operating the application under strict
deadlines. Therefore even small performance improve-
ments (like menu selection speed) can dramatically affect
user efficiency and their perceived efficiency of the applica-
tion. Another major design requirement for this class of
application is to reduce the complexity of the user interface
whenever possible. The nature of data and the operations on

the data is, by itself, complex. Adding in a complicated user
interface would only further increase complexity of the
application.

These challenges produce three basic problems for the tra-
ditional GUI design:

Quantity: Maya has approximately 1200 commands which
would be typically found in the menubar. This number of
commands will increase with subsequent versions. Roughly
speaking, at the very most 20 menus can be placed in a
menubar that span the entire length of a high resolution
screen (1280 pixels across). With 1200 commands this
results in menus that on average have 60 items in them. In
practice this results in information overload.

Speed: Users want fast access to frequently used com-
mands. In traditional GUIs, hotkeys (also called “menu
accelerators”), are used for the frequently used functions. In
Maya, a default set of hotkeys are used to access frequently
used functions, however, this allows access to only a small
fraction of the 1200 commands. Increasing the number of
hotkeys creates problems. First, as the number of hotkeys
assignments increases the hotkey mappings become hard to
remember (“why is ctrl-d mapped to “Create IK Joint?“).

* Thomas Baudel is now at Ilog, thomas@lri.fr
33+149082965, http://www.lri.fr/-thomas

P a p e r s C H I 9 9 1 5 - 2 0 M A Y 1 9 9 9

Second, the keystrokes themselves become slow to articu-
late (for example, ctrl-alt-P). We also support user-defin-
able hotkeys, however, this still has the same limitations.

Unification: In a traditional GUI, commands may get dis-
tributed between toolbars and the menubar. Typically GUIs
place functional modes into toolbars and one-shot actions
into the menus. However, from a functional point of view,
some particular modes and actions are closely related and
therefore should be found close together in the interface.
We believe this aids the user in learning the application and
in finding commands in the interface especially when there
are numerous commands. Thus we developed the require-
ment of “unification”: modes and actions should be
grouped together in the interface according to function.

We also wanted to create a menu access technique that
would unify novice and expert behaviors. In a traditional
GUI, novice and expert operation of the interface can be
dramatically different. For example, a novice user may
exclusively use only the menubar while an expert may
almost exclusively use hotkeys. The radical difference
between these two behaviors makes graduating from novice
to expert behavior an explicit (and extra) effort. We wanted
to produce a menu access technique where novice operation
was a rehearsal of expert behavior. Essentially, we wanted
novices and experts to use the same menu access technique
perhaps differing only in speed of operations (much like
Marking Menus [8]).

OTHER POSSIBLE SOLUTIONS

Our default solution in Maya makes use of the traditional
menubar. Due to the sheer number of menu-items, we
divide the menu-items into separate menubars which
roughly reflect the high-level tasks of our users. Therefore
we have “Modeling”, “Animation”, “Dynamics” and “Ren-
dering” menubars. The first six menus of a menubar are
common to all menubars so we refer to this subset of menus
as the “Common” menu-set, These four menubars cannot
be displayed simultaneously so a user can switch between
menubars by selecting from a popup menu containing the
four menubar names which is located directly underneath
the main menubar. The menu items in this modal menubar
can also be accessed with other standard GUI techniques:

predefined hotkeys and user definable “drag and drop” tool-
bars and hotkeys.

This default solution does address some problems men-
tioned in the previous section. The multiple menubars
increase the virtual capacity of the menubar by a factor of
four. Hotkeys do provide fast access to functions in the
menubars but as mentioned earlier the number of hotkeys is
limited and the mappings are confusing. The problem of
breaking functional groupings by distributing functions
between toolbars and menubars is eliminated by simply
placing all functions in the menubars and having no pre-
defined static toolbars.

However, there are some major drawbacks to this solution.
Direct menu access (not using hotkeys) is slower when a
user has the extra step of switching between menubars.
Also, our user base finds menubar and toolbar selection
slow since selection requires having to move the cursor
from their working area in the center of screen to the
menubar or toolbar at the edge of the screen and back. Rel-
ative to hotkeys and in-context pop-up menus this “cursor
round trip” is perceived as slow.

This solution also has unification problems. Novice and
expert behaviors are radically different: novices use the
menubars while experts use hotkeys and user defined tool-
bars. Drag and drop toolbars further erode unification, since
favorite commands and unfavorite commands get placed in
different spots over time breaking functional groupings.

Given the problems with this “status quo” solution we
began work on alternate solutions. Some solution
approaches we ruled out early in our design process. Our
solution space was narrowed down dramatically by the fact
that we were designing for a commercial product not a
research system. For example, text command line entry was
ruled out for the usual arguments that apply concerning
GUI versus command line systems. Speech input was ruled
out because systems support for speech isn’t ubiquitous and
guaranteed like keyboard and mouse input.

Other solutions such as menu modes which present fewer
menu-items to novices than to experts [3] were not suitable
because they only aid novices not experts who need to deal
with the complete set of menu-items and also require fast
access.

Essentially we had to construct a solution out of the basic
interaction techniques of GUIs: popup, pulldown menus,
different mouse buttons, hotkeys, etc. None of these tech-
niques used in the traditional sense provided a satisfactory
solution. The main problem with these techniques was han-
dling the sheer number of menu items.without producing
heavily nested menus (nesting menus has been shown to
degrade menu selection performance [7][10]) or forcing the
user to learn many different hotkey or button mappings.
However, the solution we did develop is built using a com-
bination of these GUI components.

Ultimately, we had to develop a new technique which our
users would prefer over the traditional default technique.
Use of the new technique would be optional (both the new
technique and the traditional technique would be available
in the application simultaneously), so if users elected to use
the new technique instead the traditional we would consider
this a success.

CHI 99 1 5 - 2 0 M A Y 1 9 9 9 P a p e r s

HOW THE HOTBOX WORKS
This section outlines how the Hotbox widget works. The
next section will discuss rationale behind this design.

The HotBox works as follows. To display the Hotbox the
user holds down the space-bar (with their non-dominant
hand) when the cursor is in any of Maya’s windows. The
Hotbox instantly appears, centered at the location of the
cursor. The “rows” of the Hotbox (see Figure 2) behave like
traditional menubars. Individual menus can be popped
down like menubar menus by moving the mouse (with the
dominant hand) so the cursor is over a menu label and
pressing any mouse button (Figure 3).

Each row of the Hotbox corresponds to a particular set of
menus (Figure 4). The top row, is referred to as the “com-
mon” row. This corresponds to menus commonly found in
most applications’ main window menubar (e.g., File,
Edit,...). The next row down shows the items in the
menubar for the window that the cursor is currently in.
Below the center row of the Hotbox are rows of menus spe-
cific to certain computer graphics tasks.

The center row’s menu label “Recent Commands” displays
a list of recent commands issued by the user and allows a
user to repeat a command without having to relocate the
command in the menus. (Figure 5). The other menu in the
center row, “Hotbox Controls” allows the user to control
which rows of the Hotbox are displayed. This menu is a
marking menu [8]. In Figure 2, all the rows of the Hotbox

are displayed. Using the marking menu a user can quickly
display and hide specific rows. Figure 6 shows an example
of changing the display of rows.

Besides presenting the user with rows of menus the HotBox

one of the these zones has a different marking menu which
can be accessed simply by pressing down a mouse button
when the cursor is in the zone. These marking menus are
used for user defined menus.

The Hotbox remains displayed as long as the space-bar is
kept pressed. This allows a user to perform a series of com-
mands without having to re-invoke the Hotbox.

DESIGN ISSUES AND RATIONALE
In this section we present major design issues and rationale
in the development of the Hotbox. We have grouped these
issues and rationale into five main categories: Quantity,
Speed, Unification, Graphic Design, and Interaction
Design.

1 Quantity
The Hotbox project actually started off with the goal of
simply increasing the number of marking menus we could
make available in our applications and perhaps capturing all
the menu-items in Maya in these marking menus. Tradi-
tionally, a user can access marking menus in our older
product (Power Animator) by holding down both the shift
and ctrl key (the “trigger key”) and pressing a mouse button
to popup a marking menu. Each mouse button has a differ-
ent marking menu associated with it. If the user configures
each menu to have eight items, this results in fast access to
24 items.

This configuration of marking menus in Power Animator is
extremely popular--most expert Power Animator users.
make heavy use of this feature. In Maya we wanted to
improve the situation:

l use the space-bar instead of the awkward “shift-control”
keys.

l have the same menu for each mouse button (to avoid
“wrong mouse button” errors and to support use with a
tablet and stylus device instead of a mouse).

l get access to many more items.
Based on these requirement we developed the idea of using
different “menu zones” to access different menus as

P a p e r s CHI 99 15-20 MAY 1999

opposed to different mouse button or trigger keys. To get a
feel for this solution approach we built several working pro-
totypes and let expert users test them. Figure 7, shows vari-
ations on the configurations of zones.

Our expert users reported that this approach allowed effi-
cient access to menus. However, we still realized that 4 or 5
zones were not enough to capture all the menu-items in
Maya without severe menu nesting. To solve this problem,
we then generalized the concept of zones to have overlap-
ping zones and developed the basic configuration of the
Hotbox. With this new approach we realized we could
begin considering handling the number of menu-items in
Maya.

The next question was how to organize the menu-items in
the Hotbox.

Menubar compatibility. In designing the Hotbox widget, we
wanted to be sensitive to users who worked with the tradi-
tional GUI menubar and then wanted to transition to the
Hotbox. To support learning, we designed the Hotbox com-
mand set rows to match the menu organizations in the tradi-
tional GUI menubar.

Hide/show command sets. While the original intent for the
Hotbox was to house and present all of the command func-
tions to the user, we learned early on that users did not want
to see all of the command sets all of the time. Therefore, we
created a marking menu (Hotbox controls) to allow the user
to quickly toggle the visibility of individual rows or to
specify the viewing of specific rows (which hides all other
rows).

box provides access to these menus as well. The “pane spe-
cific” row in the Hotbox changes its contents depending on
the position of the cursor within different view:; at the time
the Hotbox is invoked. This design provides context spe-
cific access to command sets which automatically change
as the user changes views.

2 Speed
Large menu targets. With the layout of the Hotbox, there is
a design tension between speed of access (making the menu
rows tall and wide) versus the overall size of the Hotbox
widget (which interferes with seeing the underlying appli-
cation data). We know from Fitts’ law [12] that speed of
target acquisition is a function of the distance to the target
from the cursor and the width of the target. In our case, the
width of the target is broken up into two components: the
length and height of the menu label. To provide: fast access,
we increased the height of our menu rows which is the true
effective width of our Fitts’ Law targets while not distorting
the visual appearance of the Hotbox widget.

Popup at cursor or center of screen. Having chosen a pop-
up design, we considered two strategies. First, we could
pop the Hotbox widget centered around the current cursor
location. This reduces the average distance between the
cursor and a given menu label. Also, it guarantees that the
center marking menu zone will be immediately active for
invoking a marking menu. Alternatively, we considered
popping up the Hotbox widget in the center of the screen.
This design would provide a constant, absolute positioning
of menu items as well as marking menu zones. In terms of
cursor travel distances, this approach is more costly than
the first approach where the menus come to the user instead
of the user going to the menus.

Issuing multiple commands in a single posting. Many pop-
up widgets are designed to dismiss themselves when a user
selects an item. We designed the Hotbox widget to handle
issuing multiple commands in a single posting. This pro-
vides a more efficient interaction (often saving mouse
clicks and cursor travel time).

Marking zones. The 5 marking zones (North, South, East,
West and Center) are designed to provide a user with quick
access to a large number of their own personal custom
menus. These customizeable marking menus are extremely
useful for an expert user. For example, a user that very fre-
quently invokes the “show surface normals” menu-item
(which is nested 2 levels deep in the menubar menus), can
place this item in one of the zone marking menus for fast
access.

These zone menus can be built by a user using a GUI menu
builder in Maya. Not only can they contain menu-items
from Maya’s menubars but a user can also write their own
custom menu-item commands using Maya’s embedded pro-
gramming language. This level of customizability is
extremely useful for expert users.

Quick access is supported in two of ways. First, a menu
zone is an extremely large target (almost l/4 of the screen).
This makes moving the cursor into it extremely fast. Sec-
ond, the use of marking menus provides fast command
access compared to traditional linear menus [8]: once in the
correct zone a user can simply press down the mouse button
and “flick” the cursor in the direction of the desired menu-
item.

Figure 7. Early prototypes of Hotbox with marking zones.

CHI 99 15-20 MAY 1999 Papers

Within each zone, a marking menu set can be defined for
each of the three mouse buttons. This provides the user with
the potential for 15 custom marking menu sets. While this
may seem a bit excessive, we believe it is a reasonable size
if users have a preference for single level menus. By
default, the Maya application has five default marking
menu (one in each zone). The center marking menu zone
has been designed for the quickest access as it does not
require any cursor travel before a user can start issuing a
mark.

By its design, the Hotbox creates a hierarchy of access
speed. The center zone provides the fastest access. When
the space bar is pressed it can be accessed without having to
move the cursor. The next level of access is the north, east,
south and west zones. These zones don’t pop-up under the
cursor but since they are very large they can be moved to
very quickly. Finally, the menu row items are the next level
of access. Like the zones, they require cursor movement but
are slower to access since they are much smaller targets
than the zones. Also, within the menu rows, items closer to
the center are faster to access.

3 Unification
Everything in menubar. Early versions of Maya had two
main widgets to house commands: the menubar and tool-
box. Our users never realized that the toolbox contained
moded items. Instead they would ask us why the functions
were separated into two places. Given this, we wanted to
provide “one-stop-shopping” for our users where the com-
mands were organized by function not by interaction style
(e.g., moded tools are in the toolbox while one-shot actions
are in the menus). Placing the tools into the menus had a
side benefit of using text labels instead of icons to describe
a command function.

Menus under one key. To simplify the interaction model, we
wanted to define a single mechanism for accessing the
menus. While Maya uses the Motif toolkit, which has it’s
pop-up menus under the right mouse button, many of our
users found this fatiguing and wanted to use the left mouse
button. We could not use modifier keys (ctrl, alt, shift) as
these were already assigned to standard keys for managing
selection and camera controls. Thus, we needed to find
another key and we chose the space bar for its ease of
access. Using a single key to access menus within the appli-
cation provides a gestural unification and simplification to
the overall interaction model.

Customizeable menus. Strictly speaking, our customizeable
zone menus violate our design principle of unification. Like
a drag and drop toolbar a user can relocate functions and
this results in different novice and expert behaviors. We
have two observations concerning this. First, because of the
capacity of the Hotbox zones, our default zone menu set is
quite large and we have observed that many expert users
don’t find a need to create custom menus--they simply use
the defaults and perceive these menus as the functional
location for these menu-items. In this situation novice and
expert behavior remains the same. Second, when a user cre-
ates fast access to some menu items by placing them in a
zone menu, the basic access behavior remains the same
(i.e., through the Hotbox). This is in contrast with tradi-
tional drag and drop customization where a menu-item is
dragged from the menubar to a toolbar after which access is
through the toolbar not the menubar.

4 Graphic Design
Visual & organizing theme. We considered a variety of lay-
outs for the menu sets (e.g., column based, cluster based,
etc.). In the end, we chose a row based approach which was
easy to implement, offered a compact layout, and visually
reflected the common menubar concept.

Row presentation. Presenting multiple menu rows to the
user without overwhelming them was a major challenge in
our design. Initially we had the rows left justified. Next we
prototyped a center justification approach to reduce the
travel distance to the various menus (see Figure 8). Still,
graphically, this was hard to visually parse and identify
command sets based on row length. We considered coloring
each row separately but realized that some of our machines
only have 3 colors in the overlay window in which the Hot-
box widget is drawn so this solution would not work.
Finally, we came up with a layout algorithm which we call
“stair-step justify” which quantizes row lengths to various
uniform step increments and center justifies the row. This
provides visual order to the Hotbox widget (see Figure 2).
In addition, we placed a border around the rows to further
reinforce their menubar likeness and to reduce visual inter-
ference from the application data. Lastly, we preserved the
row ordering (Common, Pane specific, Hotbox specific,
Animation, Modeling, Dynamics, Rendering) and made the
Hotbox specific row visually distinct to provide a visual
grouping of rows. This final design is much more visually
balanced while still offering the same degree of interaction
efficiency as in our earlier designs.

Marking menu zones. Delimiting the five marking menu
zones also provided a challenge. We quickly settled on
using the cross (X) but found it difficult to determine visual
rules for the length of the lines. This was specially awkward
for Hotbox configurations with an even number of rows.
This is truly a subtle graphical design issue which was
noticeable and visually disturbing in our early designs but
has been rectified in our current design (which keeps the
cross length balanced above and below the Hotbox specific
row, such that the cross is perfectly square).

Transparency. To reduce obscuring the underlying applica-
tion data, the Hotbox widget employs transparency (see
Figure 1) to allow the user to see through the widget (simi-
lar to systems like ToolGlass [l] or T3 191). This is espe-
cially useful as the Hotbox can be quite large when all of

Papers CHI 99 15-20 MAY 1999

the rows are being displayed. The user can adjust the degree
of transparency from fully opaque to clear.

Anti-alias fonts. When the Hotbox is drawn with 100%
transparency (i.e., clear), a great deal of interference occurs
between the textual menu labels and the underlying appli-
cation data. To reduce this interference, we use anti-alias
fonts [4] which surrounds each character with an “oppo-
site” contrasting color to ensure its legibility.

No need for traditional menubars. Users also quickly real-
ized the benefit of transitioning to the Hotbox widget in that
they can hide the traditional GUI menubars (both the main
menubar and the pane specific menubars) to free up more
screen space for their application data. This can be a very
significant saving if there are many windows displayed with
a menubar in each one.

5 Interaction Design
No Hotbox warping. We do not warp the position of the
Hotbox if portions of it fall off the screen. This is to pro-
duces the benefit of having the center marking menu zone
always popping-up under the cursor. The cost is, of course,
to have some inaccessible menu-items when popping up
near the edge of the screen. We have found in practice that
this isn’t a major problem since users prefer to generally
work near the center of the screen.

Menubar functionality. Since the Hotbox widget can be
viewed as a collection of menubars, users expect the same
degree of functionality as traditional menubars. Thus, we
need to provide the usual functions of posting individual
menus, browsing multiple menus within a single drag oper-
ation, the ability to tear-off menus, and offering roll-over
help for individual menu items. Nothing in the design of the
Hotbox prevents these features, however, time constraints
prevented us from implementing these features in the first
commercial release of the Hotbox.

HOTBOX USAGE
At the time of this writing, the Hotbox has been used on a
daily basis by about 10 in-house users for 16 months, by
about 100 beta customers for 13 months, and has now been
shipping in the Muy~ product for 6 months, available to
thousands of users. At each stage, we find approximately
the same usage pattern: some users just ignore it and use
the regular GUI elements instead. Some use it as part of
their workflow but not to its full extent. Finally, some users
use it extensively and exclusively (that is, they hide the tra-
ditional menubars, toolbars and make heavy use of the zone
menus).

One useful method we have for gauging the success of a
product feature is through unsolicited comments from our
users, either directly sent to us, published in internet news-
groups or addressed to our customer service. As an exam-
ple, Table 1 shows some representative comments found on
the comp.graphics.apps.alias and comp.graph-
ics.apps.wavefront newsgroups (notes: PA and Wavefront
are our previous products, MAX is a competitor, all com-
ments are from different contributors, misspellings are not
corrected)

This data is by no means a formal proof of the efficiency of
the Hotbox but it is evidence that there is strong acceptance
of the hotbox from a portion of our customers.

A more formal survey of 12 of our most experienced in-
house users revealed that 5 of them are intens:ive users,
removing all menu bars from their display to gain screen
real estate, 5 are frequent users (using it for about half of
their menu selections but not removing all menubars from
their screen) and 2 use it very rarely or never.

We should point out that the use of the hotbox i:s optional
and users can choose to use many other standard ‘GUI tech-
niques in Maya instead of the Hotbox (e.g., drag and drop
toolbars, user definable hotkeys, traditional menubars and
popup menus). Thus, we believe that users are using the
Hotbox because of some perceived benefit.

> With all the missing Tools, is anyone happy about what they got
> a paidfor in Maya? Can you give me 5 good reasons to buy it?
I) Semi-Procedural Modeling and Animation (makes PA look bar
baric)
2) FAST UI interactivity for modeling
3) Incredible work-flow improvements over PA, WavefiPnt
4) Hotbox!
5) Hardware rendering particles.
Does anyone who’s used Maya for more than a few days ever use
the regular menus? The hotbox seems so handy (ifvisually cha-
otic) I can’t imagine using the traditional menus much.
I tried to do some work in PA the other day only to find that I haa’
almost forgotten how to use it. Maya’s way of doing th:ings has
taken over my brain. I was on my Mac using AfterEffects and tried
to use the Hotbox, and was confused momentarily as t,o why it
wasn’t working (about 2 or 3 se onds of confusion).
As I have said I have used Maya just for 10 or 15 hrs or so, and
when I come back to PA I feel really bad and I start to press Space
for my hotbox menu.
“This other animator here who uses MAX was a hard #sale on PA
(Oh yeah, we can do thatfor less is basically his line) was also
impressed. I heard him say, Hmmmm.....now thatS nice!!! He was
referring to the HotBox, general workflow issues, hardware ren-
deredparticles etc. and that sort of compliment from him is a rar-
ity. Anyway, I can’t wait to see where this is all going with MAYA. ”

Table 1: Unsolicited comments from users.

CONCLUSIONS
We believe the Hotbox design produces the following bene-
fits to a user and these benefits are responsible for its accep-
tance:

l Access to multiple menu bars without having to switch
menubar modes.

l Fast access to up to 15 user definable marking menus.
Up to 3 of these menus are available directly under the
cursor after pressing the space-bar.

l Multiple commands can be issued in a single posting.
l Commands normally distributed between the toolbox,

menubar, window menus and user definable marking
menus are in the same spot.

l The user can free up more screen space by hiding the
traditional menubars.

We believe the following features aid in learning and using
the Hotbox:

l Mimicking the structure of the traditional menubar
menus eases learning of the Hotbox menu rows.

l The simple and consistent access method for all menus
(i.e., press the space bar and press a mouse button to
pop-up a menu) is easy to learn and habituatle.

236

CHI 99 15-20 MAY 1999 Papers

l Supporting both novice and experts without requiring
customization or radically different behaviors.

We also believe the Hotbox design and rationale can be
applied to other domains. First it could easily be applied to
other applications where the number of commands over-
load the traditional GUI elements. Furthermore, many of
the benefits of the Hotbox are still applicable even if the
application’s command set isn’t overly large.

Finally, we hope that other UI designers will apply some of
the unique design principles and techniques used in the
Hotbox (unification, a single, habituating access mecha-
nism, large, radial zones for fast menu access, marking
menus and transparency).

ACKNOWLEDGEMENTS

We gratefully thank our expert users most notably Jeff Bell,
Chris Ellison and Corban Gossett for their relentless feed-
back. Beth Goldman, Ravin Balakrishnan and Bill Buxton
also provided valuable comments on the design. We would
also thank Venu Venugopal, product manager for Maya, for
supporting the development and deployment of the Hotbox.

REFERENCES

1. Bier, E., A.,Stone, M., C., Fishkin, K., Buxton, W.,
Baudel, T., (1994) A Taxonomy of See-Through
Tools. Proceedings of the ACM CHI’94 Conference on
Human Factors in Computing Systems, 358-364.

2. Brooks, P. (1994). Adding Value to Usability Testing.
in Usability Inspection Methods, Nielsen, J. & Mack
R. (Eds). John Wiley. 255-271. see p. 262.

3. Carroll, J., M., & Carrithers, C. (1994) Training
Wheels in a User Interface. Communications of ACM,
27,800-806.

4. Harrison, B. & Vicente, K. (1996) An Experimental
Evaluation of Transparent Menu Usage.Proceedings of
the ACM CHI’96 Conference on Human Factors in
Computing Systems, 391-398.

5. Gould, John (1988). How to Design Usable Systems.
in Handbook on Human-Computer Interaction, M.
Helander (Editor), North-Holland. Elsevier 1988. pp.
757-789. Reprinted In Readings in Human Computer-
Interaction: Towards The Year 2000. Baecker, R., Gru-

6.

7.

8.

9.

10.

11.

12.

13.

14.

din, J. Buxton, W. & Greenberg, S. (Eds), Morgan
Kaufmann, 1995.93-121. seep. 113.

Jeffries, R. (1994). Usability Problems Reports: Help-
ing Evaluators Communicate Effectively with Devel-
opers. in Usability Inspection Methods, Nielsen, J. &
Mack R. (Eds). John Wiley. 273-294. see p. 278.

Kiger, J.L. (1984) The Depth/Breadth Tradeoff in the
Design of Menu Driven User Interfaces. Znternational
Journal of Man Machine Studies, 20,2 1 O-2 13.

Kurtenbach, G., Buxton, W. (1993) The limits of
expert performance using hierarchical marking menus.
Proceedings of CHI ‘93 Conference on Human Factor
in Computing, 482-487.

Kurtenbach, G., Fitzmaurice, G., Baudel, T. & Buxton,
B. (1997) The Design of a GUI Paradigm based on
Tablets, Two-hands, and Transparency. Proceedings of
the ACM CHI’97 Conference on Human Factors in
Computing Systems, 35-42.

Landauer, T.K. & Nachbar, D.W. (1985) Selection
from Alphabetic and Numeric Trees Using a Touch
Screen: Breadth, Depth and Width. Proceedings of the
ACM CHI’85 Conference on Human Factors in Com-
puting Systems, 73-78.

Lewis, C. 8z Rieman, J. (1993). Getting to Know Users
and Their Tasks. in Task Centered User Interface
Design, a practical introduction. Reprinted In Read-
ings in Human Computer-Interaction: Towards The
Year 2000. Baecker, R., Grudin, J. Buxton, W. &
Greenberg, S. (Eds), Morgan Kaufmann, 1995. 122-
127. seep. 124, col. 2.

Mackenzie, I.S., & Buxton, W. (1992) Extending Fitts’
Law To Iwo-dimensional Tasks. Proceedings Of Acm
Chi ‘92 Conference On Human Factors In Computing
Systems, 219-226.

Sears, A. & Shneiderman, B. (1994) Split menus:
Effectively using selection frequency to organize
menus. ACM Transactions on Computer-Human Inter-
action, vol. 1, #I (March 1994), 27-51. also available
online at ftp://ftp.cs.umd.edufpub/papers/papers/2997/
2997.ps.Z

http://www.aw.sgi.com, Maya product brochure

237

